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Un théorème de rigidité différentielle

Laurent Bessières

Résumé. Nous démontrons dans cet article le résultat de rigidité suivant, concernant le volume
minimal d'une variété lisse fermée de dimension > 3

Theoreme soient N et M deux variétés lisses, fermées, orientées de même dimension
n > 3 On suppose que M est munie d'une métrique hyperbolique go Si / N —> M est

une application continue de degré non nul telle que Minvol (N) |deg/|vol9Q(M), alors N est

une variété hyperbolique et / est homotope a un revêtement riemanmen La preuve repose sur
l'utilisation de théorèmes de convergence riemanmenne a la Gromov [GLP], et sur l'adaptation
de la construction de Besson, Courtois, Gallot [BCG]

L'une des applications interessantes est que le volume minimal n'est pas un invariant du
type topologique de la variété, mais de la structure différentielle II n'est pas non plus additif
par somme connexe

Mathematics Subject Classification (1991). En premier 55C20, en second 53C21

Mots clés. Rigidité, volume minimal, variétés hyperboliques

1. Introduction

Un problème central en topologie différentielle est de savoir à quelles conditions
une application de degré p > 1 entre deux variétés différentielles est proprement
homotope à un revêtement Dans cet article, nous considérons le cas des variétés
différentielles fermées, orientées, connexes de dimension > 3

Nous montrons qu'un invariant de nature riemanmenne, le volume minimal
d'une variété différentielle, introduit par M Gromov [Gr], permet de résoudre le

problème ci-dessus dans le cas où la variété au but admet une structure
hyperbolique

Le volume minimal d'une variété différentielle M est défini comme suit

Définition 1. Minvol (Af) inf{vols(Af) g métrique riemanmenne à courbure
sectionnelle \K(g)\ < f}

Le résultat principal de cet article est le théorème de rigidité suivant
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Théorème 1.1. Soient M et N deux variétés différentielles, fermées, orientées
connexes de dimension > 3. On suppose que M est munie d'une métrique
hyperbolique go, à courbure sectionnelle Kgo — 1. S'il existe une application continue

de degré p > 1 telle que

Mmvo\(N)=p-vo\go(M) (1)

alors N est difféomorphe à une variété hyperbolique et f est homotope à un
revêtement de degré p.

Remarque. D'après le résultat de Besson, Courtois, Gallot [BCG, 9.2], que nous
rappelons au chapitre 3, on a l'inégalité

Minvol (N)>p- vo\go (M) (2)

Le théorème 1.1 généralise le théorème de Thurston [Thu] sur les applications

de degré p entre variétés hyperboliques fermées orientées connexes. En effet
G. Besson, G. Courtois et S. Gallot [BCG] ont montré que dans le cas d'une variété
hyperbolique fermée, le volume minimal est atteint pour le métrique hyperbolique.
Plus généralement, ils ont obtenu un théorème de rigidité riemannienne en utilisant
l'entropie volumique d'un variété riemannienne, qui montre que la métrique
hyperbolique est la seule à réaliser le volume minimal. En dehors du cas hyperbolique,
on ne sait pas si le volume minimal est réalisable par une métrique riemannnienne.

Le théorème 1.1 et le résultat ci-dessus de [BCG] permettent d'obtenir un
énoncé de rigidité por le volume minimal, analogue au théorème de rigidité
riemannienne obtenue dans [BCG] pour l'entropie volumique:

Corollaire 1.2. Soient N et M deux variétés fermées orientées de même dimension

n, reliées par une application continue

de degré non nul. Supposons M munie d'une métrique hyperbolique go, alors

Minvol (N) > |deg/| -volS0(M).

De plus, en dimension n > 3, l'égalité est atteinte si et seulement si N peut
être munie d'une métrique hyperbolique, et s'il existe un revêtement differentiable,
homotope à f, de N sur M.
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Une des conséquences du théorème 1.1 est que le volume minimal "repère" les

sphères exotiques.

Corollaire 1.3. Soit M une variété hyperbolique fermée orientée stablement-
parallélisable de dimension n =/= A et S une variété fermée, de même dimension.
Alors on a l'inégalité

Minvol (M(|X) > Minvol(M),

et l'égalité est atteinte si et seulement si S est difféomorphe à Sn.

Ainsi, lorsque S est homéomorphe à Sn, mais non difféomorphe, la variété MjjE
est homéomorphe, mais non difféomorphe à M et

Minvol (M(|X) > Minvol(M).

Le corollaire montre par ailleurs que le volume minimal n'est pas additif par somme
connexe. Un contre-exemple est également fourni par le résultat suivant

Corollaire 1.4. Soit M une variété de dimension n > 3, fermée, orientée,
admettant une métrique hyperbolique réelle go. Alors

Minvol (MHM) > 2 • minvol (M) 2 • volS0(M).

Y. Babenko [Bab] considère l'invariant naturel suivant pour une variété diffé-
rentiable M

Q(M) mî{h(g)nvo\g(M)),g métrique riemannienne}.

Il a montré que c'est un invariant du type d'homotopie. D'après le corollaire 1.3, le

volume minimal se trouve être un invariant plus fin en ce sens qu'il peut distinguer
les structures différentiables de M.

La preuve du théorème 1.1 repose sur l'utilisation de théorèmes de convergence
"à la Gromov" (cf. chapitre 2) et sur la construction principale du travail de [BCG]
que nous rappelons et adaptons à notre cas au chapitre 3.

1.1. Schéma de la preuve

On considère une suite de métriques riemanniennes gk sur N à courbure section-
nelle bornée par —1 et 1 et telle que vo\gk(N) converge vers p • volS0(M). Le

problème est qu'on ne sait pas à priori qu'il existe sur N une métrique réalisant
l'égalité. Dans la première étape, on utilise une version optimisée du théorème de

convergence de M. Gromov, convenable pour étudier Nk {N,gk). Les difficultés
auxquelles nous avont à faire face sont les suivantes: on obtient au mieux une

convergence pointée vers une variété riemannienne (X, g) de même dimension, à
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priori non compacte, munie d'une métrique C1+a. On entend par là que pour tout
réel D > 0, il existe un entier Ko et pour tout entier k > Ko un plongement

fD:Bg(0,D)cX ^Nk, OeX

tels que f^ * gk converge vers g de façon C1.

La condition nécessaire et suffisante pour que X soit difféomorphe à N est que
la convergence ait lieu à diamètre borné, ce que nos hypothèses ne donnent pas à

priori. Pour obtenir cette conditions, on va plonger de manière la plus isométrique
possible X dans une variété compacte, M en l'occurrence, de manière à majorer
son diamètre et celui des Nk Cela se fait via la variété Nk et les plongements fj?.
Dans le chapitre 3, on reprend la construction principale de Besson, Courtois et
Gallot [BCG] pour définir des applications

Fk : Nk -^ M

qui vérifient de bonnes propriétés, qui en font des quasi isométries sur des
ensembles de volume arbitrairement grand dans Nk, mais ces propriétés sont moins
fortes que celles obtenues dans [BCG].

On peut alors considérer les familles d'applications

dont on montre qu'elles sont équicontinues. L'extraction de sous suites convergentes

permet alors de définir une application limite h : X —> M.
Nous montrons successivement que h est contractante au sens large (chapitre 4),

que son degré absolu est fini, et que c'est une isométrie local (chapitre 5). On
en déduit alors que X est une variété hyperbolique de diamètre borné, donc
difféomorphe h N et que h est un revêtement localement isométrique fini (chapitre
6). Nous donnons les applications au chapitre 7.

Les résultats et les méthodes de [BCG] sont à l'origine de ce travail, je remercie
Gérard Besson, Gilles Courtois est Sylvestre Gallot pour leurs remarques et leurs
encouragements.

2. Convergence des variétés riemanniennes

2.1. Convergence "à la Gromov"

La variété N est munie d'une suite de métriques riemanniennes gk approchant le

volume minimal, c'est à dire que la courbure sectionnelle est bornée par — f et
f et le volume vo\gk(N) converge vers Minvol(./V) p ¦ volS0(M). Si la variété
s'effondre (cf. [Pan]), le rayon d'injectivité tend en tout point vers 0 et le diamètre
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peut tendre vers l'infini. L'effondrement riemannien est contrôlé par le volume
simplicial qui doit être nul. Comme M est hyperbolique et / est de degré p > 1,

d'où N ne s'effondre pas. Pour chaque métrique g/., la variété N/. (N,gk)
contient un point 0^ où le rayon d'injectivité

inj (0fc) > s (3)

pour une constante e > 0. En fait, on peut prendre la constante universelle de

Gromov ([Gr. 0.5], injectivity radius estimate). Cependant, le diamère peut tendre
vers l'infini.

Les conditions d'utilisation du théorème de convergence de Gromov ([GLP,
8.28]) sont vérifiées. Il existe une variété "riemannienne" complète (X,g), g
métrique de classe C° et une sous-suite de {(N,gk)} dont la limite pour la

convergence pointée est X. Cela signifie qu'une boule centrée au point base de la
variété limite est homéomorphe à partir d'un certain rang aux boules centrées
de la sous-suite et que la dilatation des homéomorphismes et de leurs inverses

converge vers 1.

Si, de plus, la convergence de (N,gk) se fait à diamètre borné, alors la variété
limite X est homéomorphe à N.

2.2. Régularisation de la variété limite

Maintenant, le théorème de régularisation de Nikolaev [Ni] permet de définir sur
X une structure C3, la métrique g étant C1+a.

En utilisant divers résultats sur la métrique limite (prop 2.2), on établit

Proposition 2.1. Il existe une suite de métriques riemanniennes g/, sur N,
approchant le volume minimal, et satisfaisant à (3) telle que
1. La suite pointée (N,0k,gk) converge vers une variété "riemannienne" complète

(X,0,g), g de classe C1+a, 0 < a < 1. Précisément, pour tout réel D > 0, il
existe un entier Kn et pour tout entier k > Kn un difféomorphisme

tf : Bg(0, D)CI^ Bgk(0k, D) C N

tel que Wdfj^W et IK«^/^) || tendent vers 1 quand k tend vers +oo.
2. Les géodésiques de (X, g) sont localement uniques et prolongeahles. L'application

exponentielle est bien défini de TXX dans X.
3. vol(X) < minvol(AT).

Remarque. Si on suppose de plus que le diamètre est uniformément borné, la
variété limite est compacte et difféomorphe à N.
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Dans la théorie des variétés riemanniennes, les bonnes propriétés métriques
telles que l'existence et l'unicité locale des géodésiques, l'existence de l'exponentielle,

etc.. se ramènent à des problèmes différentiels. Les coefficients des équations
différentielles font intervenir les dérivées des symboles de Cristoffel de la métrique,
qie sont ici de classe Ca seulement. Les résultats classiques de la théorie des

équations différentielles ne s'appliquent pas.
On se place dans le cadre plus géométrique des espaces d'Alexandrov à courbure

bornée (cf. [ABN],[BGP]). Les résultats et les méthodes de cette théorie permettent
de montrer (cf. [P1],[GP]).

Proposition 2.2. La variété X est un espace d'Alexandrov géodésiquement complet

à courbure borné — 1 < K < f vérifiant les propriétés suivantes
1. Les géodésiques sont prolongeahles de manière unique
2. Il existe une fonction </> : !?+ —s- i?_|_ telles que le rayon d'mjectwité de X au

point x £ X est minoré

inj(X) >

3. L'application exponentielle est bien définie de TXX dans X.

Remarque. La liste n'est pas exhaustive (cf. [Be]). On indique simplement les

propriétés nécessaires pour nos besoins.

Lorsque la convergence a lieu avec un rayon d'injectivité uniformément minoré
(dans le cas compact), l'assertion f est déjà connue (cf. chapire 2 de [GP], propositions

3 - 7 de [PI]) ainsi que l'assertion 3 (cf. [Pe, 4.4]). La proposition [GLP,
8.22] de Gromov montre que les démonstrations restent valables dans notre cas,
et prouve aussi l'assertion 2.

Proposition 2.3 (Gromov). Il existe une fonction universelle

telle que si V est une variété riemannienne à courbure sectionnelle pincée \K\ <
A?, et v, v1 e V alors

où £(v) f/2min (tt/A, plus petite longeur d'un lacet géodésique non trivial basé

en v).

Cette proposition permet de minorer uniformément le rayon d'injectivité sur
les Bgk(0k,D)- Le rayon d'injectivité passe à la limite sur Bg(O,D).
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3. Adaptation de la construction de [BCG]

On reprend et on adapte dans ce chapitre la construction principale de Besson,
Courtois et Gallot [BCG].

3.1. Résultats de Besson, Courtois, Gallot

Avant d'énoncer leur théorème principal, on rappelle que l'entropie volumique
d'une variété compacte N munie d'une métrique riemannienne g est définie par

h(N,g) lim log(vol~g(B~g(R)))/R
ri—>OO

où g est la métrique relevée de g au revêtement universel N, et Bg{R) est une

boule géodésique de rayon R dans le revêtement universel N (cf. [Ma]).

Théorème 3.1 (Besson, Courtois, Gallot, 1994). Soient N et M deux variétés

fermées connexes orientées de même dimension n > 3, reliées par une
application continue

f:N^M
de degré non nul. Supposons M munie d'une métrique localement symétrique de

courbure strictement négative, notée qq. Alors toute métrique riemannienne g sur
N vérifie

hng(N)-volg(N) > \degf\hnJM) -volS0(M). (4)

De plus, en dimension n > 3, l'égalité est atteinte si et seulement si (N,g) est
localement symétrique (de même type que (M, go)). Il existe alors une constante
A telle que f est homotope à un revêtement isométrique de (N,g) sur (M,Xgo).

Un corollaire important de ce théorème est que la métrique hyperbolique sur
une variété est la seule à réaliser le volume minimal.

Corollaire 3.2. Soit M une variété fermée munie d'une métrique hyperbolique
go (de courbure sectionnelle Kgo —1), alors Minvol(M) volS0(M). De plus,
s'il existe une autre métrique g, de courbure sectionnelle \K(g)\ < 1, telle que
volg(M) volgo(M) alors g est isométrique à go.

3.2. Construction fondamentale

On adapte la construction principale de [BCG] pour démontrer la proposition
suivante.

Proposition 3.3. Soient M, N deux variétés différentielles fermées, connexes,
orientées de dimension n > 3. On suppose que M est munie d'une métrique
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hyperbolique go, que Minvol (TV) p ¦ volgo{M) et qu'il existe une application

f : N —> M continue de degré p > 1. Alors, il existe sur N une suite de

points {0k)keN, une suite de métriques riemanniennes {gk)keN a courbure sec-
tionnelle bornée \K(gk)\ < 1 telle que lim^oo volSfc(N) p ¦ volS0(M), et une
suite d'applications C1, homotopes à f, Fk : {N,gk) —*¦ (M, go) telles que
1. L'application Fk vérifie, pour tout entier k, pour tout point x de N

z)|flfc,fl0<l (5)

2. Soit Wk {m G M tel que card i7^ (m) p} alors

vo\go(Wk)>vo\go(M)-o(k) (6)

Jacffc > 0 presque partout sur F^ {Wk) (7)

™\gk(Fk-\Wk)) > vo\gk(N) - o(k) (8)

3. Soit Uk {x£ N tel que |Jaci^z)|SfciS0 > 1 - l/k} alors

\\dxFk\\gk,go <l + o(k), VxGt/fc, (9)

volgk(Uk)>volgk(N)-o(k), (10)

volgk(Fk(Uk))>volgo(M)-o(k), (11)

4- Pour tout réel D > 0, il existe un entier Kn tel que

\\dxFk\\gk,go<n-hgo(M) (12)

pour tout entier k > Kjj et tout point x de Bgk(0k, D).

Remarque. La notation o(k) désignera dans l'article toute fonction positive
tendant vers 0 quand k tend vers +oo.

La preuve de cette proposition occupe toute la fin de ce chapitre.
On se donne d'abord une application / : N —> M, de degré p > 1, entre

les deux variétés fermées. En régularisant, on supposera dans la suite qu'on peut
choisir une application de classe C1. On suppose que M est munie d'une métrique
hyperbolique go et que Minvol (./V) p ¦ volS0(M). Il existe alors une suite de

métriques riemanniennes gk à courbure sectionnelle bornée par —1 et 1 telle que
linifc^oovol^grfc) =p-volS0(M).

Quitte à extraire une sous-suite des métriques {gk), on va construire une suite
d'application Fk : N —> M vérifiant la proposition 3.3.

Puisque \\N\\ > \\M\\ > 0, la suite {Nk) {N,gk) ne s'effondre pas, il existe
donc une suite de points 0k £ N pour laquelle inj {0k,gk) > e > 0, où e ne dépend
que de la dimension.
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On munit le revêtement universel N des métriques relevées, qu'on note encore

gk. On identifie l'espace hyperbolique sur Hn à 5(0,1) C Rn et dHn à S1™"1.

On appelle encore go la métrique hyperbolique sur Hn. L'application / induit un
homomorphisme p : Ti\N —> H\M et se relève en une application équivariante

/ : N —> Hn, c'est à dire vérifiant

pour tout 7 G IIi^V et tout point içJV.
La construction des applications Fk se fait alors en deux étapes. On définit

pour tout entier k des applications équivariantes (pour une action isométrique de

niM sur L2(dHn,d9))

et
7T : S°° C L2{dHn, d9) —> Hn

On pose alors Fk n o $fc : N —> Hn.
Nous rappelons d'abord quelques objects nécessaires à la construction.

3.3. Définition des objects fondamentaux de la construction

3.3.1. Fonction de Buseman
Pour une variété d'Hadamard (c'est à dire riemannienne simplement connexe de

courbure négative) une fonction de Buseman est définie de la façon suivante : soit
do la distance associée à go, pour (m, 9) G Hn x dHn, on pose

ße{m) lim do(m,c(t))-t

où c est la géodésique unitaire joignant 0 à 9. La fonction de Buseman est de
classe C1, convexe, 1-lipschitzienne et de gradient unitaire (cf. [BGS]).
3.3.2. Noyau de Poisson
Pour (m, 9) G Hn x dHn, on définit le noyau de Poisson comme:

po{m,9) exp(-hoße(m))

où ho est l'entropie volumique de la métrique go- On a la proposition suivante

Proposition 3.4 (BCG). Soit g G Isom(iïn). Alors g agit sur dHn et

On en déduit que po(m,9)d9 est une mesure de probabilité sur dHn. On définit
alors une action de H\M sur L2(dHn,d9) par
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Proposition 3.5 (BCG). L'action précédente de ïl\M sur L?(dHn,d9) est

isométrique.

3.3.3. Constructions des applications équivariantes positives $fc
On définit maintenant des applications $fc : N —> S°° C L2(dHn,d9) où d9 est

une mesure de probabilité, vérifiant les conditions suivantes
1. pour tout point (z,0) £ N x dHn.

<s>2{x,e)de î

2. pour toute isométrie 7 G H\N et tout point (x,6) GÎVx dHn,

*(7(z), 9) p(7), *(*, Ö) *(*, p-1(7) W)(P0(p(7)(0), Ö))1/2

3. pour tout (x, 6) eNx dHn,
$(x,é») >0.

En particulier, on utilisera dans la suite les applications suivantes

Définition 2. Pour (x, 6) e N x dHn,

Définition 3. Pour (x, 6) e N x dHn,

et LVk est la forme volume associée à §]~.

La définition 3 a un sens si hgk(N) < ho(M). Or d'après le théorème de

comparaison de Bishop (cf. [GHL, 3.101]), la condition \K(gk)\ < 1 implique hgk <
ho. Comme K{Xg) -^jK(g), et h{\g) jh(g), on peut rendre hgk strictement
inférieur à ho en remplaçant g]~ par (1 + o(k))gk- D'autre part, l'inégalité (4) p.
449 montre que hgk converge vers ho-

Les applications $0 et <&k vérifient alors les conditions 1, 2 et 3. On peut faire
montrer:

Proposition 3.6 (BCG). L'application $fc est de classe C1, équwanante de N
dans S°° cL2(dHn,de).
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3.3.4- Métriques images réciproques

Définition 4. Soit une application </> : N —> L?(dHn,d9) différentiable. On
définit #0 <f>* (can) où can est le tenseur canonique de S°° C L?(dHn, d6). Pour-

tous vecteurs u, v dans TXN, on a

'x(f> ¦ u)(dx(f> ¦ v){9) d,9.

Si <f> est équivariante par rapport aux actions de Ti\N et IIiM, on peut faire passer
la métrique g<p au quotient. Si </> est une immersion, go est définie positive.

Soit (eî)î=ii n une base gk orthonormée de TXN. On considère la trace de la
métrique pull-back.

Définition 5.

n n r. n

tiacegkgo(x) 2_]gcp(e-net) 2_j / Ie» ' 4>{xi8)\ d9 ^] \\dx<f> ¦ e%\\L2-

Le lemme suivant sera utile dans la suite

Lemme 3.7 (BCG). L'application $fc définie précédemment vérifie

tr&cegkg$k(x) < /ig/4 (13)

pour tout point x € N et tout entier k.

3.3.5. Application barycentre
On donne les principaux résultats du chapitre 5 de [BCG].

A toute mesure \i positive sans atome sur dHn, on associe l'unique point m
bar (p) G Hn défini par

off"

où ß est la la fonction de Buseman de la métrique go et {et}"=1 une base de

TmHn. Toute isométrie 7 sur Hn agit sur dHn. Pour une mesure /x, on définit
7 * /x par 7 * /x(.A) y(i(7^1(j4)) pour tout ensemble mesurable A dans dHn. On
a les propriétés suivantes

bar(7*/x)=7(bar(/x)) (14)

b&r (po(m,9)d9) m. (15)
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Définition 6. On pose alors

Tr:S°°C L2(dHn,d6) —> Hn

Proposition 3.8 (BCG). n est une submersion C1, équwanante et sa différentielle

s'écrit dans une base orthonormée {£^}™=i de son espace horizontal au point
4>eir-l{m),

dtpTr • Et 2(1 - Hm)-lHU2et

où {et}"=1 est une base orthonormée de TmHn et Hm est l'endomorphisme
(symétrique défini positif de trace 1) de TmHn défini en m ir(4>) par

go(Hmu,v) hm(u,v) / d/3(m,e)(MM/5(m,0){v)4> {6)d6.

3.4 Construction des applications Fk

Définition 7. On pose
Fk:N —> Hn

Fk{x) =7ro$fc(x) =hax{$l{x,6)dß).

Cette application est de classe C1, équwanante et passe au quotient en une
application Fk : N —s- M de classe C1.

Dans la suite des lemmes suivants, on montre qu'on peut extraire une sous-
suite telle que les applications Fk vérifient les propriétés de la proposition 3.3.
Ces propriétés traduisent le fait que les applications Fk sont proches "en volume"
d'isométries locales.

On établit d'abord une propriété simple en terme de degré.

Affirmation 3.9. Les applications Fk et f sont homotopes. En particulier,
deg(JFfc)=deg(/)=p.

Preuve. $ et <frk sont proprement homotopes par l'homotopie canonique, que est

IIi AT équivariante

En utilisant la propriété (15) p. 453 du barycentre, / tt o $q donc est reliée à

7T o $fc par une homotopie équivariante de N dans Hn. D'où le résultat pour / et
Fk. D
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Lemme 3.10. L'application F/~ vérifie, pour tout entier k,

\3&cFk\gk go < 1 sur N

Preuve Comme dans celle de [BCG], on utilise la majoration (13) et le calcul de

comasse(7r * lvq)

Les deux résultats précédents permettent d'obtenir des informations sur le
degré absolu de l'application Fu Si les applications Fu sont proches en un certain
sens d'une îsométrie locale, les degrés absolus des applications Fu doivent coïncider
avec le degré usuel sur les ensembles dont le volume croît vers le volume de M
On obtient un résultat dans ce sens en utilisant la formule de l'aire, qui relie le

jacobien d'une application et son degré absolu
II faut noter qu'à partir de maintenant, les résultats diffèrent notablement de

ceux de [BCG] En effet, alors que la condition d'égalité des volumes vo\g(N)
V v°lgo(^O donnait dans leur article des convergences presque sures, la condition
de convergence des volumes volSfc (N) vers p volso (M) ne nous permet de récupérer
que des convergences en volume Dans tous les lemmes suivants, on démontre
seulement que les applications Fu vérifient les propriétés de la proposition 3 3 sur
des ensembles de volume convergeant vers le volume total de N

C'est le lemme suivant qui démontre la propriété 2 de la proposition 3 3

Lemme 3.11. Soit Wk {m e M, card (FjT1 (m)) p} alors

2 Jacffc > 0 presque partout sur F^ {Wk)
3 yolgdFkHWk)) > volgk(N) - o{k)

Preuve On utilise la formule de l'aire qui s'écrit comme suit (cf [Mo, EG])
Soit F Rn —> Rn une application lipschitzienne Alors pour tout ensemble

mesurable A C Rn

|JacF(x)|w(x)= / card (i^1(y) C\ Â)uj{y)
A JR™

Comme l'application Fk est de degré p, card (F"1 (m)) > p presque partout sur
M On décompose M sous la forme Wk U cWk Observons que card (F^1 (m)) >
p + 1 presque sur cWu On a les inégalités

N

-1card (F~ (m))u!o(m)

Wk J"Wk
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> p ¦ (volS0(M) - volso(c^fc)) + (p

D'où

qui tend vers 0 quand k tend vers oo.
Comme le degré de Fk est égal à p > 1 et que le nombre d'antécédents par Fk

est exactement p sur Wk, il en résulte que le signe de Jac Fk est presque partout
constant sur F^ (Wk). En particulier JacFfc > 0 presque partout sur F^ (Wk).

De plus, volgJFjT^Wfc)) > volflfc(JV) - o(k). En effet,

card (F~ (m))uio(m)

>p-volgo(Wk)

qui tend vers p ¦ volso(M). D

On démontre la partie 3 de la proposition 3.3 en extrayant une sous-suite
convenable.

Lemme 3.12. Il existe une suite croissante d'entiers (rik)keN telle que pour
chaque entier k, l'ouvert Unk {x G N, |JacFnfc(x)|Srv go > 1 — l/k} vérifie
l.volgnk(Unk)>volgnk(N)-o(k)
2. volgo(Fnk(Unk)) > volS0(M) - o(k).

Remarque. Pour obtenir exactement la partie 3 de la proposition 3.3, il suffit
d'extraire la suite (gnk)keM et de la renuméroter (gk)keAf-

Preuve du lemme 3.12. Fixons un entier k > 0. Soit l'ensemble V\ {x G

N, |Jaci7';|SijS0(x) < 1 — l/k} défini pour tout entier /. On note w; la forme volume
sur Ni. Les applications Fi sont de degré p, donc

p ¦ volso (M) p ¦

JM

< / |JacF,|ù;,
Jn

N\Vt
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< (1 - l/fc)volflI(VÏ) + volflI(n) -volflI(VÎ)
donc

qui tend vers 0 quand / tend vers +oo. On obtient la minoration 2 en utilisant la
formule de l'aire et le fait que F^l{Wi) n Ut C F^X{Fi{Ui) n Wt).

> 1/W |JacFj|wj

qui tend vers volS0(M).
Pour un entier / suffisamment grand, on obtient volSi(V;) < 1/k et

VOlgo(Fi(Ui))>volgo(M)-l/k.
Pour un tel entier /, on pose ri]~ l. D

L'inégalité (9) de la proposition 3.3 montre que F^ est presque contractante.
Pour la démontrer, on a besoin d'un lemme technique qui relie la convergence des

jacobiens au comportement des dérivées de F^. Cela se fait en montrant que les

valeurs propres des formes quadratiques qui expriment dFk convergent vers 1/n.

Lemme 3.13. On note ^(x) les valeurs propres des formes quadratiques

Les application ^ sont continues, H\N invariantes, classées 0 < ^ < < ^
1 et bien définies sur N. De plus,

\^{x)-l/n\<o{k) sur Uk.

Preuve. On utilise les propriétés d'équivariance de Fk. Pour ne pas surcharger les

notations, on notera igJVuii relevé de x G N. On remplace la notation H^/x\
introduite en 3.8 p. 454 par Hx pour x G N. En reprenant la preuve de [BCG,
7.4], on établit que
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pour une constante A > 0 (cf. [BCG, B5]) d'où

n

?(*) - 1/n)2 < 1/A(1 - \JacFk(x)\)

et donc, pour tout point x G U/., (cf. lemme 3.12)

Im*W - iH < o(*).

D

On en déduit le résultat suivant.

Lemme 3.14. Pour une application linéaire L : TXN —> TmM, on définit la

norme
\\L\\gk,go SUP go(l-u,L-u)?.

uETœN,gk(u,u) l
Alors, pour tout point x € U/~,

ll^-Ffc||Sfc,S0 < l + o(A;)

Preuve. En suivant [BCG. 7.7], on montre que pour tout point x G £/&,

1 -1/Ä; < |JacFfc(x)|2/n < l/ntraceSfc(Ffc * go)(x) < l + o(k).

On appelle a2 les valeurs propres du 2-tenseur Fk * go(x) relativement à gk et on
pose ß% a»/(nr=i a,)1/". Les inégalités

/ n \ V« n

^a2<l + o(fc) (16)

et

X:-l)2<^§-l (17)
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et l'inégalité triangulaire impliquent

/ n \ V"
<o{k)

pour tout x G Uk ¦ Ceci prouve bien que les valeurs propres de Fk * go (x) sont
uniformément proches de 1 sur Uk- D'où le résultat. D

La relation (12) de la proposition 3.3 est particulièrement importante. Elle
permet de construire une suite équicontinue d'applications, convergente et de limite
contractante. Nous aurons besoin du lemme suivant, pour lequel il faut travailler
à diamètre borné.

Lemme 3.15. Pour tout réel D > 0, il existe un entier Kj_, tel que

Vn(x) < 1 - 1/n (18)

pour tout entier K > Kjj, tout point x G Bgk(0k, D).

Preuve. On peut reprendre la preuve de [BCG, 7.5]. La seule modification à

apporter est de rester à distance majorée du point base, ce qui permet de minorer
uniformément le rayon d'injectivité sur la boule. Comme la courbure est bornée,
on en déduit qu'étant donné un réel ô > 0, il existe un entier ks,D à partir duquel
Bgk(Ok,2D)\Uk ne contient pas de §k boule de rayon ô, \/k > ^ß. Ce qu'on
reformule en disant que tout point de Bgk(Ok,D) est à distance plus petite que S

d'un point de £/&. On indique les étapes de la preuve, en suivant [BCG, 7.5].
On raisonne par l'absurde. Considérons donc un entier k assez grand. On

suppose qu'il existe un point x\ G Bgk(Ok,D) tel que jj,^{x\) > 1 — 1/n. Il existe
un point xq g Uk tel que dg{xQ,x\) < S. D'après le lemme 3.13, jj^(xq) <
l/n + o(k) < 1/n+(5 puisque que jj,^ converge uniformément vers 1/n sur Uk- On
peut considérer xq et x\ comme des points de N situés dans un même domaine
fondamental et considérer l'application équivariante Fk de N dans Hn. Notons
X2 le premier point de la §k géodésique minimisante a joignant xq à x\ qui vérifie
Mn(x2) 1 — l/n- On peut supposer que l'arc de géodésique [xoa^] n'est pas
réduit à un point, en prenant k suffisamment grand.

On a pour tout point x G a, l'inégalité

l-^(x)
,2

d'où ||d7r||so < 2n sur $fc oa. La minoration Hcfc^fcll^ < x (cf. lemme 3.7) et le

théorème des accroissements finis impliquement alors

< nhoô.
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Soient maintenant a la géodésique #o-mmimisante joignant Fk(xo) à Fk{x<2) et
Y un champ de vecteur, unitaire, parallèle le long de a. Posons Yq Ypktx \ et
Y<i Yp -,. On estime la quantité

\hkx(Y2,Y2)-hkx(Yo,Yo)\

ôHn

On majore la première partie de l'intégrale en utilisant l'inégalité de Cauchy-
Schwarz et le fait que ||d/3||so 1. Pour la deuxième partie, on utilise le théorème
des accroissements finis et le calcul de Ddß (cf. [BCG]) pour majorer la quantité

{x2),e) 'y2 ~ dP(h(x0),e) -yo| par 2dgo(Fk(xo),Fk(x2)).
On obtient |^(y2,^2) - h^(Yo,Yo)\ < (8n + l)h0S, et finalement

(8n + l)hoô l/n + ((8n + f)h0 + 1)0.

En choisissant ô < „g "J-~fe ^ on trouve ^{x^) < l/n + (n — 2)/n f — l/n
ce que est contradictoire avec le choix de x%-

On en déduit

Corollaire 3.16. Pour tout réel D > 0, il existe un entier Kp tel que

\dxFk\\gk,go <nh0

pour tout entier k > K]j, tout point x € Bi~(0k, D).

Preuve. D'après le lemme précédent, pour tout entier k > kn, pour tout point
x G Bgk(0k,D), on a /i^(x) < f — l/n pour tout j f,... ,n. Donc pour tout
entier k > Kn, pour tout vecteur g^-unitaire u de TXN,

\\dxFk,u\\go \\d-Kodx$k -u\\go < \\d-K\\\\dx$k ¦ u\\go.

On conclut avec les majorations

et

ll^^fc -u\\L2 < y.
D
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4. L'application contractante h : X —s- M

4.1 Construction de l'application h : X —s- M

Rappelons nos hypothèses: étant donnés deux variétés différentielles M et N,
fermées, connexes, orientées de dimension n > 3, il existe une application / :

N —> M de degré p > 0 telle que Minvol(iV) p ¦ volS0(M), où go est une
métrique riemannienne à courbure sectionne Ile — f sur M.

Les chapitre f et 2 permettent de construire une suite de métriques riemanni-
ennes §]~ sur N à courbure sectionnelle \K(gk) < 1 et telles que lim^oo vo\k(N)
p ¦ volS0(M), ayant les propriétés suivantes
f. [N,gk) Nk converge au sens de Gromov (2.1) vers une variété riemannienne

(X,g).
2. Il existe une suite d'applications Fk : N —> M, homotopes à /, vérifiant la

proposition 3.3.
Pour tout D > 0, la convergence pointée des variétés Nk vers X permet de

définir des applications

Ces applications sont définies pour tout entier k > Ko et ont la propriété de

cohérence suivante: \/D! > D,\/k > KD', h?' ,n _,, hP.
K\jDg[\j,U) ^

Lemme 4.1. Pour tout D > 0? la suite de fonctions

est équicontmue.

Preuve. Cela découle directement des majorations obtenues dans la proposition 2.1

pour ||4ffc||g,gfc et dans l'inégalité (12) de la proposition 3.3 pour ||d-F1fc(a;)||gfc,go sur
toute boule compacte Bg(0, D). D

Puisque pour D' > D, et k suffisamment grand, hP et hP coincident sur
Bg(0,D), le théorème d'Ascoli et un procédé diagonal permettent de montrer.

Corollaire 4.2. Il existe une sous suite hk k
: Bg(0, D}.) —? M, avec lim^^oo D}.

+oo, qui converge uniformément sur tout compact vers une application hps-
chitzienne h : X —> M.
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4.2. L'application h est contractante au sens large

Le reste de ce chapitre est consacré à la démonstration de la proposition
suivante.

Proposition 4.3. L'application h : (X,g) —> (M, go) donnée par le corollaire
4-2 est contractante (au sens large).

Preuve. Soient deux points x,x' G X. Il s'agit de montrer que

dgo(h(x),h(x'))<dg(x,x'). (19)

On choisit un réel D assez pour que x,x' G Bg(0, D).

Observons que le rayon d'injectivité est minoré sur Bg(0,D) par un réel r >
0. Il suffit d'établir l'inégalité (19) pour tous points x, x' de Bg(0,D) tels que
dg(x,x') < r/2. Le cas général se traite alors comme suit.

Soit 7 une géodésique minimale de x à x', et une suite de point x xo,xi,X2,
,xm x' sur 7 tels que dg(xt,xl-^i) < r/2. Alors,

m-1
dgo(h(x),h(x')) < J2 dgo(h(xt),h(xl+1))

m-1
dg(xt,xt+i)

dg{x,x').

On suppose donc dans la suite de la preuve que dg(x,x') < r/2.
Fixons quelques notations. On pose hk hk mk hk(x), m'k hk(x')

et U'k fk (Uk) C Bg(0,D). Sans perte de temps, les propositions 2.1 et 3.3

permettent de supposer que
1. \\dhk\\ < l + o(k) sur U'k

2. \dhk\ < n2 sur Bg(0,D) pour tout entier k grand
3. |Jac/ifc| > 1 -o{k) sur U'k

4. volg(U'k)>vo\g(Bg(0,D))-o(k)
La preuve de la proposition repose sur le résultat suivant.

Lemme 4.4. Soit un réel 0 < S <C dg(x,x') et 7 une géodésique minimale de x
à x'. Il existe un entier Kgt£> tel que pour tout entier k > Kgt£>, il existe un point
xk proche de x' et une géodésique minimale 7^ : [0,1] —> -Bs(0, D) telle que
1. 7(0) x, 7fc(l) xk, dg(xk,x') < Ö

2. i{lk n cu'k) < 0.
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Autrement dit, le fait que U'k soit de volume convergeant vers le volume plein dans

Bg(0, D) implique qu'il existe une géodésique 7^ proche de 7 telle que 7^ rencontre
U'k sur une longueur > £(jk) — S

Terminons la preuve de la proposition en supposant le lemme montré Soit
0 < ô <C dg(x,x') et un entier Kg n donné par le lemme

dgo(h(x),h(x')) hn^dgMx^hkix'))
< hm (dgo(hk(x),hk(xk)) + dgo(hk(xk), hk(x')))

k—>oo

La propriété 2 de ||d/ifc|| et le lemme impliquent que

dgMxk),hk(x'))<n2ö (20)

D'autre part, pour k > Ks d,

dgo(hk(x),hk(xk)) <£{hkolk)
r r

\\dhk jk(t)\\dt + / \\dhk jk(t)\\dt

<(l + o(k)) dg{x',xk) + n25

<{l + o{k)) dg(x,x') + (l + o(k)+n2)ô (21)

d'où (20) et (21) et un passage à la limite impliquent

dgo(h(x), h{x')) < dg{x,x') + (1 + 2n2)ô

Comme S est arbitraire, la proposition est prouvée, modulo le lemme

Preuve du lemme 4 4 L'hypothèse cruciale est évidemment que lim^oo vo\g(cU'k)
0 On raisonne par l'absurde et on cherche à la contredire
On définit une (5-vanation géodésique de 7 comme suit La vecteur vitesse

u 7(1) de 7 au point x' est complété en une base orthogonale (m, ey, en) de

TX,X, les et étant normes A chaque (n — l)-uplet t (£2, ,tn) G [—5,5}n^,
on associe le point x* expa,/(t2e2 + +tnen) Les géodésiques 7* joignant x à

xl sont les S-variations géodésiques de 7
Supposons qu'il existe une sous-suite {k1} d'entiers pour laquelle toute

covariation géodésique de 9 rencontre cU'k sur un ensemble de longueur > S L'hypothèse

est donc que
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e,

pour tout entier k' dans la sous-suite et tout (n — l)-uplet t G [—ö, ö]n *.

Les théorèmes de comparison sont valables dans l'espace (X,g). En particulier,
le théorème de comparaison angulaire de Topogonov appliqué avec K > — 1

implique que l'angle inférieur 9 du cone géodésique est minoré par un 6gto > 0

qui ne dépend que de S et D. En comparant maintenant le cone géodésique avec
son image dans (N, gw) par les difféomorphismes /&/, le thérorème de comparaison
volumique appliqué avec K > 1 montre que

vo\g{cU'k)>v{5,D)>0
d'où la contradiction.

5. Vers l'isométrie locale

Le but de ce chapitre est de montrer la proposition suivante:

Proposition 5.1. L'application h : (X,g) —> (M,go) définie dans les chapitres
précédents est une isornétne locale de classe C

La démonstration comporte plusieurs étapes. On sait que h est contractante
et que pour tout ensemble mesurable A de X, vo\go(h(A)) < vols(.A). On montre

dans un premier temps que volgo(h(A)) > vo a^ On en déduit alors que tout
point de M a au plus p antécédents. On se sert de ce résultat pour construire
en chaque point m h(x) de h(X) une boule ouverte Bgo{m,rj') au dessus de

laquelle la restriction de l'application h à une boule ouverte Bg(x,rj) est de degré

> 0 et vérifie vols(h7~ (Bgo(m,ri'))) (deg/i|) • volS0(_B(m,r/)). On applique alors
la proposition de rigidité suivante:

Proposition 5.2 (de rigidité). Soient U un ouvert de Bg(0,D) C X, V un
ouvert de M et une application F : U —> V contractante, propre, de degré d > f.
On suppose de plus que volg(U) d ¦ volgo(V). Alors F est une isométrie locale
de classe C

On repousse la preuve de cette proposition à la fin du chapitre. On commence

par montrer la proposition 5.1.
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5.1. Preuve de l'isométrie locale

On commence par prouver

Lemme 5.1.1. Pour tout ensemble mesurable A de X, on a

Preuve Par construction h est limite uniforme sur les compacts d'applications hk
modifiant peu les volumes On peut supposer que A est compact, le cas général
se ramenant à une exhaustion de compacts Soit D > 0 tel que A C Vg(0, D)

Rappelons quelques notations On note Wk {m G M, card(fAT (m)) p}
et Uk {x G N, \3acFk(x)\ > 1 - 1/k} Alors soit U^f?)-\Uk) dans Gg(0,D)
et W'k {h^)-\Wk) dans Bg(0,D) Observons que \3achk\ > 1 - o(k) sur U'k

et card (/i^ (m) n Wk) > p sur Wk Les volumes des ensembles Uk et Wj^ dans

Bg(0,D) convergent vers le volume total de la boule
La fonction indicatrice du 1/fc-voisinnage B i{hk(A)) converge vers la fonction

indicatrice de h(A) Par convergence dominée, on en déduit

vo\go{h{A)) km volgo(Bihk(A)) > lim (hk(A)) (22)
K—>CX3 k k—>CX3

On a les inégalités

fvo\go(hk(A)) / lwo
Jfefc(A)

card(^l(m))
lhk(Ä)nWk

d'où avec la formule de l'aire

volgo(hk(A)) > l/p

>l/p

Par passage à la limite et utilisant l'inégalité (22), on obtient

(23)

(24)
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On peut maintenant démontrer un premier résultat sur le degré absolu de h.

Lemme 5.1.2. Le degré absolu de h vérifie

card (/i (m)) > p

pour tout point m G M.

Preuve. Pour tout mesurable A C Bg(0,D), le lemme 5.1.1 et le fait que h soit
contractante impliquent l'encadrement vo\(A) > vo\(h(A)) > l/pvo\(A). On
applique cet encadrement à l'image réciproque d'un ensemble de M pour majorer le

nombre d'antécédents.
Supposons qu'un point m e M ait au moins p + l antécédents x\,... ,xp+\

dans Bg(0,D). Choisissons rj > 0 suffisamment petit pour que les Bg{xl,rj) soient
dans Bg(0, D) et disjoints deux à deux. Comme h est contractante, h{Bg{xl,rj)) C

Bgo(m,rj) d'où |Jf=i Bg(xt,rj) C h~^{Bgo{m,rj)). Or le lemme 5.1.1 montre que
vo\g{h~^{Bgo{m,rj)) < p ¦ volgo(Bgo(m,rj)). On en déduit que

(25)

Le volume des boules Bg(x, rj) C Bg(0, D) est approximé par le volume des boules
de même rayon dans Bgk (0^, D) C (N, gu)- Le théorème de comparaison volumique
de Günther (cf. [GHL]) minore ce volume par le volume sphérique. Il existe des

constantes c\,C2,cs,£ > 0 telles que pour tout réel 0 < r\ < e, toute boule Bg(x, rj)
dans Bg(0,D), et toute boule Bgo(m,rf) dans (M,go),

vnrjn(l-C1rj2) <vo\g(Bg(x,rj)) (26)

vnrjn{\-cm2) <vo\go(Bgo(m,rj)) < vnrjn(l + c2rj2) (27)

où vn est le volume euclidien de la boule unité. L'inégalité (25) et les approximations

(26) et (27) impliquent alors

(p + lK?yn(l - cirj2) < p ¦ vnrjn{\ + cm2) (28)

et on obtient une contradiction pour rj suffisamment petit. D

On montre maintenant que h et h]~ ont localement le même degré et on en
déduit que h conserve localement les volumes.

Soit donc x un point de Bg(0,D). D'après le lemme précédent, il existe un
réel rj > 0 suffisamment petit tel que x soit le seul antécédent de m h(x) dans

Bg{x,rj). Notons hß la restriction de h à Bg{x,rj). Elle est differentiate presque
partout et le degré de hß est bien défini, pour presque tout m' G Bg{m,rj), par

deghB(mr)= V" sign J&ch(y).



Vol 73 (1998) Un théorème de rigidité différentielle 467

Le degré ainsi défini est constant (presque partout) sur chaque composante
connexe de Bgo(m,r))\h(dBg(x,r))), (cf [Fed, 4 1 26] et [BCG]) On appelle C la
composante connexe qui contient m Considérons maintenant la suite d'application
restreintes, pour k assez grand

hk\B Bg(x,r)) —> Bgo(m,2i])

qui converge uniformément vers h sur Bg(x,i]) Notons Ck la composante connexe
de Bgo(m, 2r])\hk(dBg(x,i])) qui contient m Avec ces conventions, on a le lemme
suivant

Lemme 5.1.3. Soit un point x G Bg(0,D) et sott m h(x) £ M II existe un
réel 0 < r)1 < r\ tel que deg hB deg hk\B d > 0 sur Bgo (m, ?/) C C D C]~, pour
tout entier k suffisamment grand

Preuve Par hypothèse, m (Ë h(dBg(x,i])) qui est compact, donc il existe un réel

rf > 0 tel que la boule Bgo(m,r]!) C C Puisque fr(C) C h(dBg(x,r))), on voit
qu'on peut choisir r]' de sorte que d{Bgo{m,rj'),fr{C)) > r]' On aura alors aussi
d(Bgo(m,r]),/r(Cfc)) > r]' pour k assez grand On considère ensuite la projection
radiale q Bgo(m,2i]) —> dBgo{m,rj') qui est l'identité sur Bgo{m,rj') Soient les

applications composées

qohB Bg(x,r)) —> Bgo(m,r)')
q°hk\B Bg{x,ri) —>Bgo(m,r]!)

D'après le choix de r/, onaço h(dBg(x,i])) C dBgo{m,rj') et qo hk(dBg(x,i])) C
dBgo(m,r)'), ce qui signifie que qohß et qohk\B sont des applications propres On
montre qu'elles sont proprement homotopes comme suit On définit l'homotopie
géodésique G]~ entre qohß et qohf.\ß Par

Gk Bg[x,rj) x [0,1] -^M
Gk(u,s) qoau(s)

où au est le segment géodésique de h{u) à hk (u) contenu dans Bgo (m, 2r\) Lorsque
k est assez grand, pour tout u G dBg(x,i]) ce segment est inclus dans cBgo(m,i]')
car h{u) C cBgo{m,2rj') et hk converge uniformément vers h sur Bg{Q,D)
L'homotopie Gk est donc propre Alors qohß et qohk\B sont des applications hpschitzi-
ennes de même degré On a donc d'une part (deg/iß) (degqohß) sur Bgo(m,r)')
puisque Vm' G Bgo(m,ri'), h^ (m1) {qo hB)~^(rn') et hB q o hB au voisinage
de hg (m1) D'autre part, pour les mêmes raisons, on a (deg/ifc|B) (degqohk\B)
sur Bgo{m,r}') d'où deghB =deghk\B sur Bgo{m,r}')

On montre maintenant que ce degré est strictement positif L'inégalité (23)

p 470, appliquée à l'ensemble A Bg{x,rj') montre que

vo\go{hk{Bg{x,v')nw'h n u'h)) > l~o{kKo\g(Bg(x,r1) n w'h n u'h)
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donc est non nul > S por tout k assez grand Or Jac hk > 0 presque partout sur les

antécédents de hk(Bg(x,i]) C\Wl C\U'k)) puisque hk Fko fk et J&cFk > 0 d'après
3 3 (7) Donc 3achk^B > 0 presque partout sur les antécédents de hk(Bg(x,r)') n
W'k n U'k)) inclus dans Bg(x,rj) D'où hk\B est de degré strictement positif sur
un ensemble de mesure non nulle dans Bgo(m,r)'), pour tout k grand Comme le

degré de hk\B est constant sur Bgo(m,rj'), on a bien montré que âeghk\B > 0 sur
Bgo(m,rj'), pour tout entier k grand D'où deghB > 0 sur Bgo(m,rj') D

Lemme 5.1.4. Avec les notations du lemme précédent, on a

volÄ^KV)) d voUI^KV))

Preuve On établit l'inégalité dans les deux sens
On a une première inégalité

\ia,ch\u

lBgo(mV')

>d volS0(5S0(m,?/))

Pour montrer l'inégalité inverse, on approxime h par les applications hk et on
utilise les propriétés de Jac hk Avec les notations rappellées précédemment, on a
les inégalités

d volso(Bgo(m,r}'))> d volS0(SS0(m,r}') n Wk)

-I
JBgo(m r)')nWk

|Jac hk\ujg

/^(5sJm,?/))n^n^)
(29)

D'autre part

^'))) > vol^^Jm,»/))) (30)

En effet, fixons un réel e > 0 Pour tout entier k suffisamment grand, on a
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d'où

Kn^volgih-^BgoM))) > volg(hB\Bgo(m,V'-e))).

Comme la constante e est arbitrarire, l'affirmation (30) est prouvée. En combinant

(29) et (30), on obtient

d-vo\go{Bgo{m,r}')) > vols(/iB1(SS0(m,??')))

ce qui termine la preuve du lemme 5.1.4 D

Fin de la preuve de la proposition 5.1. Pour m G h(X), soit m h(x), les lemmes

5.1.3, 5.1.4 et la proposition de rigidité 5.2 montrent que h : h^ (Bgo(m,ri')) —>
Bgo(m,r/') est une isométrie locale de classe C\ Comme Bg(x,r/') C h~^(Bgo(m,ri')),
cela montre que h est une isométrie locale de classe C1 en tout point de X. D

5.2. Preuve de la proposition de rigidité

On rappelle l'énoncé de cette proposition: Soient U un ouvert de Bg{Q,D) C X,
V un ouvert de M et une application F : U —> V contractante, propre, de degré
d > 1. On suppose de plus que volg(U) d ¦ volS0(V). Alors F est une isométrie
locale.

La preuve s'inspire de l'appendice C de [BCG]. Elle comporte plusieurs étapes.
On montre d'abord (cf. 5.2.1) que pour presque tout m G V, le nombre d'antécédents

est égal à d et que pour tout m G V, il est inférieur où égal à d. On montre
ensuite que pour les points m G V ayant exactement d antécédents, il existe un
voisinage de chaque antécédent sur lequel F est une isométrie locale (cf. 5.2.2).
Pour cela on construit des voisinages dans V sur lequel F est bijective, puis on
montre que les applications réciproques sont lipschitziennes et finalement que F
est une isométrie locale sur ces voisinages. Dans la dernière partie, on montre que
l'ensemble des points de ramification K {m G V, card (i^1 (m)) < d} est vide,
c'est à dire que tous les points ont exactement d antécédents. La métrique g étant
seulement C1+a, il est alors nécessaire d'utiliser les propriétés de la métrique g
rappelées dans la proposition 2.2, notamment l'unicité locale du prolongement des

géodésiques.
On établit les premiers résultats sur le degré absolu en utilisant la formule de

l'aire et les arguments du lemme 5.1.2.

Lemme 5.2.1.
1. Pour presque tout m G V^card (F~ (m)) d et pour presque tout x G U, dxF

est une isométrie positive de TXX sur TF/X\M.
2. pour tout 'm G V, card (F^1 (m)) < d.

Preuve. 1. Soit {et}"=1 une base g-orthonormée de TXX on a

\J&cF(x)\ \ivo(dxF-el,... ,dxF-en)\ < \\dxF ¦ ex\\go .\\dxF ¦ en\\go < 1.
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Le corollaire 4.1.26 de Federer montre que

vols(t/) >
^

et l'égalité vo\g(U) d ¦ vo\go(V) entraine 3acF(x) 1 presque partout d'où
card (i^1 (m)) d presque partout.

L'égalité 1 ||Jaci;l(x)|| < \\dxF ¦ e\\\go \\dxF ¦ en\\go < 1 vraie presque
partout implique que ||(ir.F-ej||S0 1 presque partout et donc que d,xF est presque
partout une isométrie.

Remarque. Si F était de classe C1, la continuité de dF impliquerait que dxF est

une isométrie en tout point, et on pourrait démontrer la proposition en utilisant
le théorème d'inversion locale.

On montre la partie 2, par l'absurde. Soient x\,... ,x^+i, d+1 antécédents de

m dans U. Choisissons un réel r\ > 0 suffisamment petit pour que les boules

Bg(xt,f]) soient deux à deux disjointes dans U. Comme F est contractante,

F(Bg(xt,ri)) C Bgo(m,ri) d'où \Jx=i Bg(xt,v)) C F^^Bg^rn^)). La partie 1

du lemme permet de calculer

volfl(F-1(Sfl0(m,^)))
lF-1(BgQ(m,ri))

degF(t)wo(t)

d-volgo(Bgo(m,r])).

Donc
(d+\ \

vols M Bgix,,,-!]) \ < d-vo\go(Bgo(m,f]))

et
d+1

ols(5s(x,,?7)) < d- volgo(Bgo(m,r])).

Le même argument qu'en (28) montre que

(d+l)vnVn(l - cxrj2) < d ¦ vnVn(l + c2r,2)

et on obtient une contradiction en prenant r\ suffisamment petit. D

Remarque. Si d 1, cela suffit pour conclure que F est bijective. En effet, la
propriété 2 prouve dans ce cas que F est injective et la surjectivité vient de la
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non trivialité de degré de F. Si d > 1 alors card (i^1 (m)) est presque partout
égal à d et partout inférieur mais il peut exister des points où card (i^1 (m)) est
strictement plus petit que d (mais non nul).

Proposition 5.2.2. Soit m <eV tel que F"1 (m) {x\,... ,Xd}. Alors
1. il existe un voisinage W de m et des voisinages Ut des xt deux à deux disjoints

tels que F soit bijective de Ut sur W.
2. Pour chaque i 1,. ,d l'application réciproque de Ft est localement 2-lipschit-

zienne de W dans Ut.
3. Pour chaque i 1,.. ,d l'application Ft est une isométne locale.

On commence par montrer l'affirmation suivante.

Affirmation 5.2.3. Soit x un point de U, alors pour toute boule Bg(x,rj) de

rayon assez petit, la restriction de F à Bg(x,rj) est surjective sur un voisinage de

m F{x).

Preuve de l'affirmation. On choisit un réel rj > 0 tel que x soit le seul antécédent de

m par F dans Bg{x,rj). On a F{Bg{x,rj)) C Bgo{m,rj). Notons FB la restriction
de F à Bg{x, rj). La théorie du degré implique que sur les composantes connexes de

Bgo{m,rj)\F{dBg{x,rj)), le degré de FB est presque partout constant et sa calcule

pour presque tout point comme suit

(deg FB)(t)= V

Soit C la composante connexe de Bgo (m, rj\F(dBg(x, rj)) qui contient m. La
composante C contient l'image d'un ouvert O par Fb- Cette image est de mesure non
nulle car d'après 5.2.2. card (Fß (t)) < d sur V d'où

volg(FB(O)) >
>FB(O)

>- f |JaCjFß(y)K(y)
" Jo
volfl(O)

d
'

Le fait que J&cF(Y) presque partout implique que degFB > 0 sur C. On
en déduit que tout point de C a au moins un antécédent dans Bg{x,rj).

Preuve la proposition 5.2.2.
1. Considérons les boules Bt Bg{xt,rj) C U, avec rj suffisamment petit pour

que ces boules soient deux à deux disjointes. Notons Ft la restriction de F
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à Bg(xl,r]). L'application Ft est de degré presque partout constant sur la

composante connexe Ct de Bgo(m,ô)\F(dBg(xl,ô)) qui contient M. D'après
l'affirmation 5.2.3, Ft est surjective sur Ct. Soit VF Bgo(m,rj') C Ç\l=\Cl.
C'est une boule convexe contenant m, tel que tout point m' G If a au moins
un antécédent dans chaque boule Bt. Comme caid(F~^(m')) < d, il y a
exactement un antécédent dans chaque B%. Donc F~^(W) est un ouvert C

|Jî=i Bf On pose finalement Ut F~^(W) n _Bj, alors x% G C/4 et F% est une
bijection de Ut sur VF.

2. On note encore Ft la restriction de F de C/j dans VF. Supposons que l'application
réciproque F~ : W —> Ul ne soit pas localement 2-lipschitzienne. Quitte à

restreindre W en W (resp. Ut en U't) en préservant la bijectivité de Ft, on
peut supposer qu'il existe un réel e > 0 tel que pour tout point m1 G VF' (resp.
x1 G C//), on ait Bgo(m,e) C VF (resp. Bg(x',e) C E/j). Puisqu'on suppose

que F~ n'est pas localement 2-lipschitzienne, il existe deux points y,y' dans
U' tels que r\ dgo(Ft(y), f,,(y')) < e et dg{y,y') > 2r\. Soit m' le milieu du
segment géodésique [Ft(y), Ft{y')]. Alors

D'où

™\go{Bgo{Ft{y),ri)UBgo{Ft{y'),ri))
<vo\go{Bgo(Ft(y),ri))+vo\go(Bgo(Ft(y'),ri))

< vnr,n{2{\ + c2V2) - 1/2"(1 - c3?

où C2 et C3 sont les constantes introduites dans le lemme 5.1.2. Comme

Bg{y,rj) UBg(y',r)) C U[ et Ft est bijective sur C/j de jacobien presque partout
égal à 1, la formule de l'aire montrent que:

volgo(Ft(Bg(y,ri)UBg(y',ri)))=volg(Bg(y,ri)UBg(y',ri))
>2vnrjn{l-c1ri2).

D'autre part, le fait que F soit contractante implique

D'où
2Vnry"(l - c1V2) < «„?7n(2(l + c2V2) - 1/2"(1

et donc

1/2" < 2c2?72 + 2c1V2 + l/2nc3V2/A

et on a la contradiction en prenant r\ suffisamment petit.
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3. L'application réciproque de Ft, Ft est localement lipschitzienne donc presque
partout différentiable. Sa différentielle dxFt est presque partout une isométrie
positive sur un ensemble P de mesure pleine dans W. S'il existe une courbe 7
dans W telle que l'intersection avec P est de mesure pleine, alors

[0/(7)]
ds

97
as

ds

Affirmation 5.2.4. Soit un point m G V, et un réel 0 < 77 < inj (m) tel que
Bgo (m, 77) C V. j4/ors presque tout géodésique de Bgo (m, 77) issue de m rencontre
P et un ensemble de mesure pleine.

Preuve de l'affirmation. Soit un vecteur unitaire w G UmM. On définit la géodésique

7«, (s) expm sw. L'application </> :]O,77[x C/TOM —> _BS0(m,77)\{m} définie

par (p(s,w) expmsw est un difféomorphisme, et une isométrie si on munit
]0,r)[xUmM de la métrique pull-back. D'après le théorème de Fubini,

I mesQO^rn-^Bg^m^P^dw.

Or volg0(Bgo(m,ri)\P) 0 donc mes (]O,77[n7u,1(_Bso(7w,77)\P)) 0 presque
partout, d'où P est de mesure pleine sur jw n Bgo(m,r]), pour presque tout vecteur
w dans UmM. D

Fin de la preuve de la proposition 5.2.2. Soient maintenant deux points m\,mi
proches dans W. D'après l'affirmation, il existe un point m arbitrairement proche
de mi tel que la géodésique 7 joignant m\ à m rencontre P en un ensemble de

mesure pleine sur 7. On a donc

^s(-^T~ (ml)>-f1î~ (TO)) ^ ^{F~ 07) ^(7) dgo{m\,m)

d'autre part

dfl0(mi,m) dS0(F,oF,-1(mi),iiloF,-1(m)) < ^(JrVO.-FrV))
d'où l'égalité. Comme m est arbitrairement proche de m^, par passage à la limite
on obtient

ce qui termine la preuve de la proposition 5.2.2. D
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La proposition 5.2.2 montre que {m G V, card (i^1 (m)) d} est un ouvert. Il
reste donc à montrer que {m G V, card (F"1 (m)) < d}, qui est un fermé, est vide.

Lemme 5.2.5. L'ensemble K := {m G V,card (F"1 (m)) < d} esi mrfe.

Preuve. D'après la proposition 5.2.2, K est un fermé de mesure nulle. On suppose
K non vide et on considère m £ K. On établit l'affirmation suivante, qui nous
fournit une contradiction.

Affirmation 5.2.6. Toute go géodésique passant par m rencontre K en un
ensemble de mesure non nulle.

Preuve de l'affirmation. Par l'absurde. Supposons qu'il existe une géodésique 7,
telle que 7([0,£|) n K soit un fermé de mesure nulle dans 7([0,£|). Soit m' G

7[(0,4)nÄ" tel que card {F~x(m')) q < d et tel que

q= sup {card (F"1 (t))}.
te-y([0,£])nK

Dans une première étape, on montre que m' est isolé.
Notons xi,... ,xq les antécédents de m' par F. Soit un réel 77 > 0 tel que

les boules Bg{xllr\) soient disjointes deux à deux. Notons Ft la restriction de

F à Bt Bg (xt, rj). Puisque deg Ft > 1 presque partout sur la composante
connexe Ct de V\F(dBg(xl,rj)) qui contient m', F4 est surjective. Sur Ct tout
point t G 7([0,^]) n if proche de m' a donc au moins un antécédent dans chaque
Ct pour i 1,... g. D'après le choix de q, card (F~^-(t)) < q donc t a exatement
un antécédent dans chaque boule Bt.

Soit W Hî=i C»- On peut supposer qu'il existe un entier îq tel que deg FlQ >
2 sur VF, car si degi^ 1 pour tout i 1,... ,q, on peut trouver une suite de

points réguliers dans C (i.e. ayant exactement d antécédents), convergeant vers
m1 et dont les antécédents en dehors das Bt convergeant vers un point y de U tel
que F (y) 'm', contredisant card (F^1 (m')) < q. Supposons maintenant que m'
est un point d'accumulation de 7([0,^]) n K: il existe une suite de points dans

7([0,£|) n K arbitrairement proches de m1. Comme 7([0,^])\Ä" est un ouvert de

mesure pleine dans 7([0,^]), il existe une suite de segments ouverts s'accumulant
en m': on peut choisir 7(0) et 7(6) dans 7([0,^]) n K arbitrairement proches tels

que 7(]a, b[) soit un segment ouvert de 7([0,/])\Ä" arbitrairement petit. Comme
7(]a, è[) n'intersecte pas K et que degi^0 > 2, ces segments se relèvent dans
B%0, en r segments géodésiques distincts de même longueur (où degFtQ r > 2)

joignant les antécédents uniques de 7(0) et 7(6). Cela contredit l'unicité locale
des géodésiques obtenue dans la proposition 2.1. Le point m' est donc isolé dans

#,<l)nif.
Quitte à raccourcir la géodésique 7, on peut supposer que c'est le point de K

dans 7([0,^]) tel que 7(sq) m1. 7([0,sq[) et 7(]sq,^]) ne rencontrent pas K. Si
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on note y\,... ,yr et y'^,... ,y'r les antécédents des points 7(0) et 7^) dans B%0

alors les intervalles 7([0, sq[) et 7(]so, £]) se relèvent par F dans B%0 en r segments
géodésiques distincts, joignant yk à xl(i et xHi à y'k (k et k' variant entre 1 et r),
de longueur %([O,so[)) et %(]s0^])). De plus d{yk,y'k) Nk, k' G {1,... ,r}
et comme degi^0 r > 2, il existe donc au moins deux segments (ykxtoy'k)
et (ykxloy'k,), ce qui contredit l'unicité du prolongement des géodésiques pour la
métrique g (prop. 2.2 p. 448). L'affirmation est donc prouvée. D

6. Preuve du théorème de rigidité

On utilise tous les résultats précédents pour montrer que la suite de variétés rie-
manniennes [N,gk) converge à diamètre borné et est difféomorphe à N. On en
déduit que l'isométrie locale entre X et M est un revêtement fini (localement
difféomorphe).

Proposition 6.1. Avec les hypothèses de la proposition 3.3, N est difféomorphe
à la variété limite X.

Preuve. Cela découle des deux affirmations suivantes.

Affirmation 6.2. Soient 2 points, x,x' € X vérifiant l'inégalité

avec par définition

dg(x,h-1(h(x')))= inf dg{x,y).
yeh-1(h(x'))

Alors
dg{x,x') dgo{h{x),h{x')).

Preuve de l'affirmation. Comme h est contractante, on a dg(x, x') >dgo(h(x), h(x')).
Supposons que dg(x,x') > dgo(h(x),h(x')) et appelons 7 une géodésique
minimisante joignant h(x) à h(x'). Alors on a ^(7) dgo(h(x),h(x')) < dg(x,x').
Grace à l'isométrie locale h, on peut relever localement 7 dans un voisinnage de

x. Tant que le chemin 7 reste dans h(X), on peut continuer à relever 7 en un
segment géodésique ß. On vérifie alors que l'ensemble C des t G [0,+oo[, tels que
7(t) G h{X), est un ouvert et un fermé, donc que 7 reste toujours dans h{X).
Comme h est une isométrie locale, h{X) est un ouvert, d'où C est ouvert. Si

(t„)„ej\f, est une suite de points convergeant vers t^, alors h~^(-y(tn)) converge
dans X car ^(7(^0),7(in)) est borné et que le segment ß est prolongeable en tœ
puisque X est complet. On a évidemment /i(/3(too)) 7(^00)• D'où T^ G C.
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On peut donc relever 7 en un segment géodésique ß joignant x à un point
ß(t), oùt dgo(h(x),h(x')) et ß(t) est un antécédent de h(x'). On a i(ß)
Kl) dgo{h{x),h{x')). D'après le choix de x', dg{x,x') < dg{x,ß{t)) £(ß)
dgo(h(x),h(x')) < dg(x,x') d'où la contradiction. D

Remarque. Dans le cas p 1, la condition dg(x,x') dg{x,h~^{h{x'))) est

automatiquement vérifie puisque le lemme 5.1.2 implique que h est injective. Dans
ce cas, l'affirmation 6.2 montre déjà que h est une isométrie sur son image.

Affirmation 6.3. La variété (X,g) est de diamètre borné. En fait

X C Bg(0.2p ¦ diamS0(M))

où p deg/.

Preuve de l'affirmation. Notons x\,... ,xq G X les antécédents par h d'un point
h{x) et rappelons que q < p. Soit x' un point quelconque de X. Il existe un entier
io e {1,. ,q} tel que

dg(x!,x,J= inf dg(x!,xJ) dg(x!,h-1(h(x)).
je{l, ,q}

L'affirmation précédente montre que dg(x',xHi) dgo(h(x'),h(xto)) < diamS0M.
On a ainsi montré que

q

X C IJ Ss(x,diamS0(M)) C Bg(0.2p • diamS0(M))
i=\

ce qui termine la preuve de l'affirmation.

Fin de la preuve. La variété limite X est de diamètre borné si et seulement si la

convergence de {N,gu) se fait à diamètre borné, d'où X est difféomorphe à N. D

Proposition 6.4. L'application f : N —> M est homotope à un revêtement C
de degré p.

Preuve. La proposition précédente montre que N est difféomorphe à X. L'application

h est homotope aux applications h]~ de X dans M, qui sont de degré p
deg/ > 0. Donc h est de degré p et comme c'est une isométrie locale, h est un
revêtement localement isométrique de degré p. De plus le corollaire B de C. Plaut
[PI] assure que cette isométrie locale est de classe C1. L'application ho (/fc)^1 est
donc un revêtement différentiable de degré p de N sur M, homotope à /. D
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7. Applications

On présente dans ce chapitre des applications du théorème 1.1.

La première conséquence est que le volume minimal "repère" les sphères
exotiques.

Corollaire 7.1. Soit M une variété hypoerbohque fermée orientée stahlement-
parallélisahle de dimension n =/= 4 et S une variété fermée, de même dimension.
Alors on a l'inégalité

Minvol (MHS) > Minvol (M)

et l'égalité est atteinte si et seulement si S est difféomorphe à Sn.

Remarques.
1. D'après un résultat de D. Sullivan [Su], toute variété hyperbolique fermée admet

un revêtement fini stablement-parallélisable.
2. Si on ne suppose pas M stablement-parallélisable, alors Minvol (MjjE) > Minvol

(M) si S n'est pas homéomorphe à une sphère, y compris pour n 4. Par
contre dans le cas où S est une sphère exotique, la question de savoir si
Minvol (MjjE) > Minvol (M) reste ouverte si n 4 ou si M n'est pas stablement-
parallélisable.

Preuve du corollaire 7.1. Il existe toujours une application de degré 1 de MjjE
dans M, qui consiste à pincer S sur la sphère Sn. D'après le corollaire 1.2, on a
Minvol (MjjE) > Minvol (M), avec égalité si et seulement si MjjE est difféomorphe
à M.

En dimension n 3, l'unicité de la décomposition des variétés en facteurs
premiers (cf. le résultar de J. Milnor dans [He]) montre que cette condition est

équivalente à S difféomorphe à S*3.

En dimension n > 5, les méthodes de la topologie algébrique classique montrent
que si MjjE est difféomorphe à S, alors S a le type d'homotopie de la sphère Sn.

D'après le théorème de Smale [Sma] (cf. [Mi]), S est homéomorphe à Sn. Comme
M est stablement-parallélisable par hypothèse, la proposition 1.2 de [FJ] montre
que MjjE est difféomorphe M si et seulement si S est difféomorphe h Sn. D

Corollaire 7.2. Pour une structure différentiable fixée sur M, le volume minimal
n'est pas un invariant topologique.

Preuve de corollaire 7.2. Avec les hypothèses du corollaire 7.1, Minvol (MjjE) >
Minvol (M) dès que S est une sphère exotique, bien que MjjE soit homéomorphe
à M. D

Pour une variété topologique N, on peut alors définir son volume minimal
topologique par Minvoltop(^V) inf{Minvol(A^), pour toutes les structures diffé-
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rentiables Nt sur N} Avec les hypothèses du corollaire 7 1, on a en particulier
Mmvoltop(MtJS) < Mmvol(Mt)S) dès que S est une sphère exotique

On peut alors donner une version topologique du théorème 1 1 en appliquant le

théorème à la structure différentiable sur N réalisant le volume minimal topologique
Une autre application surprenante du théorème 1 1 est la suivante

Corollaire 7.3. Soit M une variété de dimension n > 3, fermée, orientée,
admettant une métrique hyperbolique réelle go Alors

Minvol (MflM) > 2 Minvol (M) 2 volS0(M)

Le volume minimal n'est donc pas additif par somme connexe

Preuve du corollaire 7 3 II existe clairement une application de degré 2 de M%M
dans M Or M%M n'est pas hyperbolique, donc, cette application ne peut pas
être homotope à un revêtement de degré 2 de M D
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