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The double Coxeter arrangement

Louis Solomon and Hiroaki Terao™*

Abstract. Let V be Euclidean space. Let W C GL(V) be a finite irreducible reflection group.
Let A be the corresponding Coxeter arrangement. Let S be the algebra of polynomial functions
on V. For H € A choose apy € V* such that H = ker(ag). The arrangement A is known to
be free: the derivation module D(A) = {0 € Derg | 8(ag) € Sag} is a free S-module with
generators of degrees equal to the exponents of W. In this paper we prove an analogous theorem
for the submodule E(A) of D(A) defined by E(A) = {6 € Ders | 6(agr) € Sa%}. The degrees
of the basis elements are all equal to the Coxeter number. The module E(A) may be considered
a deformation of the derivation module for the Shi arrangement, which is conjectured to be free.
The proof is by explicit construction using a derivation introduced by K. Saito in his theory of
flat generators.

Mathematics Subject Classification (1991). Primary 52B30; secondary 05E15.

Keywords. Hyperplane arrangement, free arrangement, Shi arrangement, reflection group, ba-
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¢ 1. Introduction

Let V' be a Euclidean space of dimension [ over R. Let ( , ) denote the positive
definite symmetric bilinear form on V. Let W C GL(V') be a finite group gener-
ated by orthogonal reflections [Bou, V.2.3]. Let A be the corresponding Coxeter
arrangement, the set of hyperplanes H C V such that W contains the orthogonal
reflection which fixes H. Let S be the algebra of polynomial functions on V. The
algebra S is naturally graded by S = € 4>0 Sq Where S, is the space of homo-
geneous polynomials of degree ¢. Thus S| = V* is the dual space of V. Let Derg
be the S-module of R-derivations of S. We say that # € Derg is homogeneous of
degree ¢ if 8(S1) C S4. Choose for each hyperplane H € A a linear form ay € V*
such that H = ker(ay). Define Q € S by

Q= H ap . (1.1)

HeA
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The polynomial @ is uniquely determined, up to a constant multiple, by the group
W. Let

D(A) = {0 € Ders | 8(ay) € Sag} . (1.2)

K. Saito [Sail, Theorem]|, [Ter,Theorem 2] proved that D(A) is a free S-module
of rank / and that a set of basis elements for D(.A) as S-module may be described
as follows. Let R = S be the algebra of W-invariant polynomials on V. By a
theorem of Shephard, Todd, and Chevalley [Bou, V.5.3, Theorem 3] there exist
algebraically independent homogeneous polynomials f1,... , f; € R such that R =
R[f1,...,f1]. Let «1,...,2; be an orthonormal basis for V*. Let 0; be partial
differentiation with respect to z;. Define §; € Derg by 8; = Zé:l (0if5) 0 for
1<j <!l Then {fy,...,6;} is an S-basis for D(.A). Note that 8; is homogeneous
of degree deg(f;) —1. The integers m; = deg(f;)—1 for 1 < j <[ are the exponents
of W [Bou, V.6.2, Proposition 3].

In this paper we will prove an analogous theorem for the submodule E(A) of
D(A) defined by

BE(A) = {0 € Ders | 0(ay) € So}. (1.3)

Note that we have replaced Sag in (1.2) by Sa2 in (1.3), which explains the
phrase “double Coxeter arrangement” in the title of this paper. If 8 € D(A) and
a = ag then 0(Q) = 0(a-Q/a) = (Q/a)f(a)+ab(Q/a) € Saso that 0(Q) € SQ.
On the other hand, it may happen that § € E(A), but 8(Q) & SQ2.

To state our theorem we need some preliminary definitions. Assume that W
is an irreducible subgroup of GL(V). The form ( , ) on V induces a positive
definite symmetric bilinear form on V*, sometimes called the inverse form, which
we also write as (, ). Let e1,es,...,e; be a basis for V. We do not assume that
€1,€2,...,¢ is an orthonormal basis unless orthonormality is explicitly stated.
Let z1,z9,...,z; be the dual basis for V*. Let I' be the matrix of the inverse
form with respect to the chosen basis 21, ... ,#;. Thus I';; = (2;,2;) . Number the
invariant polynomials f; so that deg(f1) < --- < deg(f;). Since W is irreducible,
the Coxeter number h of W is defined [Bou, V.6.1] and h = deg(f;) [Bou, V.6.2].
Let K be the quotient field of S. K. Saito [Sai2, 2.2], [SYS, (1.6)] studied an R~
derivation D € Derg such that Df; =0 for 1 < j <{—1 and Df; € R*. This
derivation is uniquely determined, up to a constant multiple, by the group W and
does not depend on choice of basic invariants f1,..., f;. Define rational fuctions
hje K for1 <j<lby

hj = Dl‘j.

Let J(h1, ... ,h) be the Jacobian matrix, labeled so that 9;h; is its (¢, j) entry. We
will prove in Corollary 3.32 that J(hq,... , k) is invertible over K. This is perhaps
the most difficult point in the paper. Furthermore J(hq,... 7hl)_1 has entries in
S. The structure of the S-module E(A) is given by the following theorem.

Theorem 1.4. Let W C GL(V) be a finite irreducible group generated by reflec-
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tions. Define an | X | matriz P by
P=TJ(ht,... , h)" L. (1.5)

Define €1, ... ,& € Derg by & = Zé:l pij O; for 1 < j <, where p; is the (1, 7)
entry of P. Then & € E(A), and E(A) is a free S-module with basis &1, ... ,&.

Note that if z1,... ,z; is an orthonormal basis for V* then I' is the identity
matrix and (1.5) becomes P = J(hy,...,h) 1. We will see that all entries of P
are homogeneous of degree equal to the Coxeter number h. Thus all derivations
&1, .. ,& are homogeneous of degree h. We will prove in Proposition 4.7 that the
homogeneous component E(A);, of degree h is isomorphic to V* as W-module.
The rational functions hi,... ,h; may be computed as follows. Let J(f1,...,fi)
be the Jacobian matrix of fq,... , f;. Since f1,..., f; are algebraically independent,
J(f1,...,f1) is invertible over K. Then [hy,... , ] is, up to constant multiple, the
I-th row of J(f1,...,fi) L.

Remark 1.6. Define polynomials uq,... ,u; € S by v, = Qh; for 1 < ¢ < [.
Invertibility of the matrix J(hy, ... ,h) is equivalent to invertibility of the matrix
J(ug, ... ,u;), which was conjectured in [Sol2].

Remark 1.7. The definition (1.3) of E(A) is due to Ziegler [Zie, Definition 4]
who developed the theory of multiarrangements. A double Coxeter arrangement
is a multiarrangement with multiplicity two for each hyperplane belonging to the
Coxeter arrangement.

Remark 1.8. We were led to study the double Coxeter arrangements by an at-
tempt to understand the Shi arrangements [Shil], [Sshi2]. Suppose that W is a
Weyl group. Choose a crystallographic root system in V* and choose the linear
forms ap so that oy is a root for each H € A. Let aq,... ,a, € V* be a system
of positive roots. The Shi arrangement A of type W is an affine arrangement with
2n hyperplanes whose defining polynomial is Q = [T (e — 1) TT"q s Shi ar-
rangements have been studied by Stanley [Stal], [Sta2] and others. A special case
of a conjecture due to Edelman and Reiner [EdR, Conjecture 3.3] states that the
cone [OrT, p.14] cA of each Shi arrangement is a free arrangement with exponents
{1,h,...,h} [OrT, Definition 4.15, Definition 4.25; the module D(cA) is a free
module over Rlzg, ... ,z;]. Athanasiadis [Ath] verified this conjecture for type A;.
Note that the restriction (as a multiarrangement) of cA to the infinite hyperplane
zg = 0 is the double Coxeter arrangement. Therefore, if the conjecture is true,
then, by Ziegler’s theorem [Zie, Theorem 11], we may conclude that the double
Coxeter arrangement is a free arrangement with exponents {h, h, ..., h}, which is
true by our main result, Theorem 1.4. So Theorem 1.4 may be regarded as a piece
of evidence supporting the conjecture.

Here is an outline of the paper. In Section 2 we introduce more notation and
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state some elementary facts. In Section 3 we prove the invertibility of J(hq, ... , k).
In Section 4 we complete the proof of Theorem 1.4. In Section 5 we compute the
matrix P in case [ = 2 and in case W has type B;. In Section 6 we use the invert-
ibility of the matrix J(uy,... ,u;) to describe the differential 1-forms which are
anti-invariant under W.

§2. Notation and preliminary definitions

In this Section we fix more notation, state some elementary facts about derivations
and differential forms, and introduce some of the main constructs in the argument.
We often use the notation of Section 1 without comment. When convenient we
choose a basis eq,... ,¢ for V and let xq, ... ,z; denote the dual basis for V*. Let
(,):V*xV — R denote the natural pairing. Thus (z;,e;) = d;;. Let Derg be
the S-module of R-derivations of S. For each v € V let 9, € Derg be the unique
derivation such that 9,z = (z,v) for x € V*. Define d; € Derg by 0; = .,. Then
O;z; = i and Derg is a free S-module with basis 9q,...,0;. There is a natural
isomorphism S ® V' — Derg of S-modules given by

f®v— f8, (2.1)

for fe SandveV Let QL = Homg(Derg,S) be the S-module dual to Derg.
Define d : S — QL by df (0) = 0(f) for f € S and 6 € Ders. Then d(ff') = (df ) f'+
f(df’) for f, f € S. Furthermore, Q}g is a free S-module with basis dzq,... ,dr;
and df = 22:1 (0;f)dx;. There is a natural isomorphism S @ V* — Qé of S-
modules given by

f®z— fdx (2.2)

for f € S and = € V*. The modules Derg and Q}g inherit gradings from S which
are defined by deg(f9,) = deg(f) and deg(fdz) = deg(f) if f € S is homogeneous.

We define several W-module structures which stem from the given W-module
structure on V. If f € S define wf € S by (wf)(v) = f(w 'v) for v € V. This
makes S a W-module and W acts as a group of R-algebra automorphisms of S. In
particular V* = 51 has a W-module structure, and (wz,wv) = (z,v) for w € W,
z € V¥ and v € V. The spaces S® V and S ® V* have W-module structures
given by w(f ® v) = wf ® wv and w(f ® z) = wf ® wzx. We give Derg a W-
module structure by defining (w8)(f) = w(@(w~1f)) for w € W, § € Derg and
f € S. Then wd, = 9y for w € W and v € V. To check this it suffices to check
that both derivations wd, and &, have the same effect on V*. This is so since
(wd,)(x) = Ip(wlz) = (wla,v) = (z,wv) = (). We give QL a W-module
structure by defining w(fdx) = (wf)d(wz) for w € W, f € S and 2 € V*. In
particular, w(dz) = d(wz). The isomorphisms in (2.1) and (2.2) are W-module
isomorphisms.

Define an S-bilinear form (, ): QL x QL — S by
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(fd, f'da’) = [ f'(z,2) (2.3)

for f,f' € S and z,2’ € V* where (x,2’) denotes the form on V* inverse to the
given form on V. In particular, (dz,dz’) = (z,2’) for z,2’ € V*. If w € W then,
since (wz,wz') = (z,2") for w € W, it follows from (2.3) that w(w,w’) = (ww,ww’)
for w,w’ € QL.

Let K be the quotient field of S. We make various conventions about matrices
over K which will be used throughout the paper. Let M;(K) denote the set of
I x [ matrices over K. We use similar notation for matrices over other rings. If A
is any rectangular matrix over K we let A;; denote the (7,7) entry of A and let
AT denote the transpose of A. It is sometimes convenient to define a matrix as
A = [a;;]. When we do this, it is understood that ¢ is the row index and j is the
column index, so that A;; = a;;. If w € W we define the matrix w[A] by

w[A]i; = w(Aiy) .

Then w[AB] = w[A]w[B] when the matrix products are defined, and w[A]T =
w[AT]. Row vectors y € K' are viewed as matrices y = [y1,...,u]. Column
vectors are viewed as matrices y | = [y1,--- 7yl]T. If A is a rectangular matrix
over K and J € Derg we define the matrix d[A] by

A[Al;; = 9(Asj) .

Then 0[AB] = J[A]B + AJ[B] when the matrix products are defined. If y =
[y1,. ..,y € K' we let J(y) denote the Jacobian matrix defined by

J(Y)ij = G:

Let R = {f € S| wf = f forall we W} be the algebra of W-invariant
polynomial functions on V. As in Section 1, choose algebraically independent ho-
mogeneous polynomials f1,...,f; € R such that R = R[fy,...,fi]. Let f =
[f1,..., fi] € S'. For 1 < j <[ define 6; € Derg by

05(9) = (dg, df;)

for g € S, where (, ) is the bilinear form on QL defined by (2.3). It is known
[Sail], [Ter, Theorem 2] that D(A) is a free S-module with basis 61,... ,8;.

Let Derg denote the R-module of R-derivations of R and define Der i in similar
manner. Then Derg = K @---® Kd,. Define DV ... DU € Derg by DO f; =
di;. Let Derg denote the K-vector space of R-derivations of K. We may extend

DO . R i R uniquely to an element of Derg \zvhich we also call D@ . Since
DO =3 | (DW2;)8; we have 5y, = DO i = Y (DW2;)(8; f,). Thus

DOz = J(£)~L. (2.4)
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Recall, from the Introduction, that we number the exponents m; = deg(f;) — 1
so that my < --- < my. Since W is irreducible we have m; 1 < m; [Bou, V.6.2,
Corollary 2], and my; + 1 = h is the Coxeter number of W [Bou, V.6.2, Theorem 1].
It follows from the inequality m; 1 < m; that the one-dimensional space RDW
is uniquely determined by W and is independent of the choice of f1,... , fi [Sai2,
(2.2)], [SYS, (1.6)]. This remark of Saito is fundamental for the proof of our
theorem. We make the following

Definition 2.5. A Saito derivation is a nonzero element of RDO.

Thus Saito derivations are characterized by the property

Dfi=Dfy=---=Dfi_1 =0, Dfi e R*. (2.6)

We choose a Saito derivation D and fix it throughout the paper. Define h; € K
for 1 <j<land he K'by

hj =Dz; and h = [hq,... k. (2.7)
It follows from (2.4) that h is, up to constant multiple, the last row of J(f)~! :
b2 [HfEty o oo T (2.8)

Here and elsewhere = means equality of vectors (or matrices or polynomials) up
to a nonzero constant multiple. By [Bou, , Proposition 6 (ii)] we have

det J(f) = Q. (2.9)
It follows from (2.9) that D) (S) C Q1S for 1 <4 < [. Thus
h; e Qs (2.10)
for 1 < j < 1. If g € S is homogeneous, we define the degree of Qg € K by
deg(Q1g) = deg(g) — deg(Q) = deg(g) — 22:1 m; ; the second equality follows
from (2.9). From (2.8) we have
deg(h;) = = (2.11)
Define Lq,...,L; € Derg by
L;=10;,D]=8;D — Do;. (2.12)
Then Lyz; = 0;Dx; — DOjxy = 0; Dy — Doy = 0;Dxy = O;hy so that

J(h) = [Liz;] . (2.13)
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Define a matrix N € M;(S) by

N — (s, dfy) = 05(s) (2.14)
Let

L' = [(ws,2;)] (2.15)
be the matrix of the form (', ) on V* with respect to the basis z1,... ,2;. Then
N =TJ(f). (2.16)
Thus, if z1,... ,z; is an orthonormal basis then N = J(f). Define a matrix B €

M, (K) by
B=—N"Jh)J(f) = —J() " TJ(h)J(f). (2.17)

The matrices J(h) and B are the key constructs in our argument. Note that h
depends only on the chosen derivation D and not on the chosen basic invariants
f1,...,fi. On the other hand B does depend on fi,...,f;. We will prove in
Corollary 3.33 that if W is not of type D; with [ even, and we replace D by —D if
necessary, then it is possible to choose a basis 21, ... , z; for V* and basic invariants
f1,..., fi so that B has the form

0 0o - 0 my
0 0 - my_1 *
B=| ; : ; z | - (2.18)
0 mo - * *
mi k- * *

where the entries * lie in R. The reason for the possible sign change in D will
become clear in the proof of Corollary 3.33. In Section 5 we give examples of a
matrix B of the form (2.18) in case [ = 2 and in case W has type B;.

Remark 2.19. K. Saito introduced the concept of flat generators for the ring of
polynomial invariants of an irreducible real reflection group W [Sai2]. A system
of basic invariants fi,..., f; is called a system of flat generators if the matrix
D[(df;,df;)] is a constant matrix. It is known [Sai2] that the space Rfi+---+Rf;
is uniquely determined by W. In [SYS], Saito, Yano and Sekiguchi explicitly
determined a system of flat generators for each irreducible Coxeter group except
E7 and Eg. We will see in (3.28) that D[(dfi,df;)] = B + B'. So the matrix B
may be regarded as a refinement of D[(df;,df;)] in the sense that B determines
D[(dfi,df;)]. The study of B therefore seems intriguing. For example we do not
know if B is a constant matrix for a system of flat generators. It is known [Sai2,
(56.1)], [SYS, (1.12)] that D[(df;,df;)] is an invertible matrix. The invertibility
is important because it gives a linear structure on the quotient variety V/W =
SpecR[f1, ..., fi] [Sai2]. In Lemma 3.9 we will show that B is also invertible.
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§ 3. Invertibility of B and J(h)

In this Section we will prove that the entries of B are W-invariant polynomials
and that det B € R* is a unit. It follows then from (2.9), (2.16) and (2.17) that
det J(h) = Q2.

Lemma 3.1. B € M;(R).

Proof. Let p: W — GL;(R) be the matrix representation of W afforded by the
W-module V relative to the basis eq,... ,¢;. Thus

1 i
we; = Zp(w)ijei and WT; = Zp(wil)jixi . (3'2)
i=1 i=1

Since wd, = Oy, for w € W and v € V we also have

wd; =Y p(w)iy; (3.3)

To prove that the entries of B are W-invariant we need transformation rules for
the action of w € W on certain matrices defined by basic invariants f1,..., fi.
These rules are

w[N] = pw )N, (34)
wlJ(F)] = p(w) " I(£), (35)
wlh] = hp(w )7, (3.6)
w[J(h)] = p(w) " J(h)p(w )T (3.7)

We sketch the proofs of these formulas. To prove (3.4) note that w[N];;

NJ;
w(Niz) = w((dzi, dfy)) = (wlda;),wldf;)) = (d(wa;),d(wf;)) = (d(wa;),df;)
Zlk:l p(w Vg (deg, dfy) = (plw 1)N)s;. To prove (3.5), note that w(f] = f an
use (3.3). To prove (3.6), note that w[J(f)~1] = J(£) 1p(w1)T and use (2.8).
The last transformation rule (3.7) follows from (3.6) and (3.3). It follows from
(3.4)—(3.7) that w[B] = w[N "w[J(h)]w[J(f)] = NTJ(h)J(f) = B. Thus the
entries of B are W-invariant. To complete the proof we must show that the en-
tries of B are polynomials. It follows from (2.13) that L; = 22:1 (Lizy)0, =
Yokt (Bihr)dk. Then (J(h)J(£)); = Yo, (Bikk)(Ofs) = Lifs = [0, DIf; =

a |

J(h)J(£) = —D[J(F)] . (3.8)

Since J(f) € M;(S), it follows from (2.10) that D[J(f)] € M;(Q~1S), so QB €
M, (S). Since B;; € R and Q is an anti-invariant polynomial, it follows that QB;;
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is an anti-invariant polynomial and hence [Bou, V.5.5, Proposition 6(iv)] lies in

QR. Thus B;; € R. d

The next lemma asserts, in particular, that det B is a non-zero real number.

Lemma 3.9. 1) If W is not of type D; with [ even then

0 0 . 0 By,
0 0 o Bog g By
B=1 : : : (3.10)
0 B9 Bi_1,-1 Bi_1y
By B - By By

where

By =0ifit+j<l+1
BjeRifi+j=1+1 (3.11)

2) If W is of type Dy with | = 2k then the 2 x 2 block in rows and columns
k,k+1 of the matriz (3.10) — the center of the matriz — is to be replaced by a 2% 2
block

Bk By i1
By = ’ ! 3.12
07 | Bigtr Brpram (8.12)

with constant entries, where By 11 = Bry1,, and det By € R*. The stalement
(8.11) still holds true outside the 2 X 2 block By.

Proof. We agree in this argument that summation indices range over 1, ... ,{. From
(2.17) and (3.8) we have
B = J(f)'TD[J(f)]. (3.13)

If y € K let grad(y) = [d19,... ,9y] € K' denote the gradient vector and let
Hess(y) € M;(K) denote the Hessian matrix, defined by Hess(y);; = 9;0;y. Then

By; = Z (Opfi) (dzp, dzq) D(Oyf;)

P9

=" (pfi) (dap,dzg) > he(0:0,f5)
= v (3.14)

= Z (Op fi) (dzp, dzq) (Og0y f5) Iy

p,q,r

= grad(f;) I' Hess(f;) h'.
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It follows from (3.14) and (2.11) that
deg(Bij) =m; +m; —1—ny =m; +m; —h (315)

when Bj; # 0. Thus B;; = 0 whenever m; +m; < h. Also B;; € R by (3.15)
whenever m; +m; = h.

We remark, parenthetically, that if ¢ +7 <l then j <l —7+1s0om; +my; <
m; +my_;41 = h by duality in the exponents [Bou, V.6.2]. If equality holds in
the last formula then, since j # { —i+ 1, it follows from list of exponents in [Bou,
VI1.4] that W is of type D; with [ even. Thus in Case 1) the matrix B has the form
(3.10). We do not know, at this stage, that the entries B;; ;1 on the second
diagonal are nonzero. Now return to the main line of argument. Define the row

vector o
g(”) = grad(f;)['Hess(f;) € st (3.16)

Then deg(g7)) = m; + m; — 1 when g(»9) # 0. By arguments like those used in
the proofs of (3.4)—(3.7) we have the following transformation rules:

I = wlI] = plw Tp(w )T, (3.17)
wlgrad(£;)] = grad(f,)o(w) | (3.18)
wlHess(f;)] = plw) "Hess(f;)p(w) (3.19)

From these transformation rules, we have
wlg®)] = g9 p(w). (3.20)

Ifg = [g1,...,q] € S and w(g] = gp(w) for all w € W then gidxy +-- -+ gidz; =
[glldzy,... ,dx;]" is W-invariant. It is shown in [Soll, Theorem] that every W-
invariant 1-form g1dzy + - - -+ gidz; with g; € S lies in >, Rdf;,. Thus, by (3.20),
we may write

g(ivﬁ = Z (@ ’j)grad(fk) (3.21)

k

with homogeneous r,(:’j) € R. It follows from (3.14) and (3.15) that

By =gt hT = >k 9 grad(fi)h =X ODf =" Df (3.22)

and

deg(r?y = m; +my —my — 1 (3.23)

when rff’j) #0. Let x = [@y,... ,2;]. Since deg(9; f;) = m; for 1 < j <, it follows
from (3.16) and the Euler formula that

m; g(i’j)xT =m; grad(f;) ['m; grad(fj)T

‘i)XT

T ( (3.24)
= my grad(f;) ['m; grad(f;) ' =m;g"
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because I' is a symmetric matrix. On the other hand, by (3.21) and the Euler
formula, we have

s g(m) T =m Z (.9) grad(fr)x| =my Z ’J) (my + 1) fr. (3.25)

Combine (3.25) with (3.24). This gives

m; Z T;(ci’j) (my + 1) fi = my Z 7”/(fj’i) (mg + 1) fx (3.26)

k k

forall 1 <4,5 <. It follows from (3.23) that both sides of (3.26) are homogeneous
polynomials of degree m; + m;. Suppose now that ¢,j satisfy m; +m; = h =
deg(f;). Then deg(r (Z’J)) < h and thus r,(j’j) € R[f1,...,fi_1]- Since the invariant
polynomials fq,... , f; are algebraically independent, we can equate the coefficients
of f; on both sides of (3.26) and conclude that m; rl(w) (mi+1) =m; rl(j )(ml +1).
This proves

mlB” = mJle whenever m; + my = h (327)
because of (3.22). Note that B;; € R by (3.15) whenever m; +m; = h. On the
other hand

B+ B" = J(£) ' TD[J(f)] + D[J(£) "|TJ(£) = D[J(£) " TJ(f)] = D[(dfs, df;)]
(3.28)
where the last equality follows from (2.3). The matrix on the right is non-singular,
as shown in [Sai2, (5.1)], [SYS, (1.13)]. Thus

det(B+ B'") #0. (3.29)

Case 1) Assume that W is not of type D; with [ even. If s + 7 < [+ 1, then
m; +m; < h and thus, as we have already remarked, B;; = 0. Note that

det(B+B")= [ (By+Bj). (3.30)
itj=1+1

By (3.29) and (3.30) we have B;; + Bj; # 0 whenever ¢ +j = [+ 1. It follows from
(3.27) that B;; # 0 whenever ¢ 4 j = [ 4 1. This proves the desired result in Case
1).

Case 2) Assume that W is of type D; with [ = 2k even. If i + j < [+ 1 with
(¢,7) # (k, k), then m; +m; < h and thus B;; = 0. Let Bg be as in (3.12). Then

det(B+ B') =det(By + By ) [ [(Bi; + Bj), (3.31)

where the product is over the set {(¢,7) |i+j =10+ 1and | — 7| > 1}. By (3.29)
we have B;; + Bj; # 0 whenever i+ j = [+ 1 and |¢ — j| > 1. It follows from (3.27)
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that B;; # 0 whenever ¢4+ j =1+ 1 and |i — j| > 1. Since my = my41, we have
By k41 = Biy1.r by (3.27). Thus By is a symmetric matrix. By (3.29) and (3.31),
we have 4 det By = det(2Bg) = det(Bo + By ) # 0. Thus det By # 0. O

Corollary 3.32. The matriz J(h) has determinant det J(h) = Q2. Thus J(h)
is invertible and h, ..., h; are algebraically independent.

Proof. We have det J(h) = (det ')~ 1(det J(f))2(det B) = Q2 by (2.17), (2.9)
and Lemma 3.9. O

Corollary 3.33. If W is not of type Dy with | even, then it is possible to choose a
Saito derivation D and basic invariants f1, ..., fi so that B has the form (2.18).

Proof. Choose any basis z1,...,z;, and basic invariants fi,...,f;. Then B has
the form (3.10) where

miBi 1 s =myp1 4By for 1 <@ <L (3.34)

Suppose first that [ = 2k is even. Define ¢; = m;/Bj41_;; for 1 <i < kand ¢ =1
for k+1 <4 < 1. Then cieqp1-iBi41-5; = m; for 1 <4 <1 by (3.34). Define
fl=cififor 1 <i<landletf =[f],...,f]]. Let B'= —J(f')"T'J(h)J(f') and
let O = diag(ct, ... ,¢). Since J(f') = J(£)C we have B’ = CBC so Bj,y ,, =
cicip1—iBiy1-s; = m;. Thus replacement of f by £/ gives us (2.18). If | = 2k +1
is odd we must modify the argument slightly. Note that the condition (3.34) is
vacuous for i = k4 1. If Byj1 41 < 0 we replace D by —D. Thus, by (3.13),
we may assume that Bjyiq 1 > 0. Define ¢; = m;/Bjy1—;; for 1 <i < k and
¢ = 1 for k+2 < ¢ <[ by analogy with the case [ = 2k. Choose ¢4 so
that C%HBkJrLkJrl = myy1. Let f/ = ¢;f; for 1 <4 <. Then D and the basic
invariants f1,..., f/ have the desired property. O

We use the fact that B is invertible to give the following alternative expression
for the matrix P in Theorem 1.4.

Proposition 3.35. Define A= B~! e M(R). Then

P=_NANT.

Proof By (2.16) and (2.17) we have N = T'J(f) and B = —N "J(h)J(f). Thus
NANT =NB-INT = —TJ(f)J()"1Jm)"(NT)-INT=-TJh)l!=-P. O
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¢ 4. Proof of Theorem 1.4

In this Section we will prove Theorem 1.4. We will also determine the graded
W-module structure of E(A). It turns out that its homogeneous component of
degree h is W-isomorphic to V*.

Recall that the matrix P = T'J(hy,... k)~ ! of Theorem 1.4 is defined using

a basis eq,... ,e; for V and the dual basis x1, ... ,x; for V* together with Saito’s
derivation D. We will study how P is transformed if eq,... ,e; is replaced by
another basis for V. Suppose a basis 6/17 ... ,e) for V is connected with eq,... ¢

through an invertible matrix M € GL;(R):

=1

The new objects, which are defined using the new basis €/, ... , ¢}, will be denoted

by 7,0}, 1" etc.. As in (3.2)~(3.7) and (3.17)—(3.19), we have

! !
o= (M Yz, 8= Mo, (42)
i=l i=1
V=M1rmM"y ', W =hM") ', JW)=M"Jh)(M") L. (4.3)
Thus

P =M1pMT)~ L (4.4)

Recall that the derivations £1,...,& € Derg of Theorem 1.4 are defined by §; =
Zi:l pij 0; where p;; is the (¢,7) entry of P. By (4.2) and (4.4), we have

l

& => (M 1)u&. (4.5)
i=1
In other words, &1, ... , & satisfy the same base change rule as z1,... ;.

Lemma 4.6. If H € A then & (ag) € Sad. Thus & € E(A) for 1 <i<1.

Proof. Because of (4.5), we may assume that oy = z1 and that zq,...,z; is
an orthonormal basis. Then P = J(h)~!. It is thus enough to show that each

entry of the first row of P is divisible by m% Since z1,...,x; is an orthonormal

basis we have 6; = Eézl(aifj)ai € D(A), as remarked in the Introduction. Thus

o f; = 0;(z1) € Szy, so each entry of the first row of J(f) is divisible by 2.
Thus, outside the first column, each entry of adj.J(f), is divisible by z;. Since
det J(f) = @ is divisible by 21 exactly once, each entry of J(f)~1 = QladjJ(f),
outside the first column, has no pole along z; = 0. In particular, h; (2 < j <) has
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no pole along 1 = 0. It follows that each entry of J(h) outside the first column
has no pole along z1 = 0. Therefore, each entry of the first row of adj .J(h) has
no pole along 21 = 0. Recall that J(h) = Q2 from Corollary 3.32. This implies
that each entry of the first row of J(h)~! = Q2 adj J(h) is divisible by :0% O

Now we may complete the proof of Theorem 1.4. By Corollary 3.32 we have
det[¢;(z;)] = det P = det(I'J(h) 1) = Q2.

By Ziegler’s generalization [Zie, p.351] of Saito’s criterion [Sai3, p.270], [OrT,
Theorem 4.19] to multiarrangements, we can conclude that &1,...,& € FE(A)
form a basis for the S-module F(A). This completes the proof of Theorem 1.4.

The space E(A) inherits a grading from Derg. Let E(A)y C E(A) denote the
space of homogeneous elements of degree . Then E(A) = @ 5o £(A)q . It follows
from Theorem 1.4 that a

E(A) =Seor E(A)

and that
E(A), =@, R¢&:.

Thus the W-module structure of E(A) is determined by that of E(A);. The W-
module structure of F(A), is given by the following:

Proposition 4.7. The R-linear map = : V* — E(A);, defined by Z(z;) = &, for
1 <4<, is a W-isomorphism.

Proof. We have already remarked in (4.5) that &1,...,& satisfy the same base
change rule as z1,... ,z;. Thus the assertion follows from (4.5) with M = p(w). O

Since W is assumed irreducible, it follows from Schur’s lemma that an arbitrary
W-isomorphism from V* to E(A), is a nonzero constant multiple of the map =.

Proposition 4.8. If H € A then E(ay) € ay Derg.

Proof. Write o = crzy + - + ¢ with ¢; € R. Then E(ag) =Y, cx E(zr) =
Scrbr. For 1 <i < let e; € R! be the i-th elementary unit vector. Then,
by Proposition 3.35, E(ayg)(z:) = Y, cele(z:) = einrad(aI.I)T = —¢;NANT
grad(ag) " = —e;NA(grad(ag)N)' € Sag because grad(ag)N = [01(am),. .. ,
Oi(an)] € (San)'. 0
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§ 5. Examples

In this Section we will study two examples: the two-dimensional double Coxeter
arrangements and the double Coxeter arrangements of type B;.

1. The two-dimensional case: Let V be two dimensional Euclidean space. Let
W C GL(V') be a finite irreducible reflection group. Thus W is a dihedral group of
order 2n where n > 2. Let A be the corresponding Coxeter arrangement. Choose
Q as in (1.1). Then deg(Q) = n. Choose an orthonormal basis eg, e for V. Let
z1,z2 be the dual basis for V*. Then I' is the identity matrix. The exponents
of W are mq = 1,m9 = n — 1. To construct the matrix P we must find a Saito
derivation. Define X € Q}g by A = x1dxq1 +z2dxo. Define o € Q% by o = dx1 ANdza.
Let w € W. Then wA = X and wo = det(w)o. Define the star operator * : V* — V*
by z Ay = (xz,y)o for z,y € V*. Extend * to an S-module map * : Q}g — Qé by
S-linearity. Then *(df) = —(92f)dz1 + (01 f)dzg for f € S. Since wo = det(w)o
we have w(x0) = det(w) *(wf) for & € QL. Suppose f € R. Then w(\, xdf) =
(wA, w(xdf)) = det(w)(A, xdf) so —x9(01f) + z1(02f) = (A, *df) € QR. Define
D € Derg by

D = %(—1281 + x109). (5.1)
Then D maps R — R. Now let f1, fo be basic invariants with deg(f1) = 2 and
deg(f2) = n. Since deg(Q) = n > 2 = deg(f1) we have Df1 = 0. Since deg(fo) =
n = deg(Q) we have Dfs € R. If Dfy = 0 then Dzy = 0 = Dz, a contradiction
because D f, = (Dx1)(01fr) + (Dz2)(daf) for k = 1,2 and J(f1, f2) # 0. Thus
Dfi =0and Dfy € R* so D is a Saito derivation by (2.6). We use this D and
follow the procedure in Sections 2 and 3 to construct the matrix P, the derivations
&1,&2 and the matrix B. From (2.7) we have

h-= % [—z2,21].

We compute
. z2Q1 Q —z1h
Jh) = nQ? [—Q+x2Q2 —21Q2 } ’

where Q; = 3;Q for i = 1,2. Since det.J(h) = (1 —n)/n%Q? we have

_ 1 n z1Q2 Q—z1Q1,
S g n—1 {—Q +x9Q2 —x9Qq } ’ 52}
and n
€1 = —7 {21Q201 + (22Q2 - @)%}
- (5.3)

&= —{(Q —21Q1)01 — 220182}
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By Theorem 1.4, the derivations &1 and & form a basis for F(A). Note in (5.2)
that the matrix P depends only upon choice of z1, 22 and Q). The reader may have
noticed that the group W is peripheral to the computations in this section. In
fact we can use the derivations defined by (5.3) to prove a proposition about any
central arrangement in a real two dimensional vector space V.

Proposition 5.4. Suppose V is a real vector space of dimension 2. Let A be
an arbitrary central arrangement in V' and let ) be its defining polynomial. Let
n = |A| = deg@. Define an S-module E(A) as in (1.3). Then the deriwations &1
and & gwen by (5.8) form a basis for F(A).

Proof. Note that det[¢;(z;)] = det P = Q2. Thanks to Ziegler’s generalization [Zie,
p-351] of Saito’s criterion [Sai3, p.270], [OrT, Theorem 4.19] to multiarrangements,
it is enough to show that & € F(A) fori = 1,2. Let H € A. Write ay = azq+bza
with a,b € R. Then

&1(an) = az1Q2 + b(22Q2 — Q) = axQs — bQ = o}, % (Q/an) € o4 S.
So &1 € E(A). Similarly & € E(A). O

Now we return to the case of Coxeter arrangements. Since fi = x% + x% we
may choose fi = (a:% + x%)/2 If n is even, then the invariant fo is not uniquely
determined up to a constant multiple. We make a special choice of fy. Define

Jfo=-Q(DQ).

We will find the matrix B = J(f)"I'D[J(f)] in (3.13) and check that f1, fo is a
system of flat generators in the sense of K. Saito; see Remark 2.19. First note that
fo is an invariant because Q2 € R and D : R — R since D is a Saito derivation.
Since the Laplacian A = 8% + 8% commutes with the action of W, and @ is an
anti-invariant, AQ is also an anti-invariant. Since @ is an anti-invariant of minimal
degree, we have

0=AQ = Q11+ Q2. (5.5)
To compute J(f) use (5.5). Calculate ndy fo = —01(—22Q1 + z1Q2) = 22Q11 —

Q2 — 21Q12 = —(22Q22 + Q2 + 21Q12) = —((n — 1)Q2 + Q2) = —nQ2. Thus
1 fo = —Qo. Similarly dafo = Q1. Thus

A0 = [ié _Qcﬂ |
To compute D[J(f)] use (5.1) and (5.5). Calculate nQ(DQ1) = —22Q11+z1Q12 =
25Q92 + 21Q13 = (n — 1)Qa. Thus D@y = (n — 1)Qa/nQ. Similarly D@y —
—(n—1)Q1/nQ. Thus

L A o1 et ] R
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and
_ 0 1
A=B 1:{ 1 }
n—1

The alternative expression of P given in Proposition 3.35 is:

S | R
zg Q1 = 0] [-Q2 Q1]
This agrees with (5.2) via the Euler formula. By (3.28),

D[(dfi,dfj)] =B+ BT = {2 g} '

It follows that f1, fo is a system of flat generators. Note, by (5.5), that Afy =
9 (—Q2) + 8Q1 = 0. Thus fo is harmonic.

2. The case B;: Let W be the Coxeter group of type B; acting on an [-dimensional
Fuclidean space V' by signed permutations of an orthonormal basis eq, ... ,¢;. Let
A be the corresponding Coxeter arrangement. Let x1,... ,z; be the dual basis for
V*. Then I' is the identity matrix. Define

!
1 .
pi =pile,. . ,m) = = D ah

for i > 1. Define pg = 1. Let f; = po;. We will use the basic invariants fq,... , f; to
find the matrices B, A, and P. To simplify formulas we use the following notation
[Mac, pps.26-27): if o = (ay,... ) € N/, let A, = [257] and let a, = det A,,.
Then

e xii’ x%Fl
JE)=1: Dol =Aas )
5 x? . 2i-1

Define a derivation D € Derg by

3 21—3

. ry =] - @ o1y
Dy=———-———/|: > o (5.6)
a3, a-1 | - ‘
( ) oz - x?l 3 oy
for y € K. Since Dfy = Dfs = --- = Df,_1 = 0and Df; = 1, D is a Saito

derivation. For ¢ > 0 let

Ci(xlw" ,ZCl): Z lelz,l”

iy i =i



254 L. Solomon and H. Terao CMH

be the i-th complete symmetric polynomial; it is not possible to use the now
standard notation h; of [Mac] since h; has already been used. Let

6i = 61(1"17 s 71[) = Ci(x%r c ,f?) d
Then ¢; is a W-invariant polynomial of degree 2i. Define & (z1,...,2;) = 0 if
1 <0.
Lemma 5.7. The derivation D satisfies D(pay2;) = &(x1,... ,x;) fori > —L

Proof. From (5.6) we have

@(1,3,...,21-320+2i—1) _ (0,2,... ,21—4,21+2i—2)
a(1,3,...,21—1) a(0,2,... ,21-2)

(5.8)

D (p21+2i) =

Define § = (I — 1,1 —2,...,1,0) € N! and define A = (4,0,...,0,0) € N'. Then
At+o0=(I+i-1,1—2,...,1,0). The right hand side of (5.8) is thus axis/as
with z; replaced by z2. By [Mac, (1.3.1), (1.3.9)] we have axys/as = ci(z1,. .. ,2).
Thus the right hand side of (5.8) is & (x1,...,z). O

Since J(f);; = x?j717 the entries of B = J(£f)" D[J(f)] in (3.13) are
Bi; = Zx%iilD(xzjfl) =(25-1) Zz%ﬂr?jf?’l)(xk)
k k
= (25 = 1)D(p2iy2j-2) = (25 — V)éipj-1(z1, ... ,m)

by Lemma 5.7. Thus

ro 0 o - 0 20—-1 7
0 0 0o - 20— 3 (2l —1)&
0 0 0o - (20-3)4 (2l — 1)éy
B=: ;i z ‘
0 0 5 o (20-3)¢.4 (20-1)¢ 3
0 3 5 -+ (20-3)g.3 (2-1)g 9
L1 3¢ 5é -+ (20-3)¢ 9 (20—1)¢ 1
r1 0 0 0 07
2l 1 0 0 0 0 0 - 0 2l —1
2 é1 0 0 0 0O 0 -+ 20-3 0
¢_3 ¢_4 -~ 1 0 O 0 3 0 0
¢_o ¢_3 - ¢ 1 0 1 0 0 0
Léi1 ¢ -+ ¢y ¢1 1
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On the other hand, it is known [Mac, p.21] that

10 o o o7 !
1 il 0 0 0
) ¢l 0O 0 0
¢_3 ¢_4 --- 1 0 0
g ¢-g - ¢ 1
Léi 1 ¢_9 -+ ¢2 ¢1 14
i 1 0 0 07
gy 0 0 0
€9 —é1 0 0
(-3 3 (D) - 1 00
(D285 (133 - —& 1 0
L=t (D726 0 & —ép 1
where €; = é;(z1,... ,21) = ei(x% - 7:le) is the 4-th elementary symmetric poly-
nomial in x% e 73512. Therefore A = B~ 1 is equal to
0 0 o0 11
0 0 o 1/3 0
0 1/@20-3) -~ 0 0
1/(20—1) 0 .0 0
r 1 0 0 0 07
B 0 0 0
€9 —€1 0 0 0
(=)' 363 (=1 ey 1 0 0
(-1)2¢_9 (-1)"3¢_3 - 1 0
L (-1) g1 (-1)"2&_4 &y —ép 1

Since I is the identity matrix we have N = J(f). Thus, by Proposition 3.35, the
matrix P in Theorem 1.4 is given by

P=_NANT = —J(H)AJ(£)T

with A as above.
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§ 6. Anti-invariant differential 1-forms

If M is an R[W]-module let MY = {z € M | wz = z for all w € W} denote the
space of invariant elements in M. Let Mt = {z € M | wz = det(w)z for all w €
W} denote the space of anti-invariant elements in M. In this section we use the
fact that det .J(h) #£ 0 to prove the following Proposition. Recall that D denotes
a Saito derivation and that h; = Dx;.

Proposition 6.1. Let W C GL(V) be a finite irreducible group generated by
reflections. Let u; = Qh;. Define an R-linear map d : S — Q}g by

I

df = (0 f)du; (6.2)

i=1
for f € S'. Let f1,. .., f be basic invariants. Then

QL) = Rdf1 @ --- @ Rdf;.

Proof. Choose an orthonormal basis z1, ... ,z; for V*. By Corollary 3.32, hq,... ,
are algebraically independent. By (2.10) we have Qh; € S. Let u = [ug,... ,u] €
S!. Since u = Qh it follows that uq,...,u; are algebraically independent. Thus
det J(u) # 0. To show that df; € (QL)4et we must check

w(df) = det(w)d(wf) (6.3)

for allw e W and f € S. Let x = [z1,... ,2y]. Let p: W — GL;(R) be the matrix
representation of W defined in (3.2). If w € W then w([x] = xp(w ). Since Q
is anti-invariant and u = Qh, it follows from (3.6) that w[u] = det(w)up(w=1)".
Thus w(cixj) = det(w)ci(wxj) for j =1,...,l. This proves (6.3) for f = z;. Since
the map f — df is R-linear and ci(fg) = fdg+gdf, for all f,g € S, the set of all
f € S which satisfy (6.3) is an R-subalgebra of S which contains z1,... ,z; and
is thus equal to S. This proves (6.3). Thus (QL)%t D Rdfi+ -+ Rdf;.

Now argue as in [Sol2, Theorem 3] to show that cifl, e 7cifl are linearly inde-
pendent over S. If not, then we have a relation Zé:l i czfi = 0 where g; € S and

g1, say, is not zero. Multiply the relation by cif1. This gives cifl ARERWA cifl =0.
Let £ = [f1,..., fi]. It follows from (6.2) that

dfy A - Adfy = det(J(£)) det(J(u)) dzq A - - A day

which is not zero since det J(u) # 0. This contradiction proves the linear indepen-
dence. Thus the sum Rczfl + Rcifl is direct, so

QL)% D Rdf1 @ --- @ Rdf;. (6.4)
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To prove equality in (6.4) we show that both graded vector spaces have the same
Poincaré series. Let n = deg(Q). By (2.11) we have deg(u;) = n—m; for 1 <7 <.
Thus deg(du;) = n — h where h is the Coxeter number. Since deg(df;) = m; we

have
1

!
Poin(EP Rdfi,t) =" (> _ ™) Poin(R,t). (6.5)

i=1 i=1

Let ngl be the space of differential [ — 1 forms on V with coefficients in S.

Grade ngl in the natural way. Define the star-operator * : Qé — ngl by
w(fdas) = (=1 fdey Ao Adai_q A dxiTl A - Adaz; [Fla, p.15, p.82]. Then
*(wh) = det(w) w(xf) for w € W. Since * : Qg — Qf{l is an isomorphism of graded
S-modules, it follows that the restriction of  to (4)4°t defines an isomorphism

(28)%* = (25 )" (6.6)
of graded vector spaces. It is shown in [Soll, Theorem]| that (Qfg_l)W is a free
R-module with basis v¥; = dft A--- Adf,_1 Adfip1 A--- Adfy for 1 <@ <. Define
p; € Qé by *p; = 9. It follows that ¢1,... ,¢; is an R-module basis for (Q}g)det‘
Since deg(p;) = n —m; we have

!
Poin((Q4)%, ¢) = (3" ~™) Poin(R, 1) (6.7)
i=1

Compare (6.5) and (6.7). By duality in the exponents we have n — h + m; =
n—my_;41 for 1 < ¢ < I Thus Poin(@izl Rdf; t) = Poin((QL)4¢¢ ¢). This
completes the proof. O
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