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Dérivée des petites valeurs propres des surfaces de
Riemann

Ph. Batchelor

Résumé. On estime la dérivée des petites valeurs propres du Laplacien sur une famille de
surfaces de Riemann. Ces valeurs propres sont considérées comme des fonctions sur I’espace de
Teichmiiller, et 'estimation des dérivées peut s’exprimer dans ce contexte.

Mathematics Subject Classification (1991). 58G25.
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Dans ce travail nous allons nous intéresser a la variation des petites valeurs propres
du Laplacien sur des surfaces de Riemann qui dégénerent.

Les classes d’isométrie des surfaces hyperboliques de genre «, (courbure -1)
compactes sans bords, i.e. les surfaces de Riemann, peuvent étre paramétrées par
6y — 6 nombres réels, [Bus92]. Les classes marquées décrivent une variété, l’espace
de Teichmiiller, voir [Bus92|, chapitre 6.

Une courbe analytique réelle sur cet espace décrira donc une famille de classes
d’isométries de surfaces marquées, et les valeurs propres du Laplacien sont des
fonctions analytiques réelles bien définies le long de cette courbe, voir [Bus92],
14.9.

Nous nous intéressons aux courbes décrivant des surfaces qui dégénerent, comme
dans [Bur90, Col85]. Pour les décrire et pouvoir énoncer les résultats sur les valeurs
propres, nous allons adopter les notations suivantes.

Notations. Le genre d’une surface sera noté . IL’espace de Teichmiiller des
surfaces de genre « sera 7.

S sera la notation habituelle pour une surface de Riemann, S; sera donc une
famille de représentants de la courbe paramétrée par ¢ sur 7,. Rappelons que S
est par définition une surface différentiable M munie d’une structure hyperbolique,
ou de maniere équivalente d’un tenseur métrique tel que K = —1.

Un point de 7, correspond a la classe d’équivalence d’une surface marquée : un
choix de générateurs du groupe fondamental distingue deux surfaces isométriques
par une isométrie non-isotope a l’identité. Pratiquement, on met en exergue sur la
surface 3v — 3 géodésiques fermées simples séparant la surface en 2y — 2 morceaux
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de type topologique (0,3) : les pantalons, voir [Bus92] chapitre 3, en particulier le
théoreme 3.6.4. Ces géodésiques sont notées ¢, = ¢x(S), k =1...3y—3. Un choix
de parametres est par exemple les longueurs de ces géodésiques par rapport a la
structure, et le parametre de twist le long de ces géodésiques, voir les références
standards, p.ex. [Abi80, Bus92]. Le twist sera fixé dans tout I'article. Les pan-
talons sont eux-mémes obtenus par collage d’hexagones hyperboliques droits.

Parmi ces géodésiques, un certain nombre p < 3y — 3 que l'on choisit étre les p
premieres, auront une longueur qui tend vers zéro avec £: on écrit, (Longueur(cy (S;))
= ap(e+1), k=1...p, ol o, est une constante positive) car nous voulons dériver
en g, i.e. ent = 0. Les autres géodésiques ont une longueur fixée que nous sup-
poserons étre supérieure & une constante, p.ex. 1/2 (voir [Bus92|, théoreme 4.1.6
pour une constante géométrique).

St La surface

c3(St)

Figure 1.

Pantalons et hexagones correspondant & une surface

En général, ¢ ne sera pas noté comme indice afin de ne pas trop alourdir les
notations. En particulier, S := Sp.

Résultats. Si le complément des géodésiques ¢, & = 1...p contient N + 1
(1 £ N <€2v—3) composantes M;, j = 1...N + 1 de genre ;, le théoreme de
Schoen, Wolpert et Yau [SWYS80] implique que les N premieres valeurs propres
non-nulles tendent vers 0 avec £. Dans la suite, nous parlerons souvent de petites
valeurs propres et de petites géodésiques. Plus précisément, soit A, (g) la n-ieme
valeur propre du Laplacien sur S. On rappelle que S est un représentant d'une
famille de surfaces dépendant de e:

Théoréme 1. (Schoen, Wolpert et Yau, [SWY80]) Il existe deux constantes po-
sitives ¢1(y), ca(y) ne dépendant que du genre, et une constante cg > 0 tels que
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pour tout ¢ € (0,e9), n < N,

An(€)

c1(y) < < ev)

et Any1(€) est bornée inférieurement par une constante ne dépendant que du genre.

Intuitivement, pour ¢ suffisamment petit, la surface ressemble & un graphe
G = G(v;,ay), dont les sommets, correspondant aux Mj;, ont un poids déterminé
par ;. Colbois [Col85] améliore fortement I'estimation de [SWY®80] en calculant
la limite du rapport A, (g)/e (voir aussi [Burg90]):

Théoréme 2. (Colbois, [Col83]) Soient 6,(G), n = 1...N les valeurs propres
non-nulles du Laplacien du graphe associ€ a la famille de surfaces, défini dans
[Col85]. Alors

Burger [Bur90] exprime ce résultat sous une forme qui suggere que la fonction
An(€) est asymptotiquement linéaire en £, mais ne donne aucune information sur
la dérivée de A, (g) au voisinage de zéro. Dans cet article, nous montrerons que
les valeurs propres A\, (g), n = 1... N décroissent lorsque £ — 0, en estimant leurs
dérivées, qui sont proches d’une constante pour ¢ petit. Soit A, (), la dérivée par
rapport & £ de A\, (g). Le but de cet article est de démontrer le théoreme:

Théoreme 3. [l existe une constante B = B(G) > 0 explicite, telle que pour la
variation définie ci-dessus,

1 1
5, — < N.(€) < 6, + B,
PTioge] <2 (&) < 0 H g

en particulier, \,(g) est monotone en fonction de £ pour ¢ < e B/on,

Remarque 0.1. Le théoreme 2 peut étre considéré comme donnant la dérivée a
la limite. Ici, nous avons un contréle sur un intervalle bien déterminé. (Une valeur
pour /3 peut étre extraite de la démonstration.) Wolpert étudie le méme probleme
pour des valeurs propres ne tendant pas vers zéro, en particulier celles supérieures
a 1/4 dans [Wol92a, Wol92b]. Voir aussi [CC89].
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1. Difféomorphismes par morceaux

Le spectre est un invariant riemannien. Cependant, dans sa définition entrent des
concepts comme le Laplacien, fonctions propres, dont la définition nécessite un
tenseur métrique explicite. Ici, nous devrions construire une famille de tenseurs
métriques hyperboliques sur une variété différentiable. Une telle construction est
en général tres difficile (voire impossible) sur une variété n’ayant pas une unique
carte. Nous allons effectuer cette construction sur des polygones dont le collage
sera une surface isométrique a la surface voulue S. Il sera alors nécessaire de con-
troler le passage d’un polygone a I'autre, i.e. la discontinuité du tenseur métrique
induit sur S par cette décomposition en polygones (voir lemme 1.3). Il existe une
infinité de possibilités pour ce faire (voir [BC90], [Bus92] 14.6); cependant, comme
nous voulons dériver les valeurs propres, il est préférable de faire un choix pour
lequel le tenseur métrique soit le plus simple possible sur les parties les plus im-
portantes. Pour les surfaces qui dégénerent, les parties épaisses et minces jouent
un role essentiel. Sur une surface de Riemann, la partie mince est définie comme
étant ’ensemble des points ol le rayon d’injectivité est inférieur a une certaine con-
stante, voir [Bus92] chapitre 4 pour plus de détails. Nous utiliserons directement
la définition suivante, spécifique & notre probleme:

Définition 1.1. (Parties minces et épaisses) Nous appellerons partie mince de Sy
(représentant un point de la courbe sur 7), I'ensemble des points dont la distance
$ 5 B T B 1

a 'une des géodésiques ci, k= 1...p est inférieure a log(m)
= —log(ax(e+1t)). La partie épaisse est le complément de la partie mince.

La partie mince a une géométrie simple. Pour plus de détails, on renvoie au
paragraphe 4.1 de la référence standard pour cet article: [Bus92]. C’est la réunion
de cylindres disjoints, notés C’(’“), voisinages des géodésiques qui dégénerent. Le
choix des parties minces a été effectué de maniere a permettre l'introduction de
coordonnées de Fermi (r, #) basées sur ¢, r étant la distance & ¢y, et 6 la distance &
un point fixé le long de ¢;. On rappelle que les coordonnées de Fermi sont définies
sur tout voisinage d’un segment géodésique. En coordonnées de Fermi (r, ), une
métrique hyperbolique prend la forme:

dr? 1 cosh? r df?.

Ces coordonnées seront 1’outil principal pour notre construction, la décomposition
de la surface. Les morceaux de la décomposition seront des domaines sur lesquels
les coordonnées seront, globalement définies.

Définition 1.2. (Quadrilateres standards) Un quadrilatére standard sera un do-
maine du plan hyperbolique donné en coordonnées de Fermi par r € [r(6), R(6)],
0 € [l1,l9] avec r(-) < R(:) € C([l1,l2]). Une paramétrisation standard sera le
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difféomorphisme d’un domaine isométrique & un polygone standard dans [0, 1]27

donné par p := R(Te_)ﬁf()e)v o 0l

0,1) (1, 1)

(1,0)

Figure 2.

Quadrilatere standard

Définition 1.3. (Partitions admissibles) Une partition admissible de S; sera une
décomposition de S; en domaines isométriques a des quadrilateres standards.
Elle sera subordonnée a la décomposition en parties minces et épaisses, et a
la. décomposition en pantalons dans le sens suivant. On a fixé une décomposition
en pantalons telle que les bords des pantalons contiennent les petites géodésiques
cx. Chaque pantalon dont un des bords est une copie d’une petite géodésique
contient un collier (une moitié de cylindre) autour de cette petite géodésique. Si
I'on considere le pantalon comme collage de deux hexagones isométriques, cette
partition du pantalon détermine une partition des hexagones. Un hexagone n’est
pas encore un domaine isométrique a un quadrilatére standard, mais il est aisé
de fixer une décomposition d’un hexagone en quadrilateres, (figure 4) i.e. chaque
polygone est inclus dans une composante de ces partitions de la surface.

Ces partitions seront telles que les longueurs des cotés seront des fonctions
réelles analytiques de ¢. On note {Kj}icr la partition admissible de Sy. (Kj =
K?%). Concretement, on considérera la décomposition en hexagones induite par
les pantalons, les hexagones dont un des cotés correspond & une géodésique qui
dégénere étant encore séparés en parties épaisses et minces. La partie épaisse
est découpée en quadrilateres par des géodésiques perpendiculaires aux bords des
hexagones, et qui passent soit par les sommets opposés, soit perpendiculairement
aux cotés opposés, en fonction du type de I’hexagone: zéro, un, deux, ou trois
cOtés qui dégénerent.

Pour simplifier la description, on peut supposer S; décrite par un tenseur
métrique g; (inconnu) sur M. Dans ce cas, K* se déforme en K!. Grace & une
paramétrisation standard, on peut introduire une métrique explicite g¢ sur K* telle
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i Partie épaisse

Figure 3.

Parties épaisses et minces

que (K}, g;) et (K, g}) soient isométriques, par ¢} (¢f = id). L’utilisation de la
partition permettra d’exprimer la dérivée de g; (et donc de A,,) en fonction de g
et ¢i. ¢ est défini a I’aide des coordonnées standards de la définition 1.2. Ce sont
ces dérivées que nous devons controler.

Définition 1.4. Soit une famille de tenseurs métriques g, telle que gg = (-, )
sur une variété différentiable M. La forme volume associée & g; est notée wy,,
(went = 0). Nous noterons D le tenseur de déformation associé, défini par
(£9:(X,Y))|t=0 =: (X,DY). La variation de la forme volume est décrite par
(Edt‘wgz)h:() =l Uw.

Si ¢ est une famille de difféfomorphismes telle que ¢g = i¢d, nous noterons V'
le champ vectoriel de variation: (%@)h:o =:V. Si g, = ¢;(,) alors v = divV.

Soit Rt(k) = log1/(ax(e +t)). On introduit directement sur tous les cylindres
C*) formant la partie mince un tenseur métrique explicite gf: C (F) est isométrique
3 0,1]2 muni du tenseur métrique

(B)2dp? + o (e + ) cosh’ (R p)ar?; (p,7) € [0,1]2

en coordonnées standards (voir la définition 1.2). Dans ces coordonnées, le tenseur
est diagonal pour toute valeur du parametre.

Lemme 1.1. (Parties minces) Soit D, le tenseur de déformation associé au
tenseur mélrique précédent. D¥ est diagonal. v* est une fonction décroissante
de la distance, symétrique sur [—R(k),R(k)], qui satisfait:

l<1+ ! >ka(7’)2 L, 2owe)®

€ log age clogare 14 (ape)?
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Preuve. Un calcul direct donne

2
k —
Dpp(paT) -

2
—= . Dt =0, DF = Z(1 — ptanh R®) p).
Togone’ or(0:7) =0, DI (p,7) ~(1—ptan p)

O

La métrique gi sur K* dans la partie épaisse est donnée par le méme procédé
de reparamétrisation que sur la partie mince (définition 1.2). Cette fois, les c6tés
paramétrés par r(0), R(0) opposés & la base n’étant pas & une distance constante, la
métrique induite n’est plus diagonale. Si le quadrilatere K* est dans un hexagone
dont un des c6tés dégénere, on utilise les coordonnées de Fermi basées sur ce coté.
(voir figure 4)

Bo,/

Figure 4.

Un quadrilatére de la partie épaisse (bords: lignes pleines)

Lemme 1.2. Il existe une constante C telle que ||D|| < C pour K* dans la partie
épaisse.

Preuve. Nous nous restreindrons au cas d’un hexagone dont un seul des cotés
dégénere, les deux autres cotés indépendants étant de longueur g, vo. Les autres
cas seront traités de maniere completement analogue. Soit K Z’“ dans l'intersection
de ce pantalon avec la partie épaisse, déterminé par des segments géodésiques
perpendiculaires & ¢;. En coordonnées de Fermi basées sur ¢, un tel quadrilatere
est décrit par r € [RF, RF(0)], 0 € [1,927 l,g)], ol 'on n’a pas écrit les indices 1, k,
car les estimations ne dépendent pas du pélygone particulier si I’on choisit dans le
calcul qui suit les constantes de maniére appropriée. On note que le coté {r = RF}
n’est pas géodésique. Le tenseur métrique induit est alors:

AT dp? + 20 44(7) Bo(7) dpdr + (p*B2(r) + B cosh®(Re + Ai(r)p)) dr® (1)

oll 'on a posé

o
=1 —10) A(r) = BEUm) - RE; Bu(r) = o Au(r).
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A nouveau, on écrira [, etc... au lieu de lg.
Affirmation 11/l = 1/e + O(e) = —(R*) + O(e).
Soient dq := coth By coth? ~0, d2 := coth~g/sinh y. Comme

cothl; = cothyp coshb; = m(dl + dg cosh(ag (e + 1)), (2)
on déduit e +1)
aile + 9
Iy = —=(1+O((e+t 3
=2 o+ o) 3
De méme, en dérivant I’équation (2):
1 _p, OREEMORE L, | e ] (4)
- = ——7(a1 2 « 200, .
sinh?( sinh? e g g

On multiplie (4) par — sinh? I/l =O(l) = O(e), pour obtenir,

U ax(1+0(e?) sinh® (7245 (1 4+ 0(()%))

52 &
l S'lnhQ e ﬁ—%(l n O((E)Q)) (dl £y dQ(l + O( ))) + O( ) (5)

Ou I'on a introduit ’équation (3).

Affirmation 2 A(T) = C(1)+0(e?) et A'(1) = R'4+0(g), C(7) borné uniformément
en €.

Soit A;(0) := b;. Remarquons d’abord que cosh b, = 2(1 + ¢2%¢)/2. 11 s’ensuit

cosh b, = tanh fFy cothl;, —

+ log 2 + log tanh By + log cosh l; — log(1 + e’%”).

1
by =1
=k sinh {;

ce qui, avec sinh R.(6) = cosh 0 tanh b, cosh a, implique I'affirmation.
<

Affirmation 3 |B(7)| < Ce2.
7]
Par définition B(7) = %R(ﬁ). La dérivation de I’expression pour sinh R(f) par
rapport a 6 implique
OR(0)

———— = tanh @ tanh R(6).
50 (@)
Or 0 <[ < Ce. Il s’ensuit que les termes essentiels sont les termes diagonaux en
coordonnées p, 7. Le lemme se déduit directement des estimations sur les coeffi-
cients. O

Les différents g¢ ne forment pas une métrique lisse. Nous avons par contre une
relation avec g, la métrique sur S;, par les difféomorphismes ¢:. Comme g; est
localement isométrique & g par ¢%, sa dérivée sera fonction de la dérivée D? et du
déplacement relatif des points selon ¢¢. Cet effet n’intervient que sur les bords des
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polygones standards, par 'intermédiaire des champs vectoriels de variation. En
d’autres termes, il nous faut une estimation sur <l’erreur» commise en passant
d’un polygone a l'autre le long d’un c6té commun.

Lemme 1.3. Soit V? le champ vectoriel de variation associé & ¢*, V3 = Vi _VJI
décrit la discontinuité de ¢' relativement & &7 le long d’un segment commun a K*
et KI. Alors il existe une constante C telle que |[V¥| < Ce.

Figure 5.

Difféomorphisme

Preuve. Supposons que K} et th solent compris dans la partie épaisse de deux
hexagones adjacents dont un c6té dégénere. Un point de leur coté adjacent, KiNK7
aura des coordonnées 6; respectivement ; qui devront satisfaire cosh b tanh 7 =
cosh b’ tanh 6", ce qui est la condition que ce point p doit étre & distance égale
d’un des sommets communs de K} et K/ (voir figure 1). Le difféomorphisme ¢’
restreint au bord est donc donné par

| hb! ;.
"= 7 arg tanh (cosh L tanh l§71>

. cosh bi
De l’équation (6) on tire coshbé = %—(1 + O(s +1)?), d’otr

cosh b/
cosh bi

tanh 7% = %zg&iu +O((e +1)?) (7)

oll C%, C7 sont des constantes indépendantes de ¢,e. On introduit (7) dans le
développement de arctanhz = z + O(z?), ce qui donne
ij i

C i
J v e (1+0((e +1)?). (8)
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L’application en (8) est réelle analytique en £, on peut estimer sa dérivée en
dérivant terme a terme. O

2. Estimations sur les fonctions propres
2.1. Fonctions propres et fonctions test

Dans nos estimations, nous rencontrerons naturellement les fonctions propres as-
sociées aux petites valeurs propres. Plus tard, nous allons établir une formule de
variation pour les valeurs propres. Nous n’allons pas effectuer les calculs dans la
formule de variation directement avec la fonction propres, mais d’abord remplacer
ces fonctions propres par des fonctions tests beaucoup plus simples. Le but de
cette section est de déterminer cet espace de fonctions test. Nous aurons besoin
de ces estimations seulement apres la variation, nous prendrons donc ¢ = 0 dans
cette section.

2.2,

On note H = H(S) I'espace de Hilbert des fonctions admissibles sur S, F, I’espace
engendré par les fonctions propres pour les N + 1 premieres valeurs propres (0
étant la premiere) et K, C H, lespace des fonctions constantes sur les parties
épaisses, harmoniques et radiales sur les cylindres C (k) (fonctions uniquement de
la distance a ¢y).

La proposition suivante est inspirée du lemme des petites valeurs propres de
[CCAV8S].

Proposition 2.1. Soit (h,u) € E, X E tel que ||ul| ;2 = 1, et tel que la projection
orthogonale de h sur E soit uw. Il existe une constante C telle que

lw—h|lg < Ce

Remarque: Il s’ensuit ||k] 2 <1+ Ce.

Preuve. Soit h := h/| |2, @ = u/||h| 2. Par définition, h— est perpendiculaire
a F. 1l s’ensuit par la caractérisation variationnelle des valeurs propres [Chavel]
que le quotient de Rayleigh de h — @ est supérieur & la N 4 1-ieme valeur propre.
Par le théoréme de Schoen, Wolpert et Yau, [SWYS80], cette valeur propre est
bornée inférieurement par une constante C7 > 0 qui ne dépend que du genre.

Dans [CCAV88|, il est démontré que (V f,Vg) < Cocl| f| 12]l9ll g1 pour f € Ep,
g € H. Tl s’ensuit (car A(E) C Eeth—a L E).

IV(h = a)ll}2 = (V(h—a),Vh)* < CQé\/IIVB — Va2, + b —al?,.
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On en déduit [|V(h —a)|2, <02(1+ 2 )e2, dot

qui donne une constante (1 + &= )202

h—a|2; < 5%(1 +2:)e?  ce

Il faut encore remplacer ||h||L2 =1 par |jul|;2 = 1. Cela revient & multiplier la
constante par 1/(1 — Ce). Pour ¢ suffisamment petit, on peut prendre p.ex.

1 2
s 2
0.72<1+—C1> B2

2.3. Estimation sur les fonctions test

Considérons une fonction de Fj,. Sur la partie épaisse, elle est par définition con-
stante. Sur la partie mince, nous aurons besoin d’un certain nombre d’estimations
liant la fonction aux termes provenant de la dérivée de la métrique. La restriction
d’une fonction h de Ej, & un cylindre C () est harmonique radiale. C’est une fonc-
tion de r, telle que 9,(cosh r@r)fz = 0. Elle sera donc de la forme agh(r) + by sur

c®) | ou h(r) == for dz/ coshzx et ay et by sont déterminées par les conditions de
bord. On rassemble ses caractéristiques dans le lemme suivant:

Lemme 2.1. h est une fonction monotone, antisymétrique, bornée par

lim h(r) =m/2.

r—00

Soit C'U“), la partie du cylindre étant & distance inférieure & VR de cy. On a
. 2

1. hmrﬂoo ||h||2 C(k)) = %;
2. ||Vh?

3. VA2

< agme,
<C &
cENGk) = [loge|’

L2(c)

Preuve. Par définition h/(r) = 1/ coshr, d’oll la monotonie et antisymétrie. On
peut en fait donner h explicitement h(r) = 2arctan(e”) — /2, ce qui donne la
limite.

On aaussi |[Vh|? = 1/ cosh2 r, d’ol

LQ(C(k) = 2046h(R™). Par symétrie,

il suffit de considérer f() hQ(r)cvks coshr dr. On integre par parties deux fois en
utilisant A'(r) = 1/ coshr, pour obtenir

1022 oy = 20 (hQ(R(’f)) sinh R® — 2h(R™®)) log cosh R(*)

R
log coshr
2 ——dr|. (9
t /0 coshr r> )

L2(c®)
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Maintenant

— akEQ

1
sinh R*) = ;o logeoshr <loge” <r, (r>0)

2ak€
RrR*®)

R log coshr (k) (%)
/ O8COSAT dr < 2/ re "dr =2(1 — e’ (1- e R ) <2.
0 0

coshr
|
On note que lim,_,vol(C*)) = 0, mais lim,_,g vol(C®\C®)) > 0. Nous

allons maintenant estimer des termes de la forme (f, vk)c<k), ot v(F) g été donné
dans le lemme 1.1:

Lemme 2.2. [] existe une constante C' > 0 telle que
1. [(h?,0%) s | < Cllogel,

2 1
2. ’(|Vh| 7Uk)c(k>\a(k> Sc\loga\
1
3. ‘(|Vh|27vk)é(k> — 2V | < Croga-
Preuve.

1. La dérivation de

J

donne

R 1
h2(r)age coshr dr = / RA(R™ p)oye R¥) cosh(R¥) p) dpp
0
Rk

1 2
§(h27v)c(k> - W/o h(r)r dr.

que ’on peut comparer avec la dérivée de (9), qui donne

Rk
R2(R™®))(sinh R —cosh R®))—21(R™¥)) log cosh R*) 42 / logcoshr
0 coshr
2. On a maX ) [v®)| < &1 Llestimation du lemme 2.1 pour ”Vh”L?(o(k)\é(k))
implique l'estimation.

3.
NGO
|(Uk_l IVA2) 50| :2|& " rﬂ #)dﬂ
&’ @ R Jo cosh?r  coshr
O r \/W \/—
=2—"= || - 2h(V R(F)
R(k)| < coshr|0 +2h( > |

qui satisfait ’inégalité voulue O
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3. Démonstration
3.1. Formule de variation

La dérivation de I’équation aux valeurs propres donne
Ay + Alun) + AL (E)un + A () (un) =0

Cette égalité est multipliée avec u,, et intégrée partiellement. On obtient: X\, () =
—(tn, A'uy,). Un caleul direct donne (voir [Bat97])

(f,&'g) = (Vf,(D —v)Vg) — (f,vAg)
Ce qui donne le lemme suivant:

Lemme 3.1.
X, () = (0, Afun ?)) = (Ven, DVun)

On pose A, (f,D,M) = (v,|Vf2 = M\(e)f%) — (Vf,DVf) autrement dit
A (g) = Ap(un, D, M). Lobjectif est d’estimer n(g) := X, (g) — A\ (g)/=.

3.2. Substitution de la métrique

Comme M = U; K*, avec K* N K7 de mesure zéro, on peut écrire la dérivée sous
forme de somme: A, = >, Ap(upn, D, K*). Maintenant, nous allons utiliser la
section 1. Sur K/, nous avons

gtlxi = (64) a1,
oll g¢ est une métrique donnée explicitement et d)f) = 4di. La dérivation par
rapport a ¢t donne
. 0 . .
D|g: =D+ En (61)" 90
t=0

Le deuxieme terme correspond & la variation de K* sous l'effet de ¢¢. L’effet sur
la variation de la valeur propre ne peux dépendre que de la forme de K}, donc
du champ V* sur le bord. (Plus exactement sa partie normale au bord), voir
[SokolowskiZolesio] pour une théorie générale. Des formules explicites pour ce cas
particulier se trouvent dans [Bat97]. On écrit

X, =3 A(un, D, KM+ T(V?,n', 0K")

I" provenant de la transformation du deuxieme terme en une intégrale sur le bord.
Supposons que K* et K7 soient adjacents le long de . Alors I'(V% n? c7) +
NVI nd,c?)=T(V*,n, ) -T(VI ,n, c?)=T(V"Y,n" 7). Et donc

N = ZA(un,Di K"+ Zr(vfﬂgndci’j).
2 3
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3.3. Substitution de la fonction

Nous allons maintenant utiliser les résultats des sections 1 et 2 pour estimer indi-
viduellement les différents termes. On note que

1 2 1 2
= g(ZIIVunIIQ,m) — An(€)) +Zk:(v = = [VunlFa0 (10)
+Z AV ) coanam = 2ale) D_0F, unlP) oo (11)
k
+ ) @ IVu = 2 (@)unl?) ks + (Vun, D*Vun) + > Ty
i, K*Cépais i (12)

ol il est entendu que la somme sur les k représente la somme sur les parties minces,
et la somme sur les ¢ la somme sur les polygones de la partie épaisse.

1. Le terme %(Zk ||Vun||§7é<k) — An(2)) On déduit de la section 2 qu’il existe une

fonction h,, € E}, et une constante C telles que
() = VR [|?] < CE2.

Maintenant, par les estimations sur les fonctions harmoniques radiales, lemme

2.1
2 &
> IVAalZ 0\ < Cm
k

Par conséquent, comme ||V h,,||2 =0,

M\Upc®)

1 1
2P = S IVhalldw] < O
k

ogel|’

2. Le terme (v* — 1, |Vu,|?)54)) Par le lemme 2.2, on obtient

£

1
k o it
(U g7lvu’ﬂ| ) (k)) |10g€|

3. Le terme (v®, |vun|2)c(k)\é(k) Du lemme 2.2 on tire:

k
(@, [V ?) ooy g < |10g€|

4. Le terme A, (v®, |un|2)c(k) A nouveau, ||u, — hn||?171 < Ce? implique que

2 2
l[unllz — [[hnll2] < Ce,
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et on peut estimer A, (v®, |hn|2)C(k) en utilisant le lemme 2.2.

5. Le terme (v, |[Vn|? = A |un|?) ki Par notre choix de construction, v est borné
sur la partie épaisse, cf. 1.2, et donc ce terme est borné par Ce.

6. Le terme (Vuy,, DVuy,) On sépare ce terme en deux parties, I'intégrale sur le
cylindre, o D est la projection sur la partie non-radiale a O(m) pres, et
ces termes non-radiaux sont d’ordre 52, d’oul

1

(Vittn, D"Vuy) o £ cm7
et I'intégrale sur la partie épaisse qui est d’ordre g2,

7. Les termes I'(-) La norme C* de Vu,, sur la partie épaisse peut étre controlée
par sa norme L? comme dans [DR86]. La variation de la géométrie a été estimée
dans le lemme 1.2. Ces termes ont une contribution négligeable par rapport a
1/]logel|, et un choix judicieux de constante permettra d’en tenir compte.

Ces estimations démontrent

Proposition 3.1. La fonction n(e) satisfait

1
<C———
) < oy

pour une constante C ne dépendant que de la situation initiale.

Comme A, (£)/e peut aussi étre contr6lé en utilisant le lemme des petites valeurs
propres, [CCAV88, Bur90], la démonstration est terminée.
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