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Minimal orbits close to periodic frequencies

Ugo Bessi and Vera Semijopuva

Abstract. Let C(Q,Q) ±\Q\2 +h(Q,Q) with h analytic of small norm The problem of
Arnold's diffusion consists in finding conditions on h which guarantee the existence of orbits Q of
£ with Q connecting two arbitrary points of frequency space Recently, J N Mather has found
a sufficient condition for Arnold's diffusion, this condition is not read on h itself, but on the set
of all action-minimizing orbits of £ In this paper we try to characterize those action-minimizing
orbits whose mean frequency is close to periodic

Mathematics Subject Classification (1991). 70H
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Introduction

One of the problems of the theory of Hamiltoman Systems is to understand the
dynamics of lagrangians of the following kind

C(Q,Q) A(Q)-h(Q,Q) (Q,Q) G TmxRm (1)

where A is real analytic, d"^ A > 0 and h is a real analytic function of small norm
In particular, a question has been recently much studied suppose we are given h

of small norm and ô > 0, we must find for which Q\, Q% G Rm there is an orbit Q
of £ and t\ < t<i G R such that

\Q(tl)-Ql\<6 * 1,2 (2)

Obviously, if h 0, there is no such orbit if S < 5IQ2 — Ql\ an(i, iî ö > 5IQ2 — Ql\,
one is trivially found If m 2, IQ2 — Ql| > \/P*iï > ^<5, there is again no such
orbit because of the KAM theorem

In [11] a theorem is proven which gives a sufficient condition m order to have (2),
this theorem holds not only for Lagrangians satisfying (1), but for all lagrangians
of class C2 which are convex and superlmear m Q and whose Euler-Lagrange flow
(from now on E-L flow) is complete The sufficient condition is read not on the
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lagrangian itself, but on the set of all action-mmimizmg orbits In this paper we
consider the more restricted class of quasi-mtegrable lagrangians, like (1), and try
to characterize some of its action-mmimizmg orbits (those whose frequency is close

to periodic) in terms of h
In order to explain our results we need to recall some of the terminology of [10]

and [11] Let us denote by A4 the set of all probability measures on Tm x Rm
with compact support invariant by the Euler-Lagrange (from now on E-L) flow of
£ In [10], the following functional is introduced

f-a{c) mm{ / (£ - ??c)d/x /x G M}
iT™xR-»

where r\c is a closed 1-forin in the cohomology class c, considered as a function
rjc Tm x Rm —s- R It can be shown that the minimum is achieved, that a(c) does

not depend on the choiche of r\c and that the E-L flow of £ — r\c is the same as

that of £ In the following, we will choose the representative of c with constant
components and we will write, with an abuse of notation, c r\c G Rm We list
below some of the properties of a proven in [10]

• a is convex and superlinear,
• If a(c) is attained on /x, then it is attained on almost all the measures on the
ergodic decomposition of /x

• If there is a positive-definite KAM torus, then there is a unique c such that
a(c) is attained on the ergodic measure on the KAM torus, moreover, a(c) is
attained only on that measure

We denote by A C (R, Tm) the space of absolutely continuous functions from
R to Tm Following [11] we say that an orbit Q G A C (R, Tm) is a c-mmimizer
(c G Rm) if, for any a < b G R, any d < e G R and any Q\ G A C ([d,e],Tm)
such that

Ql(d) Q(a), Qi(e)

we have

,-b

[£(Q,Q)-(c,Q) + a(c)]dt< / [£(Qi,Qi) - (c,Qi) + a(c)]dt (3)
Jd

If we had b — a e — d then the integral of a(c) would be the same on the
right and on the left and we could drop the term a(c) in the integrand, if Q\ia 6i

were in the same homotopy class as Qi\u ei, then we could also drop — (c, Q) and

recover the usual notion of minimal orbit In other words the term — (c, Q) makes
the functional sensitive to the homotopy class of the orbit, and a(c) makes it
sensitive to the time of travel In [11], proposition 5 2, it is shown that the orbits
in the support of the measures realizing a(c) are c-inmnnal, however, they are
not the only c-inmimal ones for instance, if the c-inmimal ergodic measures are
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evenly distributed along periodic orbits, then some of the homoclmic or heteroclmic
connections among them can be c-inmimal orbits The sufficient condition of [11]

is read on the set of all c-inmimal orbits as c varies in Rm
Our approach is based on the fact that there is a change of coordinates (the

Nekhorocheff normal form near periodic frequencies) which brings the lagrangian
to a very simple form, thus easying the problem of finding minimal orbits Before
discussing the properties of the normal form we remark that these new coordinates

are defined only in open sets of the type TmxS(^,^||/i||^), where k G Zm and

0 < T < C'\\h\\~^+^ Thus we must check the following things first, that for

c G B(^,^\\h\\^) all c-minimal orbits live inside Tm x B(^,^\\h\\^), where
the normal form is defined Second, that the change of coordinates preserves the

minimality of the orbits Third, that the balls B(-^, ^j;\\h\\ï^) cover frequency
space, so that we can study by this method c-minimal orbits for all c G Rm All
these facts, which are a reformulation of results of Bernstem-Katok and Lochak,
are proven in the appendix for completeness' sake In particular, we refer the
reader to [8] for a proof of Nekhorocheff theorem based on periodic orbits, and to
[9] for a survey of the problem of Arnold's diffusion

In the new variables, the perturbation is the sum of two terms the first one,
which we call V, depends only on the components of Q orthogonal to ^, and if
the perturbation h has Fourier development

KQ,Q)=

then we have that

kLk

The second term, which we call 7/, is exponentially small in ||/i||, and has little
influence For the moment, let us restrict ourselves to the very particular case in
which V does not depend on Q, / 0 and the lagrangian in normal form reads

£(Q,Q) 5IQI2 — V(Q) Since V does not depend on the ^ direction, it is easy

to see that the —minimal measures are given by the convex combinations of the

measures uniformly distributed along Ql{t) -ft + a%, with {at} the set of the

maxima of V Indeed, it is only on these orbits that the integrand C(Q, Q) — (^, Q)
reaches its minimum value Moreover, if the maxima of V are nondegenerate in
the direction orthogonal to ^, the orbit Ql will be hyperbolic and thus will survive
the second, exponentially small term of the Nekhorocheff normal form We will
call Ql7 the periodic orbit close to Ql surviving the perturbation In theorem 1 3

we show that, under suitable hypotheses on V, the measures evenly distributed
along the Qlf are the ergodic ^-minimal measures We remark that, by (4), the
nondegeneracy of the maxima of V can be read directly on h, without the need of
actually performing the change of variables
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Thanks to the particular form of V, which allows us to treat separately the
motion in the j, direction (the fast variable) and the one in the orthogonal directions

(the slow variables) we are able to study which are the c-minimal orbits for

c close to j: and 7/ small In theorem 2 3 we study A, the minimal supporting
domain of a containing ^ Under the same hypotheses on V as in theorem 1 3 we

show that A is contained in the affine hyperplane ^ + ^ an(i nas nonempty
interior relative to it, if c belongs to this interior, then the only c-minimal orbits
are the Ql7 and the heteroclmic connections between couples of them In theorem
2 4 we show that, if we neglect the exponentially small term 7/, we still get a good
approximation of A

If m 2 (the twist map case) we re-read in this framework some well-known
results In particular, in proposition 2 6 we show that, if c is just outside A,
then the c-inmimal orbits are close to sequences of heteroclmic or homoclmic
connections between the Q\f The study of orbits close to a sequence of homoclmics
or heterochmcs has been initiated in [14] (see also [6]), if the methods of these

papers could be applied to this situation they could provide another way to prove
the existence of Arnold's diffusion

We remark that in [10] Mather considers time-dependent Lagrangians, with
period t in time, £ Tm x Rm x T1 -> R, together with their extended E-L flow,
1 e the flow on Tm x Rm x T1 Moreover, he compactifies this space and shows
that the extended E-L flow on Tm x Rm x T1 U 00 is continuous He defines M
to be the space of invariant probability measures on Tm x Rm x T1 U 00 We
don't compactify since in [10] it is shown that c-minimal measures have compact
support (obviously, in [10] one has to compactify, otherwise one is not certain that
M. is not empty') Thus to follow [10] we should consider the space of compactly
supported invariant probability measures on Tm x Rm x T1, it is easy to show

that, in the autonomous case, it makes no difference to consider this space or our
M. Moreover, in [11] there is also a slightly different definition of c-minimal orbit,
indeed, in this paper the numbers a, b, c, d of (3) are restricted to be in tZ Since

our lagrangian is autonomous, we can take t any element of R+, and thus our
definition amounts to the same of [11]

Section 1

We will denote by d the metric induced on Tm by the Euclidean distance on Rm
and by } the standard scalar product of Rm

By the arguments of the appendix we can restrict our study to lagrangians
already in normal form Thus we will consider a lagrangian

\\Q?-e\v{Q,Q)+b{Q)\ -7/(Q,Q)
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and (k,T) G Zm x [l,oo) satisfying the following conditions

G2) V(Q + ^s,Q) V(Q,Q) V(Q,Q,s) G Tm x Rm x R

G3) VQ G Rm max V(Q,Q) 0

and there are p functions of class C a\(Q), ap(Q) such that

VQGR"

ap(

î=l

Moreover, there is A > 0 such that

VQg Rm

We take the integrable part to be 5IQI2 because the fact that this fuction is
the Legendre transform of itself will allow simpler formulas We don't make any
analyticity assumption on V and / but we remark that, if Ce 7 is the normal form
of a lagrangian £ like the ones considered in the appendix, then by (A 13) if T
is not too big we can read Gl-4) directly on £, without actually performing the
change of variables

It is easy to check that, for e and 7 small enough, Ce 7 satisfies the hypotheses
of [10], îe

11) hm ¦ +00 uniformly in
IQI-°o IQI

111) the E-L flow of C is complete
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In our case, point in) is a consequence of the fact that the energy surfaces are

compact
We define

f—ck7(c) min{ / (£e 7 — c)d/x \i G M}
iT™xR-»

where A4 is the space of probability measures on Tm x Rm which are compactly
supported and invariant by the flow of C€ 7 The aim of this section is to find the

measures which realize a7(^)
Let us consider the periodic orbits of Ce o given by

If V does not depend on Q and b 0, it is easy to see that Q{i, ^r2) is hyperbolic
with stable and unstable manifolds projecting diffeomorphically onto

We will suppose that this situation is true also for the V and b we consider Since

hyperbolic periodic orbits are stable under small perturbations of the flow, for 7
small enough we can find a solution of Cei, Q{i,h,^() which depends smoothly
on 7, having energy h and such that Q(i,h,0) Q{i,h) This leads us to an
additional hypothesis

G5) We suppose that 7 is so small that all the Q(i,h,j) depend C on (/i, 7)
Moreover, the Q{i,h,^() are hyperbolic with stable and unstable manifolds
projecting diffeomorphically onto M] We require that, if T{i,h,^() is the period of
Q(i,h,i), then

l7|1 fk\2 1

has a unique minimum close to h ^ (^j =5, which we call ht Moreover,

We set

and define

G= mm qt(h,)
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We define the set / C {1,... ,p} by

iel iff G gl(ht).

Lemma 1.1. Let G1-5) hold. Let ^ be an ergodic —-minimal measure whose

support is contained in M\ X Rm, i G (1,.. ,p). Then i G / and /x is the pull-back
of the Lebesgue measure by (Q* Q*).

Proof. We will follow the argument of [4] and [10], based on the Weierstrass method
(an exposition is in the appendix of [10] or in [5], chapters 3 and 12). We note
that the stable and unstable manifolds of Q^ are lagrangian submanifolds for
the canonical 2-form, invariant by the E-L flow; moreover, the local stable and
unstable manifolds of Q\f project diffeomorphically on M\ by G5). We define

$:M) x R+ -s- Tm x Rm in the following way: $(x,t) is the evolution of the
orbit on the stable manifold of Q^ such that the projection of $(x, 0) on Tn is x.

Let us call M\ the universal cover of M\. Under these hypotheses, the references

quoted above ensure that we can find a function S: M\ x R+ —s- R such that, if
we define

jC*(x x t) jC (x x) — (— x) — a (h Six t) Six t)x

then £*($(x,t),t) 0 and £* increases quadratically with the distance \(x,x,t) —

($(x,t),t)|. Moreover S, which is found solving a Hamilton-Jacobi equation by
the method of charachteristics, satisfies

S(x,t) - S(x,0) / [£(®(x,t)) - (^,®2(x,t)) - gi(K)]dt
Jo T

where $2 denotes the second component of $. Since $(x,t) is asymptotic to Ql,
by the last formula we get

lim -[S(x,t) - S(x,0)] =0 uniformly in x. (1.2)

Since /x is c-minimal and G > a(^) we have that

f k -0 > / [£e>7 - ^ - G]dM

while by the Birkhoff ergodic theorem we can find a solution Q of the E-L equation
such that

r k - 1 rT k -/ [£e/y _ ö]dM lim - / [Cer/(Q,Q)-{W,Q)-G]dt
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km -I \ C*(Q,Q,t)dt + S(Q(T),T)-S(Q(O),O)\+gt(ht)-G

By (1 2) and the above two formulas we get that

0> I [£ i_G]dM= hm i I C*{Q,Q,t)at+g\K)-G>g\K)-GJt^xr™ J- t^°° J- Jo

where the last inequality is a consequence of £* > 0 Since gt(ht) — G > 0 if i (Ë /,
the above formula implies that jgI
Let us now suppose by contradiction that (Q(0), Q(0)) does not stay on the local
stable manifold, then £*(Q(0),Q(0),0) ß > 0 By the ergodic theorem, (Q,Q)
enters frequently a neighbourhood of (Q(0),Q(0)) where C* > ¦j, since C* > 0,

we have that
1 fT

Inn - / £*(Q,Q,t)dt >0
T^oo T Jo

By the last two formulas we have

0>

a contradiction Thus Q stays on the local stable manifold of Ql7, since it is

recurrent, we get that Q must coincide with a translate of Q\f Thus \i is the

pull-back of the Lebesgue measure by {Q^Q^) and the lemma is proven D

Lemma 1.2. Let Gl-5) hold, let i G (1, ,p), let b{Q) and uj G R be such that
eIHIc3 < u < ö and Ql (R) C M^ Then there is B > 0 independent on to such

that, ifQ satisfies Q([0,T]) C M\ and Q(0),Q(T) G M£, we

Proof By G5), we have that Q{i, h,^y) depends C2 on (h,^y), this implies that, for
some s G R,

hrf)-Q(t,h,o)( -S)||al<c7
Since Ce o{Q{i, h,O)(t), Q{i, h,O)(t)) is constant, by the Lipschitz continuity of Ce 7
and the above formula we deduce that

sup '— n% (t)) - £ (Ql Ql ())-(— i
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which by the mean principle implies

b UJJ ~ c j, v"^7\"/J T7V// \ m ' ^i\v// — —'¦ " 1 "> l — o —:

teR ' ' (13)

By the Lipschitz continuity of Ce 7, the fact that e||è|| < lu and the above arguments
we also deduce that

The last formula implies the thesis if T < 4 Thus we can restrict ourselves to the
case T > 4, where lemma A 1 and a standard calculation show that the function

i-T k
FT(Qo,Qi)=mm{ [£e 7(u,u) -(-,«)- G]dt u(0) Qo,u(T) Q{\

Jo ±

is Lipschitz of Lipschitz constant 2 for Qq in a 25-neighbourhood of Q(0) and Ci
in a 2(5-neighbourhood of Q(T) This and the boundary conditions on Q imply
that we can define a function Q such that Q(0),Q(T) € Q7(R), Q([0,T]) C M|
and

(15)

We define a periodic orbit Q in the following way on [0, T] g coincides with Q,
on [T, Ti] g coincides with the segment of Q^ connecting Q(0) with Q(T) By
(1 3) we have

1

[C€ 7(Q, Q) - (-, Q) - G]dt < S'7(T - Ti) < S'7T7 < 2S'7T (1 6)

where the last inequality comes from G5) By (1 5) and (1 6) we get that

rf [Ce
0

7(Q, Q)-(^,Q)-G}dt
_L

> r/Jo

[*-€ 7VV1 V,
0 J Jo

Defining £* and S* as in lemma 1 1 we get that

fTi ~ ~ k ~

Jo
e 7 ' t '

£*(Q,Q,t)dt + 5(Q(Ti),Ti) - 5(Q(0),0) + ^(/i») -G
0
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Putting the last two formulas together, recalling that £* >0 and that gl{hl) — G > 0

we get

T i

[£e7(Q,Q)-(-,Q>-G]dt>/ V-e 7
JO

o J

But S(Q(0),i) is simply (Q7(t + r),Q7(t + r)) because Q(0) Q^r), if AZ^ is

the biggest multiple of Tlf smaller than T\, we get from the above formula and the
definition of G that

1

[£e 7($(Q(0),t)) - (^, *2(Q(0),*)> - G]dt -4u- 2B'iI

Since Tt - kT* < 2T, by (1 3) we get the thesis D

We would like to show that the only ^-minimal orbits are the ones supported by
the Q7, îg/ By lemma 1 1, it is sufficient to show that any ^-minimal measure

/x has support inside some M\ x Rm Thus we need some condition which makes

too costly for a ^-minimal orbit to go outside M\ frequently, essentially, this is

condition {%) of G6) below The two following hypotheses, G6) and G7), allow us

to estimate the functional along orbits generic for \i and thus to get information
on the support of \i1 B is the same as in lemma 1 2 and B' is as m (1 3)

G6)

(«) 3L>g(0,1) suchthat

p
52 if QeF\.

2

(îî) 3w G (0, -) such that

and
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inf{£e,7(Q,Q)-(|,Q) : (Q, Q) e (Tm \ (J A£ x R"1}

(m) 5(^ + 7T)<^<52, 2e||6||C3+5/7<^<52, e||6||C3 < w.

G7) Any two couples of M\ have empty intersection.

Theorem 1.3. Let Gl-7) hold. Then the ergodic —-minimal 'measures are the

pull-back of the Lebesgue measure by (Q7, Qlf), for i <E I. In particular, a7(^;)
-G.

Proof. We have seen in lemma 1.1 that if a ^-minimal measure has support in

M] x Rm, ie (l,.-.,p), then it must coincide with one the Q% Thus the theorem

is proven if we show that any ergodic —minimal measure has support in some

MJ x Rm; we suppose by contradiction that there is /x, ergodic and ^-minimal,
whose support is not contained in any M\ x Rm.
Let Q be an orbit generic for /x; we use Q to define three classes of intervals. Each
interval Pi is maximal with respect to this property

3ie(l,...,P) : Q{t)eMl VtePh Q{dPt) c APU.

The intervals Ri satisfy

3ie(l,...,p) : Q{t)eMl\{Ml)° VteRh Q(dRt) c dM^UdMl

where X° denotes the interior of X; the intervals Si are the maximal ones such
that

p

Q(t) & \J(MV)° Vt G Sh 3teSt : Q(t) £ M}.
»=o

It is easy to see that R can be partitioned into these three families of intervals,
and in such a way that a Pi is followed by a Ri which in turn is followed by a Si
which is again followed by a Ri ; this Ri can be followed by a Si or by a Pi and at
this point the cycle begins again.
We are supposing that the support of /x is not contained in any M\ x Rm; by
G7) it must intersect (Tm \ \Jl=\ M|) x Rm. Since Q is generic for /x, it enters
(Tm \ Uf=i Ml) x Rm frequently; since by lemma A.I of the appendix its speed
is bounded, we get by G7) that

limmfW(U^:^n[o,fl]^0)>o
R-^oo R
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where m denotes the Lebesgue measure Moreover, the above formula implies
that none of the P; or of the Ri can be a half-line We assert that the following
inequalities hold

VZ [ [C^{Q,Q)-{i,Q)-G]dt>^5'2max{l,m{Si)) (18)
J ± 4

VZ [Cer/(Q,Q)-{t,Q)-G]dt>0 (19)
JRi 1

We postpone the proof of (1 8)-(l 10) and see how they imply the thesis If we
number the Si according to their order on R and set

to mm So h max S;

we get that

t0

ti ¦Vf £ f [^,-y(Q,Q)-à,Q)-G\dt+

[Ce,7(Q,Q)-{t,Q)-G}dt}>

[£e,7(Q,Q)-(i,Q>-G]dt
¦^ _

.1 ps J-

(111)

where the last inequality is a consequence of (1 9) If we apply (1 8) and (1 10)
and recall that between two Ss there is at most one Ps, we get that

1

ti —tu Jt0 ± ui — uu —q
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If we now apply (1 7) and (m) of G6) we get that

hinmf / [£e 7(Q, Q) — (—, Q) — G]dt > 0
l^°° f'- ~ fo Jt0 T

Since G is the mean action of a periodic orbit, by the Birkhoff ergodic theorem
the last formula implies a contradiction with the minimality of \i
Thus the proof of the theorem reduces to the proof of (1 8)-(l 10) It is clear by
[in) of G6) that (1 10) is simply lemma 1 2, moreover, (1 9) is a direct consequence
of (m) of G6) Thus the only inequality we have to prove is (18) We distinguish
two cases m{Si) > 1 and m{Si) < 1 In the first case we have by {%) of G6) that

f k f 1 o/ [Cej(Q,Q)-{—,Q)-G\dt> (--- e\\b\\ + Do2 - G)dt
J Si -*- J Si

which by (1 3) implies

/ [£e7(Q,Q) - (-,Q) -G]dt >m(Si)[D52 -2e||6|| - _B'7]
•J Si

The last formula, by (m) of G6), implies (1 8)
In the second case we use a method of [13] On Si, Q runs a distance at least ô in
the direction orthogonal to ^, we have that, by (i) of G6),

\Q-h.\dt< f \Q-h y/-eV(Q, Q) - eb(Q) - 7/(Q, Q)dt <
-1 J J

[-eV(Q,Q)-eb(Q)-jf(Q,Q)]dt f \Q - ^\2dt
Si JS, -1

è\Q ~ II2 " eV(Q,Q) - eb(Q) - 7/(Q, Q)]dt
Z J

From the last formula and G4) we get

f [£e7(Q,Q) - à,Q)}dt > -i + VD52 > -i + DS2
• ' Si

where the last inequality comes from the fact that D G (0,1) On the other side,
by (1 3) and (m) of G6), we get that

G<+S7 + e||6||

Always by (m) of G6) the last two formulas imply (1 8) and thus the thesis D
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If Q is a path on the torus, let us denote by [Q] one of its lifts to Rm, [Q]j_ and

will denote respectively the components of [Q] orthogonal and parallel to j,
The next lemma gives an estimate on the action functional of an orbit in terms of
its rotation number

Lemma 1.4. Let Gl-7) hold Then there ts F > 0 such that, for any T > 0 and

any orbit Q satisfying

3t £ [0,T] such that Q{t) £ Uf=0MJ

we have

Proof We divide [0,T] into intervals Pi, Ri and Si exactly as we did in theorem
24
From the arguments of [13] which implied (1 8) we get that

(112)

As in (1 11) we get that

f [C^(Q,Q)-à,i
Js, J

(-)]dt

By the last formula, (1 12) and the fact that between two Si there is at most one
Pi we get that

^(52 max(|6; - a«|, 1) - jT)[£e 7(Q,Q) - (|,Q> + «7(

By G7) and lemma A 1 of the appendix it is clear that there is C > 0 such that

$>i-a,|>CJ[Q(T)U-[Q(O)]_

The last two formulas imply the thesis D
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Section 2

This section contains the results about the behaviour of a7 and of the minimizing
orbits We begin with some definitions

A solution u of the E-L equation of C€ 7 such that

d(W(t),g7(t-a_oo)) + |M(t) -Q^t-a-oo)! ->0 for t -> -oo

<W(t),gj(t-aoo)) + |W(t)-g^(t- a^l^O for t^oo
for two a_oo, 0,00 G R, is called a heterochmc orbit connecting Q7 with Q3 if t ^ j,
a homochmc if 1 j Clearly, if there is a heterochmc connection between Q7 and

Q7, the two orbits must have the same energy
We recall some of the notations and results of [10] If /x G Ai, then there is a

unique p(p) G R" (the "rotation number" of/x) such that

VcgR" (p(m),c> / cap,

In the integral on the right c is seen as a function c Tm x Rm —> R, c (a, 6) ^
(c,b) If /x is c-minimal, then p(p) G 9a7(c), 1 e p(p) is a subgradient of a7
in c We will denote by ß1 the polar of a7 An equivalent definition of ß1 is the
following

fßj(p) mm{ / Ce 7d/x /x G M,p(p) p}

Both a7 and /37 are convex and superlmear In the following, we will denote by
A7 the minimal supporting domain of a7 in ^ To prove theorem 2 3, we will need
the following two lemmas

Lemma 2.1. Let Gl-7) hold and let us define

1

g R^R g r -> a7(r—)

Then, if e and 7 are small enough, g is strictly convex in the point r 1

Proof We set

y(Q, Q) el/(Q, Q) + eb(Q) + 7/(Q, Q)

For î G / we consider

a periodic orbit of period T j^j and see that

k 1 I'T k
-a7((l + A) — < — / [Ce 7(Qx,Qx) — ((1 + A) —,(

J J Jo J
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-i f V(Qx,Qx)dt
1 Jo

A)2a7(f)+

If we apply to the last integral the Taylor formula and Gl), G5), we get that, for

7 small enough,

A)i)>

A fTï d

By Gl) we have that

l1 Jo

J
<(2e

while by Gl) and G5) we have that, for 7 small enough,

From the last three formulas we get

«7((1 + A)|) > (1 + A)2a7(|) - (A2 + 2A)(2e + 7) - 2A(2e + 7) - 2eA

By (1.3) we have that, for e and 7 small, a7(±) >\- e\\b\\ - -B'7 > |. Thus

which implies the thesis. D
From now on we will always suppose e and 7 so small that lemma 3.1 holds.
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Lemma 2.2. Let Gl-7) hold, let F > 0 be the same as in lemma 1 4 o/nd let us

k \ ~*~

denote by it the affine hyperplane ^ + ^ ; then if

cG7rnS(-,—) (2 1)

we have a7(c) a7(^)

Proof Since (c — ^) G (j:)1' and Q7 is homotopic to Qo, we have that

(c_A;QM=o (22)

Let us now consider \i G A4 c-mmiinizmg, since any element m the ergodic
decomposition of \i is c-mmiinizmg, we can suppose \i ergodic We begin to prove the
lemma when p{jj) r^ for some r G R We have that

(£ -c)d / (£ --)d + I (--c)d
"^xR"1 iTmxRm î1 iTmxRm Î1

Since |-cG | we have by the above formula that /x is ^-minimal and thus

one of the Q\f by theorem 1 3 From (2 2) we now get

0 J-

which is the thesis
We now prove that, if \i is c-minimizing, then p{jj) r^ Indeed, let us suppose
by contradiction that

k f k\~L
P(v)=r-+v rGR ve (-) \ {0}

By the Birkhoff ergodic theorem we have that there is an orbit Q and Tk —? oo
such that

[Q(Tk)]± - [Q(0)U
Jk

i- /
fc

[£e 7(Q, Q) - (c, Q>]dt ^ -a7(c) (2 4)

By (2 4) we have that

1 fTk h.

Tk Jo T
Inn

k—>oo

1 rk/
Tk Jo
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Since by (2.3)
1 f'Tk h h

jr à-c,Q)dt^d-c,v)
J-k JO J. J.

we have that

-a7(c)= lim i- / k[Ce,7(Q,Q)-à,Q)]dt+à-c,v)>
fc^oo lk Jo 1 1+°o ±k JO J- J-

rk"^ Tk
hm i- / fc[£ej7(g,g)_(i,g)]dt-||v|

where the last inequality is a consequence of (2.1). We now apply lemma 1.4 and
get

-a7(c) > -a^(j)+F ¦ \v\ - ~^\v\ > -«7(y).
On the other side we have that, for i G /, (2.2) implies

1 rT-,
t .^

«7(C) - y, yo eM 7' 7> \C>

The last two formulas are in contradiction. D

Theorem 2.3. Let Gl-7) hold and let ir he the affine hyperplane j; + [j;
Then

(i) A7 C 7T and A7 has nonempty interior relative to it; we denote this interior
by A7°. We also have that «7|a a-y(j:)-

(ii) If c € A7°, the only ergodic c-minimal measures are those supported by the

Q\, i G /.
(Hi) If c G A7° and if Q is a c-minimal orbit not coinciding with one of the

Ql7, i G /, then Q is a heterochnic but not a homochnic connection.

Proof. We begin to prove point (i). Lemma 2.2 implies that tt Pi B{^, -j) C A7;
since A7 is convex, we have that A7ri7r has nonempty interior relative to tt and that

j: belongs to the interior. By lemma 2.1 the intersection of A7 with the ray r^ is

a point; this and the previous observation imply that A7 C it. By lemma 2.2 and

the définition of minimal supporting domain, it now follows that «7|a a-y(j;)•
To prove point (ii) we note that, by point (i), when c G A°, the elements of da7(c)

are all collinear to ~. Thus, if c G A7° and /x is c-minimal we have that p(p) r~
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for some r G R Since c G ir, we have that c — j, _L p(/x) and thus

/" k
(£e7-c)d/x=/ (£e7-—)d/x

This means that /x is c-mmimal iff it is ^-minimal, but we know from theorem 1 4

that the ergodic ^-minimal measures are the Qlp i G /
We now prove point (m) First of all we can suppose that Q is not contained in
any M$, i G (1, ,p), otherwise it would be easy to show that Q is —minimal
and then by the arguments of lemma 1 1 it would follow that Q coincides with
some Q7, îg/
Thus let Q be c-mmiinal and such that

Q(0) (J M} (2 5)

By [11], Q will accumulate, in the future and in the past, on some c-inmimal
measure which by point (m) is one of the Q7, i G / Thus there is a sequence
{(tk,rk)}keZ an(i li3 € / such that

> — oo
hm tfc — oo, lim tu oo

O for ^^-
(2 6)

for k —s- oo

We assert that in the above formula i ^ j Indeed, let us suppose by contradiction
that i j We begin to note that, by (2 6), if |A;| is big enough, then Q remains
close to (Q7, Q7) during the intervals [£&,£& + 2T7], thus, by the periodicity of Q7
we can also suppose

d(Q(t-k),Q(tk)) —? 0 for k ^ oo (2 7)

We now distinguish two cases In the first one there is a subsequence A;' —> oo such
that

0

Since c G A7 the above formula implies

[A 7(Q, Q) - (c, Q) + «7(c)]dt - / k'
[£e 7(Q, Q)-dQ)

for A;' -^- +oo
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and thus Q is also —minimal Thus Q is an orbit that accumulates, in the future
and in the past, to the same Q7 and moreover satisfies (2 5) It is now easy to see

that we can apply the arguments of theorem 1 4 to show that

[£e7(Q,Q) - <|,
yT 2

But Q has boundary conditions close to the boundary conditions of Q7 by (2 6)
and (2 7), if we take into account the Lipschitz continuity of the action, the last

formula contradicts the ^-minimality of Q
By (2 7), the second alternative is that

Inn inf [Q(t-k)]± - [Q(tk)}_ > 2tt (2 8)

In this case we consider an arbitrary sequence {c^} C A7°, by point (u) the only
periodic orbits realizing a7(cfc) are the Q7, thus

f1
0 < inf{ /

JO
m(0) m(T),T>0} <

liminf / [£e7(Q,Q)-(cfc,Q>

lim inf
k—>oo

k

[£e 7(Q, Q) - (c, Q) + a7(c)]dt + / "
(c - cfc, Q>dt (2 9)

where the second inequality is a consequence of (2 7) and of the Lipschitz continuity
of the functional If we specialize C]~ by

c - cfc -r\
[Q(tk)}± - [Q(t-k)l
\[Q(tk)]±-[Q(t-k)]_

we see that, since c G A7°, if r\ > 0 is small enough, then C]~ G A7°VA; Thus by
(2 8) and (2 9) we get

0 <hmmf
tfc

which we can re-write as

k—>o
hmmf / [£e 7(Q, Q) - (c, Q) + «7(c)]dt
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[£e,7(Q7, g7) - (c, g7) + «7(c)]dt + 27TJ7

0

since the second integral is 0 by point (ii). However, Q satisfies (2.7) and Q(t-k),
Q(tk) tend to the same point of Ql. By the Lipschitz continuity of the action
functional, the above formula contradicts the c-minimality of Q. We have thus

proven that Q cannot accumulate, in the future and in the past, on the same Ql.
In an analogous way it can be shown that, if Q accumulates on Q3, say in the

future, then for t big enough it will always stay inside M|; using the arguments
of lemma 1.1 one can show that this implies that Q stays on the stable manifold
of Q7. Analogously, one shows that Q stays on the unstable manifold of Q7 and

point (Hi) is proven. D

We want to compare the sets A7 for different values of 7; to do this we translate
the point (^,a7(^)) to the origin, setting

£<=,7(<3,<3) £e,7(<3,<3) - {7p,Q) +«7(7^)

and defining

f—â7(c) min{ / (A=,7 — c)d/x : \i G M.}.

Clearly, â7(0) 0; moreover, (^ + c)-minimal orbits and measures of Cer/ are

c-minimal orbits and measures of À,7, and vice-versa. If we denote by A7 the

minimal supporting domain of à7 containing 0, then A7 C tt I ^ j and A7 has

nonempty interior relative to jr. Moreover, by point (i) of theorem 2.3, we have
Ä7 {ä7 0}.

Theorem 2.4. Let Gl-7) hold. Then given r/ > 0, there is 70 > 0 such that,
%f I7I < 70? we have that A7 is contained in a -^-neighbourhood of Aq, and Aq is

contained in a -^-neighbourhood of A7.

Proof. We begin to show that

I ~ ~ ^ I I /o 1 (\\\a-y — o.q <- |7|. (Z.w)

Indeed, it is one of the results of [11] that

ä7(c) liminfmin{- / [£e,7(Q, Q) ~ (c, Q)]dt : Q G A. C.([0,n],Tm),

Q(0)=Q(n)}.
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Since by Gl)

n Jo

we have (2 9)
We now prove that, for 7 small enough, A7 is contained in a ^neighbourhood of
Ao Let us suppose by contradiction that this is not true Then there are Ck G Rm
and 7fc —> 0 such that

d(ck,À0)>r] and cfcGÄ7fc, îe à7fc(cfc)=0 (2 11)

Since by [10] a7 is superlinear we have that Ao is bounded, we can now suppose
that {cfc} is bounded and thus that Ck —? c, with d(c, Ao) > f] By (2 10) and
(2 11) we have that

0 à7fc(cfc) -s- âo(c)

which implies ce Ao, a contradiction
We now prove that, for 7 small enough, Ao is contained in a r\-neighbourhood
of A7 Actually, we will prove a stronger assertion if c G Aq, then, for 7 small
enough, the only c-inmimal ergodic measures for C€ 7 are those supported by the

Q7 Let us suppose by contradiction that this is not true Then there is c e Ajj,
7fc —> 0 and a sequence fik of ergodic measures, each c-mmiinal for C€ 7fc, such that
Hk does not coincide with any of the Q7fc We note that fik cannot be supported

in (l/LjMj) x Rm since in this case we could show easily that \ik is ^-minimal
and then, by lemma 1 1, that \ik coincides with one of the Q7fc, * G / Let us
consider an orbit Qk, generic for /x^, we have that Qk is c-minimal for C€ 7fc and
that Qk stays frequently outside U^=1M| Thus after a translation in time we
have that Qk(0) & U^=1 AfJ By a diagonalization argument, it is easy to see

that Qk converges in Cj^c(R, Tm) to Q1, a c-inmnnal orbit for Ce 0 such that
Q^(0) (Ë U^=1M], by theorem 2 3, this is a heterochmc connection, say between

Qq and Qq Actually, it is possible to show that there are

t\ —> —00 tj, —> 00

-> g1 m c1

hminf / [£e7fc(Qfc,Qfc) - (c,Qfc> +ä7fc(c)]dt
fc^oo Jtl

r - 1 1 1

hm / [£e o(Q Q — (c, Q } + ào(c)]dt (2 12)
n—>oo
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To prove the latter fact we fix v > 0 and choose T and k so big that

Moreover, for k big enough we have that

By (1 3) we get

t—T

From the last three formulas, the minimality of Q and the Lipschitz continuity of
the action functional we get that

fJ-TI-T
Since Qk —s- g1 in C}oc, we have that

i-T i-T

f
-T J-T

and, from the last two formulas, we deduce (2 12)
Since Qk passes frequently outside U^=1M|, we can find T^ > t^ and t^ such that

2

hminf / [£e7fc(Qfc,Qfc) - (c,gfc) + «7fc(c)]dt
Jtk

and g2 is a heteroclmic connection for Ce q, connecting Q^ and QlQ Thus we build
a chain of heteroclmic connections, {Ql}3l=i for Ce o such that the w-limit of Q%
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coincides with the a-limit of Q*+1 and is one QlQ; moreover, since the number of
different Ql0 is smaller than p, for some s < p we must have that the w-limit of
Qs coincides with the a-limit of Q1. If we apply to this heteroclinic chain the
arguments of point (Hi) of theorem 2.3, we see that

2^1™^ / [A,o(Q*,Q*) - (c,Ql)+äo(c)]dt v > 0.

But this implies that, for k big enough,

But Qk{t\) and Qfc(tj. are close to the same point on Ql/k and thus, by the Lip-
schitz continuity of the functional, the above formula contradicts the c-minimality
ofQfc. D

We now specialize to T2, where we can get sharper results. Since quasi-
integrable hamiltonian systems on T2 are twist maps (see for instance [2]) what
follows is just a re-formulation of well-known results for twist maps. In particular,
the following lemma can also be read as a consequence of the fact that, in two
degrees of freedom, a is differentiable.

Lemma 2.5. Let m 2 and let Gl-7) hold. Let c belong to the boundary o/A7
relative to yf. Then the only ergodtc c-mmimal measures are those supported by

the Q7 for i £ I. Moreover, if Q is a c-mmimal orbit not coinciding with one of
the Q7 then Q is a homoclinic or heteroclinic connection.

Proof. It is a well-known fact (see for instance [7], [1]) that, for d G R2, two d-

minimal orbits can intersect only once. Now let c be as in the hypotheses. Clearly
the measures supported on the Ql, i G /, are c-minimal, since the mean action
is continuous in c and they are c-minimal for c in the interior of A7. Let now
/x be c-minimal and ergodic and Q generic for /x; by proposition 5 of [11] Q is

c-minimal. Since Q and Q7 intersect only once, and since we are on the two-torus,
we conclude that

We have already seen in the proof of theorem 2.3 that this implies that /x is ~
minimal and thus one of the Ql,.
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We now prove the second assertion. It is easy to show by a comparison argument
that A7 has diameter smaller than C-y/ë; indeed, if \c — j,\ > Cyß for a suitable

C > 0, we see that the orbit Q(t) ct has mean action smaller than —à7(^).
By lemma A.I in the appendix this implies that, for c as in the hypotheses, an
orbit Q which is c-minimal satisfies Q\\(t) > OVt. Since the Q7 are the only c-

minimal measures, [11] implies that there is a sequence t]~ —> oo and i £ I such

that (Q(tk),Q(tk)) converges to a point of (Ql ,Q%). Thus we can suppose that,
for k big enough, Q(t) remains close to Ql (R) on all the intervals [£&,£& + 2T\.
Let us suppose that infinitely many of the segments [£&,£& + 2T] lie on the left
of Q7(R). Then Q cannot go away from Q7(R) on the left (since Q|| > 0 it
would intersect itself more that twice) nor on the right, since in this case, after
intersecting Ql (R), it should intersect itself infinitely many times to return close

to Q7(R). Thus for T big enough Q([T, oo)) C MJ; the arguments of lemma 1.1

now imply that Q is on the stable manifold of Q7. Analogously, one shows that
Q is on the stable manifold of Q7 for some j G / and the lemma is proven. D

Proposition 2.6. Let m 2 and Gl-7) hold. Then there is a neighbourhood
U of A7 such that, if c G (U \ A7) n tt, the c-mmimal orbits are approximated by

bi-mfinite sequences of heteroclinic or homoclinic connections.

Proof. Let c be as in the hypotheses and let Q be a c-minimal orbit. We begin to
note that Q cannot be contained in any M\, otherwise by the technique of lemma
1.1 Q would coincide with a Ql, i G /. And since by [11]

-ä7(c) lim inf - / [£e,7(Q, Q) - (c, Q)]dt
T^oo 1 Jq

we would have that à7(c) 0, contradicting the fact that c (Ë A7.
Let us now suppose by contradiction that there is a sequence {cn} C R2 such that

VnGN cn G (U \ Ä7) n fr, d(cn,Ä7)^0 (2.14)

and that, for each cn, there is a cn-minimal orbit Qn such that

} (2.15)

and (Qn(0),Qn(0)) differs more than r\ > 0 from the initial condition of any
homoclinic or heteroclinic connection. It is easy to see by a diagonalization argument

that {Qn} converges, up to a subsequence, to a c-minimal orbit Q, in the
C{OC(R,T2) topology. By (2.14) c G <9Ä7 and thus, by lemma 2.5, Q is either one
of the Q7 or one of the heteroclinic or homoclinic connections between them But
by (2.15) Q cannot be one of the Q7; it must thus be a homoclinic or heteroclinic

connection; but this contradicts the fact that (Qn(0), Qn(0)) differs more than
rj > 0 from the initial condition of any homoclinic or heteroclinic connection. D



Vol 73 (1998) Minimal orbits close to periodic frequencies 541

Appendix

We begin defining the norm of the perturbation By C we will denote the complex
field If P C Rm, we define a complex neighbourhood of Tm x P by

U(P,R,s) Ws(Tn) x VR(P) C Cm x Cm

where

Ws(Tn) {6eCm max|Im^| < s}
%

VR{P) {/ G Cm inf \I - x\ < R}
xeP

In other words, Ws is the complex strip around the torus Tn If / is analytic in
U(P, R, s) with Fourier development

f(Q,Q)=

we define its norm by

\f\{P,R,s)= sup Y,
QevR(p)keZ

These norms are equivalent to the sup-norm in a complex strip around Tm x P
and in particular they bound higher order derivatives (see [12] for the precise
estimates
We will consider lagrangians of the following form

Le) C{Q,Q) A{Q)-h{Q,Q) (Q,Q) G

with A re:

satisfying

with A real analytic, 0 < M < -£La(Q) < M' VQ G Rm and h real analytic

\h\(Rm,R,s) <e (Al)
for some R, s, e > 0

In the following, we will consider M, M', R and s as fixed and we will take e as
small as we need By Ct we will always denote a positive constant independent on
e Since by Le) we have that A is convex, we have that VA is an mvertible map,
we will denote its inverse by 1

Lemma A.I. Let C satisfy Le) Then there are eo > 0 and Co > 0 such that, if
e G [O,eo], c G 5(0,2) and Q is c-minvmal, we have
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Proof The proof consists in one of the arguments of [3] By (A 1) we have that
there is C\ > 0 such that

\ —
oQ

-—h(Q,Q)\<C1e V(Q,Q) G TmxRm (A 2)
dQ

where we used | | to denote both the absolute value of a number and the Euclidean
norm in Rm It is a subproduct of proposition 4 of [10] that there is F > 0 such

that, for c G 5(0,2), c-minimal orbits have speed bounded by F By the E-L
equation, this fact and the above formula imply that, for e small enough,

\Q(t)\<C2e

We assert that

b - a > 2ir
b — a

(A3)

(A4)

Clearly, the last formula together with (A 3) gives us the thesis We prove (A 4)

let us suppose by contradiction that, for some b — a > 2irJjr-^, we have

(A 5)
b — a

Let us define, for / G 27rZm

Qi

Qi{t) M°)] +
b — a

t <a

(t-a) a<t<b
b <t

Since b — a > 2tt< -M— we can choose / G 27rZm in such a way that

b — a
(A 6)

If we project Q\ on Tm we obtain an orbit which coincides with Q for t ^ {a,b)1
c-mmiinahty of Q yields

[A(Q)-(c,Q)-h(Q,Q)]dt< f [A{QX) - {c, (A 7)
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By (A 2) we get that

543

{b _ a) \
b — a b — a

(A 8)

We also have that

>(b-a) \A

[A(Q)-{c,Q)-h(Q,Q)]dt

- <c>
b — a b — a

(A 9)

By (A 8) and (A 9) we get

1

b-a [A(Qi) - (c,Qi> - HQuQi)]dt - [ [A{Q) - (c,Q) - h(Q,Q)]dt

b-a b — a

_A
b — a J ' b — a

From (A 5), (A 6) and the convexity hypothesis on A we get

1

)+2C\e

o

The last formula contradicts (A 7) and thus (A 4) holds

We now re-formulate a lemma of [12] in the Lagrangian framework

D

Lemma A.2. There are Cg, C\o, C\\ > 0 such that the following holds Let C

satisfy Le), let (k,T) G Zm X R+ satisfy ||r| < 2 and let r G (0, -f be such that

e < Cgr2 (A 10)

Then there is a read analytic, symplectic change of coordinates, $ (q,q) —> (Q,Q)
defined, in
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such that in the new coordinates (g, q) we have

£(Q(q,q),Q(q,q)) £(<?,<?)

£(q, q) À{q) - v(i, <i) - /(?, q)

where

^- < V2I(p) < 2M' Vp G Rm

k(q)el{kq) (All)
k±k

^^^^ (A 12)

kq,q)= J2 {hQ>

then we have

\V - J2 MQy^^KiA'r^J^^^Cn^ (A 13)

k±k

Proof The Legendre transform brings C into the hamiltoman

H(Q,P)=B(P)

where B is the polar of A and

g=

The above estimate follows easily from the formula of the Legendre transform and
the Cauchy inequalities of [12]

A part of the proof of theorem 4 of [12] consists in showing that the domain

Vr(j.) n Rm is a, if-nonresonant modulo Zm n {j:)L, with

This simply means that, if P G Vr(^) n Rm, then

\{B'(P),k)\>a
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By (A 10) we can now apply the "normal form lemma" of [12] with the above
constants and find a symplectic analytic change of coordinates

with the following properties ty is defined in ^(^,§,f) and has an analytic
generating function S(q,P), where q G Rm, the universal cover of Tm In other
words, dS ëdq + dS(q, P), with 5 G Rm and S defined on Tm x Rm Moreover,
in the new coordinates we have

H{Q{q,p),P{q,p)) H{q,p) B{p) + g{q,p) + f{q,p)

pdq PdQ + ëdq + dS (A 14)

where

kLk

k±k

If we now apply again the Legendre transform to H, and compare it with the
Legendre transform of H, which is £, it is easy to see that we get a lagrangian £
satisfying (A 11)-(A 13) D

We now explain how we are going to use the above lemma in the spirit of [8]

First of all, we restrict ourselves to diffusion far away from 0 and oo, we will fix
once for all the set 5(0,2) \ 5(0,^) C Rm as the one to which c will belong

Moreover, to simplify calculations, we will suppose that A(Q) ^\Q\^ By the
Dinchlet approximation theorem, we have that there is C\ß > 0 such that

Ve,Q>0 VcGS(0,2)\S(0,i) 3T G [1, Q], 3k e Zn suchthat

C~T <C16 —^-r- (A 15)
TQ—

In lemma A 2 we now take r D^p-, we want that any c G 5(0,2) \ 5(0, ^)
stays in 5(^, g) for some ^ By (A 15) this is possible and we can choose T not
bigger than Q, with

1
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However, we also want (A 10) to hold, since T G [1, Q] this means that

2

must hold for 0 < T < Q, from the above formula we thus get

which is always true for D big enough With this choice of D, any c G -5(0, 2) \
-5(0, tj) belongs to some _5(^, g) defined as above Moreover, by our definition of

r and T we have that

so that, taking D big enough, we can be sure by lemma A 1 that, for c G -5(^, g),
the c-minimal orbits he in t^(^, f, f where the normal form is defined In
particular, the support of the c-inmnnal measures lies inside U{^, ^, |), thus, if \i is

c-inmnnal, we get by (A 14) that

(£ - c)d/x
/T-»xR"

where fi $*/x Exactly with the same proof than in [10], section 2, it can now
be shown that

/ dSdß=0

and thus we get

/ (£ - c)dM
./T™xR™

which shows that /x is c-minimal if and only if /x is (3>*(c) — c)-inmnnal As a

consequence of the above formula, we also have that o.c{c) a£($*(c) + c), where
—o.c{c) is the minimum of /TrrixRrrl(£ — c)d/x on the measures invariant for £
Let now Q be c-mmimal, and let (o, o) be its image We have by (A 14) that

,-b

Va < b G R /" [£(Q, Q) - (c, Q>]dt

Thus the fact that Q is c-minimal iff q is (3>*(c) — c)-minimal would follow if we
could restrict ourselves to variations Q\ such that {Q\{a),Q\(a)) (Q(d),Q(d))
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and(Qi(è), Qi(b)) (Q(e),Q(e)) It is easy to see that this apparently weaker
definition of c-inmnnal orbit is equivalent to the one we gave m the introduction
Thus every c- minimal orbit for c G _B(^,g), with r defined as above, lives m
the domain of the normal form and is a ($*(c) — c)-inmimal orbit m the new
coordinates, analogously, the ($*(c) — c)-inmimal orbits m the new coordinates
are c-inmimal orbits m the old ones

We conclude with one last remark m section 1, we consider lagrangians
C(Q,Q) defined for Q G Rm This is possible because, given the normal form
£ of lemma A 2, we can extend it outside _B(^, ^) m a C3 way Since by lemma

A 1 c-inmnnal orbits for c G -B(^, g) do not exit -B(^, ^), this extension has no
influence on our results
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