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Dérivée des petites valeurs propres des surfaces de
Riemann

Ph Batchelor

Résumé. On estime la dérivée des petites valeurs propres du Laplacien sur une famille de
surfaces de Riemann Ces valeurs propres sont considérées comme des fonctions sur l'espace de

Teichmuller, et l'estimation des dérivées peut s'exprimer dans ce contexte

Mathematics Subject Classification (1991). 58G25

Mots clés. Laplacien, valeurs propres, spectre, géométrie spectrale, surfaces de Riemann

Dans ce travail nous allons nous intéresser à la variation des petites valeurs propres
du Laplacien sur des surfaces de Riemann qui dégénèrent

Les classes d'isométrie des surfaces hyperboliques de genre 7, (courbure -1)
compactes sans bords, 1 e les surfaces de Riemann, peuvent être paramétrées par
67 — 6 nombres réels, [Bus92] Les classes marquées décrivent une variété, l'espace
de Teichmuller, voir [Bus92], chapitre 6

Une courbe analytique réelle sur cet espace décrira donc une famille de classes

d'isométries de surfaces marquées, et les valeurs propres du Laplacien sont des

fonctions analytiques réelles bien définies le long de cette courbe, voir [Bus92],
14 9

Nous nous intéressons aux courbes décrivant des surfaces qui dégénèrent, comme
dans [Bur90, Col85] Pour les décrire et pouvoir énoncer les résultats sur les valeurs

propres, nous allons adopter les notations suivantes

Notations. Le genre d'une surface sera noté 7 L'espace de Teichmuller des

surfaces de genre 7 sera T7
S sera la notation habituelle pour une surface de Riemann, St sera donc une

famille de représentants de la courbe paramétrée par t sur T7 Rappelons que S
est par définition une surface différentiable M munie d'une structure hyperbolique,
ou de manière équivalente d'un tenseur métrique tel que K — 1

Un point de T^ correspond à la classe d'équivalence d'une surface marquée un
choix de générateurs du groupe fondamental distingue deux surfaces isométriques
par une îsométrie non-isotope à l'identité Pratiquement, on met en exergue sur la
surface 37 — 3 géodésiques fermées simples séparant la surface en 27 — 2 morceaux
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de type topologique (0,3) : les pantalons, voir [Bus92] chapitre 3, en particulier le

théorème 3.6.4. Ces géodésiques sont notées eu cu{S), k 1... 37 — 3. Un choix
de paramètres est par exemple les longueurs de ces géodésiques par rapport à la
structure, et le paramètre de twist le long de ces géodésiques, voir les références

standards, p.ex. [Abi80, Bus92]. Le twist sera fixé dans tout l'article. Les
pantalons sont eux-mêmes obtenus par collage d'hexagones hyperboliques droits.

Parmi ces géodésiques, un certain nombre p < 37 — 3 que l'on choisit être les p
premières, auront une longueur qui tend vers zéro avec e: on écrit (Longueur(cfc (St))

ak(e + t), k 1.. .p, où au est une constante positive) car nous voulons dériver
en e, i.e. en t 0. Les autres géodésiques ont une longueur fixée que nous
supposerons être supérieure à une constante, p.ex. 1/2 (voir [Bus92], théorème 4.1.6

pour une constante géométrique).

La surface

C2(St)ff'

Figure 1.

Pantalons et hexagones correspondant à une surface

En général, e ne sera pas noté comme indice afin de ne pas trop alourdir les

notations. En particulier, S := Sq.

Résultats. Si le complément des géodésiques Ck, k l...p contient N + 1

(1 < N < 27 — 3) composantes M3, j 1... N + 1 de genre 7^, le théorème de

Schoen, Wolpert et Yau [SWY80] implique que les N premières valeurs propres
non-nulles tendent vers 0 avec e. Dans la suite, nous parlerons souvent de petites
valeurs propres et de petites géodésiques. Plus précisément, soit An(e) la n-ième
valeur propre du Laplacien sur S. On rappelle que S est un représentant d'une
famille de surfaces dépendant de e:

Théorème 1. (Schoen, Wolpert et Yau, [SWY80]) II existe deux constantes
positives 01(7), 02(7) ne dépendant que du genre, et une constante eq > 0 tels que
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pour tout e € (Q,eq), n < N,

ciin) < ^ < c2(7)

et Ajy+i(e) est bornée inféneurement par une constante ne dépendant que du genre.

Intuitivement, pour e suffisamment petit, la surface ressemble à un graphe
G G(7j,O!fc), dont les sommets, correspondant aux Mo, ont un poids déterminé

par 7j. Colbois [Col85] améliore fortement l'estimation de [SWY80] en calculant
la limite du rapport Xn(e)/e (voir aussi [Burg90]):

Théorème 2. (Colbois, [Col85]) Soient ôn(G), n 1...N les valeurs propres
non-nulles du Laplacien du graphe associé à la famille de surfaces, défini dans

[Col85]. Alors

An(e) r /n>hm —— ôn(G).
O £

Burger [Bur90] exprime ce résultat sous une forme qui suggère que la fonction
An(e) est asymptotiquement linéaire en e, mais ne donne aucune information sur
la dérivée de An(e) au voisinage de zéro. Dans cet article, nous montrerons que
les valeurs propres An(e), n 1... AT décroissent lorsque e —s- 0, en estimant leurs
dérivées, qui sont proches d'une constante pour e petit. Soit X'n(e), la dérivée par
rapport à e de An(e). Le but de cet article est de démontrer le théorème:

Théorème 3. Il existe une constante ß ß(G) > 0 explicite, telle que pour la
variation définie ci-dessus,

|loge| |loge|

en particulier, An(e) esi 'monotone en fonction de e pour e < e~^' ".

Remeirque 0.1. Le théorème 2 peut être considéré comme donnant la dérivée à

la limite. Ici, nous avons un contrôle sur un intervalle bien déterminé. (Une valeur

pour ß peut être extraite de la démonstration.) Wolpert étudie le même problème
pour des valeurs propres ne tendant pas vers zéro, en particulier celles supérieures
à 1/4 dans [Wol92a, Wol92b]. Voir aussi
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1. Difféomorphismes par morceaux

Le spectre est un invariant riemannien. Cependant, dans sa définition entrent des

concepts comme le Laplacien, fonctions propres, dont la définition nécessite un
tenseur métrique explicite. Ici, nous devrions construire une famille de tenseurs
métriques hyperboliques sur une variété differential)le. Une telle construction est

en général très difficile (voire impossible) sur une variété n'ayant pas une unique
carte. Nous allons effectuer cette construction sur des polygones dont le collage
sera une surface isométrique à la surface voulue S. Il sera alors nécessaire de
contrôler le passage d'un polygone à l'autre, i.e. la discontinuité du tenseur métrique
induit sur S par cette décomposition en polygones (voir lemme 1.3). Il existe une
infinité de possibilités pour ce faire (voir [BC90], [Bus92] 14.6); cependant, comme
nous voulons dériver les valeurs propres, il est préférable de faire un choix pour
lequel le tenseur métrique soit le plus simple possible sur les parties les plus
importantes. Pour les surfaces qui dégénèrent, les parties épaisses et minces jouent
un rôle essentiel. Sur une surface de Riemann, la partie mince est définie comme
étant l'ensemble des points où le rayon d'injectivité est inférieur à une certaine
constante, voir [Bus92] chapitre 4 pour plus de détails. Nous utiliserons directement
la définition suivante, spécifique à notre problème:

Définition 1.1. (Parties minces et épaisses) Nous appellerons partie mince de St
(représentant un point de la courbe sur T7), l'ensemble des points dont la distance
à l'une des géodésiques ck, k 1.. .p est inférieure à log(LongueUr(Cfc (gt)))

— log(«fc(e + £)). La partie épaisse est le complément de la partie mince.

La partie mince a une géométrie simple. Pour plus de détails, on renvoie au
paragraphe 4.1 de la référence standard pour cet article: [Bus92]. C'est la réunion
de cylindres disjoints, notés C^k\ voisinages des géodésiques qui dégénèrent. Le
choix des parties minces a été effectué de manière à permettre l'introduction de
coordonnées de Fermi (r, 9) basées sur ck, r étant la distance à ck et 9 la distance à

un point fixé le long de ck On rappelle que les coordonnées de Fermi sont définies
sur tout voisinage d'un segment géodésique. En coordonnées de Fermi (r,6), une
métrique hyperbolique prend la forme:

dr2 + cosh2 r d92.

Ces coordonnées seront l'outil principal pour notre construction, la décomposition
de la surface. Les morceaux de la décomposition seront des domaines sur lesquels
les coordonnées seront globalement définies.

Définition 1.2. (Quadrilatères standards) Un quadrilatère standard sera un
domaine du plan hyperbolique donné en coordonnées de Fermi par r G [r{9),R{9)\,
9 G [/i,/2] avec r(') < R(') € C°°([li,l2\). Une paramétnsation standard sera le
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difféomorphisme d'un domaine isométrique à un polygone standard dans [0,l]2,
donné par p := J~,r^L t := j-^-.R{e)-r(e)

(0,1) (1,1)

t /

r(9)
i

(1,0)
(0,0)

Figure 2

Quadrilatère standard

Définition 1.3. (Partitions admissibles) Une partition admissible de St sera une
décomposition de St en domaines isométriques à des quadrilatères standards.

Elle sera subordonnée à la décomposition en parties minces et épaisses, et à

la décomposition en pantalons dans le sens suivant. On a fixé une décomposition
en pantalons telle que les bords des pantalons contiennent les petites géodésiques
Cfc. Chaque pantalon dont un des bords est une copie d'une petite géodésique
contient un collier (une moitié de cylindre) autour de cette petite géodésique. Si
l'on considère le pantalon comme collage de deux hexagones isométriques, cette
partition du pantalon détermine une partition des hexagones. Un hexagone n'est

pas encore un domaine isométrique à un quadrilatère standard, mais il est aisé

de fixer une décomposition d'un hexagone en quadrilatères, (figure 4) i.e. chaque
polygone est inclus dans une composante de ces partitions de la surface.

Ces partitions seront telles que les longueurs des côtés seront des fonctions
réelles analytiques de t. On note {K|}îe/ la partition admissible de St. (Xq
K%). Concrètement, on considérera la décomposition en hexagones induite par
les pantalons, les hexagones dont un des côtés correspond à une géodésique qui
dégénère étant encore séparés en parties épaisses et minces. La partie épaisse
est découpée en quadrilatères par des géodésiques perpendiculaires aux bords des

hexagones, et qui passent soit par les sommets opposés, soit perpendiculairement
aux côtés opposés, en fonction du type de l'hexagone: zéro, un, deux, ou trois
côtés qui dégénèrent.

Pour simplifier la description, on peut supposer St décrite par un tenseur
métrique gt {inconnu) sur M. Dans ce cas, Kl se déforme en K\. Grâce à une
paramétrisation standard, on peut introduire une métrique explicite g\ sur K% telle
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Partie mince Partie épaisse

Figure 3.

Parties épaisses et minces

que [Kl,gt) et {K%,g\) soient isométriques, par <f>\ (</>q id). L'utilisation de la
partition permettra d'exprimer la dérivée de gt (et donc de An) en fonction de g\
et 4>\. 4>\ est défini à l'aide des coordonnées standards de la définition 1.2. Ce sont
ces dérivées que nous devons contrôler.

Définition 1.4. Soit une famille de tenseurs métriques gt, telle que go (•,•}
sur une variété différentiable M. La forme volume associée à gt est notée wgt,
(lu en t 0). Nous noterons D le tenseur de déformation associé, défini par
(-^gt(X,Y))\t=o =: (X,DY). La variation de la forme volume est décrite par

Si 4>t est une famille de difféomorphismes telle que </>o id, nous noterons V
le champ vectoriel de variation: (^</>t)|t=o =: V. Si gt </>*(-, •} alors v divV.

Soit Rj. ' := log \/(o.k{e +1)). On introduit directement sur tous les cylindres
formant la partie mince un tenseur métrique explicite g^: C^k> est isométrique

à [0, l]2 muni du tenseur métrique

(R{tk) f dp2 + a2k(e + tf cosh2(R{tk)p)dT2; (p,T) G [0, l]2

en coordonnées standards (voir la définition 1.2). Dans ces coordonnées, le tenseur
est diagonal pour toute valeur du paramètre.

Lemme 1.1. (Parties minces) Sott Dk, le tenseur de déformation associé au
tenseur 'métrique 'précédent. Dk est diagonal. vk est une fonction décroissante
de la distance, symétrique sur [—R^k', R^k>], qui satisfait:

log akej elogake 1 + (ake)2
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Preuve. Un calcul direct donne
9

D

La métrique g\ sur Kl dans la partie épaisse est donnée par le même procédé
de reparamétrisation que sur la partie mince (définition 1.2). Cette fois, les côtés

paramétrés par r(9),R(9) opposés à la base n'étant pas à une distance constante, la

métrique induite n'est plus diagonale. Si le quadrilatère K% est dans un hexagone
dont un des côtés dégénère, on utilise les coordonnées de Fermi basées sur ce côté.

(voir figure 4)

ßo

70

,(2)
lk,t

lk,t

Figure 4.

Un quadrilatère de la partie épaisse (bords: lignes pleines)

Lemme 1.2. Il existe une constante C telle que \\D%\\ < C pour K% dans la parue
épaisse.

Preuve. Nous nous restreindrons au cas d'un hexagone dont un seul des côtés

dégénère, les deux autres côtés indépendants étant de longueur ßo, 70. Les autres
cas seront traités de manière complètement analogue. Soit Klk dans l'intersection
de ce pantalon avec la partie épaisse, déterminé par des segments géodésiques
perpendiculaires à c^. En coordonnées de Fermi basées sur c^, un tel quadrilatère
est décrit par r G [R^,R^(9)], 9 G [If. t,lk j.], où l'on n'a pas écrit les indices i,k,
car les estimations ne dépendent pas du polygone particulier si l'on choisit dans le

calcul qui suit les constantes de manière appropriée. On note que le côté {r R^}
n'est pas géodésique. Le tenseur métrique induit est alors:

At{TY dp1 + 2pAt{T)Bt{T) dpd,T +

où l'on a posé

r2 (1)

:= lk,t ~ ,(1).
lk,t ' At{r) := Rkt{ltr)) - Bt{r) := -^
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A nouveau, on écrira /, etc... au lieu de Iq.

Affirmation 1 I'/I l/e + O{e) -{Rk)' + O{e).
Soient d\ := coth/3ocoth 70, d% := coth7o/sinh/?o- Comme

coth/t coth7ocoshèt -— — {d\ + d<2 cosh(afc(e + £)), (2)
smha{e + t)

on déduit

h=af'+!)(l+O((e + t)2)) (3)

De même, en dérivant l'équation (2):

1 afccoshafce
5-/ 2 (di + d2coshafce) + ^«fc- (4)

sinh / sinh a]~e

On multiplie (4) par —sinh /// O{1) O(e), pour obtenir,

/' adl + O(e2)^^2{ir¥r{^ + OUe)'1)))

7=
k{ X { ] ^+t+O((^)) {dl + rf2(1 + Q(£ ))} + Q(£) (5)

Où l'on a introduit l'équation (3).
Affirmation 2 A{t) C(T)+O(e2) et A'(t) R'+O(e), C(t) borné uniformément
en e.

Soit -At(O) := 6t. Remarquons d'abord que coshèt ej(l + e~26*)/2. Il s'ensuit

cosh èt tanh /3q coth /;

bt lo§ • + log 2 + log tanh/30 + log cosh/t - log(l + e 2bt).
sinh If

ce qui, avec sinh Rt(9) cosh 9 tanh èt cosh a, implique l'affirmation.
Affirmation 3 \B{t)\ < Ce2.

Par définition B{t) l—R{6). La dérivation de l'expression pour sinhi?(0) par06
rapport à 6 implique

^§^ tanh 0 tanh R(0).
Ou

Or 9 < l < Ce. Il s'ensuit que les termes essentiels sont les termes diagonaux en
coordonnées p,r. Le lemme se déduit directement des estimations sur les
coefficients. D

Les différents g\ ne forment pas une métrique lisse. Nous avons par contre une
relation avec gt, la métrique sur St, par les difféomorphismes <f>\. Comme gt est
localement isométrique à g\ par <f>\, sa dérivée sera fonction de la dérivée Dl et du
déplacement relatif des points selon 4>\. Cet effet n'intervient que sur les bords des
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polygones standards, par l'intermédiaire des champs vectoriels de variation. En
d'autres termes, il nous faut une estimation sur «l'erreur» commise en passant
d'un polygone à l'autre le long d'un côté commun.

Lemme 1.3. Soit V% le champ vectoriel de variation associé à <f>%, V%3 V% — V3

décrit la discontinuité de <f>% relativement à (p3 le long d'un segment commun à, K%

et K3. Alors il existe une constante C telle que \Vt3\ < Ce.

M
—~^l

Figure 5.

Difféomorphisme

Preuve. Supposons que K\ et Kj soient compris dans la partie épaisse de deux
hexagones adjacents dont un côté dégénère. Un point de leur côté adjacent, K\C\K3t
aura des coordonnées d3 respectivement 6t qui devront satisfaire cosh b3 tanh 93

cosh bl tanh 6l, ce qui est la condition que ce point p doit être à distance égale
d'un des sommets communs de Kl et K\ (voir figure 1). Le difféomorphisme (f>ltJ

restreint au bord est donc donné par

1 /cosh bl \
t h^ —arg tanh tanh Z;t

/( \ cosh b\ I

De l'équation (6) on tire coshèj ^-(1 + O{e + t)2), d'où

^tanh^T* —lltTl(l + O((e+t)2) (7)
cosh 6* l C3

où C1, C3 sont des constantes indépendantes de t,e. On introduit (7) dans le

développement de arctanhx x + O(x3), ce qui donne

^ + t)2). (8)
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L'application en (8) est réelle analytique en e, on peut estimer sa dérivée en
dérivant terme à terme. D

2. Estimations sur les fonctions propres

2.1. Fonctions propres et fonctions test

Dans nos estimations, nous rencontrerons naturellement les fonctions propres
associées aux petites valeurs propres. Plus tard, nous allons établir une formule de

variation pour les valeurs propres. Nous n'allons pas effectuer les calculs dans la
formule de variation directement avec la fonction propres, mais d'abord remplacer
ces fonctions propres par des fonctions tests beaucoup plus simples. Le but de

cette section est de déterminer cet espace de fonctions test. Nous aurons besoin
de ces estimations seulement après la variation, nous prendrons donc t 0 dans
cette section.

2.2.

On note H H{S) l'espace de Hubert des fonctions admissibles sur S, E, l'espace
engendré par les fonctions propres pour les N + 1 premières valeurs propres (0
étant la première) et Eh C H, l'espace des fonctions constantes sur les parties
épaisses, harmoniques et radiales sur les cylindres C^k> (fonctions uniquement de
la distance àq).

La proposition suivante est inspirée du lemme des petites valeurs propres de

[CCdV88].

Proposition 2.1. Soit (h,u) € Eh X E tel que ||u||^2 1, et tel que la projection
orthogonale de h sur E soit u. Il existe une constante C telle que

\\u-h\\H<Ce

Remarque: II s'ensuit ||/i||^2 < 1 + Ce.

Preuve. Soit h := VII^IIl2) ü := m/II^IIl2- Par définition, h — u est perpendiculaire
à E. Il s'ensuit par la caractérisation variationnelle des valeurs propres [Chavel]

que le quotient de Rayleigh de h — û est supérieur à la N + 1-ième valeur propre.
Par le théorème de Schoen, Wolpert et Yau, [SWY80], cette valeur propre est
bornée inférieurement par une constante C\ > 0 qui ne dépend que du genre.

Dans [CCdV88], il est démontré que (V/, Vg) < C2£||/||L2||0||ifi pour / G Eh,
g e H. Il s'ensuit (car A(E) C E et h - û _L E).

||V(/i - ü)\\2r2 (V(/i - m), V/i)2 < C2£j\\Vh - Vm||22 + \\h- m"2
l2-
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On en déduit \\V(h - u)\\\2 < Cf (1 + ^-)e2, d'où \\h - u\\\2 < ^(1 + ^-)e2 ce

qui donne une constante (1 + 75~)2C2-

II faut encore remplacer ||/i||i2 1 par ||u\\L2 1. Cela revient à multiplier la
constante par 1/(1 — Ce). Pour e suffisamment petit, on peut prendre p.ex.

C:=2[l + ^-] Ci

D

2.3. Estimation sur les fonctions test

Considérons une fonction de Eh- Sur la partie épaisse, elle est par définition
constante. Sur la partie mince, nous aurons besoin d'un certain nombre d'estimations
liant la fonction aux termes provenant de la dérivée de la métrique. La restriction
d'une fonction h de Eh à un cylindre C^k> est harmonique radiale. C'est une fonction

de r, telle que <9r(coshrdT)h 0. Elle sera donc de la forme akh{r) + bk sur
C'fc', où h{r) := Jq dx/ coshx et ak et bk sont déterminées par les conditions de
bord. On rassemble ses caractéristiques dans le lemme suivant:

Lemme 2.1. h est une fonction monotone, antisymétrique, bornée par

lim h(r) tt/2.

Soit C^k', la partie du cylindre étant à distance inférieure à vRW de ck. On a

Preuve. Par définition h'(r) 1/coshr, d'où la monotonie et l'antisymétrie. On
peut en fait donner h explicitement h(r) 2arctan(er) — tt/2, ce qui donne la
limite.

Onaaussi|V/i|2 1/cosli2 r, d'où ||V/i||22(c(fc)) 2akeh(R^). Par symétrie,

il suffit de considérer /g /i2(r)afc£coshr dr. On intègre par parties deux fois en
utilisant h'(r) 1/coshr, pour obtenir

\l2{c(k))

cosh
(9)
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-; logcoshr < loger < r, (r > 0)

log cosh r
coshr

dr <2
fi«

r 2(1 -
D

On note que lime^0 vol(C<fc)) 0, mais lime^0 vol(C(fc)\C(fc)) > 0. Nous
allons maintenant estimer des termes de la forme (f,vk)c(k), où iAk> a été donné
dans le lemme 1.1:

{h\vk)c(k)\<C\\oge\,
Lemme 2.2. Il existe une constante C > 0 telle que
1.

2.

3.

<CT log«

Preuve.
1. La dérivation de

fi« ,1
h2(r)akecoshr dr / h2

0 Jo

donne

dp

h(r)r dr.

que l'on peut comparer avec la dérivée de (9), qui donne

^ -cosh R^)-2h{R^) log cosh i#)+2
fi(fc)

2. On a maxc(fc) \v^k>\ <e *. L'estimation du lemme 2.1 pour ||V/i||
implique l'estimation.

3.

log cosh r
coshr

1

vk--,\Vh\2)ö(k) o

0-

ak I ~ Rk sinhr
(r

1

cosh2r coshr
)dr\

R(k) \ coshr

qui satisfait l'inégalité voulue D
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3. Démonstration

3.1. Formule de variation

La dérivation de l'équation aux valeurs propres donne

A'un + A(un)' + X'n(e)un + Xn(e)(un)' 0

Cette égalité est multipliée avec un et intégrée partiellement. On obtient: X'n(e)
— (un,A'un). Un calcul direct donne (voir [Bat97])

(/, A'g) (Vf, (D - v)Vg) - (f, vAg)

Ce qui donne le lemme suivant:

Lemme 3.1.
X'n(e) (v, A(K|2)) - (Vun,DVun)

On pose An(f,D,M) := (v,\Vf\2 - Xn(e)f2) - (Vf,DVf) autrement dit
X'n(e) Kn(un,D,M). L'objectif est d'estimer r](e) := X'n(e) - Xn(e)/e.

3.2. Substitution de la métrique

Comme M UtKl, avec K1 n K3 de mesure zéro, on peut écrire la dérivée sous
forme de somme: X'n ^2tAn(un,D,Kl). Maintenant, nous allons utiliser la
section 1. Sur Kl, nous avons

9i\ki (4>l)*9t>

où g) est une métrique donnée explicitement et <% id^*. La dérivation par
rapport à t donne

D\K. D*+?- (rtTgh-
m t=o

Le deuxième terme correspond à la variation de K% sous l'effet de 4>\. L'effet sur
la variation de la valeur propre ne peux dépendre que de la forme de Kl, donc
du champ V% sur le bord. (Plus exactement sa partie normale au bord), voir
[SokolowskiZolesio] pour une théorie générale. Des formules explicites pour ce cas

particulier se trouvent dans [Bat97]. On écrit

F provenant de la transformation du deuxième terme en une intégrale sur le bord.
Supposons que Kl et K3 soient adjacents le long de à3. Alors T(Vl,nl, à3) +
T{V3,n3,é3) T{V\nl,é3) - T{V3,nl,é3) Y(V%3,ri,â3). Et donc
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3.3. Substitution de la fonction

Nous allons maintenant utiliser les résultats des sections 1 et 2 pour estimer
individuellement les différents termes. On note que

ö(fc) - An(e) (11)

où il est entendu que la somme sur les k représente la somme sur les parties minces,
et la somme sur les i la somme sur les polygones de la partie épaisse.
f. Le terme ^(J2k ll^^llo r(fc) ~ A«(e)) On déduit de la section 2 qu'il existe une

fonction hn G Eh et une constante C telles que

\K(e)-\\Vhn\\2\<Ce2.

Maintenant, par les estimations sur les fonctions harmoniques radiales, lemme
2.1

Par conséquent, comme l|V/in||^UfccW °>

2. Le terme (vk — |, |VMn|2)^(fc)) Par le lemme 2.2, on obtient

(vk --,\Vun\2)ö(k)) <C
loge

3. Le terme (vk, |VMn|2)c(fc)> g,(fc) Du lemme 2.2 on tire:

4. Le terme Xn(vk, \un\ )c(k) À nouveau, \\un — /in||^-i < Ce implique que



Vol 73 (1998) Dérivée des petites valeurs propres des surfaces de Riemann 351

et on peut estimer Xn(vk, \hn\^)c(k) en utilisant le lemme 2 2

5 Le terme (V, |Vm„|2 — An|Mn|2)^ Par notre choix de construction, vl est borné
sur la partie épaisse, cf 1 2, et donc ce terme est borné par Ce

6 Le terme (Vwn,-DVm„) On sépare ce terme en deux parties, l'intégrale sur le

cylindre, où D est la projection sur la partie non-radiale à O(, ^ près, et

ces termes non-radiaux sont d'ordre e d'où

1

(Vun,DkVun)c(k) <C
i '

et l'intégrale sur la partie épaisse qui est d'ordre e2

7 Les termes F( La norme C°° de Vun sur la partie épaisse peut être contrôlée

par sa norme L2 comme dans [DR86] La variation de la géométrie a été estimée
dans le lemme 1 2 Ces termes ont une contribution négligeable par rapport à

1/1 loge|, et un choix judicieux de constante permettra d'en tenir compte

Ces estimations démontrent

Proposition 3.1. La fonction rj(e) satisfait

W)\<c loge|

pour une constante C ne dépendant que de la situation initiale

Comme Xn(e)/e peut aussi être contrôlé en utilisant le lemme des petites valeurs

propres, [CCdV88, Bur90], la démonstration est terminée
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