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Deforming abelian SU(2)-representations of knot groups

Michael Heusener and Jochen Kroll*

Abstract. The aim of this paper is to generalize a theorem of C. D. Frohman and E. P. Klassen
([FK91]) concerning deformations of abelian SU(2)-representations of knot groups into non-
abelian representations. The proof of our main theorem makes use of a generalization of a result
of X.-S. Lin (|[Lin92]) which should be interesting in itself.

Mathematics Subject Classification (1991). 57M25, 57MO05.
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1. Introduction

The aim of this paper is to study the following question: when is an abelian rep-
resentation of a knot group in SU(2) a limit point of non-abelian representations?

Let k C S3 be a tame knot and let G := 71(S% < k) be its group. A homo-
morphism p: G — SU(2) is called abelian if and only if its image is abelian. The
space of abelian conjugacy classes of representations is parameterized by the closed
interval [0, 7]. More precisely, let m € G be a meridian and let « € [0, 7] be given.
We define an abelian representation p,: G — SU(2) by po(m) = e, where

io
dou .. € 0_
e = < 0 6710‘> i

We denote the Alexander polynomial of k by Ag. If p, is a limit of non-abelian
representations then Ay (e?1*) = 0 (see theorem 2.1). It is conjectured that this
condition is also sufficient.

C. Frohman and E. Klassen (see [FK91]) proved the conjecture under the as-
sumption that e2* is a simple root of Ay,.

The aim of this paper is to prove the following theorem:

*The first author was partially supported by a TMR Marie Curie fellowship of the European

Commission
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Theorem 1.1. Let k C S? be a knot and let o € [0, 7] be such that Agle?®) =0,
If the signature function oy: sl -z changes its value at 2% then the abelian
representation p ts an endpoint of an arc of non-abelian representations G —

SU(2).

The signature function changes its value at w € S! if w is a root of Ay of
odd multiplicity (see section 2). Therefore, theorem 1.1 generalizes theorem 1.1 in
[FK91]. However, there are non-abelian deformations of abelian representations
which are not detected by theorem 1.1. The 2-bridge knot b(49,17) has an abelian
representation which is the limit of non-abelian representations but the signature
function does not change its value at the corresponding zero of the Alexander
polynomial (see [Bur90]).

The proof of theorem 1.1 makes use of a generalization of a result of X.-S. Lin
(see [Lin92]): let G be a knot group and let m € G be a meridian. A represen-
tation p: G — SU(2) is called trace-free if tr p(m) = 0. In [Lin92] Lin defined an
intersection number of the representation spaces corresponding to a braid represen-
tative of the knot. This number turns out to be a knot invariant denoted by h(k).
Roughly speaking, h(k) is the number of conjugacy classes of non-abelian trace-
free representations G — SU(2) counted with sign. Moreover, Lin established the
relation

h(k) = éa(k).

It was remarked by D. Ruberman that the construction can be generalized to
representations of knot groups with the trace of the meridians fixed. In section 4
we shall establish this generalization. More precisely, for a given « € (0,7), we
will define an integer invariant A%*(k). This invariant counts the conjugacy classes
of non-abelian representations G — SU(2), such that tr p(m) = 2cosa (note that
h(k) = h™/2(k)). Since the definition of h(k) is straightforward we will only
explain the set-up. However, the significant part is the computation of h*(k) for
a # m/2. We shall present all the details needed to prove the following theorem.

Theorem 1.2. Let k be a knot such that Ay (%) # 0. Then

he(l) — %ak(e%a).

The proof of theorem 1.1 together with theorem 1.2 implies the following;:

Corollary 1.3. Let k C S3 be a knot. If there is an o € [0, 7] such that
Ap(e?1?) 01 (e21%) £ 0 then there exists an arc of irreducible SU(2) representa-
tions G — SU(2).

This paper is organized as follows: In section 2 the basic notation and facts are
presented. The proof of theorem 1.1 and the definition of A%(k) are contained in
section 3. The last section includes the computation of the invariant h(k).
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Remark 1.4. Theorem 1.1 was proved independently by C. Herald using gauge
theory (see [Her97]).

2. Notations and facts
In this section we present the notation and facts which are needed in the sequel.
2.1. The signature function

Let k C S3 be a tame knot and let I be a Seifert surface for k. Since I is oriented
we have a normal direction and we can push cycles on F' along this normal direction
into the complement of F. This defines a homomorphism Hi(F) — Hy(S® < F),
v+ x7 (here H(X) := H,(X,Z)). The Seifert pairing H1(F) ® H|(F) — Z is
given by 2 ®y — lk(x,yT) where Ik is the linking number in S3. By fixing a basis
{a; | 1 <14 < 2g} of Hi(F) the pairing is described by a 2g x 2¢g matrix V over Z
(g denotes the genus of F'). We call V' a Seifert matrix for k. The antisymmetric
matrix V — VT (VT is the transposed matrix of V) is the intersection matrix of
the basis {a;} in Hy(F) (see [BZ85] for details).

The normalized Alexander polynomial for k is given by Ay = det(tl/ 2 —
t=1/2VT). Here, normalized stands for A (t) = Ap(t~1) and Ap(1) = 1.

Let w # 1 be a complex number. We now consider the hermitian matrix
H(w):=(1—-w)V + (1 —&)VT. The w-signature oy (w) of k is defined to be the
signature of H(w) i.e og(w) = sig(H(w)). If w € ST\ {1} we have

Hw)=1-w)V+1-a)VT
_ (w_1/2—wl/Q)(wl/QV—w—l/2VT). (1)

The Levine—Tristram signature function is the map o: S1 — Z given by
op:w— op(w) if w # 1 and o4: 1 — 0. Let Z; := {w € S1|Ag(w) = 0} be
the set of zeros of Ay on the unit circle. It follows from equation (1) that the sig-
nature function is constant on the components of 5 1 Z. For a given Al & 7
we use the expression “cy change its value at e3P” or “oy, jumps at 297 if

lim oy (21 lim oy (€211).
limy k( )#m k(™)

Moreover, it can be seen that oy (w) = 0 if w lies in a small neighborhood of 1 (for
details see [Gor77] and [Kau87]).

2.2. Representation spaces

Let G be a finitely generated group. The space of all representations of G in
SU(2) is denoted by R(G) := Hom(G,SU(2)). Note that R(G) is a topological
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space via the compact open topology where G carries the discrete and SU(2) the
usual topology. A representation p € R(G) is called abelian (resp. central), (resp.
trivial) if and only if its image is an abelian (resp. central), (resp. trivial) subgroup
of SU(2). Note that p € R(G) is abelian if and only if it is reducible. The set of
abelian representations is denoted by S(G) and the set of central representations by
C(@). Two representations p, p € R(G) are said to be conjugate (p ~ p) if and only
if they differ by an inner automorphism of SU(2). The group SO(3) = SU(2)/{+1}
acts on R(G) via conjugation. T'wo representations are in the same SO(3)—orbit if
and only if they are conjugate. Let R(G) := R(G)~ S(G) be the set of non-abelian
representations. The space of (non-abelian) conjugacy classes of representations
from G into SU(2) is denoted by R(G) (R(Q)) i.e.

R(G) == R(G)/SO(3) and R(G) := R(G)/SO(3).

We can think of the map R(G) — ﬁ(G’) as a principal SO(3)-bundle (see [GM92,
3.A] for details). The spaces ﬁ(G) and R(G) are semi-algebraic sets. Here a subset
of R™ is called semi-algebraic if it is a finite union of finite intersections of sets
defined by a polynomial equation or inequality (see [Heu97] for details).

If k ¢ 5% is a knot then let R(k) be short for R(m1(S% \ k)). As we need the
following theorem several times in the sequel we state it here.

Theorem 2.1. Let k C S be a knot and let p,, € S(k) be given. If Ag(e?®) #£0,
then a sufficiently small neighborhood of p,, consists entirely of points of S(k).

Proof. See [Kla91, Theorem 19]. O

2.3. Quaternions

During this paper it is sometimes more convenient to work with the quaternions
(which we denote by H). We identify SU(2) with the unit quaternions Sp(1) C H,

the isomorphism is given by
¢ g — a -+ bj
b a @

The Lie algebra of Sp(1) is the set E of pure quaternions and Sp(1) acts via
Ad on E ie. Ad(¢)X = ¢Xq ! for ¢ € Sp(1) and X € E. The intersection
E N Sp(1) — the set of pure unit quaternions — which is homeomorphic to the 2—
sphere will be denoted by 52, More general we consider the argument function
arg: SU(2) — [0, 7] given by arg(A) = arccos(tr(A4)/2). For o € (0,7) we have
¥, = arg () is a 2-sphere and 5% = Yir/2-

Given two elements X,Y € E, there is a product formula: X - Y = —(X,Y) +
X xY where (X, Y) denotes the scalar product of X and Y and X x Y their vector
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product in E. Note that Ad(g) preserves the scalar product. For el* € SU(2) we
identify the tangent space Te o (%) = span(j, k) with C via the multiplication by
—j. Under this identification the action of Ad(el®) transforms into rotation about
the angle 2« i.e multiplication by g2

For each quaternion ¢ € Sp(1) there is an angle o, 0 < o < 7, and Q € 52
such that ¢ = cosa+sina Q. The pair (o, Q) is unique if and only if ¢ #£ +1. Let
(o, Q) = cosa+sinaQ for short.

2.4. Burau-matrix

Let ‘B,, be the braid group of rank n with the standard generators o1,... ,0,_1.
For a given o € B,, we denote by ®7 := (7 )1<; j<n € GL(n,Z(t)) its Burau-
matrix and by ¢7 € GL(n — 1,Z(¢)) its reduced Burau-matrix (see [BZ85]). We

write 7 in the form
7 — A B
C D

where D = D(¢) is a (n — 2) X (n — 2) matrix. The matrix C?(¢) := (7 — E)
is a Jacobian for the closed braid ¢” where E denotes the identity matrix (see
[BZ85]). Let cf;(t) be the determinant of the matrix which is obtained from
C?(t) by omitting its i-th row and its j-th column. It is convenient to state the
following lemma which will be used in the sequel.

Lemma 2.2. Let the ¢f ; == cf ;(t) be defined as above. Then

Lo — (—1)ymhm it oo
2. det(E - ¢°(1)) = 5],

2
3. el =t%¢] + (¢t —1)det(D(t) — E).

’
,m

Proof. The lemma is proved using the identities

n n
Yo7, =tland Y i le7, =t
] i

(see [BZ85] for details). O

3. Proof of the main Theorem

Let o € B, be given and denote by ¢’ the closed n-braid defined by o. Let F}, be a
free group with basis S = {s1, ..., sn}. The braid ¢ induces a braid automorphism
(still denoted by o) o: F,, — F,. It follows that o induces a diffeomorphism (still
denoted by o) of SU(2)™ i.e.

o(A1,. .. An) = (0(A1), ... ,0(An)).
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Example 3.1. Let 0 = an € Ba. The o(A1,A2) =: (6(A1),0(A2)) where
o(A1) = Ay A1 Ag and o(Ag) = Ay AT AgAg As.

Note that the equation [ ; 4; =[] ; o(4;) always holds.

It was observed by Lin that the fixed point set of o: SU(2)™ — SU(2)"™ can be
identified with R(¢") [Lin92, Lemma 1.2|. Let (41,...,4,) € Fix(c) be given.
It follows that trA; = tr A if o’ is a knot. Therefore we are interested in the
following space:

Ry = {(A1,..., A) € SU@R)™ | tr(A;) = tr(4;), 1 < 4,5 < n} ~ {£(E,... ,E)}.

Since o(R,,) = R, we obtain a diffeomorphism o: R, — R,. Its fixed point set
can be identified with R(c™) ~ C(c").

Remark 3.2. A central representation of a knot group can never be a limit of
non-abelian representations since Ag(1) = 1 (see theorem 2.1).

For a given o € (0,7) let
Ry = {(A1,... ,An) | tr(4;) =2cosa, 1 <i < n} CR,.

The set Ry C R, is a submanifold of codimension one. Let us consider the
following subspaces of Ro,:

H, = {(Al: ,An, By, ... 7Bn)€R2n|A1"'An:B1"'Bn}7
Ap ={(A1,... ,An, A1,... ,Ay) € Rap},
1—‘0' = {(A17 7An7O(A1)7" . 70-(‘471)) € R?n}7

Moreover, for © € {H,,,I's, Ay, Sy} let ©% := O N (RY x RY). It is obvious that
the fixed point set of o : R,, — R,, is given by I'x NA,, C H,.

The sets S,, C Ra, and S C Ry X R are the subsets corresponding to the
abelian representations. Each element of S is conjugate to an element of the form
(efrie . ef2n1®) where ¢; € {£1}.

Lemma 3.3. Letn € Z, n > 2 be given. The set H,, \ S, is a smooth manifold
of dimension 4n — 2 and HS ~ S is a smooth manifold of dimension 4n — 3.
Moreover, HS C H,, is a submanifold of codimension one.

Proof. Let f,: Ro, — SU(2) be given by

and denote by f2 its restriction to RS x RY. Note that RY x R C R, is a
submanifold of codimension one.
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For a given point (A,B) € Hy ~ S the derivative D5 B)fyy is surjective.
This can be seen by a direct calculation (see [Lin92] or [Heu97]). The conclusion
of the lemma follows from this fact. O

By fixing an orientation of SU(2) we orient the 2-spheres Y, = arg~!(a) in
the following way: the normal bundle v, of ¥, C SU(2) is oriented by pulling
back the orientation —dz of [0, 7]. We choose the orientation of 3, such that the
orientations of the short exact sequence

0—=T%,—1T5 SU@2)—v,—0

fit together. The space R = 37 is then oriented via the product orientation.
Moreover, the orientation of R, 2 (0, 7)x (52)™ is obtained from the orientations of
R2 and [0,7]. The manifolds A,,,I'; = R,, and A2, T'Y = R are also oriented. By
lemma 3.3 we can pull back the orientation of SU(2) to obtain an orientation of the
normal bundle of £, 1(B)~.S, (resp. (f2)~1(E)~S2). This enables us to orient the
manifolds H, \. S, and H> ~ 5. Now SO(3) acts fixed point free via conjugation
on the oriented manifolds © \ S,, (resp. ©* \ S2) where © € {H,,,A,,I';}. The
action of SO(3) is orientation preserving (SO(3) is connected) and we obtain the

following oriented manifolds:

O = (O~ 5,)/SO(3) and O = (0% < §2)/SO(3).

Remark 3.4. Since dim Ry,, = 4n + 1 and dim R = 2n one has:
dimA, =2n—2, dimT,=2n-2, dimH,=4n—5
and

dimA® =2n -3, diml2=2n—3, dimH> =4n—6.

The intersection number

h%(0) == (A2,T2)z, €Z

is well defined if the intersection K?{ N f“g C flr‘f is compact. It can be shown that
h? is indeed a knot invariant.

Proposition 3.5. Let o € B, and 7 € By, be given such that o™ = 7" as knots.
IfASNTY is compact then A2 NI is also compact and the intersection numbers
he(o) and h*(T) are equal.
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Proof. Analogous to Lin’s proof (see [Lin92, Theorem 18]). O

The following lemma gives a criteria for the compactness of the intersection
AO‘ N [‘a

Lemma 3.6. Let o € B, be a braid such that k = o” is a knot. If Ak(eQiO‘) #£0
then

AenTe c H?
s compact.
Proof. The conclusion of the lemma follows direct from theorem 2.1. |

Remark 3.7. It is possible for K;?j N f? i ﬁﬁ“ to be compact but Ay (e?*) = 0.
An example is given by the class of 2-bridge knots.

The space of non-abelian equivalence classes of representations ﬁ(aA) can be
identified with the intersection K N f C I;A[ The intersection Z\\ N fg is in
general not compact. However, if the abelian representation p, is not a limit of
non-abelian representations the intersection AO‘ N Fo‘ C Hf is compact. Moreover,
there exists an € > 0 such that

(A, NT,) N glo—eatd

is compact where
gl = ) B
aclag,as]

This follows from the fact that (k) is a compact, semi-algebraic set.

Proposition 3.8. Let o € B, be given such that o’ is a knot. Moreover, assume
that pe, s mot a limit of non-abelian representations.
Then there is an € > 0 such that h*(a) = hP(a) for |a — (] < e.

Proof. Choose an ¢ > 0 such that

(A, NT,) N H*

n

is compact where ﬁ[o‘ € o f[[a_e ate]

In general we have Ty Hﬁ for all 5 € (0,7). Let fo‘ > INW be an isotopy
with compact support such that FO‘ th AO‘ Extend this deformation to an isotopy
T, ~ T, with compact support such that r, thM A, and T, Hﬁ for all
g € (0,7). For a given 5 € (0,7) let Fg =T, N Hﬁ. Note that Fg C Hf is a
(2n — 3)-dimensional manifold and A? th I'? if | — 3| is sufficiently small.
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Now /A\n ﬂfg is an oriented one dimensional manifold in a neighborhood of ﬁﬁ‘
If 3 is close to o then the one dimensional manifold [A\n N fa yields a bordism in
H,, between AP NTI'Y C HP and Ao NT2 C H.

It follows that h®(c) = hP(a). O

Proof of theorem 1.1. Assume that p, is not the limit of non-abelian representa-
tions. By proposition 3.8 and by theorem 1.2 we obtain that the signature function
does not jump at e21*. This contradicts the hypothesis of the theorem 1.1. |

A further consequence is the following:

Corollary 3.9. Let k C 52 be a knot. If Ap(e®) # 0 and if op(eB®) # 0
then there is a non-abelian representation pg € R(k) such that tr pg(m) = 2cosa.
Moreover, there is an arc p; € R(k), t € [—¢, €|, through pg such that tr p_c(m) <

2cosa and tr pe(m) > 2cos a.

Proof. The proof of the corollary can be derived from the proof of proposition 3.8
(see [Heu97, Theorem 5.10] for details). O

Corollary 1.3 is an immediate consequence of corollary 3.9.

4. The computation of h*(k)

The aim of this section is to compute the invariant h*(k). We will only treat the
case a # w/2 but it is easy to see that the “exception” o = 7/2 is included as a
limit case (see remark 4.9).

The reference for this section is Lin’s paper (see [Lin92]). We restrict ourself
to the points which are different from the result proved by Lin. It should be
remarked that the lemma 4.4 simplifies the proof. Lemma 4.4 applies also in the
case a = w/2 and simplifies also Lin’s proof.

The diploma thesis of the second author contains the main part of this section
together with a more detailed discussion and many explicit examples (see [Kro96]).

The following lemma shows that the trace-free case is somehow special.

Lemma 4.1. Let o € (0,7) be given. Then
(i): The space H;ﬂ is a 2-sphere with four cone points deleted.
(11): For o # w/2 the space HS is a 2-sphere with three points deleted.

Proof. Let (o, @;) € Sp(1),4=1,... ,3 be given. There exists an element (o, Q4) €
Sp(1) such that (a,Q1)(e, Q2) = (e, @3)(; Q4) if and only if

R((c, QS)_l(% Q1)(aQ2)) = cosa.
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An easy calculation shows that this equation is equivalent to

Y1 +(Q1,Q2)) = (Q1 X Q2 +(Q1 + Q2),Q3) (2)

where v = cot «. After conjugating we can assume that Q2 =iand Q1 = cosf1i+
sin @1j where 0 < 61 < 7.

If & = 7/2 the equation (2) reduces to (sinf; k,Q3) = 0. If sinfy # 0 this
implies Q3 = cosfa1i + sinfaj where 0 < 0y < 27. If sinfy = 0 we obtain by
conjugation Q3 = cos g i+ sinfaj where 0 < 69 < 7. So, parameterized by #1 and
0o, ﬁ;r/Q is a pillowcase. The diagonal /A\g is parameterized by (0,0), 0 < 6 < .

The conjugacy classes of abelian representations S; /2 are represented by the
four points A == (i,1,1,i), A’ == (i,i,—i,—1), B == (i,—i,—i,i) and B’ := (i, —i,1, —1).
Therefore, the four deleted points are given by the parameters A = (0,0), A’ =
(0,7), B=(m,0) and B’ = (m, ).

If o £ /2 we set

Q"= Q1% Q2 +7(Q1 +Q2),

Qe 01) = Q'/||Q|| € S? and c(a, ;) = a1 +(Q1,Q2)). More explicit we
have

g Sm(F)k y(cos(%)i+ sin(%)j)
e 1) = (sinQ(%l)Jr'yQ)l/2 (sinQ(%)er?)l/2
and
(o 0y) — 'ycos(%l)

(sin* (%) +42)V2

Note that Q(a,01) lies on the right bisector of the geodesic segment between Q1
and Q2. Moreover, |c(a,f01)| <1 and

e, 01)] = { L =l (3)

0 ©01=m.

It is obvious that the set
E = E(a,01) = {X e E® | (Q(e, 01), X) = c(e, 01)}

is a plane orthogonal to Q(e, @1) and that ¢(«, 1) is the oriented distance from
the origin. We see that the points ()3 which satisfies equation (2) are exactly those
in the intersection S2N E. The set $2N E is in general a small circle on the sphere
S$2. This small circle degenerates to a point if and only if 1 = 0 and to a great
circle if and only if 81 = 7 (see equation (3)).
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We set e(a) = sige(a,01) = sigy € {#1}. For a given Q3 € SN F we can
write

Q3 = cla,01) - Q(ev, 01) + cos B3 V1 +sinfy V3

where V1 == Vi (e, 01) := Q1—c(a,01) - Q(a,01) and Vo =: Va(a, 81) := e(a)- QX V]
(note that Q1,Q2 € S2N E). So, 0 is the oriented angle between Q1 and Q3 on
S?NE.

The parameterization degenerates when ()1 = Q)9 which is equivalent to 81 =
0. Furthermore, the representations corresponding to the parameters (m,f3) and
(m,2m — Ba) are equivalent (see figure 1).

The conjugacy classes of abelian representations S§ N H§ are represented by
the three points (el?, el®, el i) (el* 61 e~12 ¢l*) and (el*, 712 el* e712),

Therefore, the three deleted points are given by the parameters A = (0,02), B =
(m,m) and B’ = (7,0) where 0 < 6y < 27. The diagonal A§ is parameterized by

(0,0), 0 < 0 < 7, connecting the points A and B’. O
2n
(O,m) (m.m) B A, .
A
eZ
0 6, v
Figure 1.

~
Parameterization of H$

For the braid o1 € By we obtain h%(o1) = 0 because every point of A§ N Fg‘l
represents an abelian representation. Therefore the invariant vanishes for the
trivial knot.

In order to determine the invariant for every knot we would like to study its
behavior under crossing changes. Henceforth, let ¢ € 9,, be a braid such that
k:=o" C S%is a knot. Then k' := (070)" C S? is also a knot and we now study
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the difference

h*(oto) — h°(e) = (A7 >—<Ka fa>

Here we have chosen a € (0,7), a # /2 such that Ay (e?1%) £ 0 and A (e21) #£ 0.
Observe that the “dlfference cycle” (I'“_, — A2) is carried by
21

V;la = {(14]7 7JA»,“.BL... 7Bn)€H3|A@:Bl72:37 7’fl}.

Then Vo := (V> 52)/SO(3) is a (2n — 2)-dimensional submanifold of H®. Note
that there is a natural projection p: V¥ — H§' given by

p: (A17A27A37 2 5 & 7A7L7Bl7BQ7A37 e 7An) = (A17A27B17BQ)
To obtain a map between ‘A/n"‘ and ﬁé" we have to consider the set W, := pil(Sé" N
Hg). It is easy to see that W, D Ay NI'? , is a (2n — 2)-dimensional manifold.
i

Therefore p induces a map p: \A/na ~ W\T‘f‘ — ﬁ[@‘ where dim W\ﬁ‘ =2n —5.
We apply the process used in [Lin92]: we perturb I'Y to I'? with compact

support such that .
(re_, — Aa) h F"‘
71

which means precisely that f? 0 Fj,% K;’{ and fngg = (). Moreover, we extend
i

the isotopy so that ‘7”‘" o fg Thus ‘75‘ N fg is a 1-dimensional manifold.

We choose the orientations as in [Lin92]. It is sufficient to project the high
dimensional manifolds via p in order to study the difference h*(o2a) — h%(o).
More precisely, the following equation holds

h(ofo) = h*(o) = <fj1_z - A&ﬁ(f?)m; : (4)

To study the intersection of (f?_g — Kg‘) with p(I'?) we have to understand
1

the limiting behavior of the set p (ff;‘) near the point A. In order to do this we
consider the path v: R — H§ given by

7(t) - (((L Ql(”)? (017 QQ), (a7 Q3(t))7 (OL, Q4(t)))

where Q1(t) = cos(01(¢))i + sin(01(t))i, Q2 = 1 and Q3(t) = c(t)Q(t) + cos(2())
Vi(t) + sin(02(¢))Va(t). Here c(t) := (e, 01(¢)), Q(t) := Q(o, 01(t)) and V;(¢) are



492 M. Heusener and J. Kroll CMH

defined as in lemma 4.1. Note that Q4 is determined by @1, Q2 and Q3. We
choose 01(t) such that 61(0) = 0 and 0(1) = (dO1(t)/dt);—o # 0. This implies
7(0) = (el*, el el el*) and ~ gives a smooth path 7: (—e,0) — f[g for a small
e>0.

We call 69 := 60(3) := (dO1(t)/dt)i—o (vesp. 69 := 09(7) := 02(0)) the welocity
(resp. angle) of ¥ in A.

The derivative (dQ3(t)/dt);—0-(—j) € C can be written in the form 9(1) -s(a, 08)
where

(o, 09) = 24 + cos(09)(1 — z) + sin(69)(1 — 2,)i

i(65+0) 5
Za 2008046 (5)

20469
_ os(T5 ) egy2

COsS

Here z, == % — %tan a € C. By making use of the identification of T « (¥,) with
C we obtain

Y (t) - (=) = 09 sine (1,0, s(ex, 63), e A1 — 5(c, 63)) € CL.

Note that 98(?) does not depend on the parameterization of 7.

Example 4.2. The angle of Kg in A is 0 and the angle of fi‘,z in Ais —4a. The

1
latter can be seen as follows: by example 3.1 we have to look at

A (00 @2) " Q1(0)(0 @2))im0 = (e i) (costi + sint(ex, D)o

T @
= (i) (§) (e 1)
_ 2o,
This gives 08(?372) = —4a (see figure 3). Therefore, f;‘fg is an arc in ﬁgo‘ con-
1 1

necting A and B’. It is easy to see that fj,g N K% = ) and since fj,g is a graph,
1 1.

it intersects each circle f9 = constant in ﬁQ‘l in exactly one point (see figure 2).
Moreover, Fi‘,z runs into B’ as in the left hand side of figure 2 if 7/2 < a < 7.
1
The right hand side of figure 2 reflects the situation 0 < a < w/2. More pre-
cisely, let ~: [0,7] — I'“_, be the parameterization of I'*_,, ~(t) = telf2(t)
91 71

where 02(0) = —4a and O2(7) = 2m. A calculation as in equation (5) gives
(dO2(t)/dt)t—n = 2¢() sin @ where €(a) is defined as in lemma 4.1.

Let K, be the circle in C with center z, and radius 1/(2cos «). Then s(c, 08) €
K, in particular we have 0,1, e~ dec K,
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\B' B’

T2<O<T O<oa<m/?2

Figure 2.
The difference cycle (I'*_, — Ag).
71

82

5(0,0)

~2io
e

Figure 3.
The circle Ko C C.

Equation (5) tells us that for a given s € K, the @a-parameter of s is determined
by the argument args where 0 < args < 2m. More precisely we have 3 = 2arg s
(see figure 3). Note that A2(0) = 7 — 2a mod 27 is well defined.

Later we will make use of the following observation:

Lemma 4.3. Let s € K, be given. Then f,(s) = Ezs—aj’f—l is a real number.

More precisely, fojl(R<o) C K, is the open arc between 1 and e 2 which
does not contain the 0.
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Proof. The Moebius transformation

i

et%z —1

fa. Z ?
maps Ka into the real line. The conclusion of the lemma follows because f,(0) = 1,
fole 29 =0 and f,(1) = oo (see figure 3). O
Let a:= (% ... e%®) € S be given. The point a is fixed by o: RS — R2.

The derivative of ¢ at a is given by the Burau-matrix. More precisely we have the
following commutative diagram (see [Lon89] and [Lin92])

(=3 —d)
Ta(RY) —— %, ¢»

D@ [Een

{=sorr—=3) on

Ta(R7)

We write ®7(¢21) in the form

o7 (i) — <é ]];3))

where D(e?1?) is a (n — 2) X (n — 2) matrix.

Lemma 4.4. Let o € B, be given such that k = o’ is a knot. Moreover, assume
that o € (0, ) is given such that t.e?”“" # 1.
If A1) #£ 0 then det(D(e?®) — E) # 0.

A

Proof. The normalized Alexander polynomial of k := ¢” is given by

Buft) = (—) M S det(B - (1) 0

where e is the exponent sum of o (see [Jon87]). Note that Ay (t) = Ag(t~1) and
Ag(1) = 1. From equation (6) and lemma 2.2 the following correspondence can

be derived 1
A(t) = (—1)5(%)5’”“0‘1’,1@) (7)

. 25 o
Assume det(D(e?®) — E) = 0 then by lemma 2.2 we have c({}f(egla) =
dio 0 2ia
et | (e71).

From this we deduce the formula

Aps (62io¢) _ 62ia . (GQiQ).
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This gives a contradiction if e?1* # —1 because Ag(es®), Ay (e?®) € R and
eQioz ¢ R.

If e2* — _1 then we have Ag(—1) = —Ay(—1). Now k and &’ differ only by
a crossing change and therefore

Ap(—1) = Ap(—1) = 2iAgr (—1) = Ag(-1) = iAgr (1) (8)

where k" := (010" is a 2-component link. Let Ay (¢) be the Hosokawa polynomial
of k”. The connection with the Alexander polynomial is given by

B 1) = (Vi = =) B 1) (9)

(see [Mur96]). Since the Hosokawa polynomial is a symmetric integer polynomial
we obtain from (8) and (9):

Ar(=1) = iApi(=1) = =28 (-1).
Therefore we have Ax(—1) = 0 mod 2 which is impossible. O

As in the trace-free case we investigate the projection ﬁ(fg) in a neighborhood
of A (see [Lin92]).

Lemma 4.5. Choose n € N such that g2ine # 1. Then in a neighborhood of A on
Hg, p(I'eNV>) is a curve approaching A.
Moreover, the angle 6’8 of p(I'eNVY) at A is not equal to 0 or —4a.

Proof. The main steps of the proof are analogous to Lin’s proof (see [Lin92, Lem-
ma 2.4]). But by lemma 4.4 we have only to consider Case 1 which simplifies the
trails of the proof. R

Let 69 be the angle of pI>N V) at A. We have 0§ = 2args, where the
parameter s, is given by

1 _ So
P (621a) 0 _ 672104(1 Sg)
v Vv

Here

v—(E-D)'C (é)

Since we have chosen e such that Ay (e21) #£ 0 # Ap (e21) the second state-
ment of the lemma 4.5 follows from the same conclusions as Lin’s proof. O
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Lemma 4.6. ha(a%a) — h%(o) = €, where

{ 0 ifss € fol(Rs0)
1 ifse e fal(Reo).

€E =

Proof. We start by a perturbation f? > f? with compact support such that
e m (fj‘f2 — K%) We claim that there is a neighborhood of B’ = (m,0) on
1
ﬁlf‘ such that p(I'? N ‘7;?‘) is disjoint with that neighborhood. Suppose this is
not true. Then we will get a point in Fg N ‘7,10‘ which is represented by (A, A)
where A = (e?* e~ A3, ... A,). But (A, A) represents also a point of T//V\,f‘
This gives a contradiction if (A, A) represents an irreducible point (remember:
I//V\,f‘ N 1““3 = (). If (A, A) represents an reducible point then this point is already
in I'Y N'V,> since the isotopy above has compact support. Therefore, A would be
a fixed point of o | Re. But this is impossible since the permutation induced by o
is a n-cycle.

We continue by a small perturbatlon relative to a neighborhood of the reducible
point (el ... el®) changing | 2 to T'? such that Fo‘ h VO‘ Then p(FO‘ﬁVO‘) isal-
dlmensmnal submanlfold of H In a neighborhood of A4, it is a curve approaching
A with angle 0 =2args,. The other end of the curve must approach B. Since

h*(ote) = h%(0) = (T5 — Ko, P (T9)) g,

and the angle of T\g (resp. I'*_,) at A is 0 (resp. —4a) the conclusion of the lemma
71
follows (see figure 2). O

Lemma 4.7. Under the assumptions of lemma 4.5 we have

Ak/(CQia) €2ia80 -1 f ( )
— = = fo(ss).
Ak(GQM‘) So — 1

Proof. The proof is completely analogous to Lin’s proof and again the fact det(D —
E) # 0 simplifies the argument. O

We are now able to state the main result of this section

Proposition 4.8. Let k- = (a%a)/\ and ky = (o)™ be knots. Moreover, let
a € (0,7) be given such that Ay (e Zioy £0 £ Ag_(eB). Then

0 iff Ar, (e2) - Ay_(e?) >0

ha(k,) — ha(k+) = { 1 lﬁAk+ (eQia) . Ak7 (eQia) <0



Vol. 73 (1998) Deforming abelian SU(2)-representations of knot groups 497

Proof. Assume again that e2ine £ 1,
Lemma 4.7 gives us

fa(sa) >0 iff Ag_ (eQio‘) ‘Ak+(62ia) >0
and

fa(sa) < 0iff Ag_ (eQio‘) .Ak+(62ia) <0

where f,, is the Moebius transformation defined in lemma 4.3. The result follows
now from lemma 4.6. |

There is also a recursive procedure for calculating the value of the signature
function. Let w € ST such that Ay (w) # 0. The signature o, (w) is always an even
integer. We have

op(w) =0mod 4 iff Ap(w) >0 and op(w)=2mod4 iff Ap(w) <0. (10)

Moreover, for knots k4 and k_ we obtain from simple consideration of the Seifert
matrices of ky and k_
0< o0 (w)—op (w) <2 (11)
(see [Lip90] and [Gil82]).
We are ready to proof the main result of this section:

Proof of theorem 1.2. The invariants h*(k) and oy (%) are defined and they are
both locally constant. Choose an irrational angle 8 € (0,7), f < « such that
Ag(eX) £0 for all t € [3,al.

It follows that h(k) = hP(k) and o (e%) = oy (¢17). Since 3 is irrational we
have Ay (e217) # 0 for every knot k' C 52,

The inductive procedure given by proposition 4.8 and by equations (10) and
(11) makes it possible to prove that

KP (k) = %Uk(eQi’B). O

Remark 4.9.

1. Note that theorem 1.2 includes the case oo = 7/2 because Ag(—1) # 0.

2. We are not able to calculate the value of h*(k) if A2 NT'Y is compact but
Ak (€2ia) =0.
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