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Applications harmoniques, applications pluriharmoniques
et existence de 2-formes paralléles non nulles

Ahmad El Soufi et Robert Petit

Abstract. In this paper we study harmonic maps from a compact riemannian manifold equiped
with a non trivial parallel 2-form, to a Kahler manifold of strongly negative curvature tensor or
a riemannian manifold of strictly negative complex sectional curvature. In a first part we set up
some rigidity results of Siu type. Then we obtain an upper bound for the rank of such maps in
terms of the rank of the 2-form and deduce some vanishing theorems.

Mathematics Subject Classification (1991). 58E20, 53C55, 53C20.

Keywords. Harmonic maps, pluriharmonic maps, holomorphic maps, parallel forms, Kahler
manifolds, rank estimates, vanishing theorems, Dirac operator.

1. Introduction

Dans le cadre des applications harmoniques, ou pluriharmoniques, définies sur des
variétés kahlériennes, plusieurs résultats de rigidité ont été démontrés ces dernieres
années, notamment par Siu [17], Sampson [15] et Ohnita-Udagawa [13] (cf. [3]
pour une revue de ces résultats). L’objet principal de cet article est de montrer
que, dans au moins une partie de ces résultats, le seul role joué par la structure
kéahlérienne de la variété source est de fournir une 2-forme parallele non nulle.
Les résultats de rigidité que nous obtenons dans cet article porteront en fait a
la fois sur la variété source et sur I'application. Signalons au passage que toutes
les variétés que nous considérons dans cet article seront supposées implicitement
connexes et, sans bords.

L’un des résultats de rigidité majeurs est bien siir celui obtenu par Siu dans [17].
Ce résultat nous dit que toute variété kahlérienne compacte de dimension m > 2
ayant le méme type d’homotopie qu’une variété kahlérienne compacte a tenseur
de courbure fortement négatif, lui est holomorphiquement (ou antiholomorphique-
ment) difféomorphe. La preuve de ce théoreéme repose sur un autre résultat de
rigidité important, également di a Siu: toute application harmonique, de rang
au moins 4 quelque part, d’une variété kahlérienne compacte a valeurs dans une
variété kahlérienne & tenseur de courbure fortement négatif, est holomorphe ou
anti-holomorphe.
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L’extension que nous obtenons de ces deux résultats de Siu se présentera comme
suit. Nous commencerons par montrer (théoréme 4.1) que,

si M est une variété riemannienne compacte de dimension paire m > 2 qui admet
une 2-forme paralléle non nulle o, et si N est une variété kdihlérienne a tenseur
de courbure fortement négatif, alors l'existence d’une application harmonique ¢ de
M dans N de rang au moins m — 1 quelque part, entraine que o est une forme
de Kahler sur M et que ¢ est holomorphe ou anti-holomorphe pour la structure
compleze induite par o sur M.

Puis, nous en déduisons (corollaire 4.1) que,

si une variété riemannienne compacte orientable M admettant une 2-forme par-
allele non nulle a le méme type d’homotopie qu’une variélé kahlérienne compacte
a tenseur de courbure fortement négatif, alors M est elle méme kdihlérienne et les
deuz variétés sont holomorphiquement, ou antiholomorphiquement, difféomorphes.

Par ailleurs, nous montrons (théoreme 4.3) que ’hypotheése sur le rang de ¢ dans
le théoreme 4.1 sus-mentionné peut étre supprimée si I'on suppose a la place que
le second nombre de Betti de M est égal a 1 et que la forme « est non dégénérée.
Ceci nous permet de généraliser un résultat de Ohnita-Udagawa [13] dans lequel
M est supposée kahlérienne des le départ.

Rappelons a propos de I’hypothése sur le tenseur de courbure de N, que celle-
ci est vérifiée en particulier lorsque la courbure sectionnelle holomorphe de N
est constante strictement négative (cf. [17] pour plus de détails concernant cette
hypothese). De plus, la construction de Mostow-Siu [12], fournit des exemples de
variétés kahlériennes a tenseur de courbure fortement négatif qui ne sont méme
pas difféomorphes a des variétés localement symétriques.

Un autre résultat que nous généralisons est le suivant, dii & Hernandez [6]:
sur une meéme variété compacte M il ne peut y avoir a la fois une métrique a
courbure sectionnelle complexe strictement négative et une métrique kahlérienne.
En effet, nous montrons (corollaire 5.2) que leristence d’une métrique & courbu-
re sectionnelle complexe strictement négative exclut non seulement les métriques
kdhlériennes, mais aussi toute métrique pouvant admettre des 2-formes paralléles
non nulles. (cf. corollaire 5.2 pour un énoncé plus général). Ce résultat est a
mettre en parallele avec le fait qu’en courbure positive on a ba(M) = 0 et donc
quaucune métrique sur M n’admet de 2-formes harmoniques (cf. [11], [16] et [14]).

On peut noter que la courbure sectionnelle complexe d’une variété riemannienne
est négative en particulier lorsque sa courbure sectionnelle est négative % pincée
en tout point.

Le résultat du corollaire 5.2 apparaitra en fait comme conséquence des estimées
que nous obtenons sur le rang des applications harmoniques ayant pour source une
variété riemannienne compacte M munie d’'une 2-forme parallele «, en fonction
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du rang de cette forme. En effet, nous montrons (théorémes 5.1 et 5.2) que si
¢ : M — N est une telle application et:
1) st N est kdhlérienne d tenseur de courbure fortement négatif, alors

rg(¢) < Max(rg(a),m —rg(a)),

ii) si N est de courbure sectionnelle complexe strictement négative, alors
rg(¢) < Maz(2,m —rg(a)),

ot rg(¢) et rg(«) désignent respectivement les rangs de ¢ et de a.

L’existence d’une 2-forme parallele non kdhlérienne o #£ 0 sur la variété M, en-
traine que la représentation du groupe d’holonomie Hol(M) de M est réductible.
En effet, si L désigne 'endomorphisme antisymétrique de T'M associé a « via
la métrique g, alors les espaces propres de I'endomorphisme symétrique L? sont
stables par Hol(M) (noter & ce propos que la forme « est kahlérienne si et seule-
ment si L? est une homothétie, cf. [10] pour plus de détails sur ce sujet). Par
conséquent, le revétement universel M de M est un produit riemannien, dont les
facteurs sont tangents aux relevés des espaces propres de L2. Or, nous montrons
que lorsque le rang de ¢ est au moins égal & 3, les majorations (i) et (ii) ci-dessus
se traduisent par le fait que le relevé de ¢ a M nest fonction que de 'un des
facteurs de ce produit (théorémes 5.1, 5.2 et remarque 5.1).

On a vu dans [14] comment étendre la notion d’application pluriharmonique
(i.e. dont la restriction & toute courbe holomorphe est harmonique) au cas ou la
variété source est non nécéssairement kahlérienne, mais seulement munie d’une 2-
forme parallele a.. On parle alors d’applications a-pluriharmoniques. Notons que,
lorsque « est non dégénérée, toute application a-pluriharmonique est harmonique
(cf. [14]), et que, réciproquement, lorsque la courbure de la variété but est négative
ou nulle, alors toute application harmonique est a-pluriharmonique, pour toute 2-
forme parallele o (proposition 4.1). En fait, tous les résultats sus-cités concernant
les applications harmoniques, peuvent aussi étre énoncés pour les applications a-
pluriharmoniques. Or, nous montrerons que, lorsqu’on s’intéresse aux applications
a-pluriharmoniques, nous pouvons obtenir aussi des résultats du méme type que les
précédents mais sous des hypotheses de positivité sur la courbure de la variété but
(théoremes 4.2 et 4.4 et remarque 5.2). Ces résultats constituent pour Pessentiel,
une extension de ceux qu’ Ohnita-Udagawa [13] obtenaient pour les applications
pluriharmoniques définies sur de variétés kahlériennes.

La méthode que nous avons mise en oeuvre pour prouver les résultats de cet
article releve de ce qu’on appelle la ”technique de Bochner”. En effet, nous
établissons une formule (lemme 2.1) qui exprime, sur un fibré de Dirac de base
M, le commutateur [DQ7 al, ot D est 'opérateur de Dirac du fibré et oll & est une
2-forme sur M agissant par multiplication de Clifford, en fonction de la courbure
du fibré. Nous en déduisons, dans le cas particulier du fibré ¢*T'N associé a une
application ¢ : M — N, une formule intégrale a la Bochner (proposition 3.1). Ce
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genre de considérations peut étre rencontré en géométrie spinorielle, en particulier
dans les travaux de Hijazi-Milhorat [7] et Kirchberg [8]. On peut aussi trouver
dans le mémoire de Gromov-Pansu [5] une présentation des résultats de Corlette
[1] qui s’appuie sur le formalisme de Clifford.

Les auteurs tiennent a remercier le referee dont les remarques et suggestions
ont permis d’améliorer cet article, notamment 1’énoncé des théoréemes 5.1 et 5.2.

2. Fibrés de Dirac, opérateurs de Dirac et résultat préliminaire

Tout au long de cet article, tous les produits scalaires seront notés < , >, de
méme, toutes les connexions canoniques seront notées V. Les détails concernant
les objets qui seront introduits dans ce paragraphe peuvent étre trouvés dans le
livre de Lawson-Michelsohn [9].

Soit (M, g) une variété riemannienne de dimension m, on désignera par CI(M) =
CIl(T'M) son fibré en algebres de Clifford. On rappelle que CI(M) est muni d’une
structure de fibré riemannien induite par celle de T'M et que la connexion canon-
ique V agit comme une dérivation sur CI(M).

Fibrés de Dirac: Soit S un fibré vectoriel sur M en Cl(M )-modules & gauche muni
d’une métrique et d’'une connexion riemanniennes. On dit que S est un fibré de
Dirac si:

i) Les vecteurs unitaires de T'M agissent isométriquement sur S.

ii) V(¢.o) = (V¢).c + ¢.(Vo), pour tout ¢ € I'(CI(M)) et tout o € I'(S), olt le
point . désigne I’action de CI(M) sur S.

Un exemple trivial d’un tel fibré est le fibré CI(M) lui-méme muni de sa
métrique et de sa connexion canoniques.

Si V' est un fibré riemannien et S un fibré de Dirac alors S ® V, muni de
la métrique et de la connexion produits tensoriels, est encore un fibré de Dirac,
laction de CI(M) sur les fibres étant donnée par:

¢.(c ®v) = (p.0) Q.

Désignons par A*M = A*T*M le fibré en algebres extérieures de M. On
a alors un isomorphisme canonique de fibrés vectoriels de CI(M) sur A*M et
on peut définir pour toute p-forme « et tout o € I'(S) le produit a.o: si o =
Z iy e;‘l/\ s % e;; est la représentation locale de o dans un repere
1<iy...<ip<m
orthonormé local de M, alors on a

Q.0 = E ailmipeil . @ip~0'7
1§i1...<7}pSm
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ol €, ...¢;, désigne le produit de Clifford itéré. Ceci vaut en particulier pour le
fibré de Dirac CI(M). Dans ce dernier cas on a, pour toute 1-forme o et toute
p-forme o sur M:

ca=ocNha—ilo)a et aoc=(—1)Plcha+tilo)a), (1)

oll A et ¢ désignent respectivement le produit extérieur et le produit intérieur sur
N M.

Opérateurs de Dirac: Soit S un fibré de Dirac sur M. L’opérateur de Dirac
associé a S est Popérateur D : I'(S) — I'(S) défini dans tout repeére orthonormé

local {e;} de T'M par:
D= e.Ve.

Si M est compacte alors D est un opérateur autoadjoint pour le produit scalaire
(intégral) sur I'(S). Les éléments du noyau de D sont, par définition, les sections
harmoniques de S.

Pour CI(M), considéré comme fibré de Dirac, 'opérateur de Dirac associé
est (via l'isomorphisme canonique avec A*M) D = d + §, ot d et § désignent
respectivement la différentielle et la codifférentielle extérieures.

A toute p-forme harmonique a sur M on associe I'opérateur D, qu’on appelera
a-twist de D, donné pour tout o € I'(S) par:

D% = %(D(a.a) — (=1)Pa.Do).

On vérifie facilement que D est donné localement par:

D* == i(e)a.Ve,. (2)

i

Formule de commutation: On rappelle que la dérivée covariante seconde et la
courbure de S sont respectivement données, pour tout X,Y € T'M et tout o €
I'(S), par:

Vi yo =VxVyo —Vy,yo

et
R(X, Y)O =VyVxo—-VxVyo +V[X,Y]U = (V%’,X — V%Qy)a.

Soit V*V le Laplacien brut (i.e. V¥V = —tracegV%). La formule de Weitzenbick
s’écrit alors:

D?=V'V+R,
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ol R est "endomorphisme de I'(S) donné dans un repére orthonormé local {e; }
par:

i<m

x= —5 Z@Zx@j.R(ei,Cj).

,J
Nous avons alors la formule suivante pour le commutateur [D?, of:

Lemme 2.1. Soient M wune variété riemannienne et S un fibré de Dirac sur M.
Pour tout o € I'(S) et toute p-forme harmonique o sur M, on a:

D?*(a.0) — a.D%s = 2(DD® 4 (=1’ D* D)o
= —QZVsia.VEiaqLZ[ei,i(ej)a].R( €i,€5)0, (3)

4J
ot {ei}igm est un repére orthonormé local de TM et ot [¢, 9] = ¢ — (—=1)P4).4.
Preuve. On a:
D?(a.0) = D(D(a.0)) = (—=1)?D(e.Do) + 2D D%

et
D(a.Do) = (-1 a.D%¢ + 2D*Do.

D'olt
D?(a.0) — a.D% = 2(DD® + (-1’ D*D)o.

Maintenant, en appliquant la formule de Weitzenbock, on a:
D?(a.0) — a.D%¢ = V*V(a.0) — a.V*Vo 4 R(a.0) — a.Ro. (4)
Or, on a d’une part, la relation:
V*V(a.o) = (V*Va).o —2trace,V.a.V o + o.V*Vo. (5)

D’autre part, on a:

1
R(a.o) = —3 Zei.ej.R(ei,ej)(oz.a). (6)
i,
Sachant que R(e;,e;)(a.0) = (R(e;,ej)a).0 + a.R(e;, e5)0, équation (6) s’écrit:

R(a.o) = (Ra).o — % Zei.ej.oz.R(ei, €;)o. (7)

2%
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En utilisant (5) et (7), ’expression (4) devient:

1
D¥(a.0)—a.D?0 = (D2a).a—2tracegv_a.v,a—§ Z(ei.ej.oz—a.ei.ej).R(@i, ej)o.

4,J
(8)
Or, « est une forme harmonique, donc D2q, = 0. D’autre part, on a d’apres (1):

eiej.a— aepe; = ei.((—1)ae; —2i(ej)a) — ((—1)eja+ 2(—1)Pi(e;) ). 5
= —2(e;.i(ej)a+ (—1)Pi(e;)aey).

En remplacant dans (8) et en permutant les indices 4, j, on obtient finalement:

D¥(a.0)—a.D?0c = -2 tracegv.a.voJrZ(ei i(ej)a—(—1)i(e;)a.e;).Rei, e5)o.
]

D’otu le résultat. O

Remarque. Dans le cas particulier ou la forme o est de degré 2, la formule (3)
devient:

D?*(a.0) — a.D% = —22V6ia.veia - Zei.ej.Ra(eh ej)o, (9)

]

oll Rylei,ej) = R((i(e;)a)¥ e;) + Rles, (i(ej)a)™) et ol (i(e;)a)? désigne le
champ de vecteurs local associé canoniquement & la 1-forme i(e; ).

3. Une formule de type Bochner-Weitzenbock

Dans toute la suite de cet article, M et N désigneront deux variétés riemanniennes
connexes sans bords de dimensions respectives m > 2 et n > 2. Si ¢ est une
application différentiable de M dans N, on désignera par V = ¢*T'N le fibré
image réciproque induit sur M par ¢. Ce fibré est muni canoniquement d’une
structure riemannienne (cf. [2]).

Comme nous venons de le voir au paragraphe précédent, le fibré A*M @V est
un fibré de Dirac sur M. Or, I'(A*M @ V) n’est autre que 'espace des formes
différentielles sur M & valeurs dans V' que I'on note Q(V') (Q(V) = @,c v (V).
La encore, I'opérateur de Dirac associé a ce fibré coincide avec 'opérateur d + 4,
ol d et ¢ sont respectivement la différentielle et la codifférentielle extérieures sur
QV) (cf. [2]). ) )

Notons respectivement R et p le tenseur de courbure et 'opérateur de cour-
bure de N. On désigne par Ty@N le complexifié de I’espace tangent & N au point y,

et par P/w et (1, ) les extensions naturelles respectives de p/ et de <, > a A*T, fN :
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On rappelle que, si « est une 2-forme sur M, alors, pour tout = € M, il existe

une base orthonormée {ei}igm de T, M telle que

alz) =are] Nejyq + ...+ ageg Aedy,
ol {ef},.,, est la base duale de {e;},.,., d = [m/2] la partie entiere de m/2, et

ol les a; sont des réels positifs ou nuls. Une telle base sera dite a-standard.

Proposition 3.1. Soient M et N deux variélés riemanniennes. On suppose que
M est compacte. Si ¢ est une application de M dans N, alors, pour toute 2-forme
paralléle o sur M (i.e. Vao=0), on a:

. 2'U = 0[2 T 2'[] X))V,
/M|D< 48wy = |of /Ml @) g+4/MR¢< Yo, (10)

ot 7(¢) est la tension de Uapplication ¢ (i.e. T(¢p) =tracey Vdeg), vy Uélément de

volume canonique de M, et ot, dans une base a-standard {e;}, ., de TpyM,

Ro(a) = Y (pel€8),€5) e +a)? + > (pe(nd) nd) (ai — az)?
i,j5<d i,5<d

X D (6" Rimim + " By ) 5"

avee & = dp(Zi)NdP(Z;), 0l = dp(Z:)Ndp(Z;), Zi = %(@m/__w,), i —itd,

Xm =m = 2[m/2] et ¢* Ry, = R (d(es), dp(em), dd(ei), d(em))-

Avant de commencer la démonstration de cette proposition, rappelons que le
produit extérieur A3 d’une forme vectorielle o € QP(V') contre une forme scalaire
g€ QI(M) est une forme vectorielle de degré p + ¢ qui se définit de maniére na-
turelle. De plus, via I'isomorphisme canonique entre Q(V') et Q(V*), nous pouvons
définir le produit extérieur o Ay € QPTY M) de deux formes vectorielles o € QP(V)
et v € Q4V). A chacun de ces produits extérieurs on peut associer un produit
intérieur de la fagon suivante: pour tout o € Q94(V'), on désigne par i(o) I'un ou
l'autre des deux opérateurs:

(o) 1 QP (M) — QP 9(V) et i(o): QP(V) — QP I(M)
tels que, pour tout a € (M), o' € Q~I(M), v € Q(V) et 7 € @ 9(V), on a
<i(@)a,y >=<a,0 Ay >

et
< i(o)y, o >=< v,0 A o >
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En particulier, pour tout o € QL(V) et tout o € QP(M) on a la relation
a.c=(-1)P(c ANa+i(o)a).

Nous aurons besoin du lemme suivant:

Lemme 3.1. Soient o, 3 € Q*(M), des 2-formes sur M, et soient o,y € QY(V)
des 1-formes sur M a valeurs dans V', alors on a

<ao,fy>=<a,f><0,7>+ <ilo)a,i(v)f > — <ilo)F,iy)a>. (11)

Preuve du lemme 3.1. On a:
<ao,fy>=<oAha,yAB >+ <ilo)a,i(y)s > .
En utilisant la définition du produit intérieur, on obtient:

<oAa,yAB>=<a,i(o)(yAB) >=< o, (i(0)y)B —yAi(o)B >
=< a,f><o,7>—<io)f,i(y)a>.

Ce qui démontre le lemme. O

Preuve de la proposition 3.1. Soit o € Q2(M) une 2-forme paralléle sur M et soit
¢ : M — N une aplication différentiable. D’apres le lemme 2.1, on a:

< D?*(a.d) — a.D?(d¢), a.ddp >= 4Ry(a), (12)

ol Ry(ar) = —i Z < e.e5.Ro(e,€5)dp, a.dp >. D ’une part, on sait via (11), que
2%

< a.D%(d¢),a.dp >= |a|> < D?(dp),dp > (noter que D?(dg) est une 1-forme &

valeurs dans V car d¢ est fermée). D’autre part, comme D est un opérateur
auto-adjoint, on obtient en intégrant la relation (12):

2 o 2 2
/M|D<a‘d¢>| vy =] ]M|D<d¢>| vy +4 /M B

avec Dd¢ = 6d¢p = —7(¢). En considérant les 2-formes §;; = e} Ae€j et en utilisant
(11), cette derniere équation devient:

Byl — _i 3 <, By >< Ralei, e;)dd, dg >

1,7

- EZ(< i(dg)a,i(Ro(ei, 5)dd)Biy >
]

— < i(de)Bij,i(Rales, e;)dd)a >). (13)
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Or, on sait que R, est une 2-forme a valeurs dans les endomorphismes anti-
symétriques de Ql(d>*TN ), ceci entraine la nullité du premier terme dans le mem-
bre de droite de 'expression (13). Maintenant, pour toute 1-forme o € Q! (¢*TN),

i(o)a peut s’écrire sous la forme (o) = — Za((i(ek)a)#)ez, et done (13) peut
k
se réecrire de la facon suivante:

Ry(a) = = << (Ro(ei,e;)dp)(€:);n — (Rales, e5)de)(e) 0, d((i(er ) o)) >
Bk
— < (Rales,e)dd) (i(er)a) ™) dbles)dsn — dbles)buc >)
=3 Z( (i e5)d) (er), d((i(es)o) ) >

- % <Ra<ei7q)d@((i(ej)a)#xdaei) >). (14)

On rappelle que, pour tout X,Y € TM, la forme R(X,Y)d¢ € Q1(V) est donnée
par:

(R(X,Y)d)(Z) = R (dp(X),dp(Y ))dp(Z) — dp(R(X,Y)Z).
D’ou, en revenant a la définition de R, et en tenant compte du parallélisme de «,
Iéquation (14) devient:

Ry(e) = 3 (B (dgle), dg(i(e;)a)*), di(e), do((ile;)o) ™))

— B (dler), dg(ile;)a)™), doley), de((i(es)a)?)) ).

Ce qui peut encore s’écrire en utilisant la premiere identité de Bianchi:

Ro(e) = 3 (R (d(es), dp((ie))a)t), dp(es), db((i(e;)a) )

— 5B (), db((i(e5)a) ), (e, dp((i(es)) )
= S rallitedalt (ile)a)) - 5 37 6" (e, e, e, (iles)a)?),

ol 74(X,Y) = ZWR%X%H

Reste & exprimer Ry(a) dans une base a-standard. Or, si {e;};<,, est une telle
base, alors on a, pour tout i < d, (i(e;)a)# = aey et (i(ey)a)# = —aze;. On en

dedu1t
Ry(a) = Z(m +ry) a2 — 2 Z gi)*R“ 15 @il (15)

i<d 4,7<d
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Ou T — T¢(6i’€i) et ¢*
obtient:

o ¢*R/(ei,e ,€5,€;). En développant (15) on

1j 1 v 37

wl»—‘

Z ¢*lelj+¢)*R S /‘f’d) R/,/,+¢*R/ s /)(CL?‘FCL?)
,J<d

+ Xm Z((b*R;mlm + ¢*R'L/mz m a -2 Z gb*R“/JJ, Qitty
i<d i,j<d (16)

En utilisant les identités a?Jra? = % ((ai + aj)QJr(ai - aj)Q) et a;a; = i((ai + aj)2

—(a; — aj)Q), I’équation (16) devient:

1

’ 2
Ry(a) = 1 ‘z;d((ﬁ*ij + ¢*RU,ZJ/ T ¢*Rz/]z/j + ¢ Rz,ﬂ,ﬁ/ 2¢* R“/” Na; + a )
7>
1 / 9
+7 D (@ Rigiy + 6" Ry + 8" Ry + 6 Ry o + 26" Ry ) (as — aj)
i,j<d
+ Xm Z(¢* imim + gb*Rl’m@ m)(l?

i<d

Une vérification simple permet de voir que cette derniere expression coincide avec
celle donnée dans I’énoncé de la proposition. O

4. Résultats de rigidité
Si (N, g/) est une variété riemannienne, alors, & chaque 2-plan P = ¢{Z,W} C

Tya’N , on peut associer un nombre réel, appelé courbure sectionnelle complexe de
P, en posant:

(pkz A W), (ZAT))

KolP) = KolZ AW) = (znw.Z7T)

Noter que, si K éD est négative (resp. positive) en un point y de N, alors la courbure
sectionnelle de IV est négative (resp. positive) en y. En effet, pour tout couple
{X,Y} C TyN de vecteurs orthonormés on a

R (X,Y,X,Y) = Kg{(X +V=1Y) A (X — V=1Y))

i.e. la courbure sectionnelle du 2-plan réel p = IR{X,Y} est égale a la courbure
sectionnelle complexe du 2-plan complexe P = @{Z, 7}, avec Z = X +/—1Y.
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Il sera utile de remarquer que dans la proposition 3.1, I'expression de Ry (o) ne
comporte que des courbures sectionnelles complexes.

Une application ¢ de M dans N est dite harmonique si 7(¢) = Ddgp = 0 (i.e.
si la 1-forme d¢ € Q1(V) est harmonique). Elle est dite a-pluriharmonique, pour
une certaine 2-forme harmonique o € Q%(M), si D¢ = 0 (cf. [14] pour plus de
détails).

Une conséquence immédiate de la proposition 3.1 est la

Proposition 4.1. Soit N une variété riemannienne & courbure sectionnelle com-
plexe non positive. Toute application harmonique d’une wvariété riemannienne
compacte M o wvaleurs dans N est, pour toute 2-forme paralléle o« sur M, o-
pluriharmonique.

Cette proposition est & rapprocher du résultat de Corlette ([1], théoreme 3.1)
qui est de portée plus générale, mais dans lequel 'hypothese sur N est plus re-
strictive car exige la négativité de tout 'opérateur de courbure.

Si (N, g/7 J ') est une variété presque hermitienne, alors la structure complexe
J' induit une décomposition du fibré tangent complexifié TN en somme directe
de deux sous fibrés TN1O et TNOL tels que, en chaque point y de N, la fibre
T,N* 1.0 (resp. TyN 0 1) soit I’espace propre de J pour la valeur propre \/_ (resp.

—+/—1). Cette décomposition induit une decomposmon de A2TN? sous la forme:
NTNT = 207N @ AVITN @ AT N.

Lorsque (]\Lg/7 J/) est kdhlérienne, I'invariance du tenseur de courbure par J
entraine que la restriction de pg a AZOTN et & AD2TN est identiquement nulle.

En particulier si P=0{Z, W} C T@N est un 2-plan tel que (Z A I/V)l’1 =0, ol

(Z A W) est la composante dans /\1 TN de ZAW , alors la courbure sectionnelle
complexe Kgz(P) de P est nulle.

Définition. (Siu [17]) On dira qu’une variété presque hermitienne N a un tenseur
de courbure fortement négatif (resp. fortement positif) en y € N si sa courbure
sectionnelle complexe K;D en y est négative (resp. positive) et strictement négative
(resp. strictement positive) sur tous les plans P = ¢{Z,W} C TymN tels que

(Zz AW 2o,

On peut remarquer que pour tout couple de vecteurs linéairement indépendants
XetY € TyN, le vecteur Z = X ++/—1Y € Ty@N vérifie (7 /\7)1’1 £ 0. Par suite,
la courbure sectionnelle d’une variété presque hermitienne a tenseur de courbure
fortement négatif (resp. fortement positif) est strictement négative (resp. stricte-
ment positive).

Une application ¢ entre deux variétés kahlériennes (M, g,.J) et (N, q. J/) est
dite holomorphe (resp. anti-holomorphe) si, pour tout X € TM, J do(X) =
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dp(JX) (vesp. Jdp(X) = —dgp(JX)). Une telle application est a la fois har-
monique et w-pluriharmonique pour la forme de Kéahler w de M.

Le rang d’une application ¢ : M — N en un point = de M sera noté rg,(¢).
L’espace des 2-formes paralléles sur M sera noté Pa(M).

Theoreme 4.1. Soit M une variété riemannienne compacte de dimension paire
m = 2d > 2 telle que Po(M) # {0}, et soit N une variété kihlérienne & tenseur de
courbure fortement négatif. S’il exriste une application harmonique ¢ de M dans
N telle que Mazx rg,(¢) >m — 2, alors:

i) dim Po(M) =1 et Py(M) est engendré par une forme de Kdhler a,

ii) ¢ est holomorphe ou anti-holomorphe pour la structure compleze induite par «
sur M.

Compte tenu du théoreme de Eells-Sampson [4] et du théoréeme de rigidité de
Siu [17], nous déduisons du théoreme 4.1 le:

Corollaire 4.1. Soit N une wvariété kahlérienne compacte a tenseur de courbure
fortement négatif. Soit M une variété riemannienne compacte orientable de di-
mension m > 2 qui admet une 2-forme paralléle non nulle. Si M et N ont le
méme type d’homotopie, alors M est en fait une variété kahlérienne et M et N
sont holomorphiquement difféomorphes.

Dans le cas ol le tenseur de courbure de NV est fortement positif on a le:

Theoreme 4.2. Soit M une variété riemannienne compacte de dimension paire
m = 2d > 2 munie d’une 2-forme paralléle non nulle o, et soit N une variété
kdhlérienne a tenseur de courbure fortement positif. S’il eriste une application
a-pluriharmonique ¢ de M dans N telle que Max rg,(p) > m — 2, alors:

i) a est une forme de Kahler sur M,

ii) Po(M) = Ra,

iii) ¢ est holomorphe ou anti-holomorphe pour la structure complexe induite par
o sur M.

Remarque 4.1. Dans le cas particulier des immersions isométriques nous avions
obtenu dans [14] des résultats analogues & ceux des théorémes 4.1 et 4.2 avec des
hypotheses plus faibles sur la courbure de N et sans ’hypothese de compacité sur
M.

Preuve du théoréme 4.1. La preuve de ce théoreme utilise des arguments analogues
& ceux développés dans la preuve du théoreme 5.1 de [14]. En effet, soit ¢ une
application harmonique de M dans N et soit o € Po(M)\{0} qu’on choisit telle que
|a|> = d. L’hypothese sur la courbure de N entraine que Ry(a) < 0. L’équation
(10), nous dit alors que Ry(c) est identiquement nul. Soient z un point de M ol
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7g:(¢) > m — 2, et {e;};<9, une base a-standard de T, M. Alors on a, pour tout

R =L e, [
2

(Pe€8),68) (@i + a5)% = 0 (17)

et
4 3 2
(palnfy)m)a: — aj)* =0,
dont on déduit:

(ot €5 + (pultnf)) ) ) (a2 = a) = . (18)

Dans [14], lemme 5.1, nous avions signalé que si Z et W étaient deux vecteurs
o, e 1 . - 1,1
linéairement indépendants de Ty@N tels que (Z A T/V)l’1 = 0, alors on avait (Z A W)
# 0 et, ou bien 710 — w0 — 0, ou bien 291 = W01 = 0. Or, il découle de
I’hypothése sur le rang de ¢ que les d¢(Z;) sont linéairement indépendants. Par
2 11 s o
suite, on ne peut pas avoir simultanément (52) =0et (nf;) =0 (pour i # j).
Vu I’hypothése sur la courbure de N, on a done, pour tout 4,5 € {1,... ,d}, ¢ # 7,

((p&(ﬁ;@)?fg-) + (p&(ng),n?;)) < 0, et donc par I'équation (18), a? = a?, c'est &

dire a; = a; (les a; étant positifs). D'olla) = ... = aq = % = 1. L’équation (17)
1,1 A A
entraine que, pour tout 7,7 € {1,...,d}, (55;) = 0. On en déduit que, soit tous

les d¢1’O(Z¢) sont nuls, soit tous les dd)o’l(Zi) sont nuls.
Maintenant, soit J le champ d’endomorphismes associé a la forme o via la
métrique g, i.e. pour tout X,Y € TM,

a(X,)Y)=g(JX,Y).

Comme « et g sont paralleles, J est parallele. Or, d’apres ce qui précede, on
a au point z, afz) = > ,c € A ey et done, pour tout ¢ < d, J(e;) = ey et
J(e;) = —e;. Par suite, JZQ — —Id et J, préserve g,. Par parallélisme, J2 et —Id
coincident partout sur M et donc J est une structure presque complexe intégrable
(car parallele) et hermitienne sur M. Elle induit une structure kdhlérienne sur la
variété M.

Soit U un voisinage ouvert de M ou rg,(¢) > m — 2. En tout point de U
on a (cf ci-dessus), ou bien qul’O(Zi) = %dgbl’o(ei +v=1Je;) = ﬁ((dqﬁ(ei) +
J dp(Jes)) + v=1(dg(Je;) — J’dqs(ei))) = 0 pour tout 4, ou bien dp®1(Z;) =

%ﬂ((dwi) _ T dé(Je)) + vV=I(dd(Je;) + J/dqb(ei))> — 0 pour tout i. On en
déduit que, ou bien J ode r, p = dpoJr,ar, ou bien J'od¢/TmM = —dpoJ/m m-
Par suite, ¢ est holomorphe ou anti-holomorphe dans un ouvert non vide de M.

Comme elle est harmonique, elle est donc holomorphe ou anti-holomorphe sur M
toute entiere (théoréme de prolongement analytique de Siu [17]).
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Maintenant, si J est une autre 2-forme parallele non nulle sur M, alors, d’apres
ce qui précede, B induit sur M une structure kahlérienne Jy telle que J o dop =
d¢ o J1 ou J o dep = —d¢ o J1. Mais, comme ¢ est de rang supérieur & m — 1 en
au moins un point z, on a nécéssairement Jy, = J, ou Ji, = —J,, et donc, par
parallélisme, J1 = J ou Ji = —J sur M. D’olu « et 3 sont proportionnelles. [

Remarque 4.2. Sil’on regarde de pres cette preuve du théoreme 4.1, on trouve
que:

(1) Si ’hypothese sur le rang de ¢ était exigée en tout point de M, alors la variété
N pourrait étre supposée seulement presque hermitienne (au lieu de kahlérienne).
En effet, le parallélisme de J " nintervient dans la preuve de ce théoreme que dans
I’avant dernier paragraphe ot ’'on utilise le théoréeme de prolongement analytique
de Siu [17].

(ii) Si la forme « était déja supposée kahlérienne, alors I'hypothese sur le rang de ¢
pourrait étre remplacée par I’hypothese plus faible: Mazx rg,(¢) > 3 (cependant
nous perdons alors I'unicité de la structure kéhlérienne de M). Autrement dit,
notre méthode permet aussi de retrouver le résultat de Siu.

Prewve du théoréme 4.2. Soit o € Po(M)\{0} qu'on choisit telle que |o|? = d.
Si ¢ est une application a-pluriharmonique, alors on a [D(a.d$)|? = |af?|7(¢)|?,
et done, d’apres (10), Re(o) = 0. La suite de la preuve est identique & celle du
théoreme 4.1; il suffit juste de remarquer que, lorsque « est de rang maximum,
alors la a-pluriharmonicité entraine I’harmonicité (cf. [14]). O

Dans le cas particulier ol le second nombre de Betti bo(M) de M est égal &
1, 'hypothese sur le rang de ¢ dans les théoremes précédents peut étre remplagée
par une hypothese sur le rang de a.

On rappelle qu’une forme symplectique sur une variété différentiable est une
2-forme fermée et non dégénérée en tout point.

Theoreme 4.3. Soit M une variété riemannienne compacte de dimension paire
m = 2d > 2 telle que ba(M) = 1, et soit N une variété kihlérienne d tenseur de
courbure fortement négatif. S’il eriste une forme symplectique parallele o sur M
et une application harmonique non constante ¢ de M dans N, alors:

i) o est une forme de Kdhler sur M,

i) ¢ est holomorphe ou anti-holomorphe pour la structure complezre induite par o
sur M.

Dans le cas ol le tenseur de courbure est fortement positif, nous obtenons le:
Theoreme 4.4. Soit M une variété riemannienne compacte de dimension paire

m = 2d > 2 telle que ba(M) = 1, et soit N une variété kihlérienne a tenseur
de courbure fortement positif. S’il eriste une application a-pluriharmonique non
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constante ¢ de M dans N, pour une certaine forme symplectique paralléle o sur
M, alors:

i) o est une forme de Kdhler sur M,

i) ¢ est holomorphe ou anti-holomorphe pour la structure complexre induite par o
sur M.

Ces deux résultats généralisent ceux de Ohnita-Udagawa [13] dans lesquels la
variété M est déja supposée kiahlérienne.

Remarque 4.3. Dans le cas particulier ou M est de dimension 4, il n’est pas
difficile de voir que I’hypothese bo(M) = 1 entraine que toute 2-forme parallele
non nulle est une forme de Kahler sur M. Par conséquent, le cas de la dimension
4 dans les théoremes précédents se ramene a celui déja traité par Ohnita-Udagawa
dans [13].

Preuve du théoréme 4.3. Compte tenu de la remarque 4.3, on peut supposer m > 6.
Soit donc « et ¢ comme dans 1’énoncé du théoreme 4.3, avec |a|2 = d. D’apres
(10), ¢ est a-pluriharmonique et Ry(c) = 0. Considérons la 2-forme 3 donnée par

BX,Y) = ¢*g ((((X)a)?,Y) — ¢*g (X, (i(Y)a) 7).

La a-pluriharmonicité de ¢ entraine, apres une vérification élémentaire, que 3 est
fermée. Comme bo(M) = 1, on a en notant [3] la classe de cohomologie réelle de
B, [8] = M, avec A = |of 2 Jis(B,a)ug. Ce réel X est non nul car « est non
dégénérée et ¢ non constante. Par suite, [39] = [3]? = A[a]? = M[ad] £ 0 et il
existe donc un point zg € M tel que ﬁgo # 0, c’est a dire, tel que 3, soit non

dégénérée. La restriction de dg,, au sous-espace L = {(i(X)a)#; X € Kerdp,,}
est alors injective et on a rg,,(¢) > dimL =m —rg,,(¢), i.e., rgs,(P) > d > 3.
Soit {e;};<9, une base a-standard de T,,M. On a alors pour tout 4,5 €

{1,....d},

(pal€8), €5)(as + az)? = 0 = (pglnd), ) (as — a5)*. (19)

Comme « est symplectique, aucun des a; n’est nul. Par suite, on a, pour tout ¢, j €
A 1500058k (@(g;@)fj’,) = 0 et donc, d’apres la forte négativité de la courbure de

J
1,1
N, (€5)" = (dg(Z:) A dg(Z;))"" = 0, autrement dit,

do"0(Z) n dg™ 1 (2;) = dg0(Z;) n dg™ N (Zo). (20)
Maintenant, si, pour tout¢,7 € {1,... ,d},ona quI’O(Z@')/\dqu’l(Zj) = dgbl’O(Zj)/\

d(bo’l(Zi) # 0, alors, d’apres le lemme 5.1 de [14], on aurait, pour tout
t € {1,...,d}, dop(Z;) = Nidp(Z1), \i € @, et done, ¢ serait de rang 2 en
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zg. Comme rg,,(¢) > d > 2, il existe donc nécéssairement un couple i,j €
{1,...,d} tel que dop*0(Z) A dp®(Z;) = dp™0(Z;) A dp®1(Z;) = 0, ce qui en-
traine, sachant que d¢(Z;) et dp(Z;) sont non nuls (car 5 est non dégénérée),
que ou bien, d¢p'%(Z;) = dp'°(Z;) = 0, ou bien dp”(Z;) = d¢™l(Z;) = o.
On déduit alors de (20) que, pour tout ¢ € {1,...,d}, soit tous les dqbl’o(Zi)
sont nuls, soit tous les d¢0’1(Zi) sont nuls. Il en découle que, pour tout 7,7, i # j,

1,1 — 11 —o T
(nfy) " = (dd(Z:) Ndd(Z;)) " = dg' O (Z)ndg' 0 (Z;)+dg™ (Z,)ndg™ 1 (Z5) # 0,
et donc, (plw(n?;)mg) < 0. L’équation (19) nous dit alors que a1 = ... = aqg = 1.
La fin de la preuve est identique a celle du théoreme 4.1. |

La preuve du théoreme 4.4 est identique & la précédente, moyennant la remar-
que faite dans la preuve du théoréeme 4.2.

5. Estimations sur le rang et applications

Si o € Q%(M) est une 2-forme réelle, alors, en tout point 2z de M, on notera rg, (a)
le rang de o en z, i.e. rgz(a) = m—dim Keroy, ol Keray, = {X € T,M;i(X)a =
0}. Notons que si « est parallele, alors son rang est constant sur M.

Soit donc a une 2-forme parallele sur M. Son noyau Ker « est stable sous
laction du groupe d’holonomie de M. Par suite (théoreme de décomposition
de de Rham), il existe un revétement 7 : M — M de M par une variété produit
M = My®x M1®, ot dr(T Mp®) coincide avec Ker o et ot dr(T M1®) coincide avec
(Ker oz)L7 qui est aussi I'image de 'endomorphisme associé a « via la métrique g.

Theoreme 5.1. Soit M une variété riemannienne compacte de dimension m > 2
munie d’une 2-forme paralléle non nulle o, et soit N une variété presque hermiti-
enne a tenseur de courbure fortement négatif. Si ¢ est une application harmonique
de M dans N alors:

i) en tout point x de M on a: rg,(¢) < Maz(rg(a),m —rg(a)).

it) Sirgy(¢) > 2 en tout point x de M, alors le relevé b =dom: Mo®x M1® — N
de ¢, n'est fonction que de U'un des facteurs Mo® ou M°.

i) Sirge(d) > rgla) > m/2 en tout point x de M, alors la forme o induit sur
M1 une structure kdhlérienne et il existe une immersion holomorphe ou anti-
holomorphe + : M1® — N telle qu’on ait, pour tout (zo,z1) € Mp™ x M1?,

p(z0, 1) = P(z1).
La preuve de ce théoréme est une conséquence du lemme suivant.

Lemme 5.1. Soient M, N, et ¢ comme dans U'énoncé du théoréme 5.1. Si x
est un point de M tel que rg,(¢) > 2, alors ou bien Kera, C Kerdd,, ou bien
(Keray)™ C Kerdg,.
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Preuve. Soit x € M tel que rg,(¢) > 2 et soit {e;},,, une base a-standard de

T, M telle que o, = Zaiei/\ei/, avec a; > 0 pour tout ¢+ < [ = rg(a)/2, et
i
aj41 = ... = ag = 0. L’harmonicité de ¢ et la négativité du tenseur de courbure

de N entrainent la nullité de Ry(«) (proposition 3.1). On a donc, pour tout 7 < d
et tout 7 < d,

(Pl €2 ), €8 ) (@ + a5)° =0, (21)
(pgnd)om8) (@i —az)* =0, (22)

et , ,
Xim (6" Rimim, + 6" Ry, )ai® = 0. (23)

Comme rg,(¢) > 2, alors nécessairement 1'un des deux cas suivants a lieu:
i) lexisteun¢ e {1,...,d}etun j € {1,...,d} tels que dop(Z;) Ndp(Z;) # 0.

1,1 1.1
Dans ce cas on a (cf. [14], lemme 5.1) (ffz) " #£0ou (77;’;) " £ 0; ce qui donne
d’apres les équations (21) et (22), a; = aj.
Si a; = a; = 0, les équations (21) et (22) nous donnent pour tout k < I,

PR s\ 11 PR PR .
&) =) =0et (&) =) = 0. Parsuite, pour tout k¥ <, on
a do(Zy) N dp(Z;) = 0 = dp(Zy) N dp(Z;) et done, comme dp(Z;) A dp(Z;) # 0,

d¢(Zy) = 0. Nous en déduisons I'inclusion (Keroz@)L C Kerdg,.

1.1 1,1
) _

Si a; = a; > 0, on a alors pour tout & > {, (f,fZ = (17,‘@)171 =0et (5,@,) =
(77,‘13)1’1 = 0. Nous en déduisons comme ci-dessus que d¢(Z;) = 0 pour tout k > I
et done, lorsque M est de dimension paire, que Kera, C Kerdg,. Maintenant,
si M est de dimension impaire, I’équation (23) nous donne compte tenu de la
négativité de la courbure sectionnelle de NV, do(e,, )Adp(Z;) = dop(en ) ANdp(Z;) =0
et done do(e,,) = 0. D’ont Kera,, C Kerdd,.

ii) M est de dimension impaire et il existe ¢ < d tel qu'on ait dé(e, ) Adp(Z;) #
0. L’équation (23) nous dit alors que a; = 0. Pour tout & < [, on a d’une part,
(équations (21) et (22)), do(Zi) A dp(Z;) = 0 et, d’autre part, (équation (23))
dé(er) Ndd(em) = dd(ey ) A dd(em) = 0. Nous en déduisons que do(Z;) = 0 pour
tout k& <[ et donc que (K@r%)L C Kerde,. O

Preuve du théoréme 5.1. Les assertions (i) et (ii) se déduisent facilement du lemme
5.1. Soit maintenant un point = de M tel que rg,(¢) > rg(a) > m/2. L’assertion
(i) nous dit alors que rg,(¢) = rg(e) > m — rg(ea). Par suite, on a d’apres le
lemme 5.1, Kera, = Kerdp, et do(Z1) A dp(Za) A ... ANdp(Z;) # 0. Par un
raisonnement identique a celui développé dans la preuve du théoréme 4.1, nous
en déduisons que a1 = ... = a; et donc que « induit une structure complexe .J
sur (Keroz)L telle qu’on ait, pour tout X € (Keroz)i, J odp(X) = £dpo JX.
Par conséquent, la forme & = 7*« induit une structure kahlérienne sur M1 pour
laquelle (% sera holomorphe ou anti-holomorphe. O
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Remarque 5.1. Le groupe d’holonomie de M laisse stable non seulement Ker «
et (Ker a)L, mais aussi tous les espaces propres Py = Ker o, Py,..., P, du carré
L? de endomorphisme L associé & a via la métrique g. Par conséquent, il existe
un revétement 7 : M — M de M par un produit M = Mg® x M1 x ... x My®,
oll, pour tout ¢ < k, drn(1T'M;*) coincide avec P;. En remarquant que les valeurs
propres de L2 en z ne sont rien d’autres que les —a;? utilisés dans la preuve ci-
dessus, nous pouvons en déduire le raffinement suivant du théoreme 5.1:

i) pour tout = de M, rg,(¢) < Maz,<y dim P;.

ii) Sirg,(¢) > 2 en tout point x de M, alors le relevé & de ¢ a M, n’est fonction
que de 'un des facteurs M;*.

Corollaire 5.1. Soit M une variété kdihlérienne compacte, Mo une variété rie-
manmnienne compacte de dimension mg > 2, et N une variété kahlérienne a tenseur
de courbure fortement négatif. Si ¢ : M1 X Mo — N est une application har-
monique telle que rg($p) > ma en tout point de My x Ma, alors il existe une
application holomorphe ou anti-holomorphe . My — N telle qu’on ait pour tout
(z1,22) € M1 x My, $p(x1,22) = (x1).

Preuve. L’hypothese rg(¢) > mg > 2 va entrainer comme dans le théoreme 5.1,
que ¢ n’est fonction que du premier facteur AMy. Par suite, il existe ¢ : M| —
N harmonique telle que rg(y) > 2. Mais cette application est nécéssairement
holomorphe ou anti-holomorphe (théoréme de Siu). O

Theoreme 5.2. Soit M une variété riemannienne compacte de dimension m > 2
munie dune 2-forme paralléle non nulle o, et soit N une variété riemannienne
a courbure sectionnelle complexe strictement négative. Si ¢ est une application
harmonique de M dans N alors:

i) en tout point x de M, on a rg,(¢) < Max(2,m —rg(a)).

i) Sirgy(d) > 2 en toul point x de M, alors il eziste une application harmonique

P Mp® — N telle qu’on ait, pour tout (zg,z1) € M = Mp® x M1?, ¢(zg,21) =
¥(=o).

Dans le cas particulier ou M est une variété kahlérienne munie de sa forme
de K&hler a, on retrouve dans ’assertion (i) de ce théoreme certains résultats de
Sampson [15], Hernandez [6] et Ohnita-Udagawa [13].

La preuve de ce théoreme est semblable a celle du théoreme 5.1. Il suffit de
remarquer que, compte tenu de la nouvelle hypothese sur la courbure de N, la
nullité de (p&(ﬁ?}),&?;) entraine celle de 5?;. et donc que do(Z;) et dp(Z;) sont
(*colinéaires.

Remarque 5.2. Comme dans le paragraphe précédent, nous pouvons réécrire les
résultats ci-dessus dans le cas ol la courbure de N est positive a condition d’y
remplacer I’hypothese d’harmonicité de ¢ par celle de la a-pluriharmonicité.
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Une conséquence du théoreme 5.1 et du théoreme de Eells-Sampson est le:

Corollaire 5.2. Soient M et N deuzr variélés compactes orientables de méme
dimension m > 2. Si M admet une métrique riemannienne telle que Po(M) #
0 et si N admet une métrique riemannienne & courbure sectionnelle compleze
strictement négative, alors toute application continue ¢ de M dans N est de degré
nul.

Preuve du corollaire 5.1. Supposons qu’il existe une application continue ¢ de
M dans N de degré non nul. D’aprés Eells-Sampson (comme K "< 0), il existe
une application harmonique de (M, g) dans (IV, h), homotope & ¢. Or, une telle
application est nécéssairement de rang m en au moins un point, ce qui contredit
I’estimation du rang donnée par le théoreme 5.3. O

Ce dernier corollaire nous dit en particulier que si une variété compacte ori-
entable M de dimension m > 2 admet une métrique riemannienne & courbure
sectionnelle complexe strictement négative, alors aucune métrique riemannienne
sur M n’admet de 2-formes paralleles non nulles (i.e. pour toute métrique g sur
M, on a Po(M,g) = {0}). Ce résultat couvre un théoreme dit & Hernandez [6].
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