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S.A.G.B.I. bases for rings of formal modular seminvariants

R. James Shank

Abstract. We use the theory of S.A.G.B.I. bases to construct a generating set for the ring
of invariants for the four and five dimensional indecomposable modular representations of a
cyclic group of prime order. We observe that for the four dimensional representation the ring
of invariants is generated in degrees less than or equal to 2p — 3, and for the five dimensional
representation the ring of invariants is generated in degrees less than or equal to 2p — 2.

Mathematics Subject Classification (1991). 13A50.

Keywords. Invariant theory, Indecomposable modular representation.

Introduction

Let k be a field and let k[z1, ..., 2] denote the polynomial algebra in the variables

Z1,...,Zyn. Define an algebra automorphism, o, of k[z1,...,z,] by
1 ifi=1,
o(z;) = o
z,_ 1tz ifi> 1.

If f € k[zy,...,z,] and o(f) = f, then f will be called o-invariant. Since o is
a degree preserving map, any o-invariant polynomial is a sum of homogeneous
o-invariant polynomials. Let k[zq,...,2,]° denote the ring of o-invariant poly-
nomials. Suppose that p is a prime number and let F, denote the field with p
elements. If k = F, and n < p, then ¢ generates a group isomorphic to Z/p and
we denote k[z1,...,2,]7 by Fplzq, .., 2,]2/P. The action of Z/p induced by o on
the degree one polynomials of Fj, [z, .. ., z,] is the indecomposable modular repre-
sentation of dimension n. The study of F, [z, ..., :cn]z/p has a long history going
back at least to L. E. Dickson’s Madison Colloquium [5]. From Dickson’s perspec-
tive the problem is an extension of classical invariant theory and the elements of
Fplz1,. .., 2,]2/7 are the formal modular seminvariants of a binary (n — 1)-form
[5, I1I]. Dickson gave a complete description of Fy[zq,.. Lan|2/? for n = 2 and
n = 3. He gave a generating set for n = 4, p = 5. G. Almkvist, in [1], described
the set of relations for n = 4, p = 5. W. L. G. Williams, in [14], constructed a
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generating set for n =4, p = 7. K. Strahlén, in a masters thesis [12] supervised by
G. Almkvist, studied the relations among Williams’ generators and showed that
the generating set is not minimal. The primary purpose of this paper is to describe
a generating set for n =4 and n =5 for all p > 5.

If the characteristic of k is zero, then o generates a group isomorphic to Z.
In this case we denote k[x1,...,2,]7 by k[z1,...,2,]%. Let Q denote the ra-
tional numbers. For any element f & Q[xl,...7xn]z, a suitable scalar multi-
ple of f lies in Z[zy,.. .7xn]z. By reducing coefficients modulo p, an element of
Zlz1,. .., x,)% gives rise to an element of F,lzy,.. L an)2/P. We will call elements
of Fylz1,...,2,]%/P constructed in this fashion rational invariants. G. Almkvist
has shown that, if f € Fylzq,.. . ,]2/P and the degree of f is small compared to
p, then f is a rational invariant [1, 2.5]. Thus characteristic zero computations can
provide us with some of our generators. In fact, a rational invariant corresponds
to the source of a covariant of a binary (n — 1)—form (see [1]) and so classical
invariant theory can be used to compute rational invariants (see, for example, [6]
and [13]).

Two additional constructions are needed to provide us with the remaining
generators. The first of these is the transfer. The transfer is a homomorphism of
Fplz1,. .., 2,]%/P-modules from F[z1, ..., 2,]to Fylzq,. .., 2,]%/P defined by

P
Te(f) =Y o°(f)
e=1
The second construction is the norm. For an element, f, of F,[z1,...,2,] the
norm of f is defined by
P
NG =[]o
=1

We shall see that, at least for n =4 and n =5, Fplzq,.. . 2n|2/? is generated by
N(z,,), selected rational invariants and elements from the image of the transfer.

We compute generating sets by constructing a collection of invariants and then
using the theory of S.A.G.B.I. bases, introduced by L. Robbiano and M. Sweedler
in [9], to prove that the given collection of invariants form a generating set. In
Section 1 we define a S.A.G.B.I. basis and discuss the properties of S.A.G.B.L
bases required for our purposes. Section 2 is devoted primarily to constructing
rational invariants with particular lead monomials. In this section we also discuss
the ring Q[Va|? formed by taking the union over n of Q[z1, ..., z,]%. We are able
to construct a vector space basis for Q[VOO]Z. In Section 3 we compute the lead
monomials of certain families of elements in the image of the transfer. Section 4
contains the proof that a certain collection of invariants is a generating set for
Fylz1,..., 24]2/P and Section 5 contains the analogous result for F,lz1,.. ., w52/,
Section 6 is devoted to conclusions and conjectures.

We recommend [10] as a good general reference for the invariant theory of
finite groups. Preliminary calculations, including the construction of a generating
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set for n = 4 with p = 11, were performed using G. Kemper’s Maple package
INVAR ([7], [8]). I would like to thank Catherine Chambers for implementing the
most recent version of INVAR on our computing facilities and for supervising the
computations. I would also like to thank Eddy Campbell, lan Hughes and David
Wehlau for their assistance and encouragement.

1. S.A.G.B.I. bases

Throughout the paper we use the graded reverse lexicographic monomial order
with @, < @;,41. We direct the reader to Chapter 2 of [4] for the appropriate
definitions and a detailed discussion of monomial orders. We use the convention
that a monomial is a product of variables and that a term is a monomial with
a non-zero coefficient. Note that that the zero polynomial is neither a monomial
nor a term. We extend the monomial order to a partial order on polynomials by
comparing lead monomials. We consider the zero polynomial to be smaller than
any non-zero polynomial.

Suppose that A is a subalgebra of k[z1,...,z,]. Let LT(.A) denote the vec-
tor space spanned by the lead terms of elements of A. LT(A) is a subalgebra of
k[z1,...,2,]. If C is a subset of A then let LM(C) denote the set of lead mono-
mials of elements of C. If LM(C) generates the algebra LT(.A) then C is called a
S.A.G.B.I. basis for A.

Proposition 1.1. IfC is a S.A.G.B.I. basis for A then C generates the algebra
A.

Proof. See [9, 1.16]. O

Suppose that M is a subspace of k[z{, .. ., z,]. Let My denote the homogeneous
component of degree d. The Poincaré series of M is given by

P(M,t) =" dim(Mq)t".
d=0

Proposition 1.2. If A is a subalgebra ofk|z1,...,zy,], then P(A,t) = P(LT(A),t).

Proof. We will prove that A4; has a basis, B, with distinct lead monomials and
hence LM(B) is a basis for LT(.A)q4.

In k[zq,...,z,], the monomials of degree d form an ordered basis for the vector
space of homogeneous polynomials of degree d. We can use this basis to assign a
row vector of coefficients to each homogeneous polynomial. Choose a basis for Ay.
For each vector in this basis there is a corresponding row vector of coefficients.
Form a matrix from these row vectors. The rows of this matrix are linearly inde-
pendent. Using row operations put the matrix in echelon form. The rows of the
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echelon form are the coefficients of a new basis, say B, for A;. Since the coefficient
matrix corresponding to B is in echelon form, the lead monomials of the elements
of B are distinct. O

2. Lead monomials of invariants

In this section we construct rational invariants with particular lead monomials. We
also characterize those monomials which are the lead monomial of a o—invariant.
We will use LM to denote the operation which associates to a polynomial its lead
monomial. For convenience we set LM(0) = 0.

Lemma 2.1. If 3 is a monomial in K[z, ...,z _1] then Bz, and Bz, 1 are
consecutive elements in the order.

Proof. Suppose that v is a monomial with Bz, 1 <~ < Bz,,. We will prove that
By, 1 and Bz, are consecutive by showing v = Ba,,.

Let b; be the exponent of z; in 3 and let e; be the exponent of z; in v. Let
7 be the first position at which the exponent sequence of Bz, 1 differs from the
exponent sequence of v. Since Bz, 1 and  have the same degree, we can assume
that 7 < m. Thus b; = ¢; for ¢ < j. If j < m — 1 then v > fBz,,, contradicting our
hypotheses. Thus 7 = m — 1. Since the exponent of z,, 1 in fz,, 118 b, 1+ 1
and v > Bz,,_1, we conclude that b,, 1 +1 > e, 1. Furthermore, since the
exponent of z,, 1 in Bz, is b,, 1 and v < Bx,,, we have e,,, 1 > b,,_1. Therefore
b1 =¢€em_1 and v = Bay,. O

It will be convenient to define the function 0 = o — 1. Note that 9 is linear and,
if f and g are elements of k[z1, ..., z,], then d(fg) = d(f)g+o(f)0(g). Therefore
the function 0 is a twisted o-derivation.

Theorem 2.2. Suppose that n > m > 1 and 3 is a monomial in k[z1,. .., 2y 1]
Then fBxy, is not the lead monomial of a c—invariant in K[zy,. .., zy].

Proof. Suppose that f € k[zy,...,z,] and that the lead term of f is fSz,,. Then
f = pzm + h for some polynomial A with LM(h) < LM(f) = Sz,,. We will prove
that LM(9(f)) = Bz,,_1 and thus f is not o—invariant.

Evaluating o(z,,) and rearranging terms gives

Af) = (@m + zm—1)0(B) + fzm—1 + O(h).

We extend the monomial order to a partial order on polynomials by comparing
lead monomials. We consider the zero polynomial to be less than every non-zero
polynomial. Note that, for any monomial v, d(y) < ~. Thus 9(8) < f and



552 R. J. Shank CMH

ZmO(B) < zpmB. Furthermore, if h is not the zero polynomial, d(h) < h. From
Lemma 2.1, Bz, and fz,, 1 are consecutive in the order. Thus d(h) < Bz, 1
and LM(z,,9(8)) < Bz, 1. Since Sz, 1 is in k[zy,.. ., 2y 1], LM(2,0(8)) is
not equal to Sz, 1. Therefore LM(0(f)) = 1. O

Theorem 2.3. If 3 is a monomial in K[z1, ..., 2p_1] and i > 2 then Bat, is the
lead monomial of a o—invariant in K[z1,...,z,] for sufficiently large n.

Proof. We prove the theorem by introducing an algorithm for constructing a o-
invariant with lead monomial Bzt .

Apply 0 to Bz, and observe that, as long as 4 is not the characteristic of k, the
lead term of &(Bz%,) is iBzy, 125 L. Define f1 = Bai, —ifz, 125 2Tm 1. Note
that LM(9(f1)) < Bty,_12i, 1. For j > 1,if O(f;_1) = 0 then f; 1 is o-invariant,
otherwise write the lead term of 9(f;_1) as va¥ with v € k[z1,...,2,_1] and k > 0
and define f; = f; 1 — vz, 1. Observe that LM(9(f;)) < LM(O(f;_1)).
Thus, as long as 9(f;) is non-zero, LM (9(f1)),...,LM(9(f;)) is a strictly de-
creasing sequence of monomials in a fixed degree.

It is not difficult to prove that the set of monomials in countably many variables
is well ordered by the graded reverse lexicographic order. Therefore the algorithm
terminates. However, we prefer to give an argument which provides us with an
upper bound on n.

For a monomial A = [], z%, we define the weight of A by wt(A) = 3__ sis. Note
that the monomials appearing in d(\) all have weight less than wt(A). Furthermore
Wt('yx?’f‘lmr+1) = wt(y2*) + 1. Hence any monomial appearing in f; has weight
less than or equal to wt(Bz%,). Since there are only a finite number of monomials
in a given degree with a given weight, we see that there are only finitely many
f;. In fact, if we let d denote the degree of Sz, and define ¢ = wt(Bz?,) —d+ 1,
then x“ll_lxg is the smallest monomial of degree d and weight wt(3z%,), and f; €
klzy, ...,z O

Note that all monomials except those of the form z} satisfy the hypotheses
of either Theorem 2.2 or Theorem 2.3. We will call a monomial admissible if it
satisfies the hypotheses of Theorem 2.3 or if the monomial is of the form xll

Corollary 2.4. LM(Q[Vao]?) is the set of admissible monomials.

Suppose v is a monomial satisfying the hypotheses of Theorem 2.3. Then let
inv(y) be the invariant produced by the algorithm. For convenience we define
inv(z}) = =}.

Remark 2.5. Suppose that v is an admissible monomial. Reviewing the algo-
rithm, we observe that v is the only admissible monomial appearing in inv(y).
Furthermore, if £ = wt(y) — degree(vy) + 1, then inv(y) is in k[z1,. .., z¢]7. David
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Wehlau and I have recently proved that the variable z, does appear in inv(vy). In
other words, inv(y) in is not an element of k[zy,...,z, 1]7.

Let B denote the set {inv(v) | v is admissible}.

Theorem 2.6. B is a basis for the vector space Q|Vao)%.

Proof. Since the elements of B have distinct lead monomials the set is linearly
independent. To see that B is a spanning set, consider a polynomial f € Q[VOO]Z.
Let I" be the set of admissible monomials appearing in f and, for v € T, let ¢,
denote the coefficient of v in f. Let

]7: Z ey inv(y).

~vyel’

Since no admissible monomial appears in the invariant f — ]7, it follows from
Corollary 2.4 that f — f = 0. Thus B spans Q[Va]% as required. O

We can use the algorithm from the proof of Theorem 2.3 to describe the rational
invariants which will appear as generators in Sections 4 and 5. It is easy to see that
inv(x%) = x% —z1(z9+223) inv(a:%) = x% —zo(zs+2x4)+z1(xz3+ 324+ 225), and

inv(z?’) = x% 4+ x%(?)u — 29) — 3z1z9z3. Explicit calculation shows that, although

inv(x%) involves x1 through z7, if we define m(xg) =2 inv(:c%) -3 inv(xgz%) +
9z 'mv(gﬁi)7 we get an element of k[zq,...,25]7 with lead monomial x% Similarly
define

mv(z323) = 3 inv(2323)+ay (6 inv(zoa) — 8 inv(:cg)) —z} (9 inv(z3) + 8 inv(xg)) ;

and nv(z32323) = 4 inv(23)? —nv(23)2. Clearly LM (inv(«2322)) = 2323, Careful
computation shows that nv(z323) € k[z1,...,z4]%, LM(inv(232323)) = 232323

and Inv(z32323) € k21, ..., z5]°.

3. Lead monomials of transfers

In this section we compute the lead monomial for various elements in the image of
the transfer. We assume throughout that p > 2. When p = 2, with the exception
of Theorem 3.5 with ¢ = 0, the results stated here are true and the proofs are
elementary.

Observe that

0 (Tm) = Tm + G)xm,l + <;>xm,2 ot (mc_ 1>:el. (3.1)
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Therefore

ERIE 3 > (;)xmlg" b @W)j. )

ceF, k=0 =0

Note that (f) is a polynomial in ¢ of degree 7. The following lemma is well
known.

Lemma 3.1. Suppose that £ is a positive integer. Then

if p— 1 divides ¢;

Z 1
- {
T, 0 if p— 1 does not divide £.

Proof. See, for example, [3, 9.4]. O
Theorem 3.2. If (p —1)/2<i<p—1 then

LM (Tt (af,)) = o5, "2, ¥,

Lin—2

pllh(pl)

Proof. Using Equation 3.1, we see that the coeflicient of z; | in o°(2h))

is (2)p - 1(1)21 =1) (pfilf')' Using Lemma 3.1, we see that

SO0 )

and, since ¢ < p — 1, this is non-zero. All of the monomials appearing in o°(z?,)

which are greater than :np 12 13:72;_5 Y have coefficients which, as polynomials in

¢, have degree less than p — 1 and hence, by Lemma 3.1, these monomials do not
appear in Tr(z?,). O

Theorem 3.3. If1 <i<p—1 then

LM (Ti" (xZ B xﬁ;1>) = x::rfII.

m—1

Proof. Using Equation 3.2 we see that the coefficient of = +p1 Lin o ( @b " 1)

is ¢»~ 1. Thus, using Lemma 3.1, the coefﬁc1ent of z H’ Lin Tr(af, qab; 1) is —1.

All of the monomials appearing in o°(z 28~ 1) Wthh are greater than xlﬂ’ !
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have coefficients which, as polynomials in ¢, have degree less than p —1 and hence,
by Lemma 3.1, these monomials do not appear in ’I‘r(x;,hlxﬁjl). O

Theorem 3.4. If2<i<p—1 then

LM (Tr (xfnfleJQ)) = 2 oz P73

m—1

i+p—3 .
1 m

Proof. Using Equation 3.2 we see that the coeflicient of =z, ox
o CAT 2) is icP~1 4 (p— 2)(5)eP~ 3. Thus, using Lemma 3.1, the coefficient of

m—1
x::p Vin Te(zi qzb, Lyis —i41. As long as ¢ # 1, this coefficient is non-zero. All
of the monomials appearing in o°(a?, 8 2) which are greater than x,,_ox ﬂ’l 3

have coefficients which, as polynomials in ¢, have degree less than p — 1 and hence,
by Lemma 3.1, these monomials do not appear in ﬂ(mjﬂilx%*Q). O

Theorem 3.5. If(p—1)/2—-1<i<p—1 then

LM (’H (x%lflx:n)) AL

m—2 “m-—1

Proof. We use Equation 3.2 to compute the coefficient of ¥ 1225522 1{"’3 in

o°(ax? jai ). o°(x2 ) contributes 22

1y 2CTp, 1Ty, 9 O c%?n o with the

rest of the term coming from o¢(z,). Thus the coefficient of 12 Z:c?lfthS in

o° (1%17 195;1) is

p—1—i . p—2—i .
ch—p+1 ¢ ? e 2027, —p+3 ? )
2 —1—3 2 —2—3
P 7
2i—p+5
!

Thus, using Lemma 3.1, the coefficient of a? " 12 sziffrg in Tr(z2, i,

-6 ()2 ()6 ()

We need to show that this coefficient is non-zero. If i = p — 1 or ¢ = p — 2 then
the coefficient is —1. If ¢ < p — 2 then, after factoring, simplifying and reducing
modulo p, the coefficient is

() (i)

) is
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Thus the coefficient is non-zero. All of the monomials appearing in ac(xz%lxﬁn)

which are greater than gcg;lg im?é:’l"i'g have coefficients which, as polynomials in
¢, have degree less than p — 1 and hence, by Lemma 3.1, these monomials do not
appear in Tr(z2,_jai,). O

Theorem 3.6. Suppose that Tr(3) is non-zero and LM (Tx(3)) is in Fp @, . . ., 2y ].

Then
LM (Tr(zm/3)) = zm LM (Tr(3)) .

Proof. Using Equation 3.1, we see that

Tr(enf) = 3 0(@n)o™(B)

ccF,
m—1
@+ X (X (§)ons | o)

cEFp =1

Thus Tr(z,,3) is congruent, modulo the ideal generated by =1 through z,, 1, to
Zm Tr(B3). Since LM (Tr(3)) is in Fpl@y,. .., 2], the lead monomial of Tr(z,,3)
comes from z,, Tr(3). Therefore LM (Tr(z,,3)) = zpm LM (Tr(3)). O

4. The four dimensional representation

In this section we construct a generating set for F, [z, .. ., 24)%/P 1fp=1 (mod 3)
then define £ = (p—1)/3and ¢ = 2¢+1. If p= —1 (mod 3) then define £ = (p+1)/3
and g = 2¢ — 1. If i is a integer, define £(¢) to be 0 if ¢ is even and 1 if 7 is odd.
Theorem 4.1. Fplzq,.. L x4]2/P is generated by x1, inv(:cg), inv(x%), Hl_V(zgitg),
N(z4) and the following families:

(i) Tr(xéxﬁfl) for0<i<p-2,

(i1) Tr(ahaly %) for 3<i<p-2,

(i) Tr(x}) for < j <p—2 and

(iv) ﬂ(w%xi) for20 —1<j<p-—2.

The rest of this section is devoted to the proof of Theorem 4.1. Let C denote
the collection of invariants given in the statement of the preceding theorem. We
prove the theorem by showing that C is a S.A.G.B.L. basis for Fp[z1, .. L aq) P,
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i.e., the lead monomials of the elements of C generate the lead term algebra of
Fylz1,.. .,x4]z/p. We do this by computing the Poincaré series of the algebra
generated by the lead monomials of C and comparing the result with the Poincaré
series of Fylzq,...,24]%/? as computed by G. Almkvist and R. Fossum [2, 3.1].
We observe that the two series are equal and, using Proposition 1.2, we conclude
that the lead monomials of C generate the lead term algebra of Fplzy, .. ., 14]Z/p‘
Therefore, by Proposition 1.1, C generates Fp[z1, .. Lag|2rp,

Let A denote the algebra generated by the lead monomials of C. We wish to
compute the Poincaré series of A. Using Theorem 3.2 and the fact that the lead
monomial of N(z,,) is zF, we have

LM{z1, inv(23), Tr(h 1), N(2q)} = {1, 23,2571, 28}

Note that this set is algebraically independent. Let R denote the ring generated
by {1171371}%71712}7 then

1
(1 =t)(1 = 2)(1 —tr=1)(1 — 1)

We will use the R—module structure of A to compute its Poincaré series. In order
to understand the R—module structure we need to find module generators for A.
Let

D = {Tr(zaah ) Tr(ah ) U{inv(e323)H L inv(ad) Wv(2323)" |1 <i < ¢/2—1}

and let M be the R-submodule of A generated by 1, LM(C) and LM(D). We
will start by computing the Poincaré series of M. We shall see that the Poincaré
series of M is equal to the Poincaré series of F, [z, .. L a4)%/? and thus M = A =
LT(F,[z1,. .., x4)2/P).

We impose a Z/2xZ/(p—1)-gradingon Fy[z1, ..., z4]. A monomialx11x§2x§3x4
will be assigned the multidegree (i9,43) € Z/2 x Z/(p — 1). Observe that the ac-
tion of R preserves the multidegree. Since A is generated by monomials, A is a
Z/2 x Z/(p — 1)-graded R—module. Therefore all generators and relations can be
chosen to be homogeneous with respect to the Z/2 x Z/(p — 1)-grading.

If 8 and ~ are monomials in F,[x1,. .., z4] with the same multidegree, then the
intersection of R3 with R~ is the free R—module generated by the least common
multiple of 3 and ~. In particular, an R—module generated by two monomials with
the same multidegree has a single free relation.

We can use the results of Section 3 to describe LM(C). From Theorem 3.2

we see that, for ¢ < 7 < p — 2, we have LM(Tr(xfl)) — nglfjxgj%pil). From
Theorem 3.3 we see that, for 1 < i < p — 2, we have LM(Tr(:céxffl)) = :n?Lp*l.

From Theorem 3.4 we see that, for 3 < ¢ < p — 2, we have LM(TT(xéa:ifQ)) —
7)+p—3

P(R,t) =

Using Theorem 3.5 we see that, for 26 — 1 < j < p — 2, we have
LM(Tr(x3:c4)) = nglfjxgjfﬁ?’. Therefore

LM(D) = {woz2? *} U{(2323) 1, 23 (2323)" | 1 <i < ¢/2— 1}
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and the R—module M is generated by the following families of monomials:
(i) 1 and x2x2 -3,
3 .
(ii) (xQ:::g) 23 (2322) 1 for 1 <i < ¢/2,
(iii) «f Wiir1<i<p-2,
(iv) woah B fr3<i<p-2,
(v) b 1= g; Eille for g <j<p-—2and
(vi) = p 1= 27 P 2w -—1<j<p-2.

This list of monomials contributes either one or two elements to each multi-
degree. When there is one element in a given multidegree then the homogeneous
component of M in that multidegree is a free R—module of rank one. If there are
two elements in a given multidegree then the homogeneous component has two
generators and a single free relation. Therefore we can write the Poincaré series

of M as
g(t) —r(?)
(1—)(1 =21 —tr=1)(1 —t»)

P(M,t) =

where ¢(t) is the Poincaré series for the generators and r(t) is the Poincaré series
for the relations. Referring to our list of generators we see that

/2 p—2
g(t) = 144202 4 Z (t‘“ +t4"*1) i thflJri
i=1 i=1

p—2 p—2 p—2
D AR S WA W A
i=3 Jj=q

j=2¢—1

To compute r(t) we need to identify the multidegrees containing two generators
and compute the degree of the least common multiple of the two generators. Sort-
ing our generators into homogeneous components leads to the following relations:

(i) lem((wazs) 2, 23 TP~y — 22271 for 1 <4 < 072,
(ii) lem (22" gz ,xgxg”p*?’) = 22123 for 1 < i < 0/2,
(iii) lcm(xg_l_ngj_p+l7x;(j)xgj) — xg_l_ngj for ¢ <5 <p—3, and
(iv) 1cm(x§717jx§j7p+37x;(j)m§j+2) = :tgflfjxngrQ for20—1<j<p-—3.
Thus

/2

=3 ( itp—1 | ditp— 2) i th L5 Z 1
i—1 j=2e—1

Form the polynomial g(¢) —r(t), evaluate the geometric series, and simplify, to get

] —gL
g(t) —r(t) = <W) (1 B RN R L KR o R LR tQHQ) .
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If p=1 (mod 3), then 2¢ = ¢ — 1 and

P(M.1) = 1413 4 269 4 2¢aH1 4 gat2 4 yat3
T =1 =) —tH(1 —tp)

If p=—1 (mod 3), then 2 = ¢+ 1 and

P(M,1) = 1443 49 4 atl 4 opat2 o opat3
O =)0 —12)(1 —t4)(1 —tp)

Comparing with [2, 3.1] we see that P(M,t) = P(F,[z1,...,24]%/7,t) as required.

Remark 4.2. The simplification of g(¢) — r(¢) was done by hand. The result can
be confirmed using a computer algebra program such as Maple. If f(¢) denotes
the numerator in the Poincaré series produced by Almkvist and Fossum, then the
polynomial (g(t) —r(t)) (1 —t*) — f(£)(1 — t#~1) is zero.

Corollary 4.3. Fylzq,.. ., x4]z/p is generated by homogeneous polynomials of de-
gree less than or equal to 2p — 3.

5. The five dimensional representation

Theorem 5.1. Fp[:c17...,x5]z/1’ is generated by z1, inv(:c%), inv(m%), inv(m%),

inv(z}), inv(z3z323), N(zs), Tr(xgxgxépil)ﬂ) and the following families:
(i) Tr(acflmgfl) and ’P[‘(:Cgmfl:tgil) for0<i<p-—2,

(i) Tr(xfpcg*Q) and Tr(xgxfllxgg% for3<i<p-2,

(i) Tl‘(xix%) and Tr(xgxix%) for(p—1)/2<j<p-—2.

(iv) Tr(a) for (p+1)/2 <5 <p 1, and

(v) Tr(zoxl) for (p—1)/2<j<p-—2.

This section is devoted the proof of Theorem 5.1. The methods used are similar
to those used in Section 4.

Let C denote the collection of invariants given in the statement of the preceding
theorem. Let A denote the algebra generated by the lead monomials of C. Using
Theorem 3.2, we see that

LM{z1, inv(23), inv(z3), Te(2f ), N(25)} = {w1,23,23, 25, 2E}.

This is an algebraically independent subset of A. Let R denote the ring generated
by {th%?x%,xi*l?xg}. Asin Section 4, if p=1 (mod 3) then define £ = (p—1)/3
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and ¢ =2¢+ 1, if p= —1 (mod 3) then define £ = (p+1)/3 and ¢ = 2¢ — 1, and
if ¢ is a integer, define £(4) to be 0 if 7 is even and 1 if 7 is odd. Let

D' = {inv(a3)" - Inv(a}) - v(a3232])" |i,5 € {0,1},0 <k <¢/2—1—j},
and let
D = {Tr(zgzl 1) - Te(al 2), Tr(zomgal 1) - Te(ad 2} UD'.

Let M be the R—module generated by LM(C) and LM(D). Note that M is a
subset of A. We impose a Z/2 x Z/2 x Z/(p — 1)-grading on F,[z1, ..., z5]%/P. A

monomial xill 21‘22 x? xi‘*z%” will be assigned the multidegree

(i9,13,94) € Z/2 X Z/2 X Z/(p — 1).

Observe that the action of R preserves the multidegree. Since M is generated by
monomials, all generators and relations can be chosen to be homogeneous with
respect to the Z/2 x Z/2 x Z/(p — 1)—grading.

We can use the results of Section 3 to describe LM(C). From Theorem 3.2, for

(p—1)/2 < j < p—1, we have LM(Tr(21)) = nglfjxijf(pfl). From Theorem 3.3,
for 1 <i<p-—2, we have LM(TY(xi:ug*l)) = xfﬁp*l. From Theorem 3.4, for 3 <
¢ < p—2, we have LM(TT(xeP_Q)) = xgxf;rp_?’. Using Theorem 3.5 we see that,
for (p—1)/2 < j < p—2, we have LM(Tr(z321)) = nglfjxijfﬁ?" These results
in conjunction with Theorem 3.6 allow us to compute LM(’H(azgxgxépil)/z)) and
LM(TY(xngx%)) for the required values of ¢ and j. Therefore

LM(D) = {x3a3" 2 zozazi? *} ULM(D')

and M is generated by the following families of monomials:

(i) 1, 953:521’73 and x213x2p737

(i) (zozgza)?, 22 (2924)2¢~ 1 and (x2x3)2i+1xi<i_l) for 1 <i<4£/2-1,
x%”l(:ugm;;)?(“l) for 1 <i<4/2,

(ii)) o8 T for 1 <i <p—2, aah M for0<i<p—2,

xga:ifgﬂ and a:gachff?’ﬂ for 3<i<p-—2, and

(iv) xgnglfj:xzjfwrl and x’é*l*jxijfwr?’ for (p—1)/2<ji<p-2,
x21§7%77¢297p+3 for(p—1)/2—1<j<p-2,
2B 192 o (1) /2< i <p—2.
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Thus the Poincaré series of the generators is given by

€/2-1
g(t) =1+ (1) 2 44373 4 3 (21562’ - 2t6i*3)
=1
p—2

p—2 p—2
S S g e
i=1 i=0 i=3

p—2

p—2 p—2
+ 3. ¥+ 3 #E+S+ Yy, #15

J=(p+1)/2 J=-1)/2 3=(p—3)/2

Evaluating the geometric series and simplifying gives

3
g(t) _ (1 +t3> (1 _ t3£—3) _ tp—l o (ﬂ) [2t(P+1)/2 _ (1 + t?)t2p—3} )
1—t 1-¢

Observe that each homogeneous component contains one, two, or three gen-
erators. If the component contains one generator then the component is a free
module of rank one. If the component contains two generators then there is a
single free relation generated by the least common multiple. If the component
contains three generators then there are three relations given by the pairwise least
common multiples and a single syzygy given by the least common multiple of all
three generators. Thus the Poincaré series can be written as

g(t) = r1(t) + s(t) —r2(t)
(1 =t)(1 = 2)2(1 —tr=1)(1 — tr)

P(M,t) =

where r1(t) is the Poincaré series for the free relations, s(t) is the Poincaré series
for the syzygies and ro(t) is the Poincaré series for the relations associated to the
homogeneous components with three generators.

The free relations are given by:

. - | —1
(i) lcm(xg,xgxi ) = :chi ,

(ii) lcm(nglfjxijfﬁl,xf))(j)xij) = nglfszj and

lcm(xgx§717j13j7p+l7xg:ﬂ‘;(j)xij) = xgnglfjx:‘ij for20 —1<j5<p-3,
(iii) lcm(xggl_jxij*wr?’?xg(j)xijfﬂ) = :eg*l*jxijJrQ and

lcm(mgnglfszjfﬁ?’, zgx‘;(j)xi”Q) = xgnglfjxifr? forq—2<j<p-3.
Thus

p—3 p—3
ri() =2 (et [ YT g Y et
J=2—1  j=q—2
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Evaluate the geometric series to get

rl(t):tp+2+(1+t)tp_l< T

§-l g B gr tp>
We need to describe the syzygies and the relations associated the homogeneous
components with three generators. In the first line we list the three generators

and in the second line we give the pairwise least common multiples followed by
the least common multiple of the three monomials.

(i) 2f 1Bt :cg(j)xij 7 xga(j)( 2j—p+1

9w374)

11— 2 s il 25—pt+1 25—p+1432(5) 25, 25—p+1 p—1—45 25
xg J:C4J7x§ J(mu) — bk 73523 P x5 1437123 P xg 7x4j
for (p+1)/2<j<20-2.

—1-j 2%-—p+l
P JJC4J P ,

(ii) 292} x;(j) 25 3, 3e(F) p—1-5_2j

zy’, x3wy (x2x3x4)27*p+112x3 i
—1-3 j 2%—pt+d 2j—p+14+3e(§) 25, 2j—ptd _p—1—5 25
x%xg I (z9aq)% p+17x2ﬂ rHd g2 ()14773523 pHpp—1-3,2

for (p—1)/2< 7 <202,

9

—1—5 2j—p+3 () 25+2 3e(4 5 —1—5 2542
(iii) 25 PP 713( )$4J 2 ( )(xQxSM)QJ P81, 242
—1—5 2j—p+3 2j—p+3_25—p+3+3(4) 2542, 2j—p+3_p-1-5_2j+2
xg J(x2x4) j—p+ 73523 P 3 9547 7x23 P x§ JZ,4J
for (p—1)/2<j<q-—3.

. —1-5_2j—p+3 e(4)  25+2 3e(s o —1-5_2j+2
(iv) zoal " ay’ pt ,x2x3<3>x43+ ,x%x?) (J>($2x3x4)27 p+3x2x§ 7x47+ ,
—1—5 . 2i—p+6 25—p+3+32(5) 25+2. 2j—p+6 p—1—5 2542

x%xg I (2ox4)¥ p+37x23 pt oI (J)x4j+ (2 Pt ot Jx43+

for (p—1)/2-1<j<q-3.

Thus
2¢—2 20—2 q—3 q—3
siy= D Hiy Y L KU Ay B ST
J=(p+1)/2 J=(p—1)/2 =(p—1)/2 i=(p—3)/2

Evaluating the geometric series and simplifying gives

i) = <1Tlt3> [2t3<”+1)/2(1+t) R N e N

The Poincaré series for the relations associated the homogeneous components
with three generators is given by



Vol. 73 (1998) Seminvariants 563

29 20-9 43 -3
ro(t) = Z tJ+P*1+ Z e 4 Z tj+p+1+ Z (I pt2
J=(p+1)/2 j=(p—1)/2 j=(—-1)/2 j=(—3)/2

22 29 43 -3
e Z tSJ*P+1+ Z t3jfp+4+ Z tSJ*P+5+ Z t3J*P+8
=(p+1)/2 j=(p—1)/2 j=(p—1)/2 j=(p—3)/2
202 20—2
ap. Z 165—-2(p—1)+3=(5) o Z $65—-2(p—1)+3=(4)+3
=(p+1)/2 j=(p—1)/2

-3 -3
N qz (65-2o—1)+3(1)46 qz (67— 2p—1)+3:()+9.
j=(p—1)/2 j=(p—3)/2

Evaluating the geometric series in the first two lines, reindexing, and reorganizing
the sums in the third and fourth lines gives

ro (t): (ﬁ) |:2t3(p71)/2+1 _ t2£+p72 _ t2l+p71 + 2t3(p71)/2+2 _ tq+p71 _ tq+p):|

L ( L 3)[2t<p71>/2+3 —fen_ Pl gylo-Lifd _fa-p-d_ gt
1—¢

/21 £/2—1 /22 £/2-2
+ Z t6j+(p71) + Z t6j+(p71)+3 + Z t6j+(p71)+3 + Z t6j+(p71)+6.
=1 i=0 i=1 =0

Let n(t) = g(t) — r1(t) + s(t) — ro(¢). Combining the previous expressions and
simplifying gives

1 —gp-1
n(t) = (ﬁ> [(1+t3)(1 —t3£’3+t6£’fj‘2+t3q’1‘”1)+2t(p+1)/2(1+t)2} .

Note that, for any prime p, ¢3¢ 21 | ¢66-p=2 _ 436-3 _yp Tphyg

3 (p+1)/2 2
P(M7t):(1+ti(1+tp)+2tp (1+1)

1 -t)(1 - 221 —£2)(1 —r)

Comparing with [2, 3.1] we see that P(M,t) = P(F,[z1,...,25]%/7,t) as required.
This completes the proof of Theorem 5.1.

Remark 5.2. As in Section 4, the simplification of the Poincaré series was done
by hand but can be confirmed by a computer algebra program such as Maple. If
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we use f(¢) to denote the numerator of the Poincaré series produced by Almkvist
and Fossum, then the polynomial n(t)(1 —¢3) — f(¢)(1 — t*~1) is zero.

Corollary 5.3. F,[zq,.. .,x5]z/1’ is generated by homogeneous polynomials of de-
gree less than or equal to 2p — 2.

6. Concluding remarks

We believe that, in principle, the methods used here could be extended to n > 5
but that the computations required will become increasingly more complicated.
Instead we suggest a more conceptual approach along the lines of the following
conjecture. We remind the reader that rational invariants are the invariants in the
image of the projection from Z[zy, ..., z,|% to Fylz1,.. L),

Conjecture 6.1. Fy[zq,.. .,xn]Z/P is generated by rational invariants, the image
of the transfer and N(x,,).

A proof of this conjecture would reduce the problem of finding an upper bound
on the degrees of the generators to the relatively accessible problem of computing
the image of the transfer. As philosophical evidence for the conjecture we include
the following theorem.

Theorem 6.2. F,[zy,.. .7xn]z/p is an integral extension of the subalgebra gener-
ated by N(z,,) and the image of the transfer.

Proof. It is sufficient to find a homogeneous system of parameters for F [z, ..., zy,]
inside the subalgebra generated by N(z,,) and the image of the transfer. Consider
the set

C={Tr(a5 ™), Te(ab ), ..., Tr(aZ 1), N(z0)}

Using Theorem 3.2, LM(C) = {:10171,3175717 - xf;lhxf’l}. Since LM(C) is a homo-
geneous system of parameters and we are using the graded reverse lexicographic

order, C is a homogeneous system of parameters . O

Remark 6.3. The image of the transfer is an ideal in Fy[zq,.. L an]2/P. The
radical of this ideal is the intersection of the ideal generated by z{,... ,z, 1 in
Fplz1,. .., a,] with Fpley, ..., 2,]2/P (see [11, Remark 2.5]). Tt is not hard to show
that Fplzq,. .., x,]%/? is generated by N(z,) and the radical of the image of the
transfer.
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