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An example of an immersed complete genus one minimal
surface in R with two convex ends

Barbara Nelli

Abstract. We prove the existence of a compact genus one immersed minimal surface M, whose
boundary is the union of two immersed locally convex curves lying in parallel planes. M is a
part of a complete minimal surface with two finite total curvature ends.

Mathematics Subject Classification (1991). 53A10, 53C42.

Keywords. Minimal surface, convex boundary, Weierstrass representation, elliptic functions.

1. Introduction

In 1978 Meeks conjectured that a connected minimal surface bounded by two
convex curves in two parallel planes is topologically an annulus; hence it has genus
zero. The conjecture has never been proved and the most general result, due to
Schoen, is the following.

Let I' = I'y{ UT'9 be any boundary consisting of two Jordan curves in parallel
planes; assume that I' is invariant by reflection through two planes P, P> orthog-
onal to the planes of the I'; and that both Py and P» divide I' into pieces which
are graphs with locally bounded slope over the dividing plane. Then any minimal
surface spanning I' is topologically an annulus and is an embedded surface meeting
each parallel plane between the planes of the I'; in smooth Jordan curves.

In particular, if I'y and 'y are circles such that the line joining their centers is
perpendicular to the planes in which they lie, then M is a catenoid (cf. [Sc]).

In 1991, Meeks and White studied the space of minimal annuli bounded by
convex curves in parallel planes (cf. [MW]).

In this paper we prove the existence of a compact genus one immersed minimal
surface M, whose boundary is the union of two immersed locally convex curves
lying in parallel planes. In fact M is a part of a complete minimal surface with
two finite total curvature ends.

The method we use to construct our surface is the following.

It is well known that a minimal surface of genus g and k£ ends can be described
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by its Weierstrass representation, that is a triple {R\ [p1,...,px),w = fdz, g},
where T is a compact Riemann surface of genus g, p1,. ..,ps are points in R, w is
a holomorphic differential on R and g is a meromorphic function on R.

In our setting R is a torus, so we can choose f and g to be elliptic functions.
For references about the use of elliptic functions in the Weierstrass representation,
see [A], [A1], [C], [C1], [R]).

I would like to thank Professor Harold Rosenberg for his continual encourage-
ment and advice.

2. Statement of results

Consider the lattice L(1,4) on C generated by 1 and ¢ and let T2 be the torus
C/L(1,i). Let 7 : C—T? be the standard projection to the quotient and set
po =7(0),p1 = 71‘(%)7 Py = W(lﬁ}ﬁ) and p3 = 7(5). Finally, let o be the Weierstrass

function associated to the lattice L(1,7) and g’ its derivative.

Theorem 2.1. Let f,g : T?\ {po,pa}—C be the two meromorphic functions
defined by

agp’
p?)

where a is a real constant depending only on L(1,7) and .
Then {T?\[po, 2], fdz, g} is the Weierstrass representation of a complete genus
one immersed minimal surface M with finite total curvature.

f=p? g=

Remark 2.2. The ends of M cannot be embedded. In fact, if a complete finite
total curvature minimal surface has two embedded ends, it is a catenoid (cf. [Sc]).

The functions f and g extend meromorphically to 72 and we have glp,) =0
and g(p2) = oo. Hence the limit normal vector at both ends of M is vertical. Then
we have the following result.

Theorem 2.3. There exists a positive constant ¢ € R such that M N{|zs| < ¢} is
a compact genus one immersed minimal surface having the property that each of
the boundary curves M N {x3 = *c} is a compact locally conver immersed curve.

3. Proof of the theorems

We list some useful classical properties of the function o (cf. [B], [WW]).
By abuse of notation, we often identify points of C with points of T2. Let ’ be
the differentiation with respect to the variable z € C.
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(i) p is even and p’ is odd. We have p(z), ¢'(2) € Rwhen z € R, p(p1) = e1 € RY,,
p(p2) = 0 and p(p3) = —e1.
The following identities hold:
(iD) ()% = 4p(p> — €1), 9" = 2(3p” — €}).
e1(p(z) +e1)
— PR tp) s ——
o)~ T O
. o' (=
(iv) ¢'(z +p2) = et ~
‘ R
(v) p(iz) = —p(2), ¢'(iz) = ip'(2).
(vi) The local expansion of p and ' around p, is

(iit) p(z +p1) =

1 ey 6
p(2) = = + 22"+ 0(z"),
Z 5
2 2¢2
©'(2) = -5 + =2+ 0(").
z 5

Proof of Theorem 2.1. 1t is sufficient to prove that the following conditions are
satisfied.
(A) z is a pole of order m of g <= z is a zero of order 2m of f.
(B) fv(l + |g?)|f| = oo for every divergent path ~ in M.
(C) Re f7 fg =0 and f7 fg? = f7 f for every closed path in M.
Zeros and poles of f, g, fg, ng in a fundamental region are as in figure 1.

f e 8 ° .
04 0 ”
*——o
ot 03 0
12 ¢ ° 527 e [
0 o 02 0
\ g *r—— ——
& 0 02 02

Figure 1.

The function g does not have poles in 72\ {p,,p2}, hence condition (A) is
satisfied.
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The expression of the metric on M in terms of p is

o' |2
ds = <1+a2—|p|6 ool

hence the metric is complete at the ends and condition (B) is satisfied.

We must verify (C') on paths that are not homologous to 0 in 72\ {p,,pa}, i.e.
paths around p, and py and paths that generate the homology of 7%. Denote by
a(p,) and a(pa) any closed path around p, and py respectively, and by v and 9
the following paths generating the homology of 7 §

'yl(t):ith telo,1]

1
P2(t) =7 +it te0,1]

The functions f and fg? are even, so they have no residue at p,, i.e.

[ a=[ 10
a(?o) D‘(?o)

Furthermore

/ /
Re/ fg= Re/ X _Re [Respo(Qm’ag)}
a(po) a(po) 8 (2
By the local expansion of p and o’ around 0 we have that Res,, (27ria-%) = —4ria,

hence for o € R we have
Re/ fg=0
O‘(}’o)

By (iii) and (iv) we have

64
f(Z +p2) = pg(lz)y
a?
fo?(z +pa) = 6—%(@’(2))2

Hence f(z + pg) and fg%(z + pa) are even functions of z and this gives

[ a2=[ r-o
o(p2) o(p2)
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By (iii) and (iv) we have

ap/(z)
p(z)

Hence, by the computation above, for o € R we have

Re/ fg=0.
a(pa)

Now we verify (C) over v and 2. We have

fo(z +p2)=—

e A1)
e 'fg:Re/ aE [ln|p|zgo 0
Yi Y

by periodicity of p, as « is real.

Integral of f over 41 : by Cauchy theorem and periodicity we can move 1 up
to the segment from p3 to ps + 1, hence

1 il 2
(p(t) —e1)
f= / flps +t)dt = / e}t ——sdt
[71 0 0 () +er)?
where the last equality is given by (iii).

Integral of f over 9 : we can move ~9 to the vertical segment from p1 to p1 +1,
hence by (iii) and (iv)

—ei)2
/ /fp1+tzdt*z/ 6%&2%3 dt.

Integral of f g~ over y1 : we can move 1 down to the real segment from p, to

Po + 1, hence
2 ! N0t A 2@/(t)2dt
Llfg = [ sogwa = [ ook

Integral of f g2 over 9 : we can move o to the vertical segment from p, to

Po + 1, hence
1 1 1(\2
. . . o' (t)
ng :/ flit g2 it)edt = —z/ o? dt.
], 10 = | st 0 ¥ e

Then o must satisfy




Vol. 73 (1998) Minimal surface in R® with two convex ends 303

If ¢ € R we have p(t), ¢'(t) € R, hence the two integrals involved in the
definition of a are positive real numbers. Furthermore they are convergent, so
aeR.

Since g and f extend meromorphically to TQ7 M has finite total curvature. O

Before proving Theorem 2.3 we need the following lemma.

Lemma 3.1. Consider a minimal surface M with Weierstrass representation giv-
en by {fdz,g} such that the vector corresponding to g(0) is parallel to the x3-azis.
Then the planar curvature of the intersection curves of M with the horizontal

planes is
1 —q
k= —————5Re fg—> y
|F21(1+[g]?) ( g

Proof. Let 6 = argg and s be the arc length of the curve M N {z3 = c}; then
k(s) = ? As argg = Im(In g), we have
s

:dlmlngi dlngdz):hn(g_/%)

k() ds m( dz ds g ds

By the Weierstrass representation we have

3 :Re/fg.

d
Hence, on the curve M N {z3 = c}, d—z must satisfy
5

d 1 dz
By a straightforward computation we obtain

dz 7 fg

ds  (1+1gPIfl1fal
Then

i fg q 1 —q
k=Im(————2 2 )=~ R 7.
NPT (AT PR Ve R P <f9g>

Proof of Theorem 2.3. The third coordinate of M is given by
p/
3 :Re/fg:Re/a— = aln|pl,
2
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since « is real. Then, any level curve is given by |p| = ¢ and next to the ends this
is a compact immersed curve with only one component.
By a straightforward computation, we obtain

/ - 56%_3P(z)2
o) =2a [ZLT5
§(2) _ 205¢}—3p(z)?)
g9(z #'(2) ’
pyon e )
f(z)9(2) )

By using the expansion of p and ¢’ at p, we have

[e%

f(2)g(z) ~ 2=,
Z
g
9(2)
where ~ denotes equality between the principal parts of the functions in a neigh-

borhood of zero. Hence the sign of the curvature of the level curve next to the end
P, is the same as the sign of

w | w

—6a 6o
Re(—) = ——
el Tz ) |2[2°
« being real.
We use the equality

F(z+p2)g(z+p2) = —f(2)g(2)

and the fact that in a neighborhood of zero we have

gz +p2) _ 205p(2)? —3¢}) 5

— ~ ——

g(z +p2) ©'(2) 2

?

to conclude that the sign of the curvature of the level curve next to the end ps is
the same as the sign of
—10@ 10

= TR

Re(

since « is real.
Thus, if we choose a negative «, the level curves are locally convex next to the
two ends of M. O
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