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Un théoréme de rigidité différentielle

Laurent Bessieres

Résumé. Nous démontrons dans cet article le résultat de rigidité suivant, concernant le volume
minimal d’une variété lisse fermée de dimension > 3.

Théoreme: soient N et M deux variétés lisses, fermées, orientées de méme dimension
n > 3. On suppose que M est munie d’une métrique hyperbolique go. Si f : N — M est
une application continue de degré non nul telle que Minvol (N) = |deg f|voly, (M), alors N est
une variété hyperbolique et f est homotope & un revétement riemannien. La preuve repose sur
Putilisation de théorémes de convergence riemannienne & la Gromov [GLP], et sur Padaptation
de la construction de Besson, Courtois, Gallot [BCG].

[’une des applications intéressantes est que le volume minimal n’est pas un invariant du
type topologique de la variété, mais de la structure différentielle. Il n’est pas non plus additif
par somme connexe.

Mathematics Subject Classification (1991). En premier 55C20; en second 53C21.

Mots clés. Rigidité, volume minimal, variétés hyperboliques.

1. Introduction

Un probleme central en topologie différentielle est de savoir a quelles conditions
une application de degré p > 1 entre deux variétés différentielles est proprement
homotope & un revétement. Dans cet article, nous considérons le cas des variétés
différentielles fermées, orientées, connexes de dimension > 3.

Nous montrons qu’un invariant de nature riemannienne, le volume minimal
d’une variété différentielle, introduit par M. Gromov [Gr], permet de résoudre le
probleme ci-dessus dans le cas ol la variété au but admet une structure hyper-
bolique.

Le volume minimal d’une variété différentielle M est défini comme suit.

Définition 1. Minvol (M) = inf {vol,(M) : g métrique riemannienne & courbure
sectionnelle |K(g)| < 1}.

Le résultat principal de cet article est le théoreme de rigidité suivant:
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Théoreme 1.1. Soient M et N deux variétés différentielles, fermées, orientées
connexes de dimension > 3. On suppose que M est munie dune métrigue hyper-
bolique go, a courbure sectionnelle K g, = —1. S’il existe une application continue

f— M
de degré p > 1 telle que
Minvol (N) = p - volg, (M) (1)

alors N est difféomorphe a une variété hyperbolique et f est homotope a un revé-
tement de degré p.

Remarque. D’aprés le résultat de Besson, Courtois, Gallot [BCG, 9.2], que nous
rappelons au chapitre 3, on a I'inégalité

Minvol (N) > p - volg, (M) (2)

Le théoreme 1.1 généralise le théoreme de Thurston [Thu] sur les applica-
tions de degré p entre variétés hyperboliques fermées orientées connexes. En effet
G. Besson, G. Courtois et S. Gallot [BCG] ont montré que dans le cas d’une variété
hyperbolique fermée, le volume minimal est atteint pour le métrique hyperbolique.
Plus généralement, ils ont obtenu un théoréme de rigidité riemannienne en utilisant
Pentropie volumique d’un variété riemannienne, qui montre que la métrique hyper-
bolique est la seule a réaliser le volume minimal. En dehors du cas hyperbolique,
on ne sait pas si le volume minimal est réalisable par une métrique riemannnienne.

Le théoreme 1.1 et le résultat ci-dessus de [BCG| permettent d’obtenir un
énoncé de rigidité por le volume minimal, analogue au théoreme de rigidité rie-

mannienne obtenue dans [BCG] pour I'entropie volumique:

Corollaire 1.2. Soient N et M deux variétés fermées orientées de méme dimen-
sion n, reliées par une application continue

fN—M
de degré non nul. Supposons M munie d’une métriqgue hyperbolique gg, alors
Minvol (N) > |deg f| - volg, (M).

De plus, en dimension n > 3, U’égalité est atteinte si et seulement si N peut

étre munie dune métrique hyperbolique, et s’il existe un revétement différentiable,
homotope a f, de N sur M.
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Une des conséquences du théoreme 1.1 est que le volume minimal “repere” les
spheres exotiques.

Corollaire 1.3. Soit M wune wvariété hyperbolique fermée orientée stablement-
parallélisable de dimension n #£ 4 et 3 une variété fermée, de méme dimension.
Alors on a Uinégalité

Minvol (M#>) > Minvol (M),

et U'égalité est atteinte si et seulement si Y est difféomorphe a S™.

Ainsi, lorsque Y. est homéomorphe & S™, mais non difféomorphe, la variété M3
est homéomorphe, mais non difféomorphe a M et

Minvol (M£%) > Minvol (M).

Le corollaire montre par ailleurs que le volume minimal n’est pas additif par somme
connexe. Un contre-exemple est également fourni par le résultat suivant

Corollaire 1.4. Soit M wune variété de dimension n > 3, fermée, orientée, ad-
mettant une métrique hyperbolique réelle gg. Alors

Minvol (M#M) > 2 - minvol (M) = 2 - volg, (M).

Y. Babenko [Bab] considére I'invariant naturel suivant pour une variété diffé-
rentiable M

Q(M) = inf{h(g)"voly(M)), g métrique riemannienne}.

Il a montré que c’est un invariant du type d’homotopie. D’apres le corollaire 1.3, le
volume minimal se trouve étre un invariant plus fin en ce sens qu’il peut distinguer
les structures différentiables de M.

La preuve du théoreme 1.1 repose sur 'utilisation de théorémes de convergence
“a la Gromov” (cf. chapitre 2) et sur la construction principale du travail de [BCG]
que nous rappelons et adaptons a notre cas au chapitre 3.

1.1. Schéma de la preuve

On considere une suite de métriques riemanniennes g sur N a courbure section-
nelle bornée par —1 et 1 et telle que voly, (V) converge vers p - voly (M). Le
probléme est qu’on ne sait pas & priori qu’il existe sur N une métrique réalisant
I'égalité. Dans la premiere étape, on utilise une version optimisée du théoreme de
convergence de M. Gromov, convenable pour étudier Ny = (N, g). Les difficultés
auxquelles nous avont a faire face sont les suivantes: on obtient au mieux une
convergence pointée vers une variété riemannienne (X, g) de méme dimension, a
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priori non compacte, munie d’une métrique Cc1te. On entend par la que pour tout
réel D > 0, il existe un entier Kp et pour tout entier £ > Kp un plongement

fP:B,(0,D)c X — Ny, 0eX

tels que £ * gx converge vers g de facon C L

La condition nécessaire et suffisante pour que X soit difféomorphe & N est que
la convergence ait lieu & diametre borné, ce que nos hypotheses ne donnent pas a
priori. Pour obtenir cette conditions, on va plonger de maniere la plus isométrique
possible X dans une variété compacte, M en 'occurrence, de maniere & majorer
son diametre et celui des Ni. Cela se fait via la variété Ny et les plongements ka .
Dans le chapitre 3, on reprend la construction principale de Besson, Courtois et
Gallot [BCG] pour définir des applications

Fka—+M

qui vérifient de bonnes propriétés, qui en font des quasi isométries sur des en-
sembles de volume arbitrairement grand dans Ny, mais ces propriétés sont moins
fortes que celles obtenues dans [BCG].

On peut alors considérer les familles d’applications

hp = Fyof :By(0,D) — M

dont on montre qu’elles sont équicontinues. [L’extraction de sous suites conver-
gentes permet alors de définir une application limite h: X — M.

Nous montrons successivement que h est contractante au sens large (chapitre 4),
que son degré absolu est fini, et que c’est une isométrie local (chapitre 5). On
en déduit alors que X est une variété hyperbolique de diametre borné, donc
difféomorphe & N et que h est un revétement localement isométrique fini (chapitre
6). Nous donnons les applications au chapitre 7.

Les résultats et les méthodes de [BCG] sont a Uorigine de ce travail, je remercie
Gérard Besson, Gilles Courtois est Sylvestre Gallot pour leurs remarques et leurs
encouragements.

2. Convergence des variétés riemanniennes

2.1. Convergence “a la Gromov”

La variété N est munie d’une suite de métriques riemanniennes gy approchant le
volume minimal, c¢’est a dire que la courbure sectionnelle est bornée par —1 et

1 et le volume voly, (N) converge vers Minvol (N) = p - voly (M). Si la variété
s’effondre (cf. [Pan]), le rayon d’injectivité tend en tout point vers 0 et le diametre
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peut tendre vers l'infini. L’effondrement riemannien est controlé par le volume
simplicial qui doit étre nul. Comme M est hyperbolique et f est de degré p > 1,

NI Zp-[IM] >0

d’olt N ne s’effondre pas. Pour chaque métrique g, la variété Ny = (N, gx)
contient un point 0y ol le rayon d’injectivité

inj (0) > ¢ (3)

pour une constante £ > 0. En fait, on peut prendre la constante universelle de
Gromov ([Gr. 0.5], injectivity radius estimate). Cependant, le diamere peut tendre
vers l'infini.

Les conditions d’utilisation du théoreme de convergence de Gromov ([GLP,
8.28]) sont vérifiées. Il existe une variété “riemannienne” complete (X,g), g
métrique de classe CY et une sous-suite de {(N, gx)} dont la limite pour la con-
vergence pointée est X. Cela signifie qu'une boule centrée au point base de la
variété limite est homéomorphe a partir d’un certain rang aux boules centrées
de la sous-suite et que la dilatation des homéomorphismes et de leurs inverses
converge vers 1.

Si, de plus, la convergence de (N, gy) se fait a diametre borné, alors la variété
limite X est homéomorphe a V.

2.2. Régularisation de la variété limite

Maintenant, le théoreme de régularisation de Nikolaev [Ni] permet de définir sur
X une structure 03, la métrique g étant clte,
En utilisant divers résultats sur la métrique limite (prop 2.2), on établit

Proposition 2.1. [ existe une suite de métriques riemanniennes g sur N, ap-

prochant le volume minimal, et satisfaisant a (3) telle que

1. La suite pointée (N, 0y, gi) converge vers une variété “riemannienne” compléte
(X,0,9), g de classe C11 0 < o < 1. Précisément, pour tout réel D > 0, il
eriste un entier Kp et pour tout entier k > Kp un difféomorphisme

& :B,(0,D) C X — By, (04,D)C N

tel que ||dfP|| et ||(dfP) || tendent vers 1 quand k tend vers +oc.

2. Les géodésiques de (X, g) sont localement uniques et prolongeables. L’application
exponentielle est bien défini de T, X dans X.

3. vol(X) < minvol (N).

Remarque. Si on suppose de plus que le diametre est uniformément borné, la
variété limite est compacte et difféfomorphe a V.
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Dans la théorie des variétés riemanniennes, les bonnes propriétés métriques
telles que 'existence et I'unicité locale des géodésiques, I'existence de I’exponentiel-
le, etc... se ramenent & des problemes différentiels. Les coefficients des équations
différentielles font intervenir les dérivées des symboles de Cristoffel de la métrique,
gie sont ici de classe C® seulement. Les résultats classiques de la théorie des
équations différentielles ne s’appliquent pas.

On se place dans le cadre plus géométrique des espaces d’Alexandrov a courbure
bornée (cf. [ABN],[BGP]). Les résultats et les méthodes de cette théorie permettent
de montrer (cf. [Pl],[GP]).

Proposition 2.2. La variété X est un espace d’Alexandrov géodésiquement com-

plet a courbure borné —1 < K < 1 vérifiant les propriétés suivantes

1. Les géodésiques sont prolongeables de maniére unique

2. Il existe une fonction ¢ : Ry — Ry telles que le rayon d’injectivité de X au
point x € X est minoré

inj (X) > ¢(d(0,))
3. L’application exponentielle est bien définie de T, X dans X.

Remarque. La liste n’est pas exhaustive (cf. [Be]). On indique simplement les
propriétés nécessaires pour nos besoins.

Lorsque la convergence a lieu avec un rayon d’injectivité uniformément minoré
(dans le cas compact), I’assertion 1 est déja connue (cf. chapire 2 de [GP], propo-
sitions 3 — 7 de [Pl]) ainsi que I'assertion 3 (cf. [Pe, 4.4]). La proposition [GLP,
8.22] de Gromov montre que les démonstrations restent valables dans notre cas,
et prouve aussi ’assertion 2.

Proposition 2.3 (Gromov). [l existe une fonction universelle

PnA By X Ry — Ry

telle que si V' est une variété riemannienne a courbure sectionnelle pincée | K| <
A2, etw, v €V alors

Uv") 2 b A (E(v), d(v,0)) > 0

ou £(v) = 1/2min (m/A, plus petite longeur d’un lacet géodésique non trivial basé
env).

Cette proposition permet de minorer uniformément le rayon d’injectivité sur
les Bgi(0r, D). Le rayon d’injectivité passe & la limite sur B, (0, D).
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3. Adaptation de la construction de [BCG]

On reprend et on adapte dans ce chapitre la construction principale de Besson,
Courtois et Gallot [BCG].

3.1. Résultats de Besson, Courtois, Gallot

Avant d’énoncer leur théoreme principal, on rappelle que 'entropie volumique
d’une variété compacte N munie d’'une métrique riemannienne g est définie par

h(N,g) = lim log(vol;(B;(R)))/R

oil § est la métrique relevée de g au revétement universel N, et B;(R) est une
boule géodésique de rayon R dans le revétement universel N (cf. [Ma]).

Théoréme 3.1 (Besson, Courtois, Gallot, 1994). Soient N et M deux varié-
tés fermées connezes orientées de méme dimension n > 3, reliées par une appli-
cation continue

fN—M

de degré non nul. Supposons M munie d’une métrique localement symétrique de
courbure strictement négative, notée go. Alors toute métrique riemannienne g sur
N vérifie

hy (N) - volg(N) > |deg f|hy, (M) - volgy (M). (4)

De plus, en dimension n > 3, Uégalité est atleinte si et seulement si (N,g) est
localement symétrique (de méme type que (M, go)). Il existe alors une constante
A telle que f est homotope & un revétement isométrique de (N, g) sur (M, go).

Un corollaire important de ce théoréeme est que la métrique hyperbolique sur
une variété est la seule a réaliser le volume minimal.

Corollaire 3.2. Soit M une variété fermée munie dune métrique hyperbolique
g0 (de courbure sectionnelle K4, = —1), alors Minvol (M) = voly, (M). De plus,
s’il eriste une autre métrique g, de courbure sectionnelle |K(g)| < 1, telle que
voly (M) = volg, (M) alors g est isométrique a go.

3.2. Construction fondamentale

On adapte la construction principale de [BCG] pour démontrer la proposition
suivante.

Proposition 3.3. Soient M, N deuz variétés différentielles fermées, conneres,
orientées de dimension n > 3. On suppose que M est munie dune métrique
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hyperbolique gy, que Minvol (N) = p - voly (M) et qu’il existe une application
f: N — M continue de degré p > 1. Alors, il eriste sur N une suite de
points (0g)renr, une suite de métriques riemanniennes (gi)renr @ courbure sec-
tionnelle bornée |K(gi)| < 1 telle que limg_o volg, (N) = p - volg, (M), et une
suite d’applications C1, homotopes & f, Fy : (N, gr) — (M, go) telles que

1. L’application Fy vérifie, pour tout entier k, pour tout point x de N

[Jac Fi ()] gx,90 < 1 (5)

2. Soit Wi, = {m € M tel que card F,;l(m) = p} alors

volgy (Wi) 2 volg, (M) — o(k) (6)
Jac Fy, > 0 presque partout sur F,;I(Wk) (7)
voly, (F (W) > voly, (N) = o(k) (8)

3. Soit U, = {z € N tel que |JacF,£:E)|gk7gO >1—1/k} alors

llde Fillgi,g0 <1+ o(k), V& € Us, (9)
voly, (Uk) 2 volg, (N) — o(k), (10)
volg, (Fig(Uk)) 2 volg, (M) — o(k), (11)
4. Pour tout réel D > 0, il existe un entier Kp tel que
lda Fllgi,g0 < 1+ hrgo (M) (12)

pour tout entier k > Kp et tout point « de By, (0, D).

Remarque. La notation o(k) désignera dans I'article toute fonction positive ten-
dant vers 0 quand & tend vers +oo.

La preuve de cette proposition occupe toute la fin de ce chapitre.

On se donne d’abord une application f : N — M, de degré p > 1, entre
les deux variétés fermées. En régularisant, on supposera dans la suite qu’on peut
choisir une application de classe C1. On suppose que M est munie d’une métrique
hyperbolique gg et que Minvol (N) = p - volg, (M). 1l existe alors une suite de
métriques riemanniennes gi a courbure sectionnelle bornée par —1 et 1 telle que
limy_, o0 VOI(N, gi) = p - volg, (M).

Quitte & extraire une sous-suite des métriques (gx), on va construire une suite
d’application Fy : N — M vérifiant la proposition 3.3.

Puisque |N|| > ||M]| > 0, la suite (Ng) = (N, gr) ne s’effondre pas, il existe
donc une suite de points 05 € N pour laquelle inj (05, gx) > € > 0, ol € ne dépend
que de la dimension.
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On munit le revétement universel N des métriques relevées, qu’on note encore
gr- On identifie I'espace hyperbolique sur H™ & B(0,1) C R"™ et dH™ & ba—l
On appelle encore gg la métrique hyperbolique sur H™. L’application f induit un
homomorphisme p : [I1N — II1M et se releve en une application équivariante
f: N — H", c’est a dire vérifiant

F(v(@) = p(N(J ()

pour tout y € II; N et tout point z € N.
La construction des applications F} se fait alors en deux étapes. On définit
pour tout entier k des applications équivariantes (pour une action isométrique de

Iy M sur L2(OH™,df))
®p - (N, gr) — L*(OH™,d6)

et
7 8% c L2(8H™,d0) — H™.

On pose alors Fk =7mody: N — H™,
Nous rappelons d’abord quelques objects nécessaires a la construction.

3.3. Définition des objects fondamentaux de la construction

3.3.1. Fonction de Buseman

Pour une variété d’Hadamard (c’est & dire riemannienne simplement connexe de
courbure négative) une fonction de Buseman est définie de la fagon suivante : soit
dp la distance associée & gg, pour (m,0) € H* x 9H™, on pose

Bom) = Jim do(m, () — ¢

ol ¢ est la géodésique unitaire joignant 0 a #. La fonction de Buseman est de
classe C'!, convexe, 1-lipschitzienne et de gradient unitaire (cf. [BGS]).

3.3.2. Noyau de Poisson

Pour (m,0) € H™ x 0H™, on définit le noyau de Poisson comme:

po(m, 0) = exp(—hoSBp(m))
ol hg est ’entropie volumique de la métrique gg. On a la proposition suivante
Proposition 3.4 (BCG). Soit g € Isom (H™). Alors g agit sur OH™ et
Jacg(0) = po(g~1(0),0).

On en déduit que po(m,0)df est une mesure de probabilité sur OH™. On définit
alors une action de TIy M sur L2(OH™,d) par

9(6)(0) = (g 1(8))(po(g(0),0))1/2.
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Proposition 3.5 (BCG). L’action précédente de TIyM sur L2(OH™,df) est
isométrique.

3.8.3. Constructions des applications équivariantes positives Py,

On définit maintenant des applications &), : N — §°° C L2(OH™,df) ol df est
une mesure de probabilité, vérifiant les conditions suivantes

1. pour tout point (z,0) € N x OH™.

/ B2(x,0)do = 1
OH™

2. pour toute isométrie y € II{ N et tout point (z,0) € N x dH™,

B(y(z),0) = p(7), B(z,0) = Bz, p~ (7)(9))(po(p(+)(0),0)) />
3. pour tout (z,0) € N x dH™,
O(z,0) > 0.

En particulier, on utilisera dans la suite les applications suivantes
Définition 2. Pour (z,0) € N x H™,

By (z,0) = e~ 2P @) = po(F(),0)!72

Définition 3. Pour (z,0) € N x H™,
Di(2,0) = Vi (,0)/ | Wk ()l L2

\
ou

U (x,0) = </ e hodar, @¥) po (F(y) ~0)wk(y))1/2

N

et wy, est la forme volume associée a gy,.

La définition 3 a un sens si hgp(N) < ho(M). Or d’apres le théoreme de
comparaison de Bishop (cf. [GHL, 3.101]), la condition |K (gz)| < 1 implique Ay, <
hg. Comme K(Ag) = TlZK(g), et h(Ag) = %h(g)7 on peut rendre hg, strictement
inférieur & hg en remplagant g par (1 + o(k))gr. D’autre part, 'inégalité (4) p.
449 montre que hy, converge vers hg.

Les applications ®g et ®j, vérifient alors les conditions 1, 2 et 3. On peut faire
montrer:

Proposition 3.6 (BCG). L’application ®, est de classe Ct, équivariante de N
dans S C L*(0H",df).
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3.8.4. Métriques images réciproques

Définition 4. Soit une application ¢ : N — L2(OH™,d) différentiable. On
définit g4 = ¢+ (can) od can est le tenseur canonique de S C L*(QH™,df). Pour
tous vecteurs u, v dans TxN, on a

sl i = /w(dzqs w)(dap - 0)(8) dO

Si ¢ est équivariante par rapport aux actions de I11V et II1 M, on peut faire passer
la métrique g4 au quotient. Si ¢ est une immersion, go est définie positive.

Soit (e;);—1,... » une base g orthonormée de 7, IN. On considere la trace de la
métrique pull-back.

Définition 5.
trace,, go(z) = Z (ei,€5) Z] o(z,0))? d@—an eil| 2.
i=1

Le lemme suivant sera utile dans la suite
Lemme 3.7 (BCG). L’application ¥y, définie précédemment vérifie

trace,, gp, (x) < h3/4 (13)
pour tout point x € N et tout entier k.

3.3.5. Application barycentre
On donne les principaux résultats du chapitre 5 de [BCG].

A toute mesure p positive sans atome sur dH™, on associe I'unique point m =
bar (1) € H™ défini par

/ B (e) dpa(8) = 0
OH"™

oll 3 est la la fonction de Buseman de la métrique go et {e;}} | une base de
T H™. Toute isométrie v sur H™ agit sur 9H™. Pour une mesure p, on définit
% par v % u(A) = p(y1(A)) pour tout ensemble mesurable A dans dH™. On
a les propriétés suivantes

bar (v # pu) = ~(bar () (14)
bar (pg(m, 0)df) = m. (15)
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Définition 6. On pose alors
7: 8% c L2(OH",d6) — H"
m($) = bar (¢*(0)d0).

Proposition 3.8 (BCG). 7 est une submersion C’l, équivariante et sa différen-
tielle s’écrit dans une base orthonormée {E;}7 | de son espace horizontal au point
¢ e l(m),

dym - By = 2(I — H™) "1 HY 2,

ot {e;}I_ | est une base orthonormée de T, H™ et Hy, est U'endomorphisme (sy-
métrique défini positif de trace = 1) de T, H™ défini en m = 7(¢) par

mmﬂm:%mw:/ B5) ()08 ) (0) 62 (0) d.

oH»

3.4 Construction des applications Fj,

Définition 7. On pose o
F,:N— H"

Fy(z) = 70 ®(x) = bar (92 (z, 6)d6).

Cette application est de classe C’l, équivariante el passe au quotient en une appli-
cation I, : N — M de classe cl.

Dans la suite des lemmes suivants, on montre qu’on peut extraire une sous-
suite telle que les applications F} vérifient les propriétés de la proposition 3.3.
Ces propriétés traduisent le fait que les applications Fj sont proches “en volume”
d’isométries locales.

On établit d’abord une propriété simple en terme de degré.

Affirmation 3.9. Les applications Fy, et f sont homotopes. FEn particulier,
deg (Fy) = deg (f) =p.

Preuve. ® et j sont proprement homotopes par I’homotopie canonique, que est
II{ N équivariante

H(t,) = (1 - )8%(x) + 193(x)) /2,

En utilisant la propriété (15) p. 453 du barycentre, f = 7 o $g donc est reliée a
7 o $; par une homotopie équivariante de N dans H™. D’ou le résultat pour f et
. O
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Lemme 3.10. L’application F} vérifie, pour tout entier k,

[Jac Filgn .00 <1 sur N.

Preuve. Comme dans celle de [BCG], on utilise la majoration (13) et le calcul de
comasse(T * wp).

Les deux résultats précédents permettent d’obtenir des informations sur le de-
gré absolu de 'application Fj. Si les applications I} sont proches en un certain
sens d’une isométrie locale, les degrés absolus des applications I, doivent coincider
avec le degré usuel sur les ensembles dont le volume croit vers le volume de M.
On obtient un résultat dans ce sens en utilisant la formule de 'aire, qui relie le
jacobien d’une application et son degré absolu.

Il faut noter qu’a partir de maintenant, les résultats different notablement de
ceux de [BCG]. En effet, alors que la condition d’égalité des volumes voly (V) =
p - volg, (M) donnait dans leur article des convergences presque sures, la condition
de convergence des volumes vol,, (N) vers p-voly, (M) ne nous permet de récupérer
que des convergences en volume. Dans tous les lemmes suivants, on démontre
seulement que les applications F}, vérifient les propriétés de la proposition 3.3 sur
des ensembles de volume convergeant vers le volume total de N.

C’est, le lemme suivant qui démontre la propriété 2 de la proposition 3.3.

Lemme 3.11. Soit Wy, = {m € M, card (Fk_l(m)) = p} alors
L. volg, (Wy) > volg, (M) — o(k)

2. Jac Fy, > 0 presque partout sur F,;l(Wk)

3. voly, (Fy L(Wi)) > vol,, (N) — o(k).

Preuve. On utilise la formule de Daire qui s’écrit comme suit (cf. [Mo, EG]):
Soit F': R — R™ une application lipschitzienne. Alors pour tout ensemble
mesurable A C R™.
/ [Jac F(z)|w(z) = / card (F~1(y) N A)w(y)
A n
Comme l'application F}, est de degré p, card (F~1(m)) > p presque partout sur

M. On décompose M sous la forme Wy U “Wj. Observons que card (F_l(m)) >
p+ 1 presque sur “Wy. On a les inégalités

Volgk(N)2/N|Jach(x)|wk(x)

. / corel{ L) e
WU e Wy,

> /Wk pen(m) + [ Lo
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> p - (volyg (M) = volyy (W) + (p + L)volyy (“W)).

D’ou
volg, (“Wy) < volg, (N) —p - volg, (M)

qui tend vers 0 quand k& tend vers co.

Comme le degré de F}, est égal a p > 1 et que le nombre d’antécédents par F},
est exactement p sur Wy, il en résulte que le signe de Jac F}, est presque partout
constant, sur F;I(Wk) En particulier Jac Fj, > 0 presque partout sur F,;l(Wk)

De plus, voly, (F; L(Wy)) > voly, (N) — o(k). En effet,

voly, (F 1 (Wy)) > / |Jac Fy |wi
Fil(Wk)

:/ card(F*l(m))wO(m)
Wi

> p - volg, (Wy)
qui tend vers p - volg, (M). O

On démontre la partie 3 de la proposition 3.3 en extrayant une sous-suite
convenable.

Lemme 3.12. [l existe une suite croissante d’entiers (np)ren telle que pour
chaque entier k, Uowvert Up, = {x € N,|Jac Iy, (z)lg,, g0 = 1 — 1/k} vérifie

L. volg, (Un,) > volg, (N)—o(k)

2. voly, (Fy, (Uyy)) > volg, (M) — o(k).

Remarque. Pour obtenir exactement la partie 3 de la proposition 3.3, il suffit
d’extraire la suite (gn, )ren et de la renuméroter (gi)ren -

Prewve du lemme 3.12. Fixons un entier k > 0. Soit I'ensemble V; = {z €
N, |Jac Fi|g, g0 () < 1 —1/k} défini pour tout entier {. On note w; la forme volume
sur N;. Les applications F; sont de degré p, donc

p'VOlgo(M):p'/ wo
M

:/N(Fz)*WO

< / |[Jac F}|w;
N

= |[Jac F}|w; +/ |Jac Fy|w;
\ N\V;
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< (1= 1/k)voly, (Vi) + voly, (n) — vol,, (V1)
done
volg, (Vi)k(volg, (N) — p - volg, (M)

qui tend vers 0 quand [ tend vers +00. On obtient la minoration 2 en utilisant la
formule de 'aire et le fait que Ffl(Wl) NnU, C Ffl(Fl(Ul) NWy).

volyg (FI(UL)) 2 1/p /F — (F=1(m))wo(m)

21/]9/ |JacFl|wl
Flw)nm

> 1/p/ 1—1/kw
Flw)nu

1
3 Evoly, (F Y (W) n )
P

qui tend vers volg, (M).

Pour un entier ! suffisamment grand, on obtient volg, (V) < 1/k et
volg, (L7 (Uy)) > volg, (M) — 1/k.

Pour un tel entier [, on pose n; = L. |

Linégalité (9) de la proposition 3.3 montre que F) est presque contractante.
Pour la démontrer, on a besoin d’un lemme technique qui relie la convergence des
jacobiens au comportement des dérivées de Fj. Cela se fait en montrant que les
valeurs propres des formes quadratiques qui expriment dF), convergent vers 1/n.

Lemme 3.13. On note u;? (z) les valeurs propres des formes quadratiques

hli(e,e) = /(W(dﬁ(Fk(z%g)(.))?q%(%0) d0 = go(HP e, e).

Les application ,u? sont continues, 11N invariantes, classées 0 < M? <LK /L? <
1 et bien définies sur N. De plus,

|u§(x) —1/n| <o(k) sur U.

Preuve. On utilise les propriétés d’équivariance de Fj. Pour ne pas surcharger les
notations, on notera z € N un relevé de x € N. On remplace la notation Hq)k(x)

introduite en 3.8 p. 454 par HF pour z € N. En reprenant la preuve de [BCG,
7.4], on établit que
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n/2

h2
Jac Fiy(z)| < 2"(det H¥)1/2 det(I — HF)=1 [ 2
xz x 4
n

<1 A (W(@) - 1/n)?
i—=1

pour une constante A > 0 (cf. [BCG, B5]) d’olt

n

D (@) — 1/n)? < 1/A(1 — |Jac Fy(z)))

=,

et donc, pour tout point z € Uy, (cf. lemme 3.12)

k(@) = 1/n] < ok).

On en déduit le résultat suivant.

Lemme 3.14. Pour wune application linéaire L : T, N — T,,,M, on définit la
norme .
1L gr90 = sup go(l-u, L-u)2.
w€TN,gp (u,u)=1

Alors, pour tout point x € Uy,

||szk||gk,90 <1+ o(k)

Preuve. En suivant [BCG. 7.7], on montre que pour tout point = € Uy,
1—1/k < |Jac Fi(z)[2/™ < 1/n tracey, (Fy * go)(z) < 1+ o(k).

On appelle a? les valeurs propres du 2-tenseur Fj * go(x) relativement & g, et on
pose 3; = a;/([Trog cu)Y/™. Les inégalités

n 1/n n
1—1/k < <Ha?> <1/nY ma? <1+ o(k) (16)
i=1 i=1
et N
13 (5 - 1)? < llf—l(/’jj i, (17)

i=1



Vol. 73 (1998) Un théoréme de rigidité différentielle 459

et I'inégalité triangulaire impliquent

n 1/n n 1/n
las — 1] < (Hai> 1B — 1|+ (H%) —1| < o(k)
i=1 i=1

pour tout =z € Uy. Ceci prouve bien que les valeurs propres de Fj * go(z) sont
uniformément proches de 1 sur Uy. D’ou le résultat. |

La relation (12) de la proposition 3.3 est particulierement importante. Elle
permet de construire une suite équicontinue d’applications, convergente et de limite
contractante. Nous aurons besoin du lemme suivant, pour lequel il faut travailler
a diametre borné.

Lemme 3.15. Pour tout réel D > 0, il existe un entier Kq, tel que
ph(@) <1-1/n (18)
pour tout entier K > Kp, tout point x € By, (04, D).

Preuve. On peut reprendre la preuve de [BCG, 7.5]. La seule modification &
apporter est de rester & distance majorée du point base, ce qui permet de minorer
uniformément le rayon d’injectivité sur la boule. Comme la courbure est bornée,
on en deduit qu’étant donné un réel 6 > 0, il existe un entier ks p & partir duquel
By, (0,2D)\Uy, ne contient pas de g; boule de rayon ¢, Vk > ks p. Ce qu’on
reformule en disant que tout point de By, (04, D) est & distance plus petite que &
d’un point de Uy. On indique les étapes de la preuve, en suivant [BCG, 7.5].

On raisonne par I'absurde. Considérons donc un entier k£ assez grand. On
suppose qu'il existe un point z1 € By, (0x, D) tel que pk(z1) > 1 — 1/n. 1l existe
un point zg € Uy tel que dy(zp,z1) < 6. D’aprées le lemme 3.13, pf(2g) <
1/n+o(k) < 1/n+ § puisque que uf converge uniformément vers 1/n sur Uy,. On
peut considérer zg et z1 comme des points de N situés dans un méme domaine
fondamental et considérer ’application équivariante F, de N dans H™. Notons
9 le premier point de la g, géodésique minimisante « joignant xg & x1 qui vérifie
wF(z9) = 1 — 1/n. On peut supposer que l'arc de géodésique [zpxs] n’est pas
réduit a un point, en prenant k suffisamment grand.

On a pour tout point x € «, 'inégalité

wi () -
———<n
1 — pl(z)
2
d’olt ||dr||4, < 2n sur ®; o . La minoration ||dzd>k||%2 < %Q (cf. lemme 3.7) et le

théoreme des accroissements finis impliquement alors

dgo (B (x0)mFy(22)) < nhod.
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Soient maintenant o la géodésique go-minimisante joignant Zs'k(gzo) a Fk(xg) et
Y un champ de vecteur, unitaire, parallele le long de . Posons Yy = Yﬁk(zo) et

Yy = Yﬁk(wz)‘ On estime la quantité

|hk(Y2,Y2) — hE(Y0,Y0)]

| @5 Y2 @ (02,0) — B (00,0)

+ (B (5, (2g).0) Y2 = (AB(5, (2.0 YO) 2 ®F (20, 0)d).

On majore la premiere partie de l'intégrale en utilisant I'inégalité de Cauchy—
Schwarz et le fait que ||dj||,, = 1. Pour la deuxiéme partie, on utilise le théoreme
des accroissements finis et le calcul de Ddg (cf. [BCG]) pour majorer la quantité

148, (02).0) * Y2 = AB(13 (00),0) - Yol Par 2dgy (Fi(0), Fi(w2)).
On obtient |h*(Ya,Y2) — hE(Yh, Y0)| < (8n+ 1)hgd, et finalement

1F(9) < 1/n+ 6+ (8n+ 1)hod = 1/n + ((8n+ 1)ho + 1)6.

En choisissant § < Wm, on trouve pk(z9) < 1/n+(n—2)/n=1-1/n

ce que est contradictoire avec le choix de x9. |
On en déduit

Corollaire 3.16. Pour tout réel D > 0, il existe un entier Kp tel que
|do Fi |l gi 90 < mho

pour tout entier k > Kp, tout point x € By (0y, D).

Preuve. D’apres le lemme précédent, pour tout entier k& > kp, pour tout point
z € Byy(04, D), on a pf(z) <1 —1/n pour tout 5 = 1,... ,n. Donc pour tout
entier k > K p, pour tout vecteur gi-unitaire v de T, N,

lde e, ullgo = [ldm 0 dy®r - ullgy < [ldm||l|de P - ullgy-

On conclut avec les majorations

V1=1/n <2n

l[drll < 2m <

et I
s - ull 2 < -
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4. L’application contractante h: X — M
4.1 Construction de 'application h: X — M

Rappelons nos hypotheses: étant donnés deux variétés différentielles M et NV,
fermées, connexes, orientées de dimension n > 3, il existe une application f :
N — M de degré p > 0 telle que Minvol (N) = p - voly, (M), olt gg est une
métrique riemannienne & courbure sectionnelle —1 sur M.

Les chapitre 1 et 2 permettent de construire une suite de métriques riemanni-
ennes g, sur N & courbure sectionnelle |K (gr) < 1 et telles que limy_,o0 voli(N) =
p - volg, (M), ayant les propriétés suivantes
1. (N, gr) = Nj converge au sens de Gromov (2.1) vers une variété riemannienne

(X, 9).

2. Il existe une suite d’applications Iy : N — M, homotopes a f, vérifiant la

proposition 3.3.

Pour tout D > 0, la convergence pointée des variétés Ny vers X permet de
définir des applications

hY = Fyo fP : B,(0,D) — (M, go).

Ces applications sont définies pour tout entier & > Kp et ont la propriété de

cohérence suivante: VD' > D, Vk > Kp, hﬁ/Bg(O’D) =hL.

Lemme 4.1. Pour tout D > 0, la suite de fonctions
th : BQ(O7D) - (M790)

est équicontinue.

Preuve. Cela découle directement des majorations obtenues dans la proposition 2.1
pour ||dfy|lg,q. et dans I'inégalité (12) de la proposition 3.3 pour ||dFy(z)]| 4,0 SUT
toute boule compacte By (0, D). O

Puisque pour D’ > D, et k suffisamment grand, th/ et hD coincident sur
By (0, D), le théoreme d’Ascoli et un procédé diagonal permettent de montrer.

Corollaire 4.2. Il existe une sous suite th’“ 1 Bg(0,Dy) — M, avee limy,_,o0 Dy,

= +4o0, qui converge uniformément sur tout compact vers une application lips-
chitzienne h : X — M.
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4.2. L’application h est contractante au sens large

Le reste de ce chapitre est consacré a la démonstration de la proposition sui-
vante.

Proposition 4.3. L’application h : (X,q) — (M, go) donnée par le corollaire
4.2 est conlractante (au sens large).

Preuve. Soient deux points z,2’ € X. 1l s’agit de montrer que
dgq (h(z), (")) < dg(,2"). (19)
On choisit un réel D assez pour que z,z’ € By(0, D).
Observons que le rayon d’injectivité est minoré sur B, (0, D) par un réel r >
0. 11 suffit d’établir I'inégalité (19) pour tous points z, =’ de By(0, D) tels que
dg(z,2') < r/2. Le cas général se traite alors comme suit.

Soit v une géodésique minimale de x & 2/, et une suite de point z = zg,z1, 9,
&y =&’ sur vy tels que dg(z;,2i41) < r/2. Alors,

3
I

dgo (h(2), h(z")) < : dgo (h(zi), h(ziy1))

1
dg{#g, Bpp1)

INA
M7
—_ en]

—~

= dmaa )
On suppose donc dans la suite de la preuve que dy(z,2') < r/2.
Fixons quelques notations. On pose hy = h¥, my, = hi(z), m, = hi(z')
et U] = f;l(Uk) C By(0,D). Sans perte de temps, les propositions 2.1 et 3.3
permettent de supposer que
L. |ldhi|| <1+ o(k) sur U},
2. ||dhi|| < n? sur B,(0, D) pour tout entier k grand
3. Jachg| > 1 — o(k) sur U},
4. voly(U}) > voly(Bg4(0,D)) — o(k)
La preuve de la proposition repose sur le résultat suivant.

Lemme 4.4. Soit un réel 0 < § K dg(z,2’) el v une géodésique minimale de x
a o', Il existe un entier Ks p tel que pour tout entier k > Ks p, il existe un point
xy, proche de @’ et une géodésique minimale ~y, : [0,1] — By(0, D) telle que

L 4(0) =z, w(l) = ax, dg(zs,2") <0

2. Uy eUp) <4,
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Autrement dit, le fait que U}, soit de volume convergeant vers le volume plein dans
By (0, D) implique qu’il existe une géodésique 4 proche de v telle que ~y;, rencontre
U sur une longueur > () — 4.

Terminons la preuve de la proposition en supposant le lemme montré. Soit
0 < 6 € dg(z,2) et un entier K5 p donné par le lemme.

dgo (h(@), h(=")) = lim dg, (hi (), b ("))
< lim (dgg (b (@), hie(2k)) + dgo (i (1), ("))

La propriété 2 de ||dhy|| et le lemme impliquent que
dgo (b (z1), hi(2')) < n?3. (20)

D’autre part, pour k > K; p,

S/ IIdhkm(t)lldtJr/ | dhs, - 41 (2)]| dt
'YkmU,/c WWCUJQ

(14 o(k)) - €y N U}) + ne(yx N °U})
(1+ o(k)) - dy(a, z1) + n%8
( k

s
<
< (14 o(k)) - dy(,2") + (1+ o(k) +n?)s (21)

d’olt (20) et (21) et un passage a la limite impliquent
dgy (h(), h(z')) < dg(z,2') + (1 + 2n?)d.
Comme ¢ est arbitraire, la proposition est prouvéé, modulo le lemme.

Preuve du lemme 4.4. L’hypothése cruciale est évidemment que limy_, o voly(°U})
= 0. On raisonne par 'absurde et on cherche a la contredire.

On définit une J-variation géodésique de v comme suit. La vecteur vitesse
u=4(1) de v au point z’ est complété en une base orthogonale (u, e, ... ,e,) de
T,, X, les e; étant normés. A chaque (n — 1)-uplet t = (to,... ,t,) € [—8,8]" 1,
on associe le point z¥ = exp,/(tgeg + ...+ tneyn). Les géodésiques 4* joignant z &
2! sont les §-variations géodésiques de ~.

Supposons qu’il existe une sous-suite {k'} d’entiers pour laquelle toute -
variation géodésique de @ rencontre °U; sur un ensemble de longueur > §. L’hypo-
these est donc que

{y'NU) > 6
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pour tout entier &’ dans la sous-suite et tout (n — 1)-uplet ¢ € [—4, 5]" 1.

Les théorémes de comparison sont valables dans 'espace (X, g). En particuli-
er, le théoréeme de comparaison angulaire de Topogonov appliqué avec K > —1
implique que 'angle inférieur & du cone géodésique est minoré par un &5 p > 0
qui ne dépend que de § et . En comparant maintenant le cone géodésique avec
son image dans (V, g+ ) par les difféomorphismes fj/, le théroréeme de comparaison
volumique appliqué avec K > 1 montre que

voly (“Up) > v(8,D) >0

d’ou la contradiction.

5. Vers 'isométrie locale
Le but de ce chapitre est de montrer la proposition suivante:

Proposition 5.1. L’application h : (X,g) — (M, g0) définie dans les chapitres
précédents est une isométrie locale de classe C*.

La démonstration comporte plusieurs étapes. On sait que h est contractante
et que pour tout ensemble mesurable A de X, voly,(h(A)) < vol,(A). On montre

dans un premier temps que volg, (h(4)) > %. On en déduit alors que tout
point de M a au plus p antécédents. On se sert de ce résultat pour construire
en chaque point m = h(z) de h(X) une boule ouverte By, (m,n') au dessus de
laquelle la restriction de I'application h & une boule ouverte By(z,n) est de degré
> 0 et vérifie Volg(hfl(Bg0 (m,n"))) = (deghy) - voly, (B(m,n')). On applique alors
la proposition de rigidité suivante:

Proposition 5.2 (de rigidité). Soient U un ouvert de By(0,D) C X, V un
ouwvert de M et une application F' : U — V contractante, propre, de degré d > 1.
On suppose de plus que volg(U) = d - voly, (V). Alors F' est une isométrie locale
de classe C*.

On repousse la preuve de cette proposition a la fin du chapitre. On commence
par montrer la proposition 5.1.
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5.1. Preuve de l’isométrie locale
On commence par prouver:

Lemme 5.1.1. Pour tout ensemble mesurable A de X, on a
voly(A)

voly () > 2

Preuve. Par construction h est limite uniforme sur les compacts d’applications Ay
modifiant peu les volumes. On peut supposer que A est compact, le cas général
se ramenant & une exhaustion de compacts. Soit D > 0 tel que A C V,(0, D).

Rappelons quelques notations. On note Wy, = {m € M, card(F,;l(m)) =p}
et Uy = {x € N, |[Jac Fy(z)| > 1 — 1/k}. Alors soit U (f£)~1(Uy,) dans G,(0, D)
et W/ = (hP)~1(W}) dans B,(0, D). Observons que |Jachy| > 1 — o(k) sur U}
et card(h;l(m) NW[) > p sur W. Les volumes des ensembles U] et W/ dans
By (0, D) convergent vers le volume total de la boule.

La fonction indicatrice du 1/k-voisinnage B 1 (hi(A)) converge vers la fonction

indicatrice de h(A). Par convergence dominée, on en déduit
volg, (h(4)) = klim volgO(B% hi(A)) > khm (hi,(A)). (22)

On a les inégalités

volg, (hie(A)) = / lwg

hi(A)

-1
> / card (h;, (m))wo(m)
hi (A)NWy P

d’ol avec la formule de aire

volg, (hi(A)) 2 I/P/ ) [Jac by |lwg
ky,  (he (A)NWy)

> l/p/ ) |Jac hy|w,
by (hae (A)NW )NU;

>1/p / 1= ofk)w,
AW UYL

1 —o(k)

2 volg(ANW, NUL). (23)

Par passage a la limite et utilisant I'inégalité (22), on obtient

voly(A)
P

volgy (h(A)) 2 O ()
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On peut maintenant démontrer un premier résultat sur le degré absolu de h.

Lemme 5.1.2. Le degré absolu de h vérifie
card (R~ 1 (m)) > p

pour tout point m € M.

Prewve. Pour tout mesurable A C B,(0,D), le lemme 5.1.1 et le fait que h soit
contractante impliquent I'encadrement vol(A) > vol(h(A)) > 1/pvol(A4). On ap-
plique cet encadrement a I'image réciproque d’un ensemble de M pour majorer le
nombre d’antécédents.

Supposons qu’un point m € M ait au moins p + 1 antécédents z1,... , 2,11
dans B, (0, D). Choisissons 1 > 0 suffisamment petit pour que les By(z;,7) soient
dans B,y(0, D) et disjoints deux & deux. Comme h est contractante, h(Bgy(x;,1)) C
By, (m,n) d’ou Uf;rll By(zi,m) C h™Y(Byy(m,n)). Or le lemme 5.1.1 montre que
voly (R~ (Byy (m,n)) < p-volyy(By,(m,n)). On en déduit que

p+1 p+1
U voly(By(zi,n)) < vol, (U Bg(xi,m) < p - volg (Bgy(m,m)).  (25)
i=1 i=1

Le volume des boules By (z,n) C By(0, D) est approximé par le volume des boules
de méme rayon dans B, (03, D) C (N, gx). Le théoreme de comparaison volumique
de Gunther (cf. [GHL]) minore ce volume par le volume sphérique. Il existe des
constantes cy, ¢, c3,e > 0 telles que pour tout réel 0 < 5 < &, toute boule By (z,7)
dans B, (0, D), et toute boule By, (m,n) dans (M, go),

ont"(1 = e1n?) < voly(By(, 1)) (26)

vt (1 = e3n”) < volyg (Bgg (m,m)) < vary™(1 + c2n?) (27)

oll vy, est le volume euclidien de la boule unité. L’inégalité (25) et les approxima-
tions (26) et (27) impliquent alors

(p+ Doan™(1 — e1n®) < p-van™ (1 + con®) (28)

et on obtient une contradiction pour 7 suffisamment petit. O

On montre maintenant que h et hy ont localement le méme degré et on en
déduit que h conserve localement les volumes.

Soit donc z un point de By(0,D). D’aprés le lemme précédent, il existe un
réel 7 > 0 suffisamment petit tel que x soit le seul antécédent de m = h(z) dans
By (z,n). Notons hp la restriction de h & By(z, 7). Elle est différentiable presque
partout et le degré de hp est bien défini, pour presque tout m’ € By(m,n), par

deghp(m') = Z sign Jac h(y).

yeh~1(m’)NB
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Le degré ainsi défini est constant (presque partout) sur chaque composante con-
nexe de By, (m,n)\h(0Bgy(z,n)), (cf. [Fed, 4.1.26] et [BCG]). On appelle C la com-
posante connexe qui contient m. Considérons maintenant la suite d’application
restreintes, pour k assez grand.

hi g : By(x,m) — Bgo(m, 2n)

qui converge uniformément vers h sur By(x,n). Notons Cj, la composante connexe
de Bgy(m, 2n)\hi(0By(x,n)) qui contient m. Avec ces conventions, on a le lemme
suivant:

Lemme 5.1.3. Soit un point x € By(0,D) et soit m = h(z) € M. Il existe un
réel 0 <n' <n tel que deghp = deghyp = d > 0 sur By, (m,n') C CNCy, pour
tout entier k suffisamment grand.

Preuve. Par hypotheése, m & h(0By(x,n)) qui est compact, donc il existe un réel
7" > 0 tel que la boule By, (m,n') C C. Puisque fr(C) C h(0By(z,n)), on voit
qu’on peut choisir 7 de sorte que d(Bg,(m,n'), fr(C)) > 5. On aura alors aussi
d(Bg, (m,n), fr(Cr)) > 7' pour k assez grand. On consideére ensuite la projection
radiale ¢ : By, (m,2n) — 0By, (m,n’) qui est lidentité sur By, (m,n’). Solent les
applications composées

{ qohp 339(1777) —>Bgo(m777/)}.
qohk‘B IB9($777) —>Bgo(m7n/)

D’apres le choix de 7/, on a go h(8By(z,n)) C 8By, (m,n') et go hy(0By(z,n)) C
9By, (m,1n’), ce qui signifie que gohp et go hy p sont des applications propres. On
montre qu’elles sont proprement homotopes comme suit. On définit ’homotopie
géodésique Gy entre go hp et go hyp par

Gp 1 By(z,n) x [0,1] — M

Gr(u,5) = qoou(s)

oll ay,, est le segment géodésique de h(u) & hy(u) contenu dans By, (m, 2n). Lorsque
k est assez grand, pour tout v € dB,y(z,n) ce segment est inclus dans By, (m,n)
car h(u) C By, (m,21n) et hy converge uniformément vers h sur B, (0, D). L’ho-
motopie Gy, est donc propre. Alors gohp et gohy g sont des applications lipschitzi-
ennes de méme degré. On a donc d’une part (deghp) = (deggohp) sur By, (m,n')
puisque Vm' € By, (m,7'), hgl(m’) = (gohp) 1(m') et hg = qo hp au voisinage
de hgl(m’). D’autre part, pour les mémes raisons, on a (deg hy ) = (degqohyg)
sur By, (m,n') d’ot deghp = deg hyp sur Byy(m,n').

On montre maintenant que ce degré est strictement positif. L’inégalité (23)
p. 470, appliquée & l'ensemble A = By(z, ") montre que

1 —o(k)

volg, (hx(By(z,n") "W NUL)) > volg (Bg(z,m) N W N Uy)
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donc est non nul > § por tout k& assez grand. Or Jac hy > 0 presque partout sur les
antécédents de hy(By(z,n)NW, NU})) puisque hy = Fj, o fi et Jac Fj, > 0 d’aprés
3.3 (7). Donc Jachy g > 0 presque partout sur les antécédents de hy(By(z,1') N
W[ nUy;)) inclus dans By(z,n). D’oul hyp est de degré strictement positif sur
un ensemble de mesure non nulle dans By, (m,7’), pour tout k grand. Comme le
degré de hy p est constant sur By, (m, 7’), on a bien montré que deg hyp > 0 sur
By, (m,n'), pour tout entier k grand. D’ott deg hp > 0 sur By, (m, 7). O

Lemme 5.1.4. Awvec les notations du lemme précédent, on a

voly (h (Bgy(m, ') = d - volgy (Bgy (m, 7).

Preuve. On établit I'inégalité dans les deux sens.
On a une premiere inégalité

VOly(hjgl(Bgo(mﬂ?/)) 2 / |Jac hlw,

h5t (Bag (mo'))

. / card (h3! () Jwo (t)
By (mn)

> d - voly, (Bgy (m,n)).

Pour montrer I'inégalité inverse, on approxime h par les applications hy et on
utilise les propriétés de Jac hi. Avec les notations rappellées précédemment, on a
les inégalités

d - voly, (Bgy(m,n')) > d
:/ card(h,;‘}g(t))wo(t)

By, (mn )Wy

:/71 |Jac hy|w,
hy 5 (Bag (mn'))nWy,

- volg, (Byo (m, 77/) Nnwe)

> / |[Jac hy|wy
L (Bgg (myn)) WL NUL

> (1 = ok))voly(hyy b (Byy (m, ') N Wi N U).
(29)

D’autre part

lim sup voly (hy, s (Byo (m, 1)) > voly(hg' (Bgy (m, 7). (30)

k—oo

En effet, fixons un réel € > 0. Pour tout entier k suffisamment grand, on a

W' (Byg (myf =€) C hijp(Byo (m, 1))
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d’ou
Jim volg (B 5 (Bgo (m, 1)) > voly (b (Bgy(m,n = ))).

Comme la constante £ est arbitrarire, l'affirmation (30) est prouvée. En combi-
nant (29) et (30), on obtient

d - voly, (By,(m,n')) > voly(hg' (By,(m, 1))

ce qui termine la preuve du lemme 5.1.4 O

Fin de la preuve de la proposition 5.1. Pour m € h(X), soit m = h(z), les lemmes
5.1.3, 5.1.4 et la proposition de rigidité 5.2 montrent que h : h;l(Bgo(m,n’)) —
By, (m, ') est une isométrie locale de classe C'L. Comme By (z,7') C h~1(B,, (m, 7)),
cela montre que h est une isométrie locale de classe C1 en tout point de X. O

5.2. Preuve de la proposition de rigidité

On rappelle I’énoncé de cette proposition: Soient U un ouvert de By(0,D) C X,
V un ouvert de M et une application I : U — V' contractante, propre, de degré
d > 1. On suppose de plus que volg(U) = d - volg, (V). Alors F' est une isométrie
locale.

La preuve s’inspire de I'appendice C de [BCG]. Elle comporte plusieurs étapes.
On montre d’abord (cf. 5.2.1) que pour presque tout m € V, le nombre d’antécé-
dents est égal & d et que pour tout m € V, il est inférieur ot égal & d. On montre
ensuite que pour les points m € V ayant exactement d antécédents, il existe un
voisinage de chaque antécédent sur lequel F' est une isométrie locale (cf. 5.2.2).
Pour cela on construit des voisinages dans V sur lequel F' est bijective, puis on
montre que les applications réciproques sont lipschitziennes et finalement que F
est une isométrie locale sur ces voisinages. Dans la derniere partie, on montre que
ensemble des points de ramification K = {m € V,card (F~1(m)) < d} est vide,
c’est a dire que tous les points ont exactement d antécédents. La métrique g étant
seulement C11e il est alors nécessaire d’utiliser les propriétés de la métrique g
rappelées dans la proposition 2.2, notamment 'unicité locale du prolongement des
géodésiques.

On établit les premiers résultats sur le degré absolu en utilisant la formule de
I'aire et les arguments du lemme 5.1.2.

Lemme 5.2.1.
1. Pour presque tout m € V,card (F~1(m)) = d et pour presque tout = € U, d, F
est une isoméltrie positive de To X sur T'p(, ) M.

2. pour tout m € V, card (F~1(m)) < d.

Preuve. 1. Soit {e;}?_; une base g-orthonormée de 7, X on a

[Jac F(z)] = lwo(deF - €1, ... ,doF - en)] < |ldF - e1llyo - - - |daF - enllgy < 1.
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Le corollaire 4.1.26 de Federer montre que

voly(U) 2/

T Pl Pl / o el = - woly, 214
U Vv

et I’égalité voly(U) = d - voly, (V') entraine Jac F'(z) = 1 presque partout d’oil
card (F~1(m)) = d presque partout.

Légalité 1 = ||[Jac F'(z)|] < ||doF - etllgy - - - |dak - €nllgy < 1 vraie presque
partout implique que ||d,F'-¢;|| 4, = 1 presque partout et donc que d, F' est presque
partout une isométrie.

Remarque. Si F était de classe C1, la continuité de dF impliquerait que dy F' est
une isométrie en tout point, et on pourrait démontrer la proposition en utilisant
le théoreme d’inversion locale.

On montre la partie 2, par 'absurde. Soient zy,... ,xz441, d+ 1 antécédents de
m dans U. Choisissons un réel n > 0 suffisamment petit pour que les boules
By (z;,m) soient deux & deux disjointes dans U. Comme F est contractante,
9,8 d+1 - ;
F(By(wi,m)) C Byg(m,n) dout 2| By(wi,n)) C F~1(Byy(m,n)). La partie 1
du lemme permet de calculer

voly (F~Y(B,, (m,n))) = / Tao T o, ]
F=1(Byy (m,n))
:/ deg F(t)wo(t)
BQO (m,n)
=d- VOlgo (Bgo (m7 "7))
Done
d+1
volg <U Bg(%n)) < d - volgo(Bgy (m, 1))
i=1
et

d+1
Z volg(By(zi,n)) < d - volgy(Bg, (m,n)).
i=1

Le méme argument qu’en (28) montre que
(d+ Dvpn™(1 = e1n?) < d-vpn (1 + can?)
et on obtient une contradiction en prenant 7 suffisamment petit. O

Remarque. Sid = 1, cela suffit pour conclure que I’ est bijective. En effet, la
propriété 2 prouve dans ce cas que F' est injective et la surjectivité vient de la
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non trivialité de degré de F. Si d > 1 alors card (F~1(m)) est presque partout
égal & d et partout inférieur mais il peut exister des points ofi card (F~1(m)) est
strictement plus petit que d (mais non nul).

Proposition 5.2.2. Soit m € V tel que F~1(m) = {x1,... ,24}. Alors
1. il existe un voisinage W de m et des voisinages U; des x; deux a deuz disjoints
tels que F' soit bijective de U; sur W.

2. Pour chaquet = 1,... ,d Uapplication réciproque de F; est localement 2-lipschit-
zienne de W dans Uj.
3. Pour chaque i =1, ... ,d Uapplication F; est une isométrie locale.

On commence par montrer I'affirmation suivante.

Affirmation 5.2.3. Soit  un point de U, alors pour toute boule By(x,n) de
rayon assez petit, la restriction de ' a By(x,n) est surjective sur un voisinage de

m = F(x).

Preuve de Uaffirmation. On choisit un réel 7 > 0 tel que z soit le seul antécédent de
m par F' dans By(x,n). On a F(By(z,n)) C By, (m,n). Notons Fg la restriction
de F' & By(z,n). La théorie du degré implique que sur les composantes connexes de
By (m,m\F(0By(x,n)), le degré de Fp est presque partout constant et sa calcule
pour presque tout point comme suit

(deg F)(t) = Z sign Jac F'(y).

YEBg (z)NF~1(1)

Soit C' la composante connexe de By, (m,n\F (0B, (x,n)) qui contient m. La com-
posante C' contient 1'image d’un ouvert O par Fg. Cette image est de mesure non
nulle car d’apres 5.2.2. card (Fgl(t)) < dsur V d’ou

car =1
vol, (Fp(0)) > /F o Mwo(t)

v

2 [ 1330 P ko)
voly(O)
wly(0),

Le fait que Jac F'(Y) = presque partout implique que deg Fg > 0 sur C. On
en déduit que tout point de C' a au moins un antécédent dans B, (z,n).

Preuve la proposition 5.2.2.
1. Considérons les boules B; = By(z;,n) C U, avec 5 suffisamment petit pour
que ces boules soient deux a deux disjointes. Notons F; la restriction de F
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a Bgy(z;,n). L’application F; est de degré presque partout constant sur la
composante connexe C; de By, (m,0)\F'(0By(z;,0)) qui contient M. D’apres
Paffirmation 5.2.3, F; est surjective sur Cy. Soit W = By, (m, /) C ey C
Cest, une boule convexe contenant m, tel que tout point m’ € W a au moins
un antécédent dans chaque boule B;. Comme card (F~1(m/)) < d, il y a
exactement un antécédent dans chaque B;. Donc F~1(W) est un ouvert C
Ule B;. On pose finalement U; = F*I(W) N B;, alors z; € U; et F; est une
bijection de U; sur W.

2. On note encore F; la restriction de I’ de U; dans W. Supposons que I'application
réciproque F[l : W — Uj; ne soit pas localement 2-lipschitzienne. Quitte &
restreindre W en W' (resp. U; en U/) en preservant la bijectivité de Fj, on
peut supposer qu'il existe un réel ¢ > 0 tel que pour tout point m’ € W' (resp.
S Ui’), on ait By, (m,e) C W (resp. By(z',e) C U;). Puisqu’on suppose
que Fﬁ n’est pas localement 2-lipschitzienne, il existe deux points y,y’ dans
U/ tels que n = dg (Fi(y), [;(¥))) < € et dg(y,y’") > 2n. Soit m/ le milieu du
segment géodésique [F;(y), F;(y')]. Alors

(Bgo (Fi(y),m) N By, (Fi(y'),m)) D Bgy(m',m/2).

volyy (Bgo (Fi(y),m) U By (Fi(y'),m))

< volgy (Byo (Fi(y),m)) + volgy (Bgo (Fi(y'),m))
= volg, (Bgo (Fi(y),n) N Bgo(Fi(y'),m))
< vt (2(1 + ean®) = 1/27(1 — ean/4))
oll ¢y et cg sont les constantes introduites dans le lemme 5.1.2. Comme
By(y,m) U Bg(y',n) C U] et F; est bijective sur U; de jacobien presque partout
égal & 1, la formule de I’aire montrent que:

volg, (Fi(By(y,n) U By(y',m))) = volg(By(y,m) U By(y',n))
> v, (1 — c1772).

D’autre part, le fait que F' soit contractante implique

Fi(By(y,m) U By(y',m)) C Byo(Fily),n) U By (Fi(y'),n).
Dot
20,1 (1 — e1n?) < van™(2(1 + con®) — 1/27(1 — c3n?/4))

et donc
1/2" < 2e9m® + 2e19* + 1/2"e3n /4

et on a la contradiction en prenant 7 suffisamment petit.



Vol. 73 (1998) Un théoréme de rigidité différentielle 473

3. L’application réciproque de Fj, F[l, est localement lipschitzienne donc presque
partout différentiable. Sa différentielle d,F; est presque partout une isométrie
positive sur un ensemble P de mesure pleine dans W. S’il existe une courbe ~
dans W telle que l'intersection avec P est de mesure pleine, alors

wrton)= [ fartoe) 2 a
[0,6(+)] 95l
Iy
= —I|| ds
[0,e(x)] Il 9
= £().

Affirmation 5.2.4. Soit un point m € V, et un réel 0 < n < inj(m) tel que
By, (m,n) C V. Alors presque tout géodésique de By, (m,n) issue de m rencontre
P et un ensemble de mesure pleine.

Preuve de Uaffirmation. Soit un vecteur unitaire w € U,, M. On définit la géodési-
que vy (s) = exp,, sw. L’application ¢ :]0,n[xUpnM — Bg,(m,n)\{m} définie
par ¢(s,w) = exp,, sw est un difféomorphisme, et une isométrie si on munit
10, n[x U, M de la métrique pull-back. D’apres le théoréme de Fubini,

vol (¢~ L(Byo (m, m\P)) = / mes (10, 7y (Byo (m, m\P))duo.

Or voly, (By, (m,n)\P) = 0 donc mes (|0, 5[y, (By, (m,n)\P)) = 0 presque par-
tout, d’olt P est de mesure pleine sur -y, N By, (m,n), pour presque tout vecteur
w dans U,, M. O

Fin de la preuve de la proposition 5.2.2. Soient maintenant deux points mq,mo
proches dans W. D’apres 'affirmation, il existe un point m arbitrairement proche
de mg tel que la géodésique v joignant m; & m rencontre P en un ensemble de
mesure pleine sur v. On a donc
1 1 1
dg(Fy " (m1), Fy7"(m)) S UEF7" 0) = £(7) = dgy(m1,m)

K2

d’autre part
dgo (m1,m) = dgg (F; 0 Fy(my), Fy o FyH(m) < dy(Fy (), By} (m)

d’ou I’égalité. Comme m est arbitrairement proche de mo, par passage a la limite
on obtient
-1 —1
dgo (m1,ma) = dg(F; " (ma), F; " (m2))

3

ce qui termine la preuve de la proposition 5.2.2. O
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La proposition 5.2.2 montre que {m € V,card (F~(m)) = d} est un ouvert. Il
reste done & montrer que {m € V,card (F~(m)) < d}, qui est un fermé, est vide.

Lemme 5.2.5. L'ensemble K = {m € V,card (F~Y(m)) < d} est vide.

Preuve. D’apres la proposition 5.2.2, K est un fermé de mesure nulle. On suppose
K non vide et on considere m € K. On établit ’affirmation suivante, qui nous
fournit une contradiction.

Affirmation 5.2.6. Toule gy géodésique passant par m renconire K en un en-
semble de mesure non nulle.

Preuve de Uaffirmation. Par 'absurde. Supposons qu’il existe une géodésique -,
telle que ~([0,4]) N K soit un fermé de mesure nulle dans ([0, ¢]). Soit m' €
7[(0,4)) N K tel que card (F~1(m’)) = ¢ < d et tel que

q= sup {eard (F71())}.
tey([0,6)nK

Dans une premiere étape, on montre que m’ est isolé.

Notons 1,... ,z, les antécédents de m’ par F. Soit un réel n > 0 tel que
les boules By(z;,7n) soient disjointes deux & deux. Notons F; la restriction de
F & B; = Bgy(z;,m). Puisque deg F; > 1 presque partout sur la composante
connexe C; de V\F(9By(z;,n)) qui contient m’, F; est surjective. Sur C; tout
point ¢ € 7([0,4]) N K proche de m' a donc au moins un antécédent dans chaque
C;pouri=1,...,q. D’aprés le choix de ¢, card (F~1(t)) < q donc t a exatement
un antécédent dans chaque boule B;.

Soit W = NZ_; C;. On peut supposer qu’il existe un entier ¢g tel que deg [}, >
2 sur W, car si degF; = 1 pour tout ¢ = 1,... ,q, on peut trouver une suite de
points réguliers dans C (i.e. ayant exactement d antécédents), convergeant vers
m' et dont les antécédents en dehors das B; convergeant vers un point y de U tel
que F(y) = m’, contredisant card (F"~1(m/)) < ¢. Supposons maintenant que m/’
est un point d’accumulation de v([0,€]) N K: il existe une suite de points dans
~([0,4]) N K arbitrairement proches de m/. Comme ~([0,¢])\ K est un ouvert de
mesure pleine dans ([0, 4]), il existe une suite de segments ouverts s’accumulant
en m': on peut choisir y(a) et v(b) dans v(]|0,¢]) N K arbitrairement proches tels
que ~(]a, b[) soit un segment ouvert de v([0,!])\ K arbitrairement petit. Comme
v(Ja,b]) n’intersecte pas K et que degl;, > 2, ces segments se relevent dans
B;,, en r segments géodésiques distincts de méme longueur (ou deg I, = r > 2)
joignant les antécédents uniques de v(a) et v(b). Cela contredit I'unicité locale
des géodésiques obtenue dans la proposition 2.1. Le point m’ est donc isolé dans
1[0, )N K.

Quitte a raccourcir la géodésique v, on peut supposer que c’est le point de K
dans ~(]0,4]) tel que y(sg) = m'. ¥([0, so[) et v(]so, ¢]) ne rencontrent pas K. Si
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on note y1,...,y, et yq,... ,y, les antécédents des points v(0) et v(¢) dans B;,
alors les intervalles ([0, so[) et v(]so, €]) se relévent par F' dans B;, en r segments
géodésiques distincts, joignant yi, & z;, et z;, & v, (k et k' variant entre 1 et r),
de longueur £(y([0,s0[)) et £(v(]s0,4])). De plus d(yw,y},) = IVk, k' € {1,... ,r}
et comme degF;, = r > 2, il existe donc au moins deux segments (yrzi,y})
et (Yrziyy) ), ce qui contredit Punicité du prolongement des géodésiques pour la
métrique g (prop. 2.2 p. 448). L’affirmation est done prouvée. O

6. Preuve du théoréeme de rigidité

On utilise tous les résultats précédents pour montrer que la suite de variétés rie-
manniennes (N, gg) converge a diametre borné et est difféomorphe & N. On en
déduit que l'isométrie locale entre X et M est un revétement fini (localement
difféomorphe).

Proposition 6.1. Awvec les hypotheses de la proposition 3.3, N est difféomorphe
a la variété limite X .

Preuve. Cela découle des deux affirmations suivantes.

Affirmation 6.2. Soient 2 points, =,z € X wvérifiant l'inégalité
dy(w,a') = dy(w, b~ (h(z")))
avec par définition

d,(z, kL (h(z)) = inf d .
g(z,h"(h(2"))) yeh}g}h(z/» o(z,9)
Alors
dg(@,2") = dgy (h(z), h(z")).

Preuve de Uaffirmation. Comme h est contractante, on ady(z, ') > dgy (h(z), h(2')).
Supposons que dg(z,z') > dg,(h(z), h(z')) et appelons v une géodésique min-
imisante joignant h(z) & h(z’). Alors on a £(y) = dg,(h(z), h(z))) < dg(z,z').
Grace a |'isométrie locale h, on peut relever localement + dans un voisinnage de
z. Tant que le chemin v reste dans h(X), on peut continuer & relever v en un
segment géodésique 3. On vérifie alors que I'ensemble C des t € [0, +o0], tels que
~(t) € h(X), est un ouvert et un fermé, donc que ~ reste toujours dans h(X).
Comme h est une isométrie locale, h(X) est un ouvert, d’olt C est ouvert. Si
(tn)near, est une suite de points convergeant vers to, alors h—1(~(t,)) converge
dans X car d(y(tg),v(ts)) est borné et que le segment 3 est prolongeable en t.,
puisque X est complet. On a évidemment h(5(ts)) = Y(too). Dol Too € C.
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On peut donc relever v en un segment géodésique 3 joignant & un point
B(t), ot t = dyy(h(z),h(z")) et B(t) est un antécédent de h(z'). On a ¢(8) =
Uvy) = dgy(h(z), h(2")). D’apres le choix de 2/, dy(z,2’) < dy(z,B8(t)) = £(B)
dgo (R(z),h(z")) < dg(z,2’) d’olt la contradiction.

O

Remarque. Dans le cas p = 1, la condition dy(z,2') = d,(z,h L(h(z'))) est
automatiquement vérifie puisque le lemme 5.1.2 implique que h est injective. Dans
ce cas, I'affirmation 6.2 montre déja que h est une isométrie sur son image.

Affirmation 6.3. La variété (X,g) est de diamétre borné. En fait
X € B,(0.2p - diamy, (M))

oup=degf.

Preuve de Uaffirmation. Notons z1,... ,z4 € X les antécédents par h d’un point
h(zx) et rappelons que g < p. Soit z’ un point quelconque de X. Il existe un entier

o€ {l,...,q} tel que

dolal i) = 0l dy(a’ ;) = do(a’, b (h(@)).

L’affirmation précédente montre que dg(z’,2;,) = dg, (h(z'), h(z;,)) < diamg, M.
On a ainsi montré que

q
X C | By(idiamg, (M) C By(0.2p - diamy, (M)
i=1

ce qui termine la preuve de I'affirmation.

Fin de la preuve. La variété limite X est de diametre borné si et seulement si la
convergence de (N, gi) se fait & diametre borné, d’out X est difféomorphe & N. O

Proposition 6.4. L’application f: N — M est homotope a un revétement cl
de degré p.

Preuve. La proposition précédente montre que N est difféomorphe a X. L’applica-
tion h est homotope aux applications hy de X dans M, qui sont de degré p =
deg f > 0. Donc h est de degré p et comme c’est une isométrie locale, h est un
revétement localement isométrique de degré p. De plus le corollaire B de C. Plaut
[P]] assure que cette isométrie locale est de classe cH. [’application ho (fk)*1 est
donc un revétement différentiable de degré p de N sur M, homotope a f. O
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7. Applications

On présente dans ce chapitre des applications du théoreme 1.1.
La premieére conséquence est que le volume minimal “repere” les sphéres exo-
tiques.

Corollaire 7.1. Soit M wune wvariété hypoerbolique fermée orientée stablement-
parallélisable de dimension n # 4 et 3 une variété fermée, de méme dimension.
Alors on a Uinégalité

Minvol (M§>2) > Minvol (M)

el 'égalité est atteinte si et seulement si Y est difféomorphe a S™.

Remarques.

1. D’apres un résultat de D. Sullivan [Su], toute variété hyperbolique fermée admet
un revétement fini stablement-parallélisable.

2. Sion nesuppose pas M stablement-parallélisable, alors Minvol (M£32) > Minvol
(M) si 3 n’est pas homéomorphe & une sphere, y compris pour n = 4. Par
contre dans le cas ou X est une sphére exotique, la question de savoir si
Minvol (M) > Minvol (M) reste ouverte si n = 4 ousi M n’est pas stablement-
parallélisable.

Preuve du corollaire 7.1. 11 existe toujours une application de degré 1 de M{»
dans M, qui consiste & pincer ¥ sur la sphere S™. D’apres le corollaire 1.2, on a
Minvol (M#3>) > Minvol (M), avec égalité si et seulement si MY est difféomorphe
aM.

En dimension n = 3, 'unicité de la décomposition des variétés en facteurs
premiers (cf. le résultar de J. Milnor dans [He]) montre que cette condition est
équivalente a ¥ difféomorphe a 58,

En dimension n > 5, les méthodes de la topologie algébrique classique montrent
que si MY est difffomorphe & 3, alors Y a le type d’homotopie de la spheére S™.
D’apres le theoréme de Smale [Sma] (ef. [Mi]), 3 est homéomorphe & S™. Comme
M est stablement-parallélisable par hypothese, la proposition 1.2 de [FJ] montre
que MY est difféomorphe M si et seulement si 3 est difféomorphe & S™. O

Corollaire 7.2. Pour une structure différentiable firée sur M, le volume minimal
n’est pas un invariant topologique.

Preuve de corollaire 7.2. Avec les hypotheses du corollaire 7.1, Minvol (M{Y) >

Minvol (M) dés que 3 est une sphere exotique, bien que MY soit homéomorphe
aM. O

Pour une variété topologique N, on peut alors définir son volume minimal
topologique par Minvolye, (N) = inf{Minvol (IV;), pour toutes les structures diffé-
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rentiables IV; sur N}. Avec les hypotheses du corollaire 7.1, on a en particulier
Minvolgep (M) < Minvol (M§Y) dés que X est une sphére exotique.
On peut alors donner une version topologique du théoreme 1.1 en appliquant le
théoreme a lastructure différentiable sur N réalisant le volume minimal topologique.
Une autre application surprenante du théoreme 1.1 est la suivante:

Corollaire 7.3. Soit M wune variété de dimension n > 3, fermée, orientée, ad-
mettant une métrique hyperbolique réelle gg. Alors

Minvol (M$M) > 2 - Minvol (M) = 2 - voly, (M).
Le volume minimal n’est donc pas additif par somme connezxe.

Preuve du corollaire 7.3. 1l existe clairement une application de degré 2 de MM
dans M. Or M#M n’est pas hyperbolique, donc, cette application ne peut pas
étre homotope & un revétement de degré 2 de M. O
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