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Applications harmoniques, applications pluriharmoniques
et existence de 2-formes parallèles non nulles

Ahmad El Soufi et Robert Petit

Abstract. In this paper we study harmonic maps from a compact riemanman manifold equiped
with a non trivial parallel 2-form, to a Kahler manifold of strongly negative curvature tensor or
a riemanman manifold of strictly negative complex sectional curvature In a first part we set up
some rigidity results of Siu type Then we obtain an upper bound for the rank of such maps in
terms of the rank of the 2-form and deduce some vanishing theorems

Mathematics Subject Classification (1991). 58E20, 53C55, 53C20
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1. Introduction

Dans le cadre des applications harmoniques, ou pluriharmoniques, définies sur des

variétés kahlénennes, plusieurs résultats de rigidité ont été démontrés ces dernières
années, notamment par Sm [17], Sampson [15] et Ohmta-Udagawa [13] (cf [3]

pour une revue de ces résultats) L'objet principal de cet article est de montrer
que, dans au moms une partie de ces résultats, le seul rôle joué par la structure
kahlénenne de la variété source est de fournir une 2-forme parallèle non nulle
Les résultats de rigidité que nous obtenons dans cet article porteront en fait à

la fois sur la variété source et sur l'application Signalons au passage que toutes
les variétés que nous considérons dans cet article seront supposées implicitement
connexes et sans bords

L'un des résultats de rigidité majeurs est bien sûr celui obtenu par Sm dans [17]
Ce résultat nous dit que toute variété kahlénenne compacte de dimension m > 2

ayant le même type d'homotopie qu'une variété kahlénenne compacte à tenseur
de courbure fortement négatif, lui est holomorphiqueinent (ou antiholomorphique-
ment) difféomorphe La preuve de ce théorème repose sur un autre résultat de

rigidité important, également dû à Sm toute application harmonique, de rang
au moms 4 quelque part, d'une variété kahlénenne compacte à valeurs dans une
variété kahlénenne à tenseur de courbure fortement négatif, est holomorphe ou
anti-holomorphe
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L'extension que nous obtenons de ces deux résultats de Siu se présentera comme
suit. Nous commencerons par montrer (théorème 4.1) que,

si M est une variété nemannienne compacte de dimension paire m > 2 qui admet
une 2-forme parallèle non nulle a, et si N est une variété kahlérienne à tenseur
de courbure fortement négatif, alors l'existence d'une application harmonique </> de

M dans N de rang au moins m — 1 quelque part, entraîne que a est une forme
de Kahler sur M et que <f> est holomorphe ou anti-holomorphe pour la structure
complexe induite par a sur M.

Puis, nous en déduisons (corollaire 4.1) que,

si une variété nemannienne compacte orientable M admettant une 2-forme
parallèle non nulle a le même type d'homotopie qu'une variété kahlérienne compacte
à tenseur de courbure fortement négatif, alors M est elle même kahlérienne et les

deux variétés sont holomorphiquement, ou antiholomorphiquement, difféomorphes.

Par ailleurs, nous montrons (théorème 4.3) que l'hypothèse sur le rang de </> dans
le théorème 4.1 sus-mentionné peut être supprimée si l'on suppose à la place que
le second nombre de Betti de M est égal à 1 et que la forme a est non dégénérée.
Ceci nous permet de généraliser un résultat de Ohnita-Udagawa [13] dans lequel
M est supposée kahlérienne dès le départ.

Rappelons à propos de l'hypothèse sur le tenseur de courbure de N, que celle-
ci est vérifiée en particulier lorsque la courbure sectionnelle holomorphe de N
est constante strictement négative (cf. [17] pour plus de détails concernant cette
hypothèse). De plus, la construction de Mostow-Siu [12], fournit des exemples de

variétés kahlériennes à tenseur de courbure fortement négatif qui ne sont même

pas difféomorphes à des variétés localement symétriques.
Un autre résultat que nous généralisons est le suivant, dû à Hernandez [6]:

sur une même variété compacte M il ne peut y avoir à la fois une métrique à

courbure sectionnelle complexe strictement négative et une métrique kahlérienne.
En effet, nous montrons (corollaire 5.2) que l'existence d'une métrique à courbure

sectionnelle complexe strictement négative exclut non seulement les métriques
kahlériennes, mais aussi toute métrique pouvant admettre des 1-formes parallèles
non nulles, (cf. corollaire 5.2 pour un énoncé plus général). Ce résultat est à

mettre en parallèle avec le fait qu'en courbure positive on a b^iM) 0 et donc
qu'aucune métrique sur M n'admet de 2-formes harmoniques (cf. [11], [16] et [14]).

On peut noter que la courbure sectionnelle complexe d'une variété riemannienne
est négative en particulier lorsque sa courbure sectionnelle est négative | pincée
en tout point.

Le résultat du corollaire 5.2 apparaîtra en fait comme conséquence des estimées

que nous obtenons sur le rang des applications harmoniques ayant pour source une
variété riemannienne compacte M munie d'une 2-forme parallèle a, en fonction
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du rang de cette forme En effet, nous montrons (théorèmes 5 f et 5 2) que si
</> M —s- N est une telle application et

i) si N est kahlénenne à tenseur de courbure fortement négatif, alors

rg(4>) < Max(rg(a),m - rg(a)),

n) si N est de courbure sectionnelle complexe strictement négative, alors

rg(4>) < Max(2,m - rg(a)),

où rg{4>) et rg(a) désignent respectivement les rangs de </> et de a
L'existence d'une 2-forme parallèle non kahlénenne a ^ 0 sur la variété M,

entraîne que la représentation du groupe d'holonomie Hol(M) de M est réductible
En effet, si L désigne l'endomorphisine antisymétrique de TM associé à a via
la métrique g, alors les espaces propres de l'endomorphisine symétrique L2 sont
stables par Hol(M) (noter à ce propos que la forme a est kahlénenne si et seulement

si L2 est une homothétie, cf [fO] pour plus de détails sur ce sujet) Par
conséquent, le revêtement universel M de M est un produit riemannien, dont les

facteurs sont tangents aux relevés des espaces propres de L2 Or, nous montrons
que lorsque le rang de </> est au moms égal à 3, les majorations (i) et (n) ci-dessus
se traduisent par le fait que le relevé de </> à M n'est fonction que de l'un des

facteurs de ce produit (théorèmes 5 1, 5 2 et remarque 5 1)
On a vu dans [14] comment étendre la notion d'application pluriharmonique

(i e dont la restriction à toute courbe holomorphe est harmonique) au cas où la
variété source est non nécessairement kahlénenne, mais seulement munie d'une 2-

forme parallèle a On parle alors d'applications a-pluriharmoniques Notons que,
lorsque a est non dégénérée, toute application a-pluriharmonique est harmonique
(cf [14]), et que, réciproquement, lorsque la courbure de la variété but est négative
ou nulle, alors toute application harmonique est a-pluriharmonique, pour toute 2-

forme parallèle a (proposition 4 1) En fait, tous les résultats sus-cités concernant
les applications harmoniques, peuvent aussi être énoncés pour les applications a-
pluriharmomques Or, nous montrerons que, lorsqu'on s'intéresse aux applications
a-pluriharmoniques, nous pouvons obtenir aussi des résultats du même type que les

précédents mais sous des hypothèses de positivité sur la courbure de la variété but
(théorèmes 4 2 et 4 4 et remarque 5 2) Ces résultats constituent pour l'essentiel,
une extension de ceux qu' Ohmta-Udagawa [13] obtenaient pour les applications
pluriharmoniques définies sur de variétés kahlénennes

La méthode que nous avons mise en oeuvre pour prouver les résultats de cet
article relève de ce qu'on appelle la "technique de Bochner" En effet, nous
établissons une formule (lemme 2 1) qui exprime, sur un fibre de Dirac de base

M, le commutateur [_D2, a], où D est l'opérateur de Dirac du fibre et où a est une
2-forme sur M agissant par multiplication de Clifford, en fonction de la courbure
du fibre Nous en déduisons, dans le cas particulier du fibre <f>*TN associé à une
application </> M —s- N, une formule intégrale à la Bochner (proposition 3 1) Ce
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genre de considérations peut être rencontré en géométrie spinorielle, en particulier
dans les travaux de Hijazi-Milhorat [7] et Kirchberg [8]. On peut aussi trouver
dans le mémoire de Gromov-Pansu [5] une présentation des résultats de Corlette
[1] qui s'appuie sur le formalisme de Clifford.

Les auteurs tiennent à remercier le referee dont les remarques et suggestions
ont permis d'améliorer cet article, notamment l'énoncé des théorèmes 5.1 et 5.2.

2. Fibres de Dirac, opérateurs de Dirac et résultat préliminaire

Tout au long de cet article, tous les produits scalaires seront notés < >, de

même, toutes les connexions canoniques seront notées V. Les détails concernant
les objets qui seront introduits dans ce paragraphe peuvent être trouvés dans le

livre de Lawson-Michelsohn [9].

Soit (M, g) une variété riemannienne de dimension m, on désignera par Cl(M)
Cl(TM) son fibre en algèbres de Clifford. On rappelle que Cl(M) est muni d'une
structure de fibre riemannien induite par celle de TM et que la connexion canonique

V agit comme une dérivation sur Cl{M).

Fibres de Dirac: Soit S un fibre vectoriel sur M en C7(M)-modules à gauche muni
d'une métrique et d'une connexion riemanniennes. On dit que S est un fibre de

Dirac si:

i) Les vecteurs unitaires de TM agissent isométriquement sur S.

ii) V(>.cr) (V</>).<7 + </>.(V<t), pour tout </> G T{Cl{M)) et tout a G T(S), où le

point désigne l'action de Cl(M) sur S.

Un exemple trivial d'un tel fibre est le fibre Cl(M) lui-même muni de sa
métrique et de sa connexion canoniques.

Si V est un fibre riemannien et S un fibre de Dirac alors S <g> V, muni de

la métrique et de la connexion produits tensoriels, est encore un fibre de Dirac,
l'action de Cl{M) sur les fibres étant donnée par:

</>.(<t <8> v) (4>-<J) ® v-

Désignons par A*M A*T*M le fibre en algèbres extérieures de M. On
a alors un isomorphisme canonique de fibres vectoriels de Cl{M) sur A*M et

on peut définir pour toute p-forme a et tout a G T(S) le produit a.a: si a

y aH tp e*%i A A e* est la représentation locale de a dans un repère
1<»1 <%p<m
orthonormé local de M, alors on a

a.a
1<»1 <ip<m
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où en etp désigne le produit de Clifford itéré. Ceci vaut en particulier pour le

fibre de Dirac Cl{M). Dans ce dernier cas on a, pour toute f-forme a et toute
p-forme a sur M:

a.a a A a — i(a)a et a.a — f )p(a A a + i(a)a), (f)

où A et i désignent respectivement le produit extérieur et le produit intérieur sur
A*M.

Opérateurs de Dtrac: Soit S un fibre de Dirac sur M. L'opérateur de Dirac
associé à S est l'opérateur D : Y{S) —s- Y (S) défini dans tout repère orthonormé
local {et}l<m de TM par:

Si M est compacte alors D est un opérateur autoadjoint pour le produit scalaire
(intégral) sur Y (S). Les éléments du noyau de D sont, par définition, les sections
harmoniques de S.

Pour Cl{M), considéré comme fibre de Dirac, l'opérateur de Dirac associé
est (via l'isomorphisme canonique avec A*M) D d + S, où d et S désignent
respectivement la différentielle et la codifférentielle extérieures.

A toute p-forme harmonique a sur M on associe l'opérateur Da, qu'on appelera
a-twist de D, donné pour tout a G Y (S) par:

D°a -(D(a.a) - (-lfa.Da).

On vérifie facilement que D° est donné localement par:

e>.Ve,. (2)

Formule de commutation: On rappelle que la dérivée covariante seconde et la
courbure de S sont respectivement données, pour tout X,Y £ TM et tout a G

T(S), par:

et

R(X, Y)a [>] >

%

Soit V*V le Laplacien brut (i.e. V*V —tracegV^ La formule de Weitzenböck
s'écrit alors:

D2 V*V + K,
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où 3î est l'endomorphisme de T(S) donné dans un repère orthonormé local {et}t<m
par:

Nous avons alors la formule suivante pour le commutateur [_D2,a]:

Lemme 2.1. Soient M une variété riemannienne et S un fibre de Dirac sur M.
Pour tout a G T(S) et toute p-forme harmonique a sur M, on a:

D2(a.a) - a.D2a 2 (DDa + (-lfDaD)a
e„i(eJ)a].Ä( et,e0)a, (3)

où {Gt}l<m est un repère orthonormé local de TM et où [</>, tp] <f).tft — — l)ptp.(f>.

Preuve. On a:

D2(a.a) D(D(a.a)) (-l)pD(a.Da) + 2DDaa.

et

D(a.Da) (-lfa.D2a + 2DaDa.

D'où
D2(a.a) - a.D2a 2(DD° + {-l)pDaD)a.

Maintenant, en appliquant la formule de Weitzenböck, on a:

D2(a.a) - a.D2a V*V(a.a) - a.V*Va + dt(a.a) - a.dta. (4)

Or, on a d'une part, la relation:

V*V(a.cr) (V*Va).cr - 2tracegV a.V a + a.V*Va. (5)

D'autre part, on a:

i.e;,.A(e,,e;,)(a.<7). (6)

Sachant que R(el,eJ)(a.a) (R(el,eJ)a).a + a.R(el,eJ)a, l'équation (6) s'écrit:

di(a.a) (3îa).cr--^eî.eJ.a.iî(eî,eJ)cr. (7)
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En utilisant (5) et (7), l'expression (4) devient:

D (a.a)-a.D a {D a).a—2tracegV a.V a 2_,(ei-ej-a~a-ei-ej)-R(en ej)CT-

(8)
Or, a est une forme harmonique, donc D2a 0. D'autre part, on a d'après (1):

e%.eJ.a — a.e%.eJ et.({-l)f'a.e3 — 2i{eJ)a) — ({-l)pet.a + 2(-l)pi(et)a).e:J

-2(e»i(ej)a + (-f )pi(eja.ej).

En remplaçant dans (8) et en permutant les indices i,j, on obtient finalement:

D (a.a) —a.Da —2tracegV a.V a + 2,(et -i(e])a ~ { — ^)Vi{ej)a-ei)-R{en ej)°"-

D'où le résultat. D

Remarque. Dans le cas particulier où la forme a est de degré 2, la formule (3)
devient:

D2(a.a) -a.D2a -2 ^ Veza.Veza - ^ et.erRa(e^ e^a, (9)

où Raie^Cj) R((i(et)a)#,e:J) + R(et,(i(e:J)a)#) et où (i(e»)a)# désigne le

champ de vecteurs local associé canoniquement à la 1-forme i(et)a.

3. Une formule de type Bochner-Weitzenböck

Dans toute la suite de cet article, M et N désigneront deux variétés riemanniennes
connexes sans bords de dimensions respectives m > 2 et n > 2. Si </> est une
application differentiate de M dans N, on désignera par V <f>*TN le fibre
image réciproque induit sur M par </>. Ce fibre est muni canoniquement d'une
structure riemannienne (cf. [2]).

Comme nous venons de le voir au paragraphe précédent, le fibre A*^^^^ est

un fibre de Dirac sur M. Or, T(A*MÇÇ)V) n'est autre que l'espace des formes
différentielles sur M à valeurs dans V que l'on note Q(V) (Q(V) 0peW £lp(V)).
Là encore, l'opérateur de Dirac associé à ce fibre coïncide avec l'opérateur d + S,

où d et ô sont respectivement la différentielle et la codifférentielle extérieures sur
fi (y) (cf. [2]).

Notons respectivement R et p le tenseur de courbure et l'opérateur de courbure

de N. On désigne par T®N le complexifié de l'espace tangent à N au point y,
et par pŒ et les extensions naturelles respectives de p et de < > à A*T®N.
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On rappelle que, si a est une 2-forme sur M, alors, pour tout x G M, il existe
une base orthonormée {et}t<m de TXM telle que

a{x) a\e\ A e*d+1 + + ade*d A e\d,

où {e*}l<m est la base duale de {e,,}l<m, d [m/2] la partie entière de m/2, et
où les at sont des réels positifs ou nuls. Une telle base sera dite a-standard.

Proposition 3.1. Soient M et N deux variétés nemanniennes. On suppose que
M est compacte. Si <f> est une application de M dans N, alors, pour toute 2-forme
parallèle a sur M (i. e. Va 0), on a:

|2„, _ i„,|2 / \^i j,\i2\D(a.d4>)\2vg \a\2 \t(4>)\2v9+4 R^a)vg. (10)
M JM JM

où t(4>) est la tension de l'application </> (i.e. t(</>) traceg Vd(p), vg l'élément de

volume canonique de M, et où, dans une base a-standard {et}l<m de TXM,

avec ^ d4>(Zt)Ad4>(Z3), ifXJ d^{Zt)/\d^{Z0), Z% -^(e, + v^îe,/), i' i+d,
Xm m - 2[m/2] et (j>*Rlmlm R (d(f>(et), <fy(em), <fy(et), <fy(em)).

Avant de commencer la démonstration de cette proposition, rappelons que le

produit extérieur aAß d'une forme vectorielle a G QP(V) contre une forme scalaire
ß G Qq(M) est une forme vectorielle de degré p + q qui se définit de manière
naturelle. De plus, via l'isomorphisme canonique entre Q(V) et Q(V*), nous pouvons
définir le produit extérieur aAj G QP+q(M) de deux formes vectorielles a G QP(V)
et 7 G Qq(V). A chacun de ces produits extérieurs on peut associer un produit
intérieur de la façon suivante: pour tout a G Qq(V), on désigne par i(a) l'un ou
l'autre des deux opérateurs:

i(a) : Qp(M) ^ Qp-q(V) et i(a) : QP(V) ^ Qp

tels que, pour tout a G flp(M), a G flp-q(M), 7 G flp(V) et 7' G flp-q(V), on a

et

<i(a)j,a >=<7,<rAa
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En particulier, pour tout a G Çl^(V) et tout a G Œ(M) on a la relation

a.a (-l)p(a Aa + i(a)a).

Nous aurons besoin du lemme suivant:

Lemme 3.1. Soient a, ß G Ü2(M), des 2-formes sur M, et soient «7,7 G il}(V)
des 1-/ormes sur M à valeurs dans V, alors on a

< a.a,ß.~f >=< a,ß >< er, 7 > + < i{a)a,i{~f)ß > - < i{a)ß,i{~f)a > (11)

Preuve du lemme 3.1. On a:

En utilisant la définition du produit intérieur, on obtient:

<cr Aa,7A/3 > =< a,i(cr)(7A/3) >=< a, {i{a)~f)ß - 7 A i(a)ß >

=< a,ß X «7,7 > - < i{a)ß,i{i)a >

Ce qui démontre le lemme. D

Preuve de la proposition 3.1. Soit a G Q2(M) une 2-forme parallèle sur M et soit
</> : M —s- ./V une aplication différentiable. D'après le lemme 2.1, on a:

< D2(a.d<f>) - a.D2(d4>),a.d4> >= 4iî0(a), (12)

ù R<f,(a) — 2_, < ej.ej.i?a(ej, e3)dcf>, a.dcj) >. D 'une part, on sait via (11), queoù

< a.D2(d(f>),a.d(f> >= \a\2 < D2(dcj>), <# > (noter que D2(d(f>) est une 1-forme à

valeurs dans V car d(j> est fermée). D'autre part, comme D est un opérateur
auto-adjoint, on obtient en intégrant la relation (12):

\D(a.d<j>)\2vg \a\2 [ \D(d<j>)\2v
J

vg

avec Dd(f> 5d<f> —t{4>). En considérant les 2-formes ßlQ e* Ae* et en utilisant
(11), cette dernière équation devient:

R<t,{a) —- 2J < QL,ßl3 >< Ra(et, e3)d(f>, dcf> >

(13)
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Or, on sait que Ra est une 2-forme à valeurs dans les endomorphismes
antisymétriques de Çl^-((f>*TN), ceci entraine la nullité du premier terme dans le membre

de droite de l'expression (13). Maintenant, pour toute 1-forme a G Q^-(<f>*TN),

i(a)a peut s'écrire sous la forme i(a)a —2_\<7({i(ek)o'-))el, et donc (13) peut
k

se réécrire de la façon suivante:

)Jjfc - (Ra(et, eJ)dç!))(eJ)Jîfc, d4>{{i{ek)a)*) >

< (R^ejWMie^a)*),^) >). (14)

On rappelle que, pour tout X,Y e TM, la forme R(X,Y)d<f) G ^(V) est donnée

par:
{R{X,Y)d4>){Z) R\d4>{X),d4>{Y))d4>{Z) -d4>{R{X,Y)Z).

D'où, en revenant à la définition de Ra et en tenant compte du parallélisme de a,
l'équation (14) devient:

M«)

Ce qui peut encore s'écrire en utilisant la première identité de Bianchi:

'^, (i{et)a)*,e3, (i{e3)a)*),

où r<t>(X,Y)
%

Reste à exprimer R<p(a) dans une base a-standard. Or, si {et}l<m est une telle

base, alors on a, pour tout i < d, (i(et)a)^ a%e%> et (i(e/)a)# — atet. On en
déduit

rn +rt,t,)c?t -2 £ <t>*R'n>33'^a3. (15)
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Où ru r,p(et,et) et <j>*Rn> / <f>*R (eî; e/, e3, ey En développant (15) on
obtient:

{4>*R'+4>*R ,+4>*R, +<f>*R,VY^ %3%3 r 13 13 % 3% 3 % 3 % 3

(16)

En utilisant les identités a^+a^ ^ I (at + a0) +(at — a0) J et a%a0 | ((a, + a^)

— (at — a3) j, l'équation (16) devient:

+ -'SP {4>*R,-,,-,+4>*R > >+4>*R> > +4>*R, +2<b*R

Une vérification simple permet de voir que cette dernière expression coincide avec
celle donnée dans l'énoncé de la proposition. D

4. Résultats de rigidité

Si (N,g est une variété riemannienne, alors, à chaque 2-plan P <E{Z,W} C

TyN, on peut associer un nombre réel, appelé courbure secttonnelle complexe de

P, en posant:

KŒ{Z AW)
ZAW,ZAW)

Noter que, si Kœest négative (resp. positive) en un point y de N, alors la courbure
sectionnelle de N est négative (resp. positive) en y. En effet, pour tout couple
{X, Y} C TyN de vecteurs orthonormés on a

R{X,Y,X,Y) KŒ{{X + V^ÏY) A {X - V^ÏY)),

i.e. la courbure sectionnelle du 2-plan réel p M{X,Y} est égale à la courbure
sectionnelle complexe du 2-plan complexe P Œ{Z, Z}, avec Z X + -\/—ÏY.
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II sera utile de remarquer que dans la proposition 3.1, l'expression de R^{a) ne

comporte que des courbures sectionnelles complexes.
Une application </> de M dans N est dite harmonique si t(</>) DcUj> 0 (i.e.

si la 1-forme d<f> G Q}{V) est harmonique). Elle est dite a-pluriharmonique, pour
une certaine 2-forme harmonique a G Q2(M), si Dad(p 0 (cf. [14] pour plus de

détails).
Une conséquence immédiate de la proposition 3.1 est la

Proposition 4.1. Soit N une variété nemannienne à courbure sectionnelle
complexe non positive. Toute application harmonique d'une variété nemannienne
compacte M à valeurs dans N est, pour toute 2-forme parallèle a sur M, a-
plunharmonique.

Cette proposition est à rapprocher du résultat de Corlette ([1], théorème 3.1)
qui est de portée plus générale, mais dans lequel l'hypothèse sur N est plus
restrictive car exige la négativité de tout l'opérateur de courbure.

Si (N,g J est une variété presque hermitienne, alors la structure complexe
J induit une décomposition du fibre tangent complexifié TN® en somme directe
de deux sous fibres ÏW1'0 et ÏW0'1 tels que, en chaque point y de N, la fibre
TyN^'° (resp. TyN°<^) soit l'espace propre de j'y pour la valeur propre y^T (resp.
— y/—l). Cette décomposition induit une décomposition de A^TNœ sous la forme:

Lorsque (N, g J est kahlérienne, l'invariance du tenseur de courbure par J
entraîne que la restriction de p^ à A^'°TN et à A°'2ÏW est identiquement nulle.

En particulier, si P (D{Z,W} C T®N est un 2-plan tel que (Z A W)1'1 0, où

{Z A W) ' est la composante dans A^ÏW de ZAW, alors la courbure sectionnelle
complexe K^P) de P est nulle.

Définition. (Siu [17]) On dira qu'une variété presque hermitienne JVaun tenseur
de courbure fortement négatif (resp. fortement positif) en y £ N si sa courbure
sectionnelle complexe KŒ en y est négative (resp. positive) et strictement négative
(resp. strictement positive) sur tous les plans P <U{Z, W} C T®N tels que

(Z AW)1'1 ^0.

On peut remarquer que pour tout couple de vecteurs linéairement indépendants

Xet Y G TyN, le vecteur Z X + ^ÎY G T®N vérifie (Z A ~Z)1'1 ^ 0. Par suite,
la courbure sectionnelle d'une variété presque hermitienne à tenseur de courbure
fortement négatif (resp. fortement positif) est strictement négative (resp. strictement

positive).
Une application </> entre deux variétés kahlériennes (M,g,J) et (N,g ,J est

dite holomorphe (resp. anti-holomorphe) si, pour tout X G TM, J dxj>(X)
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d(f>(JX) (resp. J d<f>{X) —dcj>(JX)). Une telle application est à la fois
harmonique et w-pluriharmonique pour la forme de Kahler lu de M.

Le rang d'une application </> : M —s- N en un point x de M sera noté rgx(4>).
L'espace des 2-formes parallèles sur M sera noté P^iM).

Theoreme 4.1. Soit M une variété riemannienne compacte de dimension paire
m 2d > 2 telle que P^iM) ^ {0}, et soit N une variété kdhlérienne à tenseur de

courbure fortement négatif. S'il existe une application harmonique <f> de M dans

N telle que Max rgx((p) > m — 2, alors:
i) dim P^{M) 1 et P^{M) est engendré par une forme de Kahler a,
n) <f> est holomorphe ou anti-holomorphe pour la structure complexe induite par a
sur M.

Compte tenu du théorème de Eells-Sampson [4] et du théorème de rigidité de

Siu [17], nous déduisons du théorème 4.1 le:

Corollaire 4.1. Soit N une variété kdhlérienne compacte à tenseur de courbure

fortement négatif. Soit M une variété riemannienne compacte orientable de

dimension m > 2 qui admet une 2-forme parallèle non nulle. Si M et N ont le

même type d'homotopie, alors M est en fait une variété kà'hlénenne et M et N
sont holomorphiquement difféomorphes.

Dans le cas où le tenseur de courbure de N est fortement positif on a le:

Theoreme 4.2. Soit M une variété riemannienne compacte de dimension paire
m 2d > 2 munie d'une 2-forme parallèle non nulle a, et soit N une variété
kà'hlénenne à tenseur de courbure fortement positif. S'il existe une application
a-pluriharmonique </> de M dans N telle que Max rgx(4>) > m — 2, alors:
i) a est une forme de Kahler sur M,
n) P2(M) Ma,
ni) <f> est holomorphe ou anti-holomorphe pour la structure complexe induite par
a sur M.

Remarque 4.1. Dans le cas particulier des immersions isométriques nous avions
obtenu dans [14] des résultats analogues à ceux des théorèmes 4.1 et 4.2 avec des

hypothèses plus faibles sur la courbure de N et sans l'hypothèse de compacité sur
M.

Preuve du théorème 4-î- La preuve de ce théorème utilise des arguments analogues
à ceux développés dans la preuve du théorème 5.1 de [14]. En effet, soit </> une
application harmonique de M dans N et soit a G P2(M)\{0} qu'on choisit telle que
a|2 d. L'hypothèse sur la courbure de N entraîne que R<f,(a) < 0. L'équation
(10), nous dit alors que R^{a) est identiquement nul. Soient x un point de M où
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r9x{4>) > m — 2, et {et}t<2d une base a-standard de TXM. Alors on a, pour tout
i,je{l,...,d}, ~

_(pkO^K + a,)2^ (17)

et
t

(P<iÂvî3),vî3)(^ ~ aof °,

dont on déduit: (ö) k2 - «')=o. (is)

Dans [14], lemme 5.1, nous avions signalé que si Z et W étaient deux vecteurs

linéairement indépendants de T®N tels que (Z A W) ' 0, alors on avait (Z A W) '

^ 0 et, ou bien Z1-0 W1-0 0, ou bien Z0-1 W0-1 0. Or, il découle de

l'hypothèse sur le rang de </> que les cUj>(Zt) sont linéairement indépendants. Par

suite, on ne peut pas avoir simultanément (£^)
'

0 et (77^)
'

0 (pour i =/= j).
Vu l'hypothèse sur la courbure de N, on a donc, pour tout i,j G {1,... d}, i =/= j,
((/4(O'O + (/4(<),<)) < °> et donc par l'équation (18), a,2 a2, c'est à

dire a% a3 (les a% étant positifs). D'où a\ ad ^j= 1. L'équation (17)

entraîne que, pour tout i,j G {1,... d}, (£f) ' 0. On en déduit que, soit tous

les d(f) ' (Zt) sont nuls, soit tous les dcf> ' (Zt) sont nuls.

Maintenant, soit J le champ d'endomorphismes associé à la forme a via la
métrique g, i.e. pour tout X,Y £ TM,

a(X,Y) g(JX,Y).

Comme a et g sont parallèles, J est parallèle. Or, d'après ce qui précède, on
a au point x, a(x) ^2t<det A et' et donc, pour tout i < d, J{el) e%> et

J(et>) —et. Par suite, J2 —Id et Jx préserve gx. Par parallélisme, J2 et —Id
coïncident partout sur M et donc J est une structure presque complexe intégrable
(car parallèle) et hermitienne sur M. Elle induit une structure kahlérienne sur la
variété M.

Soit U un voisinage ouvert de M où rgx{<f>) > m — 2. En tout point de U

on a (cf ci-dessus), ou bien d4>l>°{Z%) A=d4>l'°{e% + s/^lJe,,) ^=nd</>(ej) +

j'd4>{Jel)) + y/Tï(#(Jeî) - J'd4>{el))\ 0 pour tout i, ou bien d4°'1(Zl)

Yj^((d(f)(et) — J d(f)(Jet)) + \/—l(d(f)(Jet) + J d(f)(et))) 0 pour tout i. On en

déduit que, ou bien J od<j>/TxM d(f>oJ/T^Mj ou bien J od<j>/TxM —d4>° J/txm-
Par suite, </> est holomorphe ou anti-holomorphe dans un ouvert non vide de M.
Comme elle est harmonique, elle est donc holomorphe ou anti-holomorphe sur M
toute entière (théorème de prolongement analytique de Siu [17]).



Vol. 73 (1998) Applications harmoniques, applications pluriharmoniques etc 15

Maintenant, si ß est une autre 2-forme parallèle non nulle sur M, alors, d'après
ce qui précède, ß induit sur M une structure kahlérienne J\ telle que J o d<f>

d(p o J\ ou J o d(p —d(p o J\. Mais, comme </> est de rang supérieur à m — 1 en

au moins un point x, on a nécessairement J\x Jx ou J\x —Jx, et donc, par
parallélisme, J\ J ou J\ —J sur M. D'où o. et ß sont proportionnelles. D

Remarque 4.2. Si l'on regarde de près cette preuve du théorème 4.1, on trouve
que:
(i) Si l'hypothèse sur le rang de </> était exigée en tout point de M, alors la variété
N pourrait être supposée seulement presque hermitienne (au lieu de kahlérienne).
En effet, le parallélisme de J n'intervient dans la preuve de ce théorème que dans
l'avant dernier paragraphe où l'on utilise le théorème de prolongement analytique
de Siu [17].

(ii) Si la forme o. était déjà supposée kahlérienne, alors l'hypothèse sur le rang de </>

pourrait être remplacée par l'hypothèse plus faible: Max rgx(4>) > 3 (cependant
nous perdons alors l'unicité de la structure kahlérienne de M). Autrement dit,
notre méthode permet aussi de retrouver le résultat de Siu.

Preuve du théorème 4-2. Soit a G P2(M)\{0} qu'on choisit telle que |a|2 d.

Si <f> est une application a-pluriharmonique, alors on a \D(o..d4>)\^ |a|2|T(</>)|2,

et donc, d'après (10), R^{a) 0. La suite de la preuve est identique à celle du
théorème 4.1; il suffit juste de remarquer que, lorsque a est de rang maximum,
alors la a-pluriharmonicité entraîne l'harmonicité (cf. [14]). D

Dans le cas particulier où le second nombre de Betti b<}(M) de M est égal à

1, l'hypothèse sur le rang de </> dans les théorèmes précédents peut être remplacée

par une hypothèse sur le rang de a.
On rappelle qu'une forme symplectique sur une variété différentiable est une

2-forme fermée et non dégénérée en tout point.

Theoreme 4.3. Sott M une variété riemannienne compacte de dimension paire
m 2d > 2 telle que b^{M) 1, et soit N une variété kahlérienne à tenseur de

courbure fortement négatif. S'il existe une forme symplectique parallèle a sur M
et une application harmonique non constante <f> de M dans N, alors:
i) o. est une forme de Kahler sur M,
n) <f> est holomorphe ou anti-holomorphe pour la structure complexe induite par a
sur M.

Dans le cas où le tenseur de courbure est fortement positif, nous obtenons le:

Theoreme 4.4. Soit M une variété riemannienne compacte de dimension paire
m 2d > 2 telle que b^{M) 1, et soit N une variété kahlérienne à tenseur
de courbure fortement positif S'il existe une application a-pluriharmonique non
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constante <f> de M dans N, pour une certaine forme symplectique parallèle a sur
M, alors:
i) a est une forme de Kahler sur M,
n) <f> est holomorphe ou anti-holomorphe pour la structure complexe induite par a
sur M.

Ces deux résultats généralisent ceux de Ohnita-Udagawa [13] dans lesquels la
variété M est déjà supposée kahlérienne.

Remarque 4.3. Dans le cas particulier où M est de dimension 4, il n'est pas
difficile de voir que l'hypothèse b^{M) 1 entraîne que toute 2-forme parallèle
non nulle est une forme de Kahler sur M. Par conséquent, le cas de la dimension
4 dans les théorèmes précédents se ramène à celui déjà traité par Ohnita-Udagawa
dans [13].

Preuve du théorème 4-3. Compte tenu de la remarque 4.3, on peut supposer m > 6.

Soit donc a et </> comme dans l'énoncé du théorème 4.3, avec |a|2 d. D'après
(10), <f> est a-pluriharmonique et R<p(a) 0. Considérons la 2-forme ß donnée par

La a-pluriharmonicité de </> entraîne, après une vérification élémentaire, que ß est
fermée. Comme b^{M) 1, on a en notant [ß] la classe de cohomologie réelle de

ß, [ß] X[a], avec A |a|~2 JM(ß,a)vg. Ce réel A est non nul car a est non

dégénérée et </> non constante. Par suite, [ßd] [ß\d Xd[af Xd[ad] ^ 0 et il
existe donc un point xq g M tel que ßdQ =/= 0, c'est à dire, tel que ßxo soit non

dégénérée. La restriction de d(pXQ au sous-espace L {(i(X)a)^; X G Kerd(pXQ}
est alors injective et on a rgxo((f>) > dimL m — rgxo((f>), i.e., rgxo((f>) > d > 3.

Soit {et} <2d une base a-standard de TXQM. On a alors pour tout i,j G

O4)K + a,)2 0 (M3),iï)(at ~ %)2- (19)

Comme a est symplectique, aucun des at n'est nul. Par suite, on a, pour tout i,j G

{1,... d}, (P(r(^tj),^tj) 0 et donc, d'après la forte négativité de la courbure de

N, (^)M (d(p(Zt) A dcfriZj))1'1 0, autrement dit,

d4lf){Zt) A d4°'\Z3) d4lf){Z3) A d4°'\Zt). (20)

Maintenant, si, pour tout i, j G {1,... ,d}, onad4>1'°(Zt)Ad4>°'1(Z:J) d(f>1'0(Z:J)A

d(j) ' (Z%) ^ 0, alors, d'après le lemme 5.1 de [14], on aurait, pour tout
i G {!,... ,d}, d,4>{Z%) X%d,4>{Z\), X% G <D, et donc, </> serait de rang 2 en
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xo. Comme rgxo(<f>) > d > 2, il existe donc nécessairement un couple i,j G

{1,... ,d} tel que d^^{Z%) A d^^{Z3) d4>lfl{Z3) A d4>^1{Zl) 0, ce qui
entraîne, sachant que dcj>(Zl) et dcj>(Z3) sont non nuls (car ß est non dégénérée),

que ou bien, d<j}lp(Z%) d<j}lp(Z3) 0, ou bien d<jP'1(Z,) d<jP'1(Z3) 0.

On déduit alors de (20) que, pour tout i G {l,--- ,d}, soit tous les d<f> ' (Z%)

sont nuls, soit tous les d<f> ' (Z%) sont nuls. Il en découle que, pour tout i,j, i ^ j,
M

et donc, {px{r]f3),r]f) < 0. L'équation (19) nous dit alors que a\ a,d 1.

La fin de la preuve est identique à celle du théorème 4.1. D

La preuve du théorème 4.4 est identique à la précédente, moyennant la remarque

faite dans la preuve du théorème 4.2.

5. Estimations sur le rang et applications

Si a G il?(M) est une 2-forme réelle, alors, en tout point x de M, on notera rgx(o)
le rang de a en x, i.e. rgx(a) m —dim Kerax où Kerax {X G TXM; i(X)a
0}. Notons que si a est parallèle, alors son rang est constant sur M.

Soit donc a une 2-forme parallèle sur M. Son noyau Ker a est stable sous
l'action du groupe d'holonomie de M. Par suite (théorème de décomposition
de de Rham), il existe un revêtement tt : M —> M de M par une variété produit
M Mq" x M\a, où dii{TMoa) coïncide avec Ker a et où d-K{TM\a) coïncide avec

(Ker a) qui est aussi l'image de l'endomorphisme associé à a via la métrique g.

Theoreme 5.1. Sott M une variété riemannienne compacte de dimension m > 2

munie d'une 2-forme parallèle non nulle a, et soit N une variété presque hermiti-
enne à tenseur de courbure fortement négatif. Si <f> est une application harmonique
de M dans N alors:
i) en tout point x de M on a: rgx((p) < Max(rg(a),m — rg(a)).
n) Si rgx{4>) > 2 en tout point x de M, alors le relevé </> </>ott : Mo" X M\a —s- N
de <f>, n'est fonction que de l'un des facteurs Mq" ou Mi".
ni) Si rgx(4>) > rg(a) > m/2 en tout point x de M, alors la forme a induit sur
M\a une structure kdhlérienne et il existe une immersion holomorphe ou
antiholomorphe ip : M\a —s- N telle qu'on ait, pour tout (xo,xi) G Mo" x M\a,

La preuve de ce théorème est une conséquence du lemme suivant.

Lemme 5.1. Soient M,N,a et </> comme dans l'énoncé du théorème 5.1. Si x
est un point de M tel que rgx(4>) > 2, alors ou bien Kerax C Kerd(px, ou bien

(Kerax) C Kerd(px.
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Preuve. Soit x G M tel que rgx{4>) > 2 et soit {et}t<m une base a-standard de

TXM telle que ax 2_,aiei A et>, avec at > 0 pour tout i < l rg(a)/2, et

a;_|_i ad 0. L'harmonierte de </> et la négativité du tenseur de courbure
de N entraînent la nullité de R<p(a) (proposition 3.1). On a donc, pour tout i < d
et tout j < d,

0, (21)

0' (22)

et
Ym((j>* R'rr, + <t>* R ' ' K2=0. (23)

Comme rgx(4>) > 2, alors nécessairement l'un des deux cas suivants a lieu:
i) II existe un i G {1,... d} et un j G {1,... d} tels que d(p(Zt) A d(p(Z3) ± 0.

Dans ce cas on a (cf. [14], lemme 5.1) (£^)
' ^0 ou (rjf3)

'
7^ 0; ce qui donne

d'après les équations (21) et (22), at a3.
Si at a3 0, les équations (21) et (22) nous donnent pour tout k < l,

(£/b)
' (vti) '

0 et (£&,)
' (vîi) ' ^- Par suite, pour tout k < l, on

a (#(Zfc) A d(p(Zt) 0 <#(Zfc) A #(£,) et donc, comme d(p(Zt) A d(p(Z3) ^ 0,

d(p(Zk) 0. Nous en déduisons l'inclusion (Kerax) C Kerd(px.

Si a% a3 > 0, on a alors pour tout k > l, (££j (î?^) 0 et (££

{vif) ' 0. Nous en déduisons comme ci-dessus que d(p(Zi~) 0 pour tout k > l
et donc, lorsque M est de dimension paire, que Kerax C Kerd<f>x. Maintenant,
si M est de dimension impaire, l'équation (23) nous donne compte tenu de la
négativité de la courbure sectionnelle de N, d,4>(em)Ad,4>(Z%) d(p(em)Ad(p(Z3) 0

et donc d(p(em) 0. D'où Kerax C Kerd(px.
ii) M est de dimension impaire et il existe i < d tel qu'on ait d(p(em) Ad(p(Zt) ^

0. L'équation (23) nous dit alors que at 0. Pour tout k < l, on a d'une part,
(équations (21) et (22)), d(p(Zk) A d(p(Zt) 0 et, d'autre part, (équation (23))
d(f>(ek) A d(f>(em) d(f>(ek/ A d<f>{em) 0. Nous en déduisons que d(f>(Zk) 0 pour
tout k < l et donc que (Kerax) C Kerd(px. D

Preuve du théorème 5.1. Les assertions (i) et (ii) se déduisent facilement du lemme
5.1. Soit maintenant un point x de M tel que rgx(4>) > rg(a) > m/2. L'assertion
(i) nous dit alors que rgx(4>) rg(a) > m — rg(a). Par suite, on a d'après le

lemme 5.1, Kerax Kerd<f>x et d4>{Z\) A d<l>{Z<i) A A d(f>(Z[) =/= 0. Par un
raisonnement identique à celui développé dans la preuve du théorème 4.1, nous
en déduisons que a\ ai et donc que a induit une structure complexe J
sur (Kero) telle qu'on ait, pour tout X G (Kero) J o d(f)(X) ±d(f) o JX.
Par conséquent, la forme à tt*o induit une structure kahlérienne sur M\a pour
laquelle </> sera holomorphe ou anti-holomorphe. D
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Remarque 5.1. Le groupe d'holonomie de M laisse stable non seulement Ker a
et (Ker a) mais aussi tous les espaces propres Po Ker a, P\,... Pk du carré
L2 de l'endomorphisme L associé à a via la métrique g. Par conséquent, il existe

un revêtement tt : M —>¦ M de M par un produit M Mo" x M\a x x Mka,
où, pour tout i < k, dir(TMta) coïncide avec Pt. En remarquant que les valeurs

propres de L2 en x ne sont rien d'autres que les —a^2 utilisés dans la preuve ci-
dessus, nous pouvons en déduire le raffinement suivant du théorème 5.1:

i) pour tout x de M, rgx(<f>) < Maxt<k dim Pt.
ii) Si rgx(4>) > 2 en tout point x de M, alors le relevé </> de </> à M, n'est fonction
que de l'un des facteurs Mta.

Corollaire 5.1. Soit M\ une variété kà'hlérienne compacte, M% une variété ne-
mannienne compacte de dimension m^ > 2, et N une variété kà'hlérienne à tenseur
de courbure fortement négatif. Si <f> : M\ X M% —> N est une application
harmonique telle que rg((p) > m^ en tout point de M\ X M^, alors il existe une
application holomorphe ou anti-holomorphe ip : M\ —> N telle qu'on ait pour tout
(xi,x2) G Mi x M2, (f>(x1,x2) 4>{xi).

Preuve. L'hypothèse r<?(</>) > m^ > 2 va entraîner comme dans le théorème 5.1,

que <f> n'est fonction que du premier facteur M\. Par suite, il existe ip : M\ -^
N harmonique telle que rg(ip) > 2. Mais cette application est nécessairement
holomorphe ou anti-holomorphe (théorème de Siu). D

Theoreme 5.2. Soit M une variété nemannienne compacte de dimension m > 2

munie d'une 2-forme parallèle non nulle a, et soit N une variété nemannienne
à courbure sectionnelle complexe strictement négative. Si <f> est une application
harmonique de M dans N alors:
i) en tout point x de M, on a rgx(4>) < Max(2,m — rg(a)).
n) Si rgx(4>) > 2 en tout point x de M, alors il existe une application harmonique
ip : Mo" —>¦ N telle qu'on ait, pour tout (xo,xi) G M Mo" x M\a, </>(xo,xi)

Dans le cas particulier où M est une variété kahlérienne munie de sa forme
de Kahler a, on retrouve dans l'assertion (i) de ce théorème certains résultats de

Sampson [15], Hernandez [6] et Ohnita-Udagawa [13].
La preuve de ce théorème est semblable à celle du théorème 5.1. Il suffit de

remarquer que, compte tenu de la nouvelle hypothèse sur la courbure de N, la

nullité de (p^Çf ),£,f entraîne celle de £f et donc que d(f>(Zt) et dcj>(Zj) sont
o^-colinéaires.

Remarque 5.2. Comme dans le paragraphe précédent, nous pouvons réécrire les

résultats ci-dessus dans le cas où la courbure de N est positive à condition d'y
remplacer l'hypothèse d'harmonicité de </> par celle de la a-pluriharmonicité.



20 A El-Soufi et R Petit CMH

Une conséquence du théorème 5 1 et du théorème de Eells-Sampson est le

Corollaire 5.2. Soient M et N deux variétés compactes orientables de même
dimension m > 2 Si M admet une métrique riemannienne telle que P-2(M) ^
0 et si N admet une métrique riemannienne à courbure sectionnelle complexe
strictement négative, alors toute application continue </> de M dans N est de degré
nul

Preuve du corollaire 5 1 Supposons qu'il existe une application continue </> de

M dans N de degré non nul D'après Eells-Sampson (comme K < 0), il existe
une application harmonique de {M,g) dans (N,h), homotope à </> Or, une telle
application est nécessairement de rang m en au moms un point, ce qui contredit
l'estimation du rang donnée par le théorème 5 3 D

Ce dernier corollaire nous dit en particulier que si une variété compacte
orientable M de dimension m > 2 admet une métrique riemannienne à courbure
sectionnelle complexe strictement négative, alors aucune métrique riemannienne
sur M n'admet de 2-formes parallèles non nulles (î e pour toute métrique g sur
M, on a P<2{M,g) {0}) Ce résultat couvre un théorème dû à Hernandez [6]
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