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Continuously many quasiisometry classes of 2-generator
groups

B H Bowditch

Abstract. We construct continuously many quasiisometry classes of torsion-free 2-generator
small cancellation groups
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In the course of his construction of groups of intermediate growth, Grigorchuk
[Gri] showed that there are continuously many quasiisometry classes of 2-generator
groups In this paper, we describe another class of groups exhibiting the latter
phenomenon, and for which the demonstration is elementary Unlike those of
Grigorchuk, our groups have exponential growth, and can be taken to be torsion
free In fact, they can be exhibited explicitly as small cancellation groups as

follows
Let 5>(N) be the set of subsets of the natural numbers, N Given F, F' G 5»(N),

we write F ~ F' if the symmetric difference of F and F' is finite This defines an
equivalence relation on ^(N) with every equivalence class countable There are
thus continuously many equivalence classes

Given F G 5>(N), let S(F) {22" \n£ F} Given p G N, let wp(a, b) {aPW)7
be the (cyclic) word in two letters, a and b Given S Ç N, let T(S) be the group
with presentation (a, b \ (wp(a, b))pes) We show

Proposition 1. IfF,F' G 5>(N) are such that T(S(F)) and T(S(F')) are quast-
isometnc, then F ~ F'

We chose the words (aPW)7 for simplicity The groups thus defined have 7-

torsion If we want torsion-free groups, we could for example use the words
a{aPW)1<2 instead

This construction is clearly quite arbitrary Its essential features may be
summarised as follows We chose the cyclic words wp so as to satisfy the C"(l/6)
cancellation property (see for example [LS]) This means that if w' is a common
(linear) subword of wp and wq, then either p q or 6L(w') < mm{L(wp), L(wq)}
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Here, L denotes the length of a word Note that L{wp) 14p, so in the presentation

of one of our groups, the lengths of relators grow superexponentially Any
construction retaining these features should serve for our purposes Note that if we

were to use the words a(ap6p)12, then the resulting groups would be torsion-free
— ma small cancellation group, any torsion must show up in the cyclic symmetry
of one of the relators, see [LS] (The examples described by Grigorchuk are torsion
groups

One obvious corollary of the above proposition is the result of B H Neumann
[N] that there are continuously many finitely generated groups up to isomorphism
There are now many proofs of this around, though most of these arguments seem
to be essentially algebraic in nature and in particular tend to make some use of
torsion

The quasnsometry invariant that distinguishes Grigorchuk's groups is the
growth function Indeed, the mam objective of that paper was to construct
groups of superpolynomial but subexponential growth In contrast, our groups
are all non-amenable In fact, they all contain non-cyclic free subgroups Consider,

for example, the elements a5è6 and a7è8 The existence of a Dehn algorithm
for C'(l/6) groups shows that no non-trivial reduced word in these elements can
represent the trivial element in the group They therefore generate a free group

Our quasiisometry invariant, though in principle applicable to any finitely
generated group, is tailored to our particular examples It would be interesting to
search for other kinds of quasiisometry invariants (for example among those
suggested in [Gro] that are capable of distinguishing continuously many quasnsometry

classes while remaining reasonably amenable to computation
The idea of the proof of Proposition 1 is very simple In a small cancellation

group, the lengths of the relators determine the sizes of the "holes" in the Cayley
graph, and so give rise to a geometrically defined subset of the natural numbers
This subset can change only by a linearly bounded amount under quasnsometry
By arranging that it grows superexponentially, we can recover, up to finite ambiguity,

the original set of natural numbers used for our presentation To do this
properly, we need a few definitions

Let X be a connected graph with vertex set V{X) Let dx be the combinatorial
distance function defined on V(X) If Y is another graph, and k G N, we say that a

map </> V(X) —> V(Y) is fc-hpschitz if for all x,y G X, we have dy {4>{x), 4>{y)) <
kdx(x,y) Note that a 1-hpschitz map </> V(X) —> V(Y) extends to a map
4> X —s- Y in which every edge of X is either mapped homeoinorphically to an
edge of Y or is collapsed to a vertex of Y We say that two graphs X and Y are
k-quasnsometnc if there are fc-hpschitz maps </> V(X) —> V(Y) and ip V(Y) —>

V{X) such that dx{x, ip o </>(z)) < k for all x G X and dY{y, 4> o ip(y)) < k for all
yeY

A cycle, ß, is a graph homeomorphic to a circle We write L(ß) for the number
of vertices (or edges) of ß A net, a, is the 1-skeleton of a cellulation of the topo-
logical disc (l e a presentation of the disc as a CW-complex in which every closed
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2-cell is embedded). We imagine a as coming equipped with certain preferred
subcycles, namely, its boundary, da, and the set, 'ê(a), of boundaries of 2-cells.
Let M(cr) max{L(7) | 7 G 'ê(a)}.

Let X be a graph. A loop in X consists of a 1-lipschitz map, / : ß —s- X from a

cycle, ß, into X. A spanning disc for the loop, (/?, /) consists of a 1-lipschitz map,

/ : a —> X of a net, <r, into X, where we have identified ß with <9<r in such a way
that /|ou agrees with / as already defined on ß. Let H(ß,f) be the minimum
value of M (a) as a ranges over all nets which give rise to spanning discs for (ß, /)
in this way. Clearly, H(ß,f) < L(ß).

Definition. A loop, (/?,/) is taut if L{ß) H{ß,f).

We write H(X) Ç N for the set of values taken by H(ß, /) as (ß, /) ranges over
all taut loops in X.

Lemma 2. // / : ß -> X is a loop, then H(ß,f) G H(X).

Proof. Let L H(ß,f). Suppose, for contradiction, that L <£ H(X). Let

/ : a —> X be a spanning disc for (/?,/) with M(a) L. Suppose 7 G K§(<7)

with £(7) L. Now (7,/7) is a loop in X, where /7 denotes the restriction of

/ to 7. Since L <£ H(X), this loop is not taut, so we can find a spanning disc,
/7 : <77 —> X for (7,/y) with M(<r7) < L. Note that <9<r7 is identified with 7,
and so the net <r7 gives rise to a subdivision of the 2-cell bounded by 7 in the
cellulation of the disc given by a.

We perform this construction for each such loop 7, and, in this way, obtain
a net, a', with a a subgraph of a' and with da da'. Note that M(a') < L.
Moreover, the maps /7 allow us to extend / to a spanning disc / : a' —> X for
(/?,/). This gives the contradiction that L H(ßJ) < M(a') < L. We conclude
that L G H{X). D

Definition. Given k G N, we say that two subsets, H,H' CN are fc-related if
given any L G H with L > k2 + 2k +1 there is some V G iï7 with L/A; < L' < kL,
and conversely, swapping H and iï'.

The artificial constant A;2 + 2k + 1 arises from the following lemma:

Lemma 3. Suppose that the connected graphs X and Y are k-quasnsometnc, then
the sets H(X) and H(Y) are k-related.

Proof. Let </> : X —s- y and ^ : y —s- X be the maps given by the hypothesis.
Suppose that L G H(X) with L > k2 + 2k + 1. Let / : /3 —s- X be a taut loop with
L(ß) L. Now, </> o / : T/(/3) —> V(y) is a fc-lipschitz map. We can subdivide ß
to give a loop ß', with V"(/3) Ç V"(/3') and L(ß') < kL, so that 4> o f\V(ß) extends
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to a loop g ß' -s- Y Let L' H(ß', g) By Lemma 2, we have V G H (Y) Note
that L' < L(ß') < kL We extend g to a spanning disc g a —s- Y with da ß,
and with M (a) L' Now ip o g V(a) —> X is a fc-lipschitz map We subdivide
<t (as a graph) to obtain a (homeomorphic) net, a', and extend ^ o g\V(a) to a

1-hpschitz map, h a' —> X Note that M(a') < kL' Also, da' is a subdivision
of ß m which each edge has been subdivided into at most k2 edges Note that
V(ß) Ç V(da'), and from the construction, h(x) ipo(po f(x) for x G V(ß) Thus

dx(/(x),/i(x))<A;
Now construct an annulus by gluing together a set of L squares cyclically along

their "vertical" edges We identify the "top" boundary circle with ß, and identify
the "bottom" boundary circle, after subdivision, with da' After subdividing each
of the L vertical edges into at most k edges, we can find a 1-lipschitz map, i, of the
1-skeleton of this annulus into X, such that i\ß f and i\da' h\da' (Note that
the length of the boundary of each 2-cell in this annulus is at most k2 + 2k+l We

now formally glue this 1-skeleton to the net a' along the common circle, da', to
obtain a net a" with da" ß The maps h and i combine to give us a 1-hpschitz
map j a" —> X with j\da" f Thus, (a",j) is a spanning disc for (/?,/)
Moreover, M{a") < max{M(cr')^2 + 2fc + 1} < maxjfcL', k2 + 2k + 1} Since ß
is taut, we have M(a") > L(ß) L Since, by assumption, L > A;2 + 2k + 1, it
follows that L < kL' We see that L/k < L' < kL as required

The converse follows by symmetry D

To relate this to the groups we have constructed, we need the following
observation Given S Ç N and q G N, let qS {qn \ n G S} Recall that if F, F' Ç N,
we write F ~ F' to mean that the symmetric difference is finite

Lemma 4. Suppose that F,F' Ç N, and that qS(F) and qS(F') are k-related for
some keN Then, F - F'

Proof If F -/ F' then, without loss of generality, we can find some n G F \ F'
with q'22^1 > k2 + 2k + 1 > k Now q22n e F, so there is some m G F' with
q22n/k < q22m < kq22" Thus 22""1 < 22"/A; < 22"1 < k22~ < 22"+\ and so

m n, giving the contradiction that n G F' D

To relate this to small cancellation groups, we need the following observation
Suppose that A is a finite alphabet, and (wt)tei is a collection of cyclically reduced
words of letters in A and their formal inverses, indexed by a set /, and satisfying
the C"(l/6) cancellation condition pairwise (l e if i ^ j, then the largest common
subword of wt and w3 (or w~ has length less than (1/6) mm{L(wt), L{w0)}) We
have

Lemma 5. Let X he the Cayley graph of the presentation (A \ (wj)îe/) Then,

{L(wt)\ieI}
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Proof This follows more or less from the existence of a Dehn algorithm for C"(l/6)
groups Suppose, first, that w is a cyclically reduced word representing the identity,
which we can think of as a loop in X If w is not equal to a relator or its inverse,
then we can find some relator wt (or w~ with L(wt) < L(w), and which has

a common subword of length more than (l/2)L(wl) with w This allows us to
shorten w, and continuing inductively, we can reduce w to the identity using only
relators of length less than L(w) In particular, this gives us a spanning disc, a,
for w, with M (a) < L(w) Thus, w is not taut

Conversely, suppose w is not taut There is a spanning disc, a, for w, with
M (a) < L(w) Applying the construction of the last paragraph to each 2-cell of
<t, we obtain another spanning disc for w, this time with each 2-cell corresponding
to a conjugate of a relator (of length less than L(w)) At least one of these 2-cells,
corresponding to a conjugate of wt, say, has a common subword of length more
than (1/2)L(wt) with L(w) This shows that w cannot itself be a relator

We have shown that the taut loops in X are precisely conjugates of relators
and their inverses This gives the result D

Finally, we return to the examples given at the beginning Note that if X is the
Cayley graph of T(S(F)), then, by Lemma 5, we have H(X) 1AS(F) By Lemma
3, we see that iîT(S(F)) is fc-quasnsometric to T(S(F')) then US(F) is fc-related
to US(F') By Lemma 4, it follows that F ~ F' This proves Proposition 1
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