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(Generic leaves

John Cantwell and Lawrence Conlon

Abstract. A remarkable theorem of E. Ghys asserts that, for any harmonic measure y on a
compact, foliated metric space, p—almost every leaf has 0, 1, 2 or a Cantor set of ends. In this
paper, analogous results are proven for topologically almost all (i.e., residual families of) leaves.
More precisely, if some leaf is totally recurrent, a residual family of leaves is totally recurrent
with 1, 2 or a Cantor set of ends. A “local” version of this theorem asserts that, in general,
topologically almost all leaves have 0, 1, 2 or a Cantor set of dense ends.

Mathematics Subject Classification (1991). 57R30.

Keywords. Foliated metric space, generic, residual, meager, endset, totally recurrent leaf.

1. Introduction

Let (X, F) be a locally compact, separable, complete, foliated metric space. The
leaves are manifolds of some fixed dimension p, but transversely the foliation is
modeled on a locally compact, separable, metric space S. It follows that there is
induced a metric along the leaves which is compatible with their manifold structure
and in which each leaf is complete. Hereafter, the locally compact and separable
properties of our spaces will be assumed without further mention.

If the transverse space S is R, then (X, F) is an honest foliated manifold of
codimension ¢, but there are important examples in which S is totally disconnected
(e.g., exceptional minimal sets in compact foliated manifolds of codimension one,
many essential laminations of 3—manifolds, etc.). We study the topology of the
generic leaf of F.

The term “generic leaf” can be defined from the measure theoretic point of
view, where it means “p—almost every leaf” relative to a suitable measure y, or
from the purely topological viewpoint, where it refers to a residual family of leaves.

In a remarkable paper [6], E. Ghys shows that, given an arbitrary harmonic
probability measure p for a compact, leafwise C’?’7 foliated space, p—almost every
leaf has 0, 1, 2, or a Cantor set of ends. If, in addition, the leaf dimension is
p = 2, p—almost every noncompact leaf either has genus 0 or the leaf is orientable
and all ends are nonplanar or all ends are nonorientable. This restricts the pos-
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Cantor Tree

Cantor Tree with Handles

Figure 1. Generic, noncompact, orientable, 2-dimensional leaf types

sible homeomorphism types of the generic, noncompact, orientable leaves to the
six depicted in Figure 1. There are also three possible nonorientable types with
crosscaps clustering at all ends.

All compact foliated spaces which are leafwise C® admit harmonic probability
measures 4 (the proof in [5], formulated for compact, foliated manifolds, readily
generalizes to compact, foliated metric spaces). By an application of [5, The-
orem 4], the union of the supports of the ergodic components of p has full p—
measure, so restricting to the support of an ergodic component reduces Ghys’s
theorem to the case that p is ergodic with supp = X. In this case, one sees that
p—almost every leaf has topologically the same endset.

Definition 1.1. An end e of a leaf L in a foliated space (X, F) is dense if every
neighborhood of e in L is dense in X. The leaf L is totally recurrent if it is
noncompact and every end of L is dense.

If 1 is an ergodic, harmonic probability measure with supppu = X, an easy
application of the Fundamental Proposition of Ghys [6, p. 402], using the separa-
bility of X, shows that either X is a single compact leaf or p—almost every leaf is
totally recurrent in X. This is not used in [6], but suggests the correct hypothesis
for a theorem about the topologically generic leaf. We turn to this.

Since X is locally compact and Hausdorff, it is a Baire space. That is, a
countable union of closed, nowhere dense subsets has empty interior. Recall that
a subset Y C X is meager if it is contained in the countable union of closed,
nowhere dense subsets of X. This is the topological analogue of a set of measure
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zero. The two notions, of course, have no logical relation, as is illustrated by the
existence of Cantor sets Y C R of positive Lebesgue measure. The complement of a
meager set, called a residual set, contains the countable intersection of open, dense
subsets of X. In particular, a residual set is dense in X, any countable intersection
of residual sets is residual, and relatively residual (respectively, meager) subsets of
residual sets are residual (respectively, meager) as subsets of X.

In this paper, we take “generic” in the topological sense and prove an analog
of Ghys’s theorem for every complete, foliated metric space (X, F) which contains
a totally recurrent leaf. It is not assumed that X is compact, no differentiability
is needed and the proof is surprisingly elementary. We will generally blur the
distinction between a family of leaves and the F—saturated set which is the union
of the leaves in the family.

Theorem A. Let (X,F) be a complete, foliated metric space. If F has a totally
recurrent leaf, then there is a residual family G of totally recurrent leaves without
holonomy such that one of the following holds:

(1) every leaf in G has a Cantor set of ends;

(2) every leaf in G has exactly two ends;

(3) every leaf in G has exactly one end.

If, in addition, the leaf dimension is p = 2, either all leaves L in G have genus 0,
or all leaves L in G are orientable and have only nonplanar ends, or all leaves L
in G have only nonorientable ends.

Whether or not there is a totally recurrent leaf, one can characterize the set
E4(L) of dense ends of the topologically generic leaf L. Remark that £;(L) is a
closed, hence compact subset of the endset E(L).

Theorem B. If (X,F) is a complete, foliated metric space, a residual family G
has the property that its leaves have 0, 1, 2, or a Cantor set of dense ends, the
cardinality of E4(L) being constant as L varies over G. If the leaf dimension is 2,
the dense ends of the leaves in G are either all planar, all orientable but nonplanar,
or all nonorientable.

These results are analogous to the theorem of H. Hopf [10], according to which
a regular covering space of a compact, connected manifold has 0, 1, 2, or a Cantor
set of ends. Hopf’s theorem is proven by determining the endset of the covering
group, while our proofs and those of Ghys analyze the endset of the generic holon-
omy orbit. In their details, however, the proofs in this paper and those in [6] differ
substantially.

Finally, one can define more general foliated spaces in which the leaves belong
to some suitable class of path connected metric spaces. For instance, the leaves
might be connected simplicial complexes. With very little change, our proofs work
for such foliated spaces.

The authors wish to thank Renato Feres for several helpful conversations.
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2. A Heuristic proof

The main idea in the proof of Theorem A is quite simple. We sketch it here for
the case in which (X, F) is a compact, minimal foliated space. In this case, each
end e € E(L) of each leaf L has nonempty asymptote A. C X. This is a compact,
F—saturated set, so minimality implies that A. = X and every leaf is totally
recurrent.

It is an elementary but surprising theorem that the leaves without holonomy
form a residual set Gg [4, 8], so we restrict our attention to these leaves. Let L be
such a leaf having three or more ends and fix a compact, connected submanifold
N C L with three boundary components, each interfacing a distinct unbounded
component of L ~ N. Since L has trivial holonomy, the usual Reeb stability
argument localizes to N, providing an open product neighborhood V- x N C X
such that V' C S is open and, for each z € V, N, = {z} X N is contained in a
leaf L,. Let Vo C V be the residual set of points 2z such that L, C Gp. If there
is a relatively open subset U C Vj such that, for each z € U, N, separates L,
into three unbounded components, it follows that every leaf in Gg has a Cantor
set of ends. Indeed, let I’ be such a leaf, e € £(F) an end, and let W C F
be a neighborhood of that end. By total recurrence and the fact that F' C Gp,
W passes through U x N, hence picks up a copy of N which separates F' into
three unbounded components. It follows that the arbitrary neighborhood W of
the arbitrary end e is the neighborhood of at least one other end €’ € £(F'). This
is illustrated in Figure 2. As a result, the leaf IV has no isolated ends. Since £(F)
is a compact, totally disconnected, separable metric space, it must be a Cantor
set.

Figure 2. A Cantor set of ends
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Assume, then, that some leaf in Gy does not have a Cantor set of ends and
let Z3 C Vi be the set of points z such that N, splits L, into three unbounded
components. By the above, the relative interior of Z3 in Vj is empty and there is
z € V9~ Z3. Since L~ N, has at most two unbounded components, either one of its
components is compact or there is a curve in L, connecting two components of N,
and missing int N,. Local Reeb stability propagates this to an open neighborhood
of z in V, proving that Zs is relatively closed in Vj, hence meager. One now
needs to show that only countably many neighborhoods of the form V; x N; need
to be considered. In order to do this rigorously, we will pass to the “l-skeleton”
of each leaf L, this being the graph of the orbit I'(z), where I' is the holonomy
pseudogroup. Waving our hands at this detail, we conclude to the following.

Claim 1. Fither every leaf in Go has a Cantor set of ends, or the set of leaves
with three or more ends is meager.

Continuing to assume that some leaf in GGy does not have a Cantor set of
ends, we neglect the meager set of leaves with more than two ends. Consider the
remaining leaves L, in Gy and compact, connected submanifolds N, C L, with
two boundary components. Reasoning as above, replacing Z3 with the subset
Z5 C Vg of z such that N, splits L, into two unbounded components, we establish
the following.

Claim 2. If the set of leaves with more than two ends is meager, then the set of
leaves with two ends is either residual or meager. If it is meager, then the set of
leaves with one end is residual.

Since we have been working in G, all of the residual sets we have found consist
of (totally recurrent) leaves without holonomy.

Similarly, a crosscap on a 2—dimensional leaf without holonomy propagates to
a set of crosscaps on all leaves which (by total recurrence) cluster at all ends of
the leaves. If some leaf is orientable, no crosscaps are allowed on any leaf of Gy
and a handle on some leaf without holonomy propagates (by total recurrence) to
handles clustering at all ends of all leaves. Finally, if some leaf is orientable with
finite genus, no handles are allowed on the leaves without holonomy.

In the next two sections, we set up the combinatorial results needed to make
Claim 1 and Claim 2 rigorous. These results are also needed to prove the fun-
damental proposition (Proposition 5.5) that either no leaf is totally recurrent or
total recurrence is topologically generic, as well as the analogous fact (Proposi-
tion 5.5) that either no leaf has a dense end or a residual family of leaves have
some dense ends. For completeness, we also give the proof that trivial holonomy
is topologically generic (Proposition 3.3).
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3. Regular covers and holonomy

Most of the material in this section will be familiar to foliators, but a review seems
worthwhile in order to establish notation, terminology and conventions.
The foliated metric space (X, F) admits a locally finite cover

U= {(Uou o) yoz)}ozeﬂ

by open, relatively compact RP x S charts which are compatible with F, where
(S, p) is a fixed, locally compact, separable metric space. Here, z, : U, — RP is a
continuous map onto an open, relatively compact p—cell E? C RP and y,, : Uy, — &
is a continuous map onto an open, relatively compact metric r,—ball T, C 5,
Ya e 2. Moreover,

2 (2a(2),Yal2))

defines a homeomorphism of U, onto the open subset E? x T, C RP x S. Compati-
bility with the foliation means that the level sets of y,, are open, relatively compact
p—cells in leaves of F, called the plagques of F, Vo € 2. Since X is separable, this
locally finite atlas is at most countably infinite.

The metric d on X restricts to a metric on each plaque compatible with its
manifold structure. It is easy to produce a metric dx along the leaves which agrees
with d on each plaque. If L is a leaf and z,y € L, consider all finite sequences
z = z9,%1,...,T, = y of points in L such that z;_{ and z; lie in a common
plaque, 1 < k <n. One sets dx(x,y) equal to the infimum of the numbers

d(zg,x1) +d(z1,29) + -+ d(zp_1,2n)

taken over all such sequences. Remark that dx(z,y) > d(z,y). In fact, as distinct
plaques in L NU, get close in the metric d, they get arbitrarily far apart in the
metric dr.

We can and do require that there be uniform finite, positive lower and upper
bounds on the diameters of the plaques, as measured by dr. Finally, we require
that the atlas U be reqular in the sense that, on overlaps U, NUpg # 0, the change
of coordinates has the form

Eo = Pl By
Yo = ya(yﬁ)~

In particular, a plaque of U, meets at most one plaque of Ug. The fact that
a regular foliated atlas can be found uses local Lebesgue numbers to refine a
preliminary choice of foliated atlas. This construction guarantees, in particular,
that each chart (Us, s, ys) has compact closure U,, C U/, where (U’ ,y) is
a chart compatible with F, z, = 2/, |U, and yo = ¢/,|Us. Thus, T, is a compact
metric ball in (S, p) sitting in an open, relatively compact metric ball 7! with
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the same center as T, and radius ), > r,. One can choose r,, = r, + ¢ for
arbitrary values of £ > 0 sufficiently small. Of course, since S is not required to be
connected, it is possible that T, = T, = T/,. At any rate, we include the existence
of the extensions (Ul,z,,,y.) as part of the meaning of “regular foliated atlas”.

We let T' denote the disjoint union of the open subsets Ty, = yo(Uy), o € 2.
This transverse space has two useful interpretations. Since y, sets up a one—to—
one correspondence between the plaques of U/, and the points of T,,, we can view
T as the set of plaques of the regular cover U. Also, the local product structure
of U, allows us to imbed T}, < U, as a cross section of F|U,, Va € 2. The local
finiteness of U makes it possible to guarantee that these imbeddings have disjoint
images and define an imbedding T' — X of T" as a transverse cross section to F.
We will use both of these interpretations without further comment.

Note that the change of coordinate formula yo = ya(yg) yields a homeomor-
phism

9op 1 Yp(Ua NUp) — yo(Us N Up)

between open subsets of T' such that gns o ys = yo on U, N Us. The system
v = {903 }a,peu satisfies the cocycle conditions

Joa =1d|Th, Vaefl

gaﬂ:ggi7 Va,ﬁEQl
Jap = gax ©grg, ON yg(UaﬁUAﬂUﬁ),VCL)\,ﬁem.

We call ~ the holonomy cocycle and the pseudogroup I' of local homeomorphisms
on T generated by ~ is called the holonomy pseudogroup.

Points z,y € X lie in the same leaf of F if and only if there is a finite chain of
plaques Py, Pq,...,Py such that z € Py, y € Py, and P,_1 NP, #0,1 <k < N.
Under the interpretation of 1" as the space of plaques, go3(P) = Q means that P
is a plaque in Ug, @ is a plaque in U,, and PN Q # @. Thus, the plaque chain
connecting x to y in a leaf corresponds to a pure composition

9 = GJanan_1 o Jan_1an_9 O Ogoqozo

of elements of +, with maximal domain an open neighborhood of Py in T', where
Py, is a plaque in U,,, 0 < k < N. Let IV denote the countable set of pure
compositions of elements of v with maximal domains. General elements of I" agree
locally with such pure compositions, hence, for each z € T, the set of all points
g(z) with g € I' is the full I'-orbit of z.

There is a canonical one—to—one correspondence between the set of I'-orbits in
T and the set of leaves in X. Indeed, the F—saturated subsets Y C X correspond
exactly to the I'-invariant subsets of T by Y < Y NT.

Lemma 3.1. Under the above correspondence, the meager (respectively, residual)
F-saturated sets in X correspond exactly to the meager (respectively, residual)
I'—invariant sets inT'.
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Proof. If Y C X is a meager, F—saturated set, it is clear that Y N7 is a meager
subset of T'. Conversely, if Y N1 is meager, local compactness and separability of
T imply that Y NT is contained in the union of compact, nowhere dense subsets
{Sn}o2 1 of T'. Since the plaques are relatively compact, the union of the closures of
the plaques corresponding to S, is a compact subset Z,, C X and Y C UZOZI T
The local product structure implies that each Z,, has empty interior, so Y is a
meager subset of X. O

Lemma 3.2. IfY CT is meager (not necessarily I'—invariant), the union I'(Y)
of the I'-orbits of the elements of Y is a meager, I'—invariant set. Thus, the
F—saturation of Y is meager in X.

Proof. Since Y C Z, where Z is a countable union of closed, nowhere dense subsets
of T', it will be enough to prove that I'(7) is meager. Let g € I, Since T'is locally
compact and separable, so is domg, hence Z N domg, is a countable union of
compact, nowhere dense sets. Since g is a homeomorphism between open sets,
g9(Z N domg) is also a countable union of compact, nowhere dense subsets of
im g, hence a countable union of closed, nowhere dense subsets of T'. Since I" is
countable
1(z)= | 9(Zndomyg)

gelv

is meager. O

If Lisaleaf and z € L. Fix a chart (Uy, 24, y,) containing z and let ¢ = y,(2).
The holonomy group of the leaf L at z is defined to be the group H, (L) of germs
at ¢ of elements g € I' such that { € domg and ¢(¢) = ¢. It is rather easy to
see that this group is the homomorphic image of 71 (L, z) and, up to isomorphism,
is independent of the choice of z € L. A leaf L is said to be without holonomy
if H,(L) is trivial. The following is due to Epstein, Millett and Tischler [4] and
Hector [8].

Proposition 3.3. Let (X,F) be a foliated space. The union Go of leaves of F
without holonomy is residual.

Proof. Let Z C T be the set of all points ¢ € T, fixed by at least one g € I, but
such that ¢ has nontrivial germ at ¢. It should be clear that Z is ['-invariant,
being the intersection of T' with the family of leaves with nontrivial holonomy
group. For each g € IV, the set F, of fixed points is a closed subset of dom g and
the set theoretic boundary Z, = 0F} is closed and nowhere dense in domg. As in
the proof of Lemma 3.2, such a set is meager in 1. It should be clear that

zZ=\ 2,

gelv
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so the countability of IV implies that Z is meager. O

In much of what follows, we work in the residual set Ggp, neglecting the leaves
with holonomy. It will also be necessary to neglect another meager set of leaves.

Lemma 3.4. The set B of leaves which meet d(domgnp) C 13, for at least one
Jap € 7, 18 meager.

Proof. Each Tj is a locally compact metric space and d(dom gag) is a closed subset
of Ti; with empty interior. The countable union of these sets is a meager subset
7 C T and the saturation B = F(Z) is meager. O

Remark. Unlike the meager set of leaves with holonomy, B depends on the choice
of regular foliated atlas U. If L is a specific leaf in which we are interested, we can
choose the regular atlas so that L does not lie in B. Indeed, as in our discussion
of regular foliated atlases, there is an extension (U.,z.,,y.) of each (Uy,zn,Yo)
to a foliated chart with transverse space the (r, + ¢)-ball T/, D T.. There are
continuously many allowed choices of £ > 0, while L meets T7, in only countably
many points, so a suitable small increase in r, will make sure that the leaf L
will not meet the set theoretic boundary of domg,gs, for any of the finitely many
choices of B8 € % for which g,s is defined. Hereafter, we replace Gy with the
residual saturated set Gg ~ B. Abusing notation, we let G denote this set since
no particular leaf without holonomy need ever be excluded.

4. The 1-skeleta of leaves

The plaque cover of each leaf I determines a graph L*, called the 1-skeleton of
L. The vertices of L* are the plaques in L and two distinct vertices P and Q are
joined by an edge if, as plaques, they intersect. Thus, when these vertices are
viewed as points of T', we can write Q = gag(P), for a unique g,3 € ~y, and the
directed edge from P to Q can be labelled by g,.g. Degenerate edges with labels
Joo = id [T}, will be suppressed. It is well known and elementary that the space of
ends £(L*) of this 1-complex is canonically the same as the space of ends E(L) of
the leaf. The isomorphism & : E(L*) — £(L) is determined by the condition that
a sequence {2, }>° ;| of vertices of L* converges to an end e € £(L*) if and only if
the corresponding sequence of plaques in L converges to r(e). It is here that the
assumption of leafwise completeness becomes essential, along with the existence
of a finite upper bound to the diameters of the plaques.

Remark. With some caution, it is possible to view the 1-skeleta as defining a
kind of foliated space in which the leaves are graphs. There is some problem
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with local product structure since, if a vertex = € T3 lies in d(dom gog), for some
a € U, no edge emanating from z is labeled by g5, but there are vertices y € Tj,
arbitrarily near x, out of which there do emanate edges with label g,5. This
difficulty disappears if we disallow 1-skeleta of leaves in the meager family B of
Lemma 3.4.

Recall that IV denotes the countable set of all pure compositions

g= gocNozN,l o gaN,lozN,Q O Ogalao

of elements of the holonomy cocycle. For each such g € IV and x € dom g, g defines
an edgepath on the 1-skeleton L of the leaf L, through x with successive vertices

PO - 1237P]_ - galao(PO),"'7pN :gOlNOéN_l(PNfl)'

The union of the vertices and edges of the edgepath is a finite, connected subcom-
plex Kgy(z) C L%, called the trace of g at z. As g varies over the countable set T
and z varies over domyg, Ky(x) varies over all finite, connected subcomplexes of
the 1-—skeleta of leaves. Of course, the same complex can be described as the trace
at any one of its vertices of countably many distinct elements of I''. We will rou-
tinely use this observation to write a finite, connected supercomplex K DO K (z)
as K = Kyoq(x), for suitable f e I".
Given g € T” as above, set go = gaga, and

9k = Garap_1 © " CGajany ISkSN

Each vertex P € K (z) is equal to gi(z), for at least one value of k and, if P and Q
are vertices connected by an edge in K (), there is at least one value of k for
which one of these vertices, say P, is gi(z) and Q = gx41(z). The directed edge
from P to Q is labelled by g, ,a,, this label being independent of the allowable
choices of the integer k.

Lemma 4.1. Let g € IV and z € domg. Then there is a neighborhood V,, C dom g
of x and a canonical surjection

my Ky(y) — Ky(z)

of 1-complezes, defined for each y € V,,, which preserves the labels gop of directed
edges.

Proof. By continuity, the conditions g (z) # ge(z), 0 < k < £ < N are open. That
is, there is an open neighborhood V,, of z in dom g such that

gx(x) # ge(z) = gi(y) # g9e(y), Yy € Va.
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Thus, 7y is well defined on the vertices of Ky(y) by my(gx(v)) = gr(z), for each
y eV, 0 <k < N. By the above remarks, this is surjective and extends linearly
to a canonical surjection of 1-complexes preserving the labels on directed edges.[]

Note that an arbitrary edgepath in L}, based at z, is determined by the unique
h € I such that z € dom A and the successive vertices of this path are

z = ho(x),hi(x),..., hn(z) = h(x).

We denote the path by op,(z). It is a simple edgepath if it has no repeated vertices
and it is a loop if h(z) = z. A loop is simple if its only repeated vertices are the
initial and terminal vertex x and it is basic if it has the form o}, -1, (x) where
op(z) is a simple edgepath and of(h(z)) is a simple edgeloop. A finite, connected
subcomplex K C L! admits only finitely many basic edgeloops and a standard
trick of factoring an edgeloop essentially into a composition of basic ones reduces
the following condition to a finite one..

Definition 4.2. A finite, connected subcomplex K C L? containing the vertex x
has trivial holonomy if, for every edgeloop o (x) in K, h has trivial germ at z.

The following is a combinatorial version of local Reeb stability which will be
essential.

Corollary 4.3. If g € IV and = € domg are such that L, € B and K (z) has
trivial holonomy, there is a neighborhood V,, C dom g of x such that the projection
wy  Ko(y) — Ky(z) is an isomorphism of 1—complezes, Yy € V,. Furthermore,
K,(y) N Ky(z) =0, whenever z,y € V; and z £ y.

Proof. We must prove that the neighborhood V, of Lemma 4.1 can be chosen so
small that, for 0 < k<< N,

gx(z) = ge(z) = gi(y) = g9e(y), Yy e Va.

But the condition implies that z = hge(z), where hye = g[l o gr. Clearly hpe
defines an edgeloop oy, ,(z) in K4(z). By the hypothesis of trivial holonomy, hze
is defined and fixes every point in some neighborhood Wy, of z in V,,. The new
V. should be the intersection of these Wy,’s.

For the second assertion, Let z,y € V,, and suppose that y # z. The claim that
K,(y) N K4(z) = 0 means that these subcomplexes have no vertex in common.
Suppose, to the contrary, that g,(y) = gx(z), for suitable k and £. Since g, is
one—to-one, k # £ and we write y = hye(z), where hy = g[l og, € I'V. If such
points y and z can be found arbitrarily near xz, the fact that L, ¢ B implies that
z € dom hye, hence hye(xz) = z. But this implies that hge defines an edgeloop
Ohye () In Kg(z) such that hie(z) # 2. This possibility has been eliminated by
the choice of V.
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Let Ty =T N Gy, a '-invariant, residual subset of T'. Our usual application of
Corollary 4.3 is to Ky(z) with « € T, the hypothesis being clearly satisfied. But
we do have need of the more general case.

Definition 4.4. The star of a vertex P of L is the union star(P) of the open
edges emanating from P. A vertex P of K (z) is an interior point of K4(z) if
star(P) C K,4(z) and, otherwise, the vertex is a boundary point. The subcomplex
O(Kg4(z)) spanned by the boundary points is called the boundary of K (z) and
the subcomplex int (K (z)) spanned by the interior points is called the interior.

The following is a fairly obvious consequence of the fact that Tp meets no leaf
of the meager set B (¢f. Lemma 3.4 and the remark following).

Lemma 4.5. If g € Y and = € domg are as in Corollary 4.3, the neighbor-
hood V,, C dom g in that corollary can be chosen so that star(P) and star(my(P))
have edges with exactly the same labels, Y P € Ky(y), Vy € V,. Consequently,
7y(0(Ky(y))) = O(Ky(x)) and my(int (Ky(y))) = int (Kg(z)).

5. Dense ends

The following result plays a role in our theory analogous to that of [6, Proposition
Fondamentale] in Ghys’s theory, but the proof is completely different.

Proposition 5.1. In a complete foliated metric space (X, F), either no leaf of F
is totally recurrent in X or a residual family G C Gg consists of leaves that are
totally recurrent in X .

We will prove this fundamental proposition using 1-skeleta of leaves. Some
preliminary discussion is needed. To begin with, remark that the definition of
“dense end” of a noncompact leaf L can be reformulated as follows: e € £;(L) if
and only if, given an arbitrary open subset W C X, there is a sequence of points
{zi}72 ) C LW which converges to the end e. Since we assume a finite upper
bound on diameters of plaques, we can reformulate this by requiring existence of
a sequence {P}72 ¢ of plaques in L converging to e and satisfying P, N W # 0.
The analogous condition is formulated for 1-skeleta as follows.

Definition 5.2. Let L* be the 1-skeleton of a leaf L, e € £(L*). We say that e is
a dense end if, for each open subset V' C T', there is a sequence of vertices { P, }7° ¢
of L* NV converging to e. The set of dense ends will be denoted by E4(L*). We
say that L* is totally recurrent if £(L*) = £4(L*).

Lemma 5.3. The canonical isomorphism  : E(L*) — E(L) carries Eq(L*) exactly
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onto E4(L). In particular, L is totally recurrent if and only if the 1—skeleton L* is
totally recurrent.

Lemma 5.4. Let g € I and let O C T be open. If F has a totally recurrent leaf,
then the set Oy of x € domg for which each unbounded component of L ~ Ky(z)
meets O contains an open dense subsel of domg.

Lemma 5.4 is delicate. Before proving it, we show how it implies our funda-
mental proposition.

Proof of Proposition 5.1. Assume that some leaf L. C G is totally recurrent. We
will prove that the I'-invariant set Z of points = € T such that L is not totally
recurrent is meager. By Lemma 5.3, this will be enough. Let O C T be open,
choose g € I, and define Z,(O) to be the set of points = € Ty N dom g such that
some unbounded component of L} ~ K,(z) does not meet O. By Lemma 5.3,
Z4(0) = (Ty Ndom g) \ O, is meager. Uniting these sets as g ranges over the
countable set TV gives a meager set Z(0O) C Ty with the property that the 1-
skeleton F™* of a leaf I' C Go meets Z(O) if and only if F* contains a finite,
connected subcomplex K such that some unbounded component of F'* ~\ K does
not meet O. Taking the union of the sets Z(O) as O ranges over a countable
base of the topology of T gives a meager set with I'-saturation exactly Z. By
Lemma 3.2, Z is meager. O

We turn to the proof of Lemma 5.4. Write

g = gOéNOlel -0 ga1a07
let z € ToNdom g and let V. be any open neighborhood of x in dom g small enough
to satisfy Corollary 4.3 and Lemma 4.5. We will show that O, NV, contains an
open subset. Since Ty meets domg in a dense set of points and V. can be chosen
as small as desired, the assertion will follow.

Claim 1. For arbitrary y,z € V,, there is a canonical isomorphism

7T; Ky (y) — Ky(2),
defined by mi(gr(y)) = gr(2), 0 < k < N. These isomorphisms preserve the
interiors and boundaries of these complexes, as well as the labels of edges emerging

from corresponding boundary vertices. In particular, the subcomplex K,(y) has
trivial holonomy, Yy € V.

Proof. Indeed, 7, : K4(y) — Kg4(z) satisfies Corollary 4.3 and Lemma 4.5, for each
y € V., so we define

and all assertions follow. O
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Claim 2. We lose no generality in assuming that each edge emerging from a
boundary vertex of Ky(2) either lies in K,(2) or has its other vertez in L\ Kq(z),
VzeV,.

Proof. If £ is an edge of L} violating this, it is a bounded component of the
complement and can be adjoined to K, (z), forming a supercomplex Kfo4(x). Since
dom fog C domg and « € ThNdom fog, a possibly smaller choice of V,, guarantees
that this edge propagates via 77 to a bounded component of L} \ Kyo4(z), Vz €
Ve C dom f o g. Thus, we can replace K4(z) with K¢.4(z). Finite repetition of
this procedure proves the claim. O

For each z € V,, let ¢; range over those edges in L} \ K,(z) emerging from
boundary vertices of Ky(z), 1 <4 < m. Each component of Lf \ K (z) contains
at least one of these edges and, by Claim 1, we are allowed to use these same
labels ¢; for the analogously defined edges issuing from 0K (w), for all w € V.
Denote by z; the initial vertex of the edge ¢; emerging from K,4(z). Of course, this
will generally give multiple indices to the same vertex of 9K4(z). By Claim 2 the
other vertex of ¢; does not lie in Kgy(z).

By hypothesis, there is a point z € V,, such that L, is totally recurrent. By total
recurrence, each unbounded component of L} . K,(z) meets O. If the component
containing ¢; is unbounded, there is a simple edgepath s;(z) having initial segment
¢;, meeting K (z) only in z;, and terminating in O. Such a path might also exist
even if the component of L} ~ K,(z) containing ¢; is bounded. At any rate, for
as many components as possible, construct one such path in each. By relabelling,
suppose that these paths are indexed by 1 < ¢ < n, some n < m. Since these paths
are simple and lie in distinct components of the complement of K,(z), Claim 1
implies the following.

Claim 3. The finite, connected subcomplex K,(z)Us1(z)U---Usy(z) of the totally
recurrent skeleton LY has trivial holonomy.

Write the subcomplex in Claim 3 as K yo4, for suitable f € IV, By this Claim, we
can find a small enough neighborhood V,, of z in V,, so that 7¥ extends canonically
to an isomorphism

7Y Kpog(2) — Krogly),

for each y € V. If V, is small enough, 7¥ carries s;(z) to a simple path s;(y) in
L; which connects the boundary vertex y; of Ky(y) to a vertex in O and meets
K (y) only at y;. Since L meets 1" in a dense set, we can choose y € V, \ {z} so
that L7 = L;. Of course, new components of Ly ~ K,(y) may appear, but m is
an absolute upper bound on the number of components. If, for some such y, there
ist>n+1,sayi=n+1, such that ¢, 1 enters a new unbounded component of
Ly~ K, (y), we build a new simple edgepath s,,;1(y) in that component, ending in
O and meeting K,(y) only at y,41. It may be possible to build several such new
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edgepaths, s,41(¥), ..., Sntr(¥), even in some bounded components. We build as
many as possible, but at most one per component. We now replace z with y and
replay this game. This establishes the following.

Claim 4. Without loss of generality, we can assume that, for everyy € V,NL}, the
number of edgepaths s;(y), 1 <1 < n, cannot be increased by the above procedure.
In particular, either n =m or, for n <1 < m, the edge {; either enters a bounded
component of L: ~ Ky(2) or an unbounded component containing an s;(z), some
Jj<n.

Denote by K;(z) the closure of the bounded component entered by ¢; and
reindex so that the distinct bounded components given by Claim 4 have closures
Ki(z), n <i<r, where r <m.

Claim 5. ForV, sufficiently small, y € V, arbitrary andn < ¢ < r, every edgepath
on(z) in Ki(2), with initial and final vertices z;,v; € Ky(z) has lift oy (y;) with
initial and final vertices y; = w¥(z;), 7Y (v;) € Ky(y).

Proof. We can assume that oy (2) meets K,(z) only in its initial and final vertex.
Otherwise, break it down into such segments, treating each separately. In standard
fashion, arbitrary edgepaths of the given type essentially factor into a product of
simple paths and basic loops, all of this type, so we only need to check finitely
many such paths. Choose V, small enough that h(y;) is defined, Vy € V,. That is,
the lift o5, (y;) is defined. Of course, the initial vertex y; is in K,(y), but suppose
the final vertex h(y;) & Ky(y), for suitable choices of y € V, arbitrarily near z.
Evidently these points form an open subset U C V, which clusters at z. Since
L} meets domg in a dense set of points, we can choose y € U N Lj;. Since y
can be chosen arbitrarily near z, the projection 72 extends to a (nonisomorphic)
projection 75 of Ky(y) U on(y:) onto Ky(z) Uon(z;) (Lemma 4.1). Since this
projection carries K,(y) isomorphically onto K (z) and oy (y;) onto op(z;), the
assumption that this latter edgepath has no intermediate vertices in K, (z) implies
that the edgepath o, (y;) meets K,4(y) only in its initial vertex. Its terminal vertex
is a boundary point of K4(w) and w # y. By Claim 3 and Corollary 4.3, it should
be clear that oy (y;) can be extended to an edgepath which meets K (y) only in
its initial vertex y; and terminates in O. If the edgepath is not simple, we make
it so by deleting subloops, hence contradicting Claim 4. Since the restriction of
7y to Ky(y) is an isomorphism inverting %, the initial and final vertices of o (y;)
are as asserted. O

Claim 6. The subcompler K (z)Us1(z)U - Usy(2) U Kyp1(2) - UK, (2) has
trivial holonomy.

Proof. We proceed by finite induction, adding K;(2), n+1 <1i <r, one at a time.
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Consider K4(z) UK, 11(z) and loops in this complex based at a common boundary
vertex z’. Such a loop factors into a sequence of paths, alternately in K,(z) and in
K, +1(2). By Claim 1 and Claim 5, the loop has trivial holonomy. If it is necessary
to attach another K, o(z), replace K (z) with Kfo4(2) = K4(2) U K,41(2) and
repeat the argument. By finite induction and the fact that the paths s;(z) are
simple, disjoint (except, perhaps, for initial vertices), and meet no K;(z) (except,
perhaps, at initial vertices), the assertion follows. O

To complete the proof of Lemma 5.4, choose h € I'' such that
Khog(2) = Kg(2) Us1(z) U+ Usp(z) UK, 11(2)U--- U Kp(2)

(repetitions allowed, as well as the possibility n = m). By Claim 6, Corollary 4.3
and Lemma 4.5, we can choose V, so that every unbounded component of Ly ~
K,(y) (and, perhaps, some bounded ones) meets O, Vy € V,. Then V, C V,NO,.
This is exactly what we needed to show.

Proposition 5.1 is fundamental to the proof of Theorem A. The following some-

what easier result is fundamental to the proof of Theorem B.

Proposition 5.5. In a complete, foliated metric space, either no leaf has a dense
end or a residual family Gy C Go consists of leaves having at least one dense end.

The following terminology will simplify language in the proof of Proposition 5.5.

Definition 5.6. Let L* be the 1-skeleton of a leaf, W C L*. Then W is trans-
versely dense if the vertices of L* in W form a dense subset of 7.

Remark. For L* to have a dense end, it is necessary but not sufficient that L* be
transversely dense. For example, L* might be transversely dense, but have a vertex
z that is an isolated point of I'. Then every end of L* will have a neighborhood
W, the vertices of which do not cluster at = in 7.

Lemma 5.7. Let g € IV and x € domg. Let W be a component of Lt~ K (z). If
L is tranversely dense and if W contains a sequence {Pn}2° | of vertices which
converge to x in T, then W is a neighborhood of a dense end of L% and, in
particular, is transversely dense.

Proof. Since = ¢ W, the terms of the sequence {F,}°° | can be assumed to be
distinct. Thus, any finite subcomplex of L can contain at most finitely many of
the terms P,,. That is, the sequence “diverges to infinity” in L} and, passing to
a subsequence if necessary, we assume that {P,}>° ; converges to an end e of L*.
Clearly, W is a neighborhood of e and we will prove that e € £4(L*).

Let Ky c Ko C --- C K;, C -+ be an exhaustion of L* by finite, connected
subcomplexes, chosen so that the component W,,, of L* \ K,,, which is a neigh-
borhood of e is a subset of W. Fix m > 1. Given an arbitrary open subset O C T,
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the fact that L is transversely dense allows us to choose an edgepath s in L*
connecting x to a point of O. This edgepath corresponds to a composition

h = gaNozN,l O &8 1.0 9a1a07

hence lifts to pairwise disjoint paths s,, in L} connecting P, to O, for n sufficiently
large. For large enough values of n, the vertex P, lies in W, and, for possibly
larger values, s, has no vertex in common with K,,. It follows that a vertex of
Wi lies in O. Since O is an arbitrary open subset of T', W, is transversely dense.
Since m > 1 is arbitrary, e € E4(L*). O

Corollary 5.8. The 1-skeleton L* of a leaf L has a dense end <— L* \ K is
transversely dense, for all finite, connected subcomplexes K C L*.

Proof. The implication “=" is clear. For “<”, choose g € IV and = € domg such
that L* = L} and take K = K,(z) in Lemma 5.7. Since L}~ K (x) is transversely
dense, so is L*. Furthermore, L} \ K,(z) contains a sequence {F,,}7° ; of vertices
converging in 7' to z. Since L} ~ K,(z) has only finitely many components, a
subsequence lies entirely in one of these components W. By Lemma 5.7, W is a
neighborhood of a dense end of L*. O

Lemma 5.9. Let g € IV and let O C T be open. If some leaf of F has a dense
end, then the set Oy of x € domg for which L%~ Kg(x) meets O contains an open
dense subset of dom g.

Proof. Let y € ThNdom g and choose an open neighborhood V;, of ¢ in dom g small
enough to satisfy Corollary 4.3 and Lemma 4.5. If L* has a dense end, there is a
point z € L*NV,, and a simple edgepath £ starting at a boundary vertex of K,(z),
otherwise lying in L}~ K,(z), and having its terminal vertex in O. As in the proof
of Lemma 5.4, K (z) U satisfies Reeb stability, so there is an open neighborhood
of z in V, N O,. Since Gy meets dom g in a dense subset, the assertion follows. [

Proof of Proposition 5.5. Given g € I, Lemma 5.9 implies that the intersection
of the sets Oy as O ranges over a countable base of the topology of T' is residual
in dom g. The meager complement Z,; in dom g of this set consists of those points
z € dom g such that, for some open subset O C T, L* \ K4(z) does not meet O.
The union of the Z,’s as g ranges over I is meager and its meager I'-saturation Z
consists of all vertices of those skeleta F'* such that F* ~ K does not meet T in a
dense subset, for some choice of finite, connected subcomplex K. By Corollary 5.8,
7 is exactly the family of leaves having no dense end. O
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6. Proof of Theorem A

By Proposition 5.1, Theorem A is really a corollary of Theorem B. Nevertheless,
a direct proof of Theorem A, along the lines outlined in §2, is significantly easier
than the proof of Theorem B, so we give it here.

By Proposition 5.1, we assume that total recurrence is topologically generic.
Let g € IV and let G, C Top Ndom g be the residual set of points « such that L is
totally recurrent.

Lemma 6.1. Ifk > 1 is an integer, the set of © € Gy such that L}, ~ K (x) has
at most k components is relatively open in G.

Proof. The condition on z, call it P, can be stated equivalently that K,(z) is
contained in int (Kye4(x)) and Kjyoq(z) ~ Ky(z) has at most k& components, for
a suitable choice of f € IY. This makes sense for arbitrary z € domg. By
Corollary 4.3 and Lemma 4.5, if z € Gy, then P, = P, for all y in a suitable
open neighborhood V, of z in domg, hence for the points of a relatively open
neighborhood of z in G,. O

Corollary 6.2. If k > 1 is an integer, the set of x € Gy such that L} ~ Ky(x)
has at most k unbounded components is relatively open in G .

Proof. Let z € G, be such that L} ~ K,(z) has at most & unbounded components
and choose f € I such that Kf.4(z) is exactly the union of K,(z) and the bounded
components of its complement. Then L¥ \ Kj.4(x) consists of the unbounded
components of L} ~ Ky(z), the number of these being n < k. By the proof of
Lemma 6.1, there is an open neighborhood V,, of z in dom f o g C dom g such that
Ly ~ Ktog(y) has at most n components, Vy € V,, so the number of unbounded
components is at most n < k. |

Proposition 6.3. The set Zg’ of x € Gy such that Ky(z) separates L}, into three
or more unbounded components is relatively closed in Gg. If it has nonempty
interior in the relative topology of Gy, then every leaf in the residual set of totally
recurrent leaves in Go has a Cantor set of ends.

Proof. The first assertion is an immediate corollary of Corollary 6.2, applied to the
case k = 2. For the second, assume that V' = int Zg’ # () and let L C Gy be totally
recurrent. Then every neighborhood W of every end e of L* meets V. That is, W
contains a finite, connected subcomplex Ky that separates L* into at least three
unbounded components (¢f. Figure 2, where the corresponding picture in the leaf
L is drawn.). Equivalently, every neighborhood of every end e is a neighborhood of
at least one end e’ distinct from e. The compact, separable, totally disconnected,
metrizable set of ends of L* has no isolated points, hence is a Cantor set. |
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Corollary 6.4. Ifthe set of leaves in G having a Cantor set of ends is not residual,
the set of leaves having more than two ends is meager, so a residual set of leaves
has at most two ends.

Proof. By Proposition 6.3, Zg’ is relatively closed and has empty interior in G|,
Vg € I'. That is, Zg’ = Gy N Z,, where Z; is relatively closed in domg, and
Z4 must have empty interior in dom g since G is residual, hence dense in domg.
As usual, we conclude that Z,; is meager, hence that Z = UgeF/ Z4 is meager.
The F-saturation of Z is meager (Lemma 3.2) and contains the set of leaves in G
having three or more ends. Since G is residual, all assertions follow. O

We assume that only a meager set of leaves in G has more than two ends and
replace GG, with the residual subset of points = for which the totally recurrent
leaf L} has at least one and at most two ends. Hereafter, G, denotes this set.
We define Zg2 C G, to be the set of points  such that K (z) separates L into
components, exactly two of which are unbounded.

Proposition 6.5. The set Zg2 is relatively closed in Gy. If it has nonempty relative
interior in Gy, a residual set of totally recurrent leaves in Go consists of leaves
with exactly two ends. If the set of leaves having exactly two ends is not residual,
it is meager and a residual set of totally recurrent leaves in Gqo has exactly one
end.

Proof. The first assertion is immediate by Corollary 6.2, applied to the case k = 1.
For the second, assume that V' = int Zg # . By Corollary 6.4, a residual set
of totally recurrent leaves I C Gg have at most two ends. These leaves meet V,
hence have exactly two ends. As in the proof of Corollary 6.4, if the set of 2—ended
leaves is not residual, it is meager and the set of 1-ended leaves is residual. O

There remain the assertions in Theorem A about 2—dimensional leaves. Skeleta
are not needed. Indeed, we work in the residual subset G C Gg consisting of totally
recurrent leaves without holonomy and argue exactly as in §2.

7. Proof of Theorem B

If no leaf has a dense end, the conclusion of Theorem B holds, so Proposition 5.5
allows us to assume that a residual family G4 C Gq consists of leaves having
at least one dense end. Relatively residual subsets of G; are residual in X and
relatively meager subsets are meager in X. Similar remarks hold for T; =T NGy
versus 7', allowing us to replace X with Gy, T' with T, F with F|G4 and I" with
I'|Ty. The following, therefore, enables us to simplify notation and exposition.
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Lemma 7.1. Without loss of generalily, it can be assumed that every leaf of F
has a dense end and trivial holonomy.

The one thing we need be careful with is the loss of local compactness. For
instance, the proof of Lemmas 3.1 and 3.2 made essential use of the local com-
pactness of X and T, but the conclusions of those lemmas relativise.

Fix g € T and let Zg’ denote the set of points z € dom g such that at least
three components of L} \ K (x) are transversely dense. The analogously defined
set in Proposition 6.3 was proven to be closed, but this is no longer guaranteed

: =3 .
and we must take its closure Z  in domg.

=3
Proposition 7.2. If Z, has nonempty inlerior V, then all leaves in a residual
family G C X have a Cantor set of dense ends.

We prove this proposition in a series of lemmas.
Since no leaf has holonomy, Corollary 4.3 and Lemma 4.5 can be applied freely
at all points z € V.

Lemma 7.3. If V # 0 and O C T is open, the subset Oy C V of points = such
that 3 or more distinct components of Lt~ K(x) meet O contains an open dense

subset of V.

Proof. In the following argument, we avoid clumsy phraseology by saying that an
edgepath having initial vertex in 9K, (z), but otherwise not meeting K,(z), “lies
in a component of L} ~ Ky(z)”. The points of Zg NV are dense in V. Let z be
such a point and let V., be an open neighborhood of z in V as in Corollary 4.3
and Lemma 4.5. We will show that some open subset of V,, lies in O,. For y € V,
let ¢1,...,¢, be the distinct edges emanating from vertices of dK,(y) and not
lying in K4(y). As in § 5, Claim 2, we can assume that the terminal vertex of
each ¢; does not lie in Ky(y). As in Claim 1 of § 5, the labels of these edges do
not depend on the choice of y € V, and, in particular, » is an upper bound to
the number of components of L ~ Ky(y), Yy € V,. Since z € Z;, we can find
edgepaths s;(z), 1 < ¢ < 3, each having initial segment one of the ¢;’s, each lying
in distinct components of L} ~ Ky(z), and having terminal vertices in O. We
renumber so that ¢; is the initial edge of s;(z), 1 < ¢ < 3. Since Corollary 4.3
applies to Ky(z) Usq(z) U sa(z) U s3(z), we can make V, smaller, if necessary, so
that, as y varies over V,, the lifts s;(y) of these paths have all these same properties
except, perhaps, for lying in distinct components of L ~ Kg(y). If, for some y,
this property does fail, assume that sa(y) and s3(y) lie in the same component.
Since there is an edgepath in this component joining a vertex of s2(y) to a vertex
of s3(y), Corollary 4.3 insures that there is an open neighborhood V,, of y in V,
such that s9(z) and s3(z) lie in the same component C of LY\ K,(z),Vz € V. In
particular, choose 2z € Zg’ NV,. Choose paths s4(z) and s5(z) in LE ~ int (Ky(2)),
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at least one of which does not lie in C, having terminal vertices in O, such that
s1(2), s4(z) and s5(z) lie in distinct components. At least one of these has an
initial edge, call it ¢4 that is not one of ¢;, 1 < ¢ < 3. Whichever of these initial
edges have been discarded will never be used again as we repeat this procedure.
Since n — 2 is an absolute upper bound on the number of repetitions possible, we
will stop upon finding a point w, a neighborhood V,, C V, of w and edgepaths
oi;(w), 1 < i < 3, such that, for every u € V,,, the paths o;(u) lie in distinet
components of L¥ \ K4(u) and have terminal vertices in O. Thus, V,, C O,. O

Continuing to assume that V # @, let Y C V denote the intersection of the
O,4’s as O ranges over a countable base B of the topology of T. Thus, Y is a
residual subset of V. Let X =V \ Y, a meager set.

Lemma 7.4. The set Y is exactly V N Zg.

Proof. 1t is clear that V N Zg’ C Y. For the reverse inclusion, select an arbi-
trary point y € Y and remark that L} is transversely dense. Let {Or}72 be
a fundamental system of neighborhoods of y in V, all belonging to B and let
Wi, ..., W, denote the distinct components of Ly ~ K,(y). These can be num-
bered so that Wy, ..., W, are the components meeting O1. Here, by the definition
of Y, 3 < ny; < n. At least three of these will also meet Oy C O1, so another
renumbering gives Wy,...,W,, as the subset of these n1 components that also
meet Oy, 3 < ng < ny. After finitely many such steps, we obtain Wy,..., W,,, all
meeting O, 1 < k < oo, where m > 3. By Lemma 5.7, W, is transversely dense,
1<i<m. O

Proof of Proposition 7.2. The I'-saturation of X =V \'Y is meager, so we work
in the complement H C T of this saturation, a residual, I'-invariant set. If z € H,
each neighborhood W of each dense end e of L} meets the open set V', necessarily
in points y € Y. For all but finitely many of these points y, K,(y) C W. By
Lemma 7.4, K,(y) splits W into two or more transversely dense components,
W1 and Wy and, by Lemma 5.7, these are neighborhoods of dense ends e1 and es.
Thus, W is a neighborhood of at least one dense end distinct from e, proving
that £;(L%) has no isolated points. Since £4(L7) is compact, totally disconnected,
separable and metrizable, it is a Cantor set. O

Corollary 7.5. If the family of leaves having a Cantor set of dense ends is not
residual, then the family of leaves with three or more dense ends is meager.

Proof. By Proposition 7.2, if there is not a residual set of leaves with a Cantor set

-3 . ; . ;
of dense ends, then Z, has empty interior, Vg € IV. The union of these is then
meager, as is its F—saturation Z, and every leaf with at least three dense ends lies
in Z. O
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We are reduced to the case in which the leaves of a residual set have at most 2
dense ends. We are assuming that all leaves have at least one such end. Let Z 2 he
the set of points = € domg such that at least two components of L} ~ K,y(z) are
transversely dense. In fact, any transversely dense component is a neighborhood
of a dengse end (Lemma 5.7), so L} \ K, (z) will have exactly two such components,
VzeZy.

Proposition 7.6. If the set of leaves having 2 dense ends is not residual, it is
meager and the set of leaves having one dense end is residual.

Proof. As in the proof of Proposition 7.2, if 73 has nonempty interior V', then

Y =Vn Zg2 is residual in V. The ['-saturation of V \'Y is meager and its
complement is a residual, I'-invariant set G C T. For each z € G, L} meets V,

necessarily in Y, hence has 2 dense ends. Alternatively, Z, is meager, as is the
F-saturation of the union of these sets as g ranges over I/, so the remaining leaves
have exactly one dense end and form a residual set. O

The assertions about 2—dimensional leaves are proven exactly as in Theorem A,
so the proof of Theorem B is complete.

8. Generic 2—ended leaves

In this section, we restrict ourselves to compact, leafwise C L Jaminations of a closed
manifold M. That is, the compact, foliated metric space (X,F) is topologically
imbedded in M in such a way that each leaf is a C'l-immersed, p—dimensional
submanifold of M. We also require that there be a continuous orientation of the
tangent bundle T'(X, F) of the lamination. These hypotheses allow us to use the
theory of structure cycles [13] for the lamination. These are closed de Rham p—
currents on M in the cone of p—currents generated by the Dirac currents v, €
AP(T,(X,F)), z € X. A fundamental result of Sullivan [13] identifies the cone
of structure cycles canonically with the cone of holonomy invariant measures for
(X, F) which are finite on compact subsets of 7T'.

In the following, the term “generic leaf” refers to an arbitrary leaf in the residual
family G of Theorem A.

Theorem 8.1. If (X,F) has a totally recurrent leaf and the generic leaf is 2—
ended, then there is a probabilﬁy measure p on T, invariant under the holonomy
pseudogroup and supported in LT, where L is a generic, 2—ended leaf.

We sketch the proof. Referring to the proof of Proposition 6.5, we see that,
if the generic leaf (totally recurrent and without holonomy) has 2 ends, there is
g € I such that Zg2 has nonempty interior. Let L be one of these generic leaves
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and z € domg a point where L* meets int ZQQ. Replacing g with suitable f o g,
we can assume that K,(z) separates L}, into exactly two components Wy and Wa,
neighborhoods of the respective ends e; and ey. Then, for every point y € int Zg2
such that Ly is the skeleton of a generic leaf, K ¢(y) separates Ly, into exactly two
components, neighborhoods of the respective ends.

In the leaf L, K4(z) can be realized as a compact, connected submanifold K
which is the union of the closures of the plaques which are vertices of K(z). These
closed plaques can be assumed to have 1 boundaries intersecting transversely,
so K will have piecewise Gl boundary. By an arbitrarily small modification, the
boundary of K can be made C!. Let N denote the union of those boundary
components that interface one of the complementary components, say Wy, and
remark that NV is a compact submanifold of L of dimension p — 1 which separates
L into exactly two components, neighborhoods of e and e, respectively.

By local Reeb stability, there is an open subset V' C int Zg2 and an imbedding
V x N — M such that N, = {y} x N lies in the leaf L, through y. If L, is one of
the generic leaves (in particular, L itself), N, separates it into two components,
neighborhoods of its two ends. We can choose sequences {y;}7° | and {zx}7° ¢ in
LNV such that y, — e1 and 2z, — eg in LUE(L) as k — oo. Let Ay C L be the
compact submanifold cobounded by N, and N,, . Since these boundary manifolds
remain uniformly bounded as k — oo, they also converge to the respective ends
and vol,(Ay) — oo. The linear functional ¢y, : AP(M) — R, defined by

1
=

defines a de Rham p—current and the sequence {},}7°  is easily seen to be bounded
away from oo and 0 in the space of p—currents. These are structure currents for
(X, F), so a subsequence converges to a nontrivial structure current p. Stokes’s
theorem and the fact that {vol,(Ax)}7° | is unbounded, while {vol,_1(0Ax)}7°
is bounded, implies that yx is a nontrivial structure cycle, canonically identified as
a nontrivial, I'-invariant Borel measure on 7', finite on compact subsets. Finally,
this measure is readily seen to be supported in LN 7.

The regularity of the foliated atlas allows us to replace T" with a slightly smaller
transverse space with compact closure, so we can assume that 0 < p(7T) < oo.
Normalizing produces the desired probability measure.

We remark that the sequence {A;}72 is an example of an averaging sequence
in the sense of Goodman and Plante [7].

9. Codimension one
We indicate some applications of our results to closed, C2—foliated manifolds

(M, F) of codimension one. It is assumed that M is orientable and that F is
transversely orientable.
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Let X C M be an exceptional minimal set. A celebrated, but unpublished,
theorem of Duminy asserts that the semiproper leaves of F|.X have a Cantor set of
ends. If the foliation is real analytic, this result holds for all the leaves F|X. If the
holonomy of F|X is generated by a Markov chain (all of the standard examples
of exceptional minimal sets have this property), the authors have shown that all
the leaves have a Cantor set of ends [3], but the general case remains open. The
following is a small but interesting step in the right direction.

Theorem 9.1. If (X, F|X) is an erceptional minimal set of a foliated manifold
(M, F) as above, there is a residual family G C X of leaves such that either every
leaf in G has a Cantor set of ends or every leaf in G has exactly one end.

Proof. Since (X, F|X) is minimal and compact, every leaf is totally recurrent, so
the family G' can be chosen as in Theorem A. If the leaves in G are 2—ended, The-
orem 8.1 provides a holonomy invariant probability measure on 7'. By minimality,
supp i = XNT'. The B hypothesis allows us to apply a theorem of Sacksteder [12]
according to which some leaf L of F|X supports a 2-sided holonomy contraction.
In standard fashion, it follows that each of the infinitely many points z of LN T
has the same positive measure p({z}), contradicting the fact that p(7)=1. O

According to the theory of levels [1], also called the “architecture” of foliations
[9], there is a filtration

D=M_ 1 CMyCMC---CMC---CM

by compact, F-saturated subsets such that My~ Mj_1 is the union of the minimal
sets of F|(M ~ My_1), 0 <k < oo. The fact that F|U has minimal sets, where
U C M is any open, F-saturated subset, is a consequence of the C2 hypothesis.
The leaves of F|(My ~ My_1) are said to be at level k. The union M, = J,~q Ms
is the family of leaves at finite level and Mo, = M ~ M, is the family of leaves
at infinite level. An end e of a leaf L is at level k£ < oo if the maximal level of
leaves in its asymptote A, C M is k. We denote by &;(L) the set of ends of L at
level k& < 0.

If L is a leaf at finite level k, the family of leaves in X = L at level k is an
open, dense subset of X. By the methods of [1], one shows that an end e of such a
leaf is at level k if and only if e is a dense end for the foliated space (X, F|X). Of
course, if L is a proper leaf at level k, the highest level of any of its ends is k — 1,
but in all other cases, level k leaves have some level k ends.

In light of Theorem B, we have the following consequence of this discussion.

Theorem 9.2. If L is a leaf at level k < oo, there is a residual family of leaves
G C L such that every leaf in G has 0, 1, 2, or a Cantor set of ends at level k,

the cardinality of Ex(F') being constant as I ranges over the leaves in G

If L is a leaf at infinite level, X = T contains uncountably many leaves at
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infinite level, all asymptotic to L [1, §5]. This family of leaves is a residual subset
of X. Indeed, the sets X N M}, are compact and, being in the closure of L, they
have empty interior in X, so the union of leaves at finite level in X is meager.
Again, the ends at infinite level are exactly the dense ends relative to the foliated
space (X, F|X) and every leaf at infinite level has such an end.

Theorem 9.3. If L is a leaf at infinite level, there is a residual family G C T of
leaves, every one of which has 1, 2, or a Cantor set of ends at infinite level, the
cardinality of Ex(F') being constant as F' ranges over the leaves in G.

10. Examples

There are numerous examples which illustrate Theorem A and, in many cases, the
measure theoretic version in [6]. We sketch a few here and refer the reader to [6]
for more.

Example 10.1. Consider the Cantor set K = {0,1}%, the bi-infinite sequence of
0’s and 1’s with the Tychonoff topology. The shift map 7 : K — K is defined by

T ((xi)icz) = Wi)icz, Yit1 =2, Vi€LZL

This is a homeomorphism with well understood dynamics. There are countably
many periodic orbits and these are dense in K. There are also minimal sets made
up of nonperiodic orbits. There are some nonperiodic orbits which are dense in
forward time, some in backward time, and some in both forward and backward
time. We claim that these latter form a residual subset of K. Indeed, a base for
the topology of K is given by the countable family

U(£i17€i27 wi v 7€in) - {(xi)iEZ | Ei; — €ij7]~ Sj < n}7

where the choice of integers i1 < 9 < --- < 1, Is fixed, as are the choices of
€i; € {0,1}, 1 < j < n. Fix one such basic open set U. The reader will easily
check that the set of 2 € K such that the forward T—orbit {r*(z)}?2, meets U
at least once is open and dense in K. In fact, given an integer n > 1, the same
considerations show that the set of points whose forward 7—orbit meets U at least
n times is open and dense. The residual intersection of these sets is the set of
points z such that 7%(z) € U, for infinitely many integers & > 0. Intersecting
these residual sets as U ranges over the given base gives a residual set consisting
of those points of K with 7—orbit dense in forward time. Similarly, one obtains a
residual set with 7—orbit dense in backward time, hence the intersection of these
two residual sets is again residual and consists of the points x € K with 7—orbits
dense in both forward and backward time.
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If 3 is a compact, orientable surface with infinite fundamental group, there are
surjective homomorphisms

p: (%) — Z.

Composing ¢ with the Z-action generated by 7 on K, we obtain an action of 71 (3)
on K. The standard suspension construction then produces a foliated bundle over
Y with fiber the Cantor set K. This is a compact, foliated metric space (X, F) in
which the leaves are covering spaces of ) and correspond one—one to the 7—orbits
in K. The leaves corresponding to periodic orbits are compact and these are the
only leaves with nontrivial holonomy. If ¥ is a torus, so are the compact leaves,
though they occur with arbitrarily large volumes proportional to the lengths of
the corresponding periodic orbits. If genus>: > 1, the compact leaves occur with
arbitrarily large genera. The remaining leaves are 2—ended, being cylinders if ¥
is a torus, ladders if it has genus greater than one. Corresponding nonorientable
leaves are produced by taking > nonorientable of large enough genus. By the
analysis of the dynamics of 7, a residual family consists of 2—ended leaves that are
totally recurrent, but there are infinitely many 2—ended leaves that are not totally
recurrent. This shows that the residual set G in Theorem A can be a proper subset
of Gg. Evidently, this is a non—minimal example.

Remark that the set K = {1727“‘7n}Z is also a Cantor set and one can
define a closed subset H by using an n X n incidence matrix (a;;) of 0’s and
1’s. The sequences (x)rcz € H are determined by the condition that 7, j can be
consecutive terms wy, 41 only if a;; = 1. It is clear that the shift map 7 on K
restricts to a homeomorphism of H onto itself, called “a subshift of finite type”.
In interesting cases, H itself is a Cantor set, the dynamical properties are similar
to those described above, and one obtains a foliated space by suspension.

Example 10.2. Subshifts of finite type can also be realized in foliations of honest
manifolds. Let f: 72 — T2 be the Anosov diffeomorphism which lifts to the linear
transformation of R? having unimodular matrix

A:ﬁ ﬂ

This f-action admits a Markov partition making it semi-conjugate to a subshift
7|H : H — H of finite type. That is, there is a continuous, finite—to—one surjection
7 : H — T2 such that the diagram
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commutes. Here, H is a Cantor subset of {1,2,3,4, 5}27 the matrix for the subshift
being

11010
11010
11010
001 01
001 01

(¢f. [11, pp. 84-86]). By considerations similar to those in the previous example,
7|H has a countable dense set of periodic points and a residual family of nonperi-
odic orbits that are dense in both forward and backward time. The periodic orbits
project by 7 to a dense family of periodic orbits of f. The projection 7 restricts
to a homeomorphism of a certain residual subset of H onto a residual subset of
T2, hence f has a residual family of orbits that are dense in forward and back-
ward time. The suspension construction yields a foliated T2 bundle p:M—X
with a dense family of compact leaves and a residual family G of totally recurrent,
2—ended leaves without holonomy. Again, only the compact leaves have holono-
my while many noncompact leaves fail to be totally recurrent, so G is a proper
subfamily of Gg.

This construction also exemplifies Ghys’s result. Since the matrix A is unimod-
ular, f preserves Lebesgue measure on T2. It follows that Lebesgue measure on M
is a completely invariant harmonic measure for the foliation. Since the countable
family of compact leaves has Lebesgue measure zero, the 2—ended leaves form a
set of full measure.

Example 10.3. The projective special linear group PSI(2,R) is the group of
orientation preserving isometries of the hyperbolic plane H2 and has a natural
identification with T} (H?), the bundle of unit tangent vectors to H?. Since H?
covers the compact, orientable, hyperbolic surface . of genus 2, the covering group
is a discrete, cocompact subgroup I' C PSI(2,R) and the compact quotient M =
I'\ PSI(2,R) is canonically identified with the the unit tangent bundle T7(>2). Here,
as the notation indicates, the quotient is the set of right cosets of I'. Let H C

PSI(27R) be (he Subgroup
a>0

and consider the foliation H of PSI(2,R) by left cosets of H. This foliation is
invariant under left translations in the group, hence passes to a foliation F of
T1(¥) which is transverse to the circle fibers. It is well known that each leaf
of H is the unit tangent field to a geodesic pencil in H?2 issuing from a point
on the circle at infinity. In the quotient, most of these leaves survive as copies
of the hyperbolic plane, but a countable infinity are hyperbolic cylinders and
have nontrivial holonomy. Each leaf is everywhere dense, so (M, F) is a minimal
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foliated manifold and the planar leaves form the residual set Gg. This foliated
manifold supports a unique ergodic harmonic measure [5, Proposition 5] and the
union of the countably many leaves with holonomy has measure zero. Finally, a
simple modification of this foliated manifold produces an example in which the
generic leaves are 1-ended with infinite genus. Simply drill out a small tubular
neighborhood N of one of the circle fibers of T7(Y), noting that F restricts to a
foliation of this solid torus by disks transverse to dN. Replace N with a copy of
K x Sl7 foliated by copies of K, where K is either a handle or a crosscap. This
foliation matches up with F|(M ~ int N) and the generic leaves (in either sense)
are 1-ended with handles (respectively, crosscaps) clustering at that end.

Example 10.4. In [2], it was shown that, given an arbitrary closed 3—manifold
M and an arbitrary noncompact, orientable surface L, there is a smooth foliation
F of M having a leaf diffeomorphic to L. This leaf eludes visual intuition by lying
at infinite level in the foliation. By the theory of levels, X =T C M is a compact
foliated subspace containing leaves at every finite level, as well as uncountably
many leaves at infinite level, each of the latter being asymptotic to every leaf in
X [1, §5]. Generally, the leaf L will not be totally recurrent in X, but if we take
L 22 R2, then the fact that L has one end and is asymptotic to every leaf (including
itself) in X does imply total recurrence. This leaf, being simply connected, also
has trivial holonomy. By the proof of Proposition 6.3 and Corollary 6.4, the set of
leaves with a Cantor set of ends must be meager. Otherwise, the totally recurrent
leaf L without holonomy would have a Cantor set of ends. Then, by the proof of
Proposition 6.5, the set of leaves with exactly two ends must be meager. Otherwise,
the totally recurrent leaf L. C Gp, having at most two ends, would have exactly
two ends. Similarly, every leaf without holonomy has genus zero and it follows that
the topologically generic leaf in (X, F|X) is the plane. We do not know whether
these leaves lie in the support of a harmonic measure.

Many other topological types can also occur, nongenerically, among the leaves
of F|X. If Ho(M;R) # 0, the construction in [2] can be carried out so that X
contains leaves at every finite depth. The well understood theory of leaves at finite
depth (¢f. [1, 6], where they are called “totally proper” leaves) shows that there
are at least countably many distinct topological types of noncompact leaves in X.
It is also possible to carry out the construction in arbitrary M so that X contains
an exceptional minimal set. By Duminy’s (unpublished) theorem, X would then
contain some leaves with a Cantor set of ends. Finally, the trick of modifying
the foliation along a closed transveral through L produces a generic family of one
ended leaves of infinite genus or one with infinitely many crosscaps. This example
is not minimal.

Example 10.5. The easiest example in which the generic leaf has a Cantor set
of ends is obtained by a construction of M. Hirsch. This is discussed in [6], but we
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Figure 3. Forming the solid torus with wormhole drilled out

want to give more detail, making clear the role of the leaves without holonomy.
Let P denote the “pair of pants”, the compact surface obtained by deleting from
52 the interiors of three disjoint disks, and consider P x [0,1]. Let ¢ : P — P
be an orientation preserving diffeomorphism which leaves invariant one boundary
component and interchanges the other two. The 3-manifold

N =P x[0,1}/{(2,0) = (¢(=), 1)}

is a solid torus with a wormbhole drilled out which winds around twice longitudinally
while winding once meridianally (Figure 3). This is fibered over S1 = [0,1]/{0 =
1} with fiber P. We parametrize these fibers as P, 0 < t < 1, where Py = Py.
One can glue the inner toral boundary to the outer one smoothly and in such a
way that each of the inner boundary components of P, is glued to outer boundary
components of P, ) and P, , respectively, where hq : [0,1] — [0,1/2] and
hi :]0,1] — [1/2, 1] are orientation preserving diffeomorphisms (Figure 4).

The resulting 3—manifold is closed and the pairs of pants fit together to form
the leaves of a smooth foliation. We consider the case in which ho(t) = ¢/2 and
hi(t) = (t +1)/2. In order to see the topology of the leaves, it will be convenient
to write ¢t € [0,1]/{0 = 1} by its dyadic expansion ¢t = 0.t1t9 -ty -+, Where
t; € {0,1}, ¢ > 1. In this notation, the diffeomorphisms take the form

ho(0.t1tg--+) = 0.0t1tg - -
h1(0.t1ty---) = 0.1ty - -

Thus, if ¢ has a periodic expansion

t =021ttty
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Figure 4. Gluing together the pairs of pants

hi; ©---0hy (t) =t and the leaf containing P; has a single cycle of pairs of pants,
hence has genus one. Since there are no other cycles, the leaf has a Cantor set of
ends. If ¢ is irrational, the leaf containing P; is a Cantor tree of genus zero, there
being no cyclic connections.

One can let the P,’s play the role of plaques. While kg and hq are not globally
well defined on the parameter circle [0,1]/{0 = 1}, local restrictions are defined and
can be used to fashion a pseudogroup on this circle which can serve as a holonomy
pseudogroup for (M, F). A little care is needed at the point 0 = 1, where hg
on either side matches up with h; on the other side. Those leaves containing
a plaque P; with ¢ cyclic of period t{---%, clearly have a holonomy contraction
defined by h;, o--- o hy . There are countably many of these, all of genus 1. The
remaining leaves only contain P;’s with ¢ irrational. They have trivial holonomy
and, as noted above, are Cantor trees of genus zero. Every leaf is dense in M,
hence (M, F) is minimal and all leaves are totally recurrent. Again, the trick of
modifying along a closed transversal produces Cantor trees with handles or Cantor
trees with crosscaps.

Finally, we remark that the uniformity of the topology in the generic 2—dimen-
sional leaf has no analogues in higher dimensions. In a truly startling example [6,
pp. 396-399], Ghys exhibits a compact, foliated 6—manifold of codimension 2 in
which a minimal set X consists of 2—ended leaves no two of which are homeomor-
phic.
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