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p-universal spaces and rational homotopy types

Richard Body, Mamoru Mimura, Hiroo Shiga and Dennis Sullivan

Abstract. We prove that the p-universality of a space does not depend on a prime p but only on
its rational homotopy type. The minimal model of such a rational homotopy type is characterized
by the existence of the trivial endomorphism in the closure of its automorphism group.

Mathematics Subject Classification (1991). Primary 55P60, 55P62.
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1. Introduction

Let p be a prime or 0. A map f: X — Y between topological spaces is called a
p-equivalence if the induced homomorphism

[ (Y Z/pZ) — H* (X, Z/pZ)

is an isomorphism. A p-equivalence, however, is not an equivalence relation; in
particular, the symmetricity does not hold in general. In [MT] Mimura and Toda
introduced a class of spaces in which a p-equivalence is an equivalence relation.
They called such spaces p-universal. About 20 years ago the first and the fourth
authors observed in the unpublished draft [BS] that the p-universality does not
depend on a particular prime p but on its rational homotopy type, although they
gave only the outline of the proof. The purpose of the present note is to give
a detailed proof of it and to show that the class of p-universal spaces coincides
exactly with that of spaces whose rational homotopy type has ” positive weights” in
the sense of Morgan and Sullivan. That is, our main theorem is stated as follows.

Theorem A. Let X be a simply connected finite CW-complex. Then the following
statements are equivalent:

(1) X is p-universal for a prime p or 0;

(2) the rational homotopy type of X has positive weights;

(8) X is p-universal for any prime p and 0.

We also prove
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Theorem B. Let X be a simply connected CW-complex such that
ZdiQO(X) ®Q < oo.
=2

Then there is a p-universal space K for any prime p having the same rational
homotopy type as X if and only if X has positive weights.

Theorem A does not hold for infinite complexes (see Remark 3.6). In §2 we
study a space whose rational homotopy type has positive weights. In Theorem
2.7 we give a various characterization of it and show that it is independent of the
ground field. In fact, the characterization (1) in Theorem 2.7 is stated in [BS].
The method there is to show that the closure of Q-split torus of the group of
automorphisms of minimal model in the space of endomorphisms contains a zero
homomorphism. The detailed proof, however, was not given in [BS|. We give here
its proof by using the Galois group action on one parameter subgroups. In §3 we
prove (1) == (2) in Theorem A by using (1) in Theorem 2.7. Then following the
idea of [BS], we realize the one parameter subgroup A(q), where ¢ is a positive
integer, by a self map of K which has the same rational homotopy type as a given
complex. From this, we prove Theorem B as well as (2) = (3) of Theorem A.
Finally we show in Proposition 3.7 that homogeneous spaces of compact Lie groups
are p-universal for any prime p and 0.

The authors would like to thank T. Maeda, T.Tasaka and M. Tezuka for the
useful discussions about algebraic groups.

2. Positive weights

Let V = 692 V™ be a graded vector space and denote by m = A(V) a minimal
n>

differential graded-commutative algebra (minimal DGA for short) over @ ([H] and
[Sul]). Let K be a field such that Q CK C C. We take a basis {:cgn)7 e 71,(;;1)} for
(n)

V" ® K and assign a positive integer w(z; ) to each x§n)‘ The integer w(xj(n)) is

called the weight of xgn). Let U? be a subspace of V" @K spanned by the elements
with weight s. We extend the definition of the weight by

w(:ﬂfn) ; xﬁ.m)) — w(xfn)) = w(x§m>).

Then for mt the ideal of positive elements, we have the weight decomposition

mt= o Us, where U;,= @ U?.
s>1 n>2

Let X be a CW-complex and denote by m(X) = A( @ V™) its minimal model
n>2

with a differential operator d.
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Definition 2.1. The K-homotopy type of a CW-complex X, m(X) ® K, is said

to have K-positive weights if we can choose a basis {xgn), . 730,(;)} of V* @ K for

(n)

n > 2 and give weight w(:tgn)) for each z;~ such that it satisfies

wde™) = w@™) (=1,... kayn>2). (1)
In this case we simply say that X has K-positive weights.

We denote by m(X)(n) the sub DGA of m(X) generated by the elements of
degree < n and by m(X)(n)* the subspace spanned by the elements of degree
i. We also denote by G,,(Q) the group of @Q-DGA automorphisms of m(X)(n).
If we fix a Q-basis of m(X)(n)* for i = 2,... ,2n, then G, (Q) is represented by

the subgroup of GL(V, Q) defined by polynomial equations with coefficients in Q,
2n

where N = Zdim(@ m(X)(n)". Let G, be the subgroup of GL(N,C) defined by

=2
the same equations. Then G,, is an algebraic group defined over Q and G,,(Q) is
the set of Q-rational points of G,,.
For any field K D @, there is a maximal torus T™ of the connected component
of G, defined over K by Theorem 18.2 of [B]. Then by Proposition of [B;p.121] we
have a decomposition over K

TE =18 r% TEATE = finite, (2)
where T is the largest anisotropic subtorus defined over K and T’} is the largest
split (i.e., diagonalizable over KK) subtorus of 7%,

Let C* be the multiplicative group of C.

Definition 2.2. A group homomorphism A : C* — G,, is called a one parameter
subgroup of G, defined over K if it is represented by

1 0
Alt) = teC*
0 teN
. . 2n ; .
with respect to some K-basis of 692 m(X)(n)' ® K, where aq,...,an are integers.
=

Proposition 2.3. Let K be a field such that Q CK CC. A CW-compler X has

K-positive weights if and only if, for each n, there is a one parameter subgroup

A(t) of T¥ defined over K such that lilré A(t) = 0, where the topology of G, is the
t—s

, ) 2
metric one induced from CN”.
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Proof. If X has K-positive weights, then the correspondence
At) rz—t°z (x e Ut eK")

defines a one parameter subgroup of TdK satisfying the required property. In fact,
one can take s positive by the assumption that X has K-positive weights. Con-
versely, if there is a one parameter subgroup A(t) of Tf defined over K such that

tlg% A(t) = 0, one can choose a basis for Ea;m(X)(n)i ® K and positive integers
at,...,ay so that A(t) is represented by
™
At) = teK* ;. (3)
7l

Then one obtains a weight decomposition of m(X)(n) ® K by putting
U, ={z em(X)(n) 9K | A(t)z = t*2} for i=1,...,N. O

Let E, and G,, be the set of C-DGA endomorphisms and the set of C-DGA
automorphisms of m(X)(n) ® C respectively. Then E,, is an algebraic set defined
over Q and G,, is a Zariski open set of F,,. Recall that the Zariski closure of G,
in F,, coincides with the metric closure of G,, in E,, (see for example [M]), which

we denote by G,

Lemma 2.4. Let B be a Borel subgroup of G,. If the zero homomorphism is

contained in Gy, , then so is in the metric closure of B .

Proof. Let M be a compact maximal subgroup of G,,. Then M acts on the
complete variety G,/ B transitively, and hence we have

G,=M-B.

Let {zy,} be a sequence of the points in M - B such that lim z,, = 0. Then each

n—oo
z, can be expressed as

Ly = Uy - bna
where u,, € M and b,, € B. There is an accumulation point « of {u,} such that
o € M, since M is compact. Then

lim «-b, =0.

n—oo

1

Hence by multiplying o= we have

lim 4, =0. O

n—oo
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By (4) of Theorem 10.6 of [B] we have a semi-direct product decomposition
B=T1T U,

where 77 is a maximal torus of GG, and U is a unipotent subgroup of G,, by
Corollary 11.3 of [B], since B is solvable by definition.

Lemma 2.5. If the closure (metric) of B contains 0, so does the closure of TY.

Proof. Let {x,} be a sequence of B such that lim z, = 0. We can express x,, by

an upper triangular matrix

pir - Pin
0 BN
Since lim B; =0 fori=1,2,... , N and since
n—oo
Bt 0
0 BNN
we have the lemma. O

There exists a maximal torus 7% of G,, defined over Q. Then, if G_nE contains
0, so does the metric closure of T by Lemmas 2.4 and 2.5, since maximal tori of
G,, are conjugate. By Corollary 18.8 of [B], T splits over a finite normal extension
K of @ so that the elements of the K-rational points T@(]K) are diagonalizable over
K. That is, with respect to some K-basis for m(X)(n)®K, T can be represented

as
1

1
t‘;1~~~~t%’" 0
tyoo ytm €K 5 (4)

N
a

0 t(;1~~~~tm

iz

J
i

where K* is the multiplicative group of K, m is the dimension of 79 and a
integers for 1 <:<m,1 <j<N.

are

Lemma 2.6. If the closure (metric) of TQ contains 0, there is a one parameter
subgroup \(t) of TQ defined over K such that

lim A(¢) = 0.

t—0
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In particular the metric closure of the K-rational points TQ(K) contains 0.

Proof. We denote a matrix in (4) by M(¢1,... ,tm). By the assumption there is a

sequence {M(x(lk)7 e ,:cg,if))}j;":l such that
Jim (el @y =0 for j=1,...,m. (5)

(

We choose a positive number ¢ < 1 such that xék) = to% e“’f, where a? and 05 are
real numbers. Then

(@) (@) yoia) = (Ein b

m
By (5) for large k, the numbers Za? . a; for j = 1,...,N are simultaneous-

=1
ly positive. Then from the density of Q in R, we can choose rational numbers
B, ..., Pm so that

L .
> Beal >0 for j=1,...,N.
=1

Hence we have integers Py, ... , P, such that

m .
> Pl >0 for j=1,..,N.
=1

Then the one parameter subgroup defined by
Aty ={M@", ... t") | teC*}

satisfies

lim A(t) = 0. O
t—0

Thus we have proved, by virtue of Proposition 2.3 together with Lemmas 2.4,
2.5 and 2.6, that m(X)(n) has K-positive weights, if G_nE contains 0, where K is
a finite normal extension of Q.

The one parameter subgroup A(¢) defined over K in Lemma 2.6 is represented

2n .
by matrices S(t) with respect to some (Q-) basis of 4@2m(X)(n)’ such that each

entry b;; of S(t) = (bi;) is in K if ¢ € K*. For an element o of the Galois group
G(K/Q), we set
S(t)7 = (b))
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Then the entries of the matrix
A= I s@°
7eG(K/Q)
are in Q if ¢ € K*. Hence A(t) defines elements of T%(Q), the Q-rational points
of T For t € Q* we decompose %é; m(X)(n)" into A(t)-invariant, irreducible
@Q-subspaces

The restriction of A(t) for ¢ € Q* on Vj is represented by a matrix A;(¢) whose
entries are in Q. The matrix A;(¢) is diagonalizable over K; there is an invertible
matrix P; with entries in K such that

k1(t) 0
-1 4
By(t) = Py A;(0)P; = ’ 7
0 ke, (t)
where kq(t),... ,kn,(t) are eigenvalues of A;(#) which are conjugate over Q if

t € Q*. For an element o of the Galois group G(K/Q) we set

ki(t)?
B (t) =
ke (£)7
Then we have
r5(t)
G = I Biw= ;
seG(K/Q) r;(t)

where 7;(¢) is in Q* if ¢ € Q*. Hence if we set

P C1(t) Pt

P, Co(t) Pl
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then it is of the form

rq(t)

r1(t)

Tg(t)

T’g(t)

Then the matrix D(t) defines a one parameter subgroup u(t) of 7% defined over
@ such that hH(l) wu(t) =0.
t—

Then we have the following:

Theorem 2.7. The following conditions are equivalent:

(1) The Zariski closure of Gy in E, contains the zero homomorphism for
each n,

(2) X has C-positive weights,

(3) X has Q-positive weights.

Proof. [(1) = (2)] The metric closure of Gy, in E,, contains 0 for n > 2. Then
by Lemmas 2.4, 2.5 and 2.6 there is a one parameter subgroup A(t) of T9 defined
over K such that l’m% A(t) = 0. Hence by Proposition 2.3 X has K-positive weights,

t—

where [K : Q] < co. In particular, we have (2).

[(2) = (3)] If X has K-positive weights for such a field K that [K : Q] < oo, then
from the above argument we have a one parameter subgroup p(t) of 79 defined
over @Q such that thH(l) wu(t) = 0. Hence by Proposition 2.3 we have (3).

[(3) = (1)] This is obvious by Proposition 2.3. O

If X is a formal space, then one can see that it has Q-positive weights by
grading automorphisms (see [Su 1] and [Shi]). Thus, the property “having positive
weights” does not depend on the ground field, as does in the case of formal spaces
([Su 1]).

3. p-universal spaces

In this section, we will prove that the rational homotopy type of a p-universal
space has positive weights. Among the various definitions of the p-universality
(IMOTY]), we adopt the following for the sake of our convenience:
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Definition 3.1. A simply connected CW-complex X is called p-universal if for
any prime ¢ different from p, there exists a map f : X — X such that
(1) f«: H(X;Z/pZ) — H.(X;Z/pZ) is isomorphic,
(2) ol :m(X)®Z/qZ — 7 (X) ® Z/¢Z is trivial.
Let m(X) = A( E>B2 V™) be a minimal model of X. Then we have a diagram
n

V"?Hom(ﬂn(X)A@)
U
Hom(m,(X),7Z),

where ¢ is a linear isomorphism of Q-vector spaces ([Su|, [H]). Let L™ be the free
abelian subgroup of V" which is mapped isomorphically by ¢ onto Hom(r,, (X ), Z).
We form a multiplicative lattice:

Then L(X) is a free graded commutative algebra over Z. Denote by L(X)(n) the
sub Z-module of the elements of degrees < n.

Suppose that X is p-universal. Then the map f : X — X in Definition 3.1
induces an automorphism f : m(X) — m(X) such that f preserves L(X). Let
{e1,... ,es,h1,...  hy} be a basis for L(X)(n) such that

e; € & L (2= Ly:5m58)
=2

and . R
hje LT LXO)YY (=1,...,1),

where L(X)1 is the set of the elements of positive degrees. Then by (2) of Defi-
nition 3.1 with respect to this basis, the restriction f|L{X)(n) is represented by a

matrix with integer entries
c_ Al *
0|B

such that each entry of A and B is divisible by ¢. Let K be a finite field extension
of Q containing all the eigenvalues of C'. Let v, be a normal valuation of @ defined

by
aqs) -
”q< b E =

where a, b are integers prime to q. We extend v, to K, which is also denoted v, by
abuse of notation. All the coefficients except the highest degree of the equation

det(t] —C) =t +ap_1t* '+ - 4a9=0 (6)
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are divisible by ¢, where £ = s + ¢ is the dimension of L(X)(n).
Let X be one of eigenvalues of C'. Then we have

vg(X) = l/q(—(ag,p\e*l + -+ ag)).

Since A is an algebraic integer, we have

vg(A) < 1.
Hence we have
vo(=(ac 1 X 4+ ag)) < max(vglae 1), vgla0)) <q ',
from which we have
vg(\) < g7t (7)

Let G, be the set of K-DGA automorphisms of L(X){n) ® K. We choose a basis
of L(X){n) ® K so that C is represented by an upper triangular matrix

A * Al 0 1 *
o = . = - 2,
0 Ae 0 Ae 0 1
where Aq,... ,A¢ are the eigenvalues of C. Then the matrix
A1 0
C(s = T
0 Ae

is the semi-simple part of C’. By the Jordan decomposition, one can see that C,
is also an element of Gy, (K), the set of K-rational points of G,,.
Let a(X11,X12,...,Xnn) be a polynomial with coefficients in @ such that

a(g) =0 forall ge Aute(m(X)(n)®C).
Then after multiplying some integer, the equation
alCHy=0 (k=1,2,...)

will become

Z Z ail...ie)\]fil "')\?ie +d:07

t>1iq+tig=t
where a;,_;, and d, the constant term of «, are all integers. Then by using (7) we

have
ki ; _
WS T WA < g0,
t>1 i+ tie=t
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where (k) is an integer such that

lim ¢ (k) = oo.

k—oo

As k can be arbitrarily large, the constant term d must be zero. This implies that
the Zariski closure of GG, in E,, contains 0.
Thus by Theorem 2.7, we have proved the following:

Proposition 3.2. If X is p-universal for a prime p, the rational homotopy type
of X has Q-positive weights.

Let X be a CW-complex such that m;(X) ® Q = 0 for ¢ > ng, where ng is some
positive integer.

Proposition 3.3. If there is a one parameter subgroup \(t) of Aut (m(X)) such
that lin% A(t) = 0, then there is a CW-complex K satisfying the following condi-
s
tions:
(a) there is a 0-equivalence g : X — K,

(b) for any two distinct primes p, q, there is a p-equivalence fq : K — K
inducing fos ®1 =071, (K)Q Z/qZ — m.(K) ® Z/¢Z.

Proposition 3.3 follows from Lemma 3.4 below.
We can represent A(t) by

a1
Alt) = teQ*

g

with respect to some Z-basis for L(X)(n), where ay,... ,a,, are positive integers.
In particular, A(s) preserves L(X) for a positive integer s.

Lemma 3.4. For each positive integer n, there is a complex K, such that the
following conditions are satisfied:
(a) there is a DGA isomorphism

pn: m(X)(n) — m(Ky);

(b)

torsion free for i<n

0 for i>n’

(¢) for any distinct primes p and q, there is a p-equivalence

fq:Kn—>Kn
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satisfying the following conditions:
(1) the induced homomorphism

fqﬁ ®1: '/T*(Kn) ®Z/QZ — W*(Kn) ® Z/qZ

is trivial;
(2) the following diagram is commutative:

m(X)(0) L m(X)(n)
fa

m(Kn) — m(Ky),
where fq is a map induced by fy and X(q), is the restriction of A(q) on m(X)(n).

Proof. We will prove the lemma by induction on n. As an inductive hypothesis
we assume that there is a complex K, satisfying the conditions (a) ~ (c). We can
choose a basis {eq,...,es} for L1 (=~ Homgz (7, 11(X),Z)) such that each e; is
an eigenvector of A(¢)n41. Then de; € m(X)(n) is an either an eigenvector or 0.
Let N be a positive integer such that Nde; (i = 1,...,s) represents an element of
H"2(K,,;Z) via p,. Then (deq,... ,de,) represents an element

X € [Kn, K(Z°/N,n +2)],

where [, | denotes the set of homotopy classes. Since L"1 ~ Z5 /N as Z-modules,
Aq induces a map

A K(Z°/N,n+2) — K(Z°/N,n +2)
so that the diagram
N
I x R Ix
K(Z°/N,n+ 2)~-K(Z°/N,n + 2)

is homotopy commutative. Let
QK(Z°/N,n+2) — P " K(Z°/N,n + 2) (7)

be the path fibration. Let j\q : P — P be a map defined by j\q(ﬁ) (t) = A (£(2)),
where £ € P and t € [0, 1]. Set
Kn+l = {(:E,g) €K, xP ’ X(ZE) = W(f)}’
Crt1 = {(z,0) € Kn X P | A\x(z) = 7(£)},
Eny1 ={(z,0) € Kn X P | xfq(z) = 7(£)}.
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Then we define a map

>\q : Kn+1 =% Cn+1

by S\q(x, ) = (=, j\q(é)). Since A4 0 x is homotopic to x o fg, there is a homotopy
equivalence h : C,, 1 — FE, 11 so that the diagram

Crt1 TEn+1

! !
K, — K,
Id

is commutative, where the vertical maps are the restrictions of the projection
K, x P — K, respectively. We define a map

]?q : EnJrl — KnJrl
by fq(xj) = (fy(z),¢). Then the diagram

En+17>Kn+1

q

! 1
K, — K,
fq

is commutative. By setting ?q = fq oho X[p we have a commutative diagram

F
Kn+1—q>Kn—|—l

! I
K, — K,
fq

We will show that the map f, : K, 41 — K, 11 satisfies (a) ~ (c). First of all,
(a) is easy to show from the construction. The other part is easily obtained from
the following homotopy commutative diagram:

K(Z*/N,n+1)—Kp,y1— K,

1 Aq L fq L fq
K(Z°/N,n+1)—K, 11— K,, (8)

and the fact that X, is represented on ,, 1 (K(Z°*/N,n+ 1)) by a diagonal matrix
whose entries are positive integer power of g. O

Now we will complete the proof of Theorem A.

Let X be a finite complex whose rational homotopy type has Q-positive weights.
Then by Lemma 3.4 and Proposition 2.2 we obtain a complex K, satisfying the
following two conditions for any two distinct primes p and g¢:
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(1) K,, has the same rational homotopy type as the n-th stage of the Postnikov
tower of X;
(2) for any distinct primes p and g, there is a p-equivalence f, such that

fap®1=0:m(K,) ®Z/qZ — 7.(Kp)  Z/qL.

Let n be the dimension of X and K, | | be the i-skeleton of K,, 1. Then K7 | has
the homotopy type of a finite CW-complex. The homomorphism 7 : H, (K} IEH Z)
— H,(K,+1;Z) induced by the inclusion ¢,, : KZLLJA — K, 11 issurjective. From
the homology sequence of the pair (K41, K7, 1) we have an exact sequence

n n

Hy 1(Kyy1;Z) - 1 (Kny1, K7y 5 Z) 6—>Hn(K"+1;Z) T Hy(Kyy1;Z).

Since Hy, (K}, 1;Z) is free, we have a direct sum decomposition of a free Z-module

Hn+1(K’n+17 Kn+]_7Z) = Im j* S A7

n

where A is isomorphic to ker i by 8,. We may assume that the map f, : K, 1 —
Kyy1 is cellular; let fi' - KQH — Kgﬂbe the restriction. Then A is f,,-

invariant. We may regard A as a free submodule of 7rn+1(Kn+1,Kg+1). Let
{a1,... ;am} be a basis of A. Let K be a complex obtained from K, by
attaching m cells of dimension n + 1 via dya; (i =1,... ,m), where

Oy - o1 (Kny1, Ky y) — mn (K7 )

n

is the boundary operator. From the construction we may regard K as a subcomplex
of K, 41 such that

H,(K;Z) ~ H;(K,11;Z) for i<n,
H;(K;Z) = 0 for i>mn.

The map fi' can be extended to fq : K — K so that the diagram

K7y K=Ky

lfq" lﬁ lfq

K= K=Kyt

is homotopy commutative. Then ]7(1 is a p-equivalence such that the induced
homomorphism _
fq  HY(K;Z/qZ) — H*(K;Z/qZ)

is trivial. Hence by (b) of Theorem 2.1 in [MOT], K is p-universal for all p. Finally
we construct a 0-equivalence g : X — K. Since DGAs m(X)(n+1) and m(K,41)
are isomorphic, there is a homotopy equivalence between localized spaces at zero:

h: (Xng1)0) — (Kng1)(0);
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where X, 1 is the (n + 1)-st stage of the Postnikov tower of X. Composing with
the natural map and the localization map, we obtain a map

byl : X — (Knt1)(0)-

Since (K1) (o) is obtained from (K7, 1) (o) by attaching ’local cells’ (cone over the
local sphere) of dimension < n+1 ([Su 2]). By the cellular approximation theorem
we obtain a map X — (KZ+1)(O)~ By composing with the inclusion we have a
map ¢ : X — K ©) such that ¢* induces isomorphisms on rational cohomology.

Since K is p-universal for every p and 0, the map ¢ factors as X - K LK(O).
Then by Theorem 1.3 in [MT], X is also p-universal, and we have the desired
result.

Remark 3.6. Theorem A does not hold for infinite complexes. Recall that the
infinite quaternionic projective space HP> has the same rational homotopy type
as the Eilenberg-MacLane space K(Z,4), which is formal. As is well known, the
degree of the induced map on H 4(HP°°;Z) of a self map is odd square. Hence
HP® is not p-universal (p £ 2) in the sense of Definition 3.1. However K(Z,4) is
p-universal for any prime p.

As an application of Theorem A, we will show that homogeneous spaces of
compact Lie groups are p-universal for any prime p.

Let G be a compact connected Lie group and H a closed connected subgroup of
G. Let S*(@) be the ring of polynomial function with value in R on the Lie algebra
L(G). Then S*(G) is a symmetric algebra of L(G)* = Homg (L(G),R). The degree
of the elements of L(G)* is defined to be 2. Let $*(G)% be the invariant subalgebra
under the adjoint action of G. Then S(G)¢ is isomorphic to a graded polynomial
algebra. Let A(G) be the exterior algebra of L(G)*, and A(G)® the invariant
subalgebra under the adjoint action of G. Then A(G)% is the exterior algebra of
the primitive space P(G). We have the transgression 7 : P(G) — S(G)%. Let
v : S(G)¥ — S(H)H be the restriction of polynomial functions. Then we have a
free DGA

A(G/H)=S(H)" ® A(Q)%,

where the differential d, is defined as follows:
d(z®1)=0, forzeSH)H,
d(1®y)=~7(y)®1, forye P(G).

The minimal model of G/ H over R is isomorphic to that of A(G/H). Let m(G/H)®
R be the minimal model of A(G/H).

Proposition 3.7. Let G be a compact connected Lie group and H a closed
connected subgroup. Then G/H is p-universal for any prime p.
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Proof. By Theorem A, it is sufficient to show that the rational homotopy type
of G/H has positive weights. For any ¢t € R*, there is a one parameter subgroup
A(t) of DGA automorphisms of A(G/H) defined by

M)zol) =tFlze1,
At(1ey) =t (1ey),

where |z| denotes the degree of z. The lifting ¢(t) of A(t) on m(G/H) gives
elements of Aut p(m(G/H)® R) such that 111% (t) = 0. Then by Theorem 2.7 it
t—s

has Q-positive weights. O
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