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A classification of solutions of a conformally invariant
fourth order equation in R"

Chang-Shou Lin

Abstract. In this paper, we consider the following conformally invariant equations of fourth
order

A2y = Betv in R4,
(1)

e4u = Ll (R4),

and

Ay = u%*%,
{ (2)

%w>0 in R™ forn > 5,

where A? denotes the biharmonic operator in R™. By employing the method of moving planes, we
are able to prove that all positive solutions of (2) are arised from the smooth conformal metrics on
S™ by the stereograph projection. For equation (1), we prove a necessary and sufficient condition
for solutions obtained from the smooth conformal metrics on S%.

Mathematics Subject Classification (1991). 35J60.

Keywords. Elliptic equations of fourth order, conformal geometry.

1. Introduction

Recently, there have been much analytic work on the conformal geometry. A
well known example is the Yamabe problem or, more generally, the problem of
prescribling scalar curvature. Given a smooth function K defined in a compact
Riemannian manifold (M, gg) of dimension n > 2, we ask whether there exists a
metric g conformal to gg such that K is the scalar curvature of the new metric g.

4
Let g = e2¥gg for n = 2 or g = u™ 2gg for n > 3, then the problem is reduced to
find solutions of the following nonlinear elliptic equations:

Au+ K = Ky (1.1)
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for n = 2, or,

(1.2)

Ao Ay + Ku®F = Kou,
uw >0 in M

for n > 3, where A denotes the Beltrami-Laplacian operator of (M, gg) and Ko
is the scalar curvature of gg. In studying equations (1.1) and (1.2), it is very
important to understand the solution set of

Au+n(n — 2)u%2 =0 in R", (1.3)
>0 inR" ‘
for n > 3, or,
{Au+62“—0 in R2, (1.4)
e? e LY(R?). ‘

By employing the method of moving planes, Caffarelli-Gidas-Spruck [CGS] was
able to classify all the solutions of (1.3) for n > 3, and, Chen-Li [CL] did the same
thing for the equation (1.4).

There are another interesting examples arising from the conformal geometry.
For a compact Riemannian manifold of dimension 4, Chang and Yang [CY] con-
sidered the existence of extremal functions of the variational problem:

Hw] =< Pw,w > Jr/QodegO — (/ QodVgO)log/c4wd‘/'go7 (1.5)

where P is the Paneitz operator on M, discovered by Paneitz:
9 2 .
Pp=Ap+ (5(§KOI — 2Ric)dyp,
1 ,
Qo = E(Kg — AKg — 3|Ric|?),

where Ric is the Ricci curvature of (M, go). The variational form (1.5) arises form
the difference of log-determinants of conformally covariant operator with respect to
metrics in a conformal class. For background material and other related problems,
we refer [BCY], [CY] and the references therein. The extremal function u of I1(w)
satisfies a conformal invariant elliptic equation of fourth order:

Pu+2Qq = 2Qe*, (1.6)

where @ is a constant. When (M, go) is the standard S*, by using the coordinate
of the stereographic projection in R47 the equation (1.6) can be reduced to

A2y = 6et in R4,
(1.7)

el e LI(RY),
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where A2 denotes the biharmonic operator. It is expected that in order to under-

stand the equation (1.6), we should classify all the solutions of (1.7) completely.
The equation (1.7) looks very similar to the equation (1.4). In fact, there are

many common properties shared by both equations. For example, the biharmonic

operator A? in R? has const. log —— as its fundamental solution. And the

equation (1.7) is invariant under the change of the conformal transformation. In

particular, the new function w(z) = u(—) — 2 log |z| satisfies the same equation

1012
as u does. However, the appearance of| t|he biharmonic operator in (1.7) expects
to make the equation (1.7) very different from (1.4). In fact, a study of radial
solutions of (1.7) shows that there are solutions of (1.7) which do not come from
the smooth functions on $* through the stereographic projection. This is not quite
the same as the equation (1.4). But, under certain constraint on the behavior of
u at 0o, we have

Theorem 1.1. Suppose that u is a solution of (1.7) with |u(z)| = o(|z|?) at cc.
Then there exists some point zg € R such that u is radially symmetric about xq
and

2\
=log—————— | 1.8
Let « be defined by
3 Auly)
— N dy. 1.9
=12 y (1.9)

Theorem 1.2. Let u be a solution of (1.7). Then the following statements hold.
(i) After an orthorgonal transformation, u(x) can be represented by

4
3
u(x) = m / log(%)e‘m(y)dy - Z aj(xj — $9)2 + co

=1

==Y aj(z; —29)? — alog|z| + co + OJz| ) (1.10)

for some T >0 and for large |x|. The function Au satisfies

A = ——3 ety 2 E a;

1.11
ule) D /R4 |z _?J|2 - ! ( )
where a; > 0, co are constants and ¥ = (x(l), .. ) R4 Moreover, if a; # 0

for all 1, then u is symmelric with respect to the hyperplane {a |z, = 200 If

a1 = ag = a3 = a4 #£ 0, then u is radially symmetric with respect to 20,
(i) The total integration o < 2. If o = 2, then u(x) has the form of (1.8).
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In this paper, we also consider the following equation analogue to the equation

(1.3):
2 = it
A“y = un=1%, (1.12)
u>0 in R”

for n > 5. The equation (1.12) can be derived from the Sobolev embedding of H?
into L1 )
A
sup _f |2nU|n_4 : 1. 1)
ue H2(R4) ([ un-1) %

The existence of extremal functions of (1.13) was shown in [L] by P.L. Lions. In
the same paper, Lions also proved the radial symmetry of any extremal function
of (1.13). In general, the radial symmetry of solutions of (1.12) holds also.

Theorem 1.3. Suppose that u is a smooth solution of (1.12). Then u is radially
symmetric about some point xo € R™ and u has the following form:

A wreill

u(z) = Cn(m)_r (1.14)

for some constant X\ > 0, where ¢, = [n(n —4)(n — 2)(n+ 2)]_%&.
Similarly, we also have
Theorem 1.4. Suppose that u is a nonnegative solution of

A’u=u? in R" (1.15)

Then uv=0 in R".

forl<p< e 4.
n—2

As in equations (1.3) and (1.4), we will use the method of moving planes to
prove the radial symmetry. In our situation, however, the maximum principle can
not directly be applied to v without any information of Au. Hence we have to get
some informations about Awu from equations (1.7) and (1.12). First, we are going
to prove that for any solution of (1.7), Au(z) can be reprensented by

Aulz) = _3/ iy (1.16)
ux—27r2 R4|$—y|2 Yy —C1 3

for some nonnegative constant ¢y > 0. Thus, u satisfies Au < 0 in R? The
representation (1.16) is an indication that we should apply the method of moving
planes to —Auwu, not wu itself. The method of moving planes was first invented by
A.D. Alexandrov, and was shown to be a powerful tool in studying equations (1.3)
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and (1.4) by Gidas-Ni-Nirenberg [GNN], Caffarelli-Gidas-Spruck [CGS], Chen-Li
[CL] and many others. As usual, in order to start the process of moving planes at
00, we have to understand the asymptotic behavior of both w and Aw at infinity.
The analysis of asymptotic behaviors will be carried out in Section 2. In Section 3,
we will establish the radial symmetry and prove Theorem 1.1 and Theorem 1.2.
In Section 4, both Theorem 1.3 and Theorem 1.4 are proved.

The author would like to thank Professors Alice Chang and Paul Yang for
introducing him to this problem. While preparing the manuscript, I was informed
by Professor A. Chang that she and P. Yang have also obtained similar results by
using the method of moving plane.

2. Asymptotic behavior
In this section, we want to study the asymptotic behavior for a solution u of (1.7).

First, we note that the fundamental solution of the biharmonic operator A% in R?
is

1 1
P = —log ———.
Let u be a solution of (1.7). Set
8 du(y)
= — “id 2.1
o=z [y, (21)
and 3 | |
o r—Yy du(y)
v(z) = —5 log(——=)e dy. 2.2
)= 22 /R4 ST 22
Obviously, v(x) satisfies
A2y(z) = —e*@ i RL (2.3)

Lemma 2.1. Suppose u is a solution of (1.7). Let o be given as in (2.1). Then
there exists a constant C' such that

v(z) < alog|z|+C

Proof. For |z| > 4, we decompose R* = Ay U Ag, where 41 = {y | |y — | < %}

and Ao ={y | ly—z| > |i2|} For y € A1, we have |y| > |z|—|z—y| > % > |lz—yl,

which implies

lz —
|y

log <o. (2.4)
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Since |z —y| < |z + |y < |z||y| for |2],|y| > 2 and log |z —y| < log|z| + C for
|z| > 4 and |y| < 2, we have

3 / |z — | 4uy)
v(z) < —5 log ——=—e"“\¥/dy
(=) 472 [ 4, |y]

3 _
< —;(log |x|/ 64“(y>dy+/ log ue4“(y)dy
e As |yl <2 lyl

( / ¢40) dy) log|a] + C
R4

Lemma 2.2. Suppose u is a solution of (1.7). Then Au(z) can be represented by

A — V) —C 2.5
U(x)*m/mmy— 1 (2.5)

where C1 > 0 is a constant.

Proof. Let w(z) = u(z)+v(z). By (2.3), we have A%w(z) = 0 in R*. Since Aw(z)
is a harmonic fumction in R*, we have for any zg € R?* and r > 0,

=
—7 Aw(y)dy
O fi ol

2 ow
o /| 2 w)io (2:6)

Aw(zo) =

where 72/2 is the volume of the unit ball and do denotes the area element of the
sphere |y — zg| = r.
Integrating (2.6) along r, we have

2
Z Aw(zg) = ][ s — gl
8 |z—ao|=r

1
where ][ wdo = = / wdo is the integral average of w over the
le—ao|=r 21517 Jja—ao|=r

sphere |z — 29| = r. Hence, by the Jensen inequality,
2
r —dw(zq)
eXp(;Aw(zo)) <e exp(4 wdo)
le—=o|=r

< 674w(z0)][ €4wd0'.
|o—wo|=r
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3.4 Aw(zg) o

m

)

L'[1,00). Thus Aw(zg) < 0 for all zg € RY. By Liouville’s Theorem, Aw(z)
—C1 in R for some constant €1 > 0. Hence (2.5) follows immediately.

Since w(z) = u(z) + v(z) < u(x) + alog|z| + ¢, we have r°~ % exp(

o

Let h(z) be the solution of

{ A?h(z) = f(z) inQ,
Ah(z) = h(z) = 0 on 9,

where  is a bounded domain of R*. Following the argument of [BM], we have

Lemma 2.3. Suppose f € LY(Q). For any & € (0,3272), there exists a constant
Cs > 0 such that the inequality,

/ exp(M)dx < Cj(diam Q)*, (2.7)
o Al

where diam Q denotes the diameter of Q.

Proof. Without loss of generality, we may assume 0 € Q. Let R = diam €. Set

1 2R ~

vo) =gz [ dos( I Fw)lds
872 Jpp) |z =yl

where f(y) = f(y) for y € Q and f(y) =0 for y ¢ Q. By a direct computation, we

have
-1

A’U(Z‘) = m

/ & — 2| F()ldy <0 (2.8)
Br(0)

for z € Q. Since both v and —Aw are positive on 02, we have by the maximum
principle,
|h(z)| < v(z) for z € Q.

Applying the Jensen inequality, we have

LG
ISk

s 2R
= e log(———)d
< /QeXp(gwg /BR@) Og(|x_y|) ()

S// (2287 du(y)de < CsRRL,
aJBrO) 12 — Yl

where du(y) |/ ()]|dy. Hence Lemma 2.3 is proved. O

1
11l 2
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Lemma 2.4. Let u be a solution of (1.7) and v is defined by (2.2). Then, given
any € > 0, there exists a R = R(e) such that for |z| > R, v(z) satisfies

U(I) > ((1 - E) 1Og |fII|7 a‘nd7 (29)
lim Av(z)=0. 2.10
lim (o) (210)

Proof. To prove (2.9), we first claim that for any € > 0, there exists R = R(¢) > 0
such that

3
o(z) 2 (o= 5)logla] + /B oyl e Ol

’

To prove (2.11), we decompose R* = Ay U Ay U A3, where Ay = {y | |y| < Ro},
T x

Ay ={y ||z —yl < 5|yl > Ro}, and A3 = {y | |z —y| > %Jyl > Ro}. Let

Ry = Ry(e) be sufficiently large such that

= | log 2 =¥l s gy > (00— £ 1og 2] (2.12)
47 J 4y |yl 4

for large |z|.
For |z| large, we have

Ag

lyl
— [ togle =yl Dy - [ toglyleteiay
Ag Ag
> [ ol = ylet0dy — log(2lel) | etWay,
B(z,1) A
For y € A and |y| < 2|z| we have |z —y| > |i2| =z % For z € A3 and |y| > 2|z|
we have |z —y| > |y| — |z| > % In any case, we have for y € As,
|z -yl > 1
lyl 4
Hence )
/ log |:C—_y—|e4“(y)dy > log(—)/ e4u(y)dy. (2.14)
A |yl 47 J 4,

By (2.12), (2.13) and (2.14), we have (2.11) for large |z|.
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Let 0 <egg < 72 and Ro = Rp(=0) > 0 be sufficiently large such that
6/ etdy < e (2.15)
B(z,4)

for |z| > Rp. Let h be the solution of

{ A2h = 6440 in B(z,4),
h=Ah=0 on dB(z,4).

By Lemma 2.3, we have for small &g,
[ ety <, (2.16)
B(z,4)

for some constant ¢q independent of z.
Set q(y) = u(y) — h(y) for y € B(z,4). Then g satisfies

{AQq(y) =0 on B(z,4), (2.17)

Ag=Au and g=wu on 0B(z,4).
Let g(y) = —Aq(y). By Lemma 2.2, ¢(y) is harmonic with positive boundary value

on 0B(xz,2). Applying the maximum principle, we have ¢(y) > 0 in B(z,4). Thus,
by the Harnack inequality, we have

q(y) < c2g(z) = —02][ Audo (2.18)
8B(z,4)

for y € B(x,2) where cg is a constant depending on n only.
Integrating the equation (1.1), we have for any r > 0,

/ 2(Au)da = 6/ etdy.
0B (z,r) or Ba,r)

Integrating the identity above along r, we have

3 1 T4
b — BalE] = 5 —— — —)et g 2.19
][ OB(w,r) ¢ u(i) 2 /B(z,r)( |$ = y|2 72 )6 Y ( )

Applying Lemma 2.2 and (2.19), we have

3 du(y) 3
_][ Au:—Q/ i Sdy + — 2/ W dy 1+ 0y,
8B(z,r) 2m lz—y|>r ]:E - yl 2mer B(z,r)
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In particular, we have r =4,

—][ Au < 3. (2.20)
0B(z,4)

Hence, by (2.18), we have

G(y) < ¢q for ye B(zx,2). (2.21)

Since ¢ satisfies
Aq(y) = —q(y) in B(z,4),
qg=u on dB(z,4),

by estimates for linear elliptic equations (e.g. see Theorem 8.17 in [GT]), we have
for any p > 1 and o > 2

BS(uPn g < (lg a2 + 13l e (B,2)) (2.22)

where g7 = max(¢,0) and ¢ = c(p, o). Recall ¢ = u — h. Thus, ¢7(y) < ut(y) +
|h(y)| for y € B(x,4). By (2.15), we have

/ g < 05/ M’ < C5(/ 64“+)%(/ RIS
B(z,2) B(z,2) B(z,2) B(,2)

Since eu" < 1+ e we have together with (2.21),

sup ¢ < cg. (2.23)
B(z,1)

Since u = h + ¢, we have
u(y) < h(y) + q(y) < c6 + |h(y)

for y € B(z,1). Therefore,

/ el < 67/ M dy < cg, (2.24)
B(z,1) B(x,1)

and then,

|/ log |z —y|e4“(y>dy| g(/ (log 1 )Qdy)%
B(a,1) Bz1) |z =yl

(/ (* W) dy)? < o,
B(z,1)
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where ¢g is a constant in dependent of z. By (2.11), (2.9) follows immediately. By

(2.24), it is an elementary exercise to prove | ‘lim Av(z) = 0. O

Lemma 2.5. Suppose |u(z)| = o(|z|?) at 0o. Then

3 ly|

=57 Jpu B g W+ G )

u(z)

where Cy is a constant. Furthermore, for any & > 0, there erists R = R(g) > 0
such that u(z) satisfies

—alogle] < u(z) < (—a+ ) logla] (2.26)
for |z| > R(e).

Proof. By Lemma 2.2, we have

-3 5 dy
Au(ac)szhz/ﬁ4 |z —y| 2et Way — .

Suppose |u(z)| = of|z|?). First, we claim €7 = 0. Otherwise, we have Au(z) <
—C1 < 0 for |z| > Ry where Ry is sufficiently large.
Let
h(y) = uly) +elyl® + Ayl - R§™) (2.27)

where ¢ is small such that

C
Ah(y) = Au + 8¢ < —71 <0 (2.28)
for |y| > Rp, and A is sufficiently large so that | ‘12% h(y) is achieved by some
y|>Ro
yo € R* with |yg| > Rp. This can be done because ‘ ‘lirri h(y) = +oo for any
y|—+o0

A > 0. Applying the maximum principle to (2.28) at yg, we have a contradiction.
Hence the claim is proved.
By the claim, we have A(u +v) = 0 in R*. By the assumption and Lemma

2.1, we have |u + v(z)| = o(|z|?) at oo. Since u + v is a harmonic function, by the
4

gradient estimates of harmonic functions, we have u(x) 4 v(z) = Z a;x;+ ag for
j=1
some constants a; € R, 0 < j < 4. Thus,

4 4
Au(@) — a0 —dv(@) D %% > const. |x|_4°‘ezj:1 S
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Since ¢u(@) ¢ LY(R*), we have a; =0 for 1 < j < 4. Hence, we have proved
(2.25). Obviously, (2.26) immediately follows from (2.25), (2.9) and Lemma 2.1.
The proof of Lemma 2.5 is finished. O

Now suppose u is a smooth solution of
A% = Q(z)e*™ in RY (2.29)
where Q(z) € C1(R*). Then we have the following Pohozaev identity.

Lemma 2.6. Suppose u is an entire smooth function of (2.29). Then for any
R >0, we have

(z)e*dz + 2 / (z - vQ)e*dz
Br 4 Bp

1 du (Au)? ou 0
1/, Q(z)|x|e*do — /é)BR || [ 5 + |z| g arAu]da
d, ou

Proof. The proof of Lemma 2.6 goes exactly the same as in the case of the semi-
linear elliptic equations of second order. For the sake of completeness, we give a

proof here.
Multiplying z - syu on the both sides of the equation (2.29), we have
1 1
[ Qutetdr— 1l [ (e 9@+ aQItas
4 OBRr 4 Bpr

= / (z - vu)Qettdr = / (z - vu)Aludz
Bpr

Br
Oou 0 0 . Ou
= . A(x . Vu)Aud:tJr /(,BBR [ng(Au) — A’U,E(T’E)]dd
B T B R
7/831% Pl + gy (Ao — [ Augirgh,

|
where we have ultilized 5 div (z(Au)?) = Az - 7u)Au. Obviously, (2.30) follows

immediately. (|

Lemma 2.7. Let u be a solution of (1.7) and u(z) = o(|z|?) at co. Then a = 2.

Proof. By Lemma 2.5, we have

3
e = o [ tos( ety 4 Co.
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By elementary calculations, we have

ou, . 3 x-(z—y) duly)

ol ge@) = —575 [, T Oy, (231)

0, Ou 3 27"2—:c~y4(y>
— (r=— - —— "W 2.32
Br(rar)(x) 472 /R4 rlz — y|? ‘ & (2:32)

3 (1‘ ) (x — y))2 du(y)

T 272 Jra vz —yld ‘ ),
and,
Au(z) = _i/ A (2.33)
272 Jpa |z — y? Y '

Since ¢u(®) > ly| =4 for large |y| by lemma 2.5, we have o > 1. Therefore, it is
easy to calculate from (2.31) ~ (2.33) that

. ou
L |2l 5 (@) = —a, (2.34)
. 0, Ou
L. 7, ("5, ) @)lz] =0, (2.35)
‘ ‘lier Au(z)|z]? = 20, (2.36)
and 5
lim  —(Au(z))|z|® = 4a. (2.37)

|| —+o00 or

Applying the Pohozaev identity and (2.34) ~ (2.37), the right hand side of
(2.30) (Here, Q(z) = 6) tends to 47202, Hence, we have

8mla = 47T2a2,

which implies o« = 2. O

Lemma 2.8. Let u satisfy the assumption of Lemma 2.5. Then u(x) satisfies
u(z) = —2log|z| + ¢+ O(Jz| 1), (2.38)

and 4
—Au(z) = 4|2 + Y25 ajasle| 7 + Oz 1),

1o} . _
5 Au(e) = —8aifel 4+ O(la] ), 385

% Aue) = Ojal
axiaxj )= =
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for large |x|, where ¢,a;,1 < j <4 are constant.

Proof. Let w(z) = u(%) — 2log|z|. By a straightforward computation, w(z)
T

satisfies
A2y(z) = 62 in RM\ {0}, 510
lw(z)| = o(log ﬁ) and |Aw(z)| = o(#) as |z| — 0. 240

Set h(z) be the solution of
{ A2h(z) = 6e*v(@) in By (2.41)
h(z) = w(z) on 0B1, Ah(z)= Aw(z), on dBy. '

Since Lemma 2.5 implies e?v(@) ¢ LP(By) for any p > 1, by the regularity
theorems of linear elliptic equations, h(z) € C37(By) for any 0 < 7 < 1. Let
q(z) = w(z) — h(z). Then ¢(x) satisfies

A%q=0 in B\{0},

1 1
lg(z)] = o(log =), |Aq(z)| = o(7=3) as |z — 0.
|| ||
By the maximum principle, we have, for any € > 0
|Aq(z)| < /]

for = € By. Applying the maximum principle again, we have

1
lg(z)| < elog —

=]

Thus, ¢(z) = 0. Namely, w(z) = h(z) € 0377([3_1). By the regularity of the linear
elliptic equation again, we have w(z) € C*°(By). It is not difficult to see that
(2.39) follows immediately. O

3. Radial symmetry

Now we are in the position to finish the proof of Theorem 1.1.

Proof of Theorem 1.1. Suppose that u is a smooth entire solution of (1.7) such that
u(z) = o|z|?) at co. Let v(z) = —Au(z). By Lemma 2.8, v(z) has a harmonic
asymptotic expansion at co:

(@) =+ 5 ) + O,
vee = To% +O0(g), (3.1)

Vose; = Opr)-



220 C.-S. Lin CMH

We want to apply the method of moving planes to prove that « is symmetric about
some point in R?. Following conventional notations, we let for any A, Th = {z =
(@1,...,24) |21 = AL 3x = {z | 21 > A} and 2* = (2\ — zq,29,... ,24) be the
reflection point of = with respect to 7. To start the process of moving planes
along the xq-direction, we need two lemmas below.

Lemma 3.1. Let v be a positive function defined in a neighborhood at infinity
satisfying the asymptotic expansion (8.1). Then there erists \g < 0 and R > 0
such that the inequality

v(z) > v(z?)

holds for A < Xo,|z| > R and = € .

Lemma 3.2. Suppose v satisfies the assumption of Lemma 3.1, and v(z) > v(z?0)
for z € ¥,. Assume v(z) —v(z*0) is superharmonic in Yn,. Then there exist
e >0, 5> 0 such that the followings hold.

(i) vu, >0 in |z1 — Xg| < € and |z] > S.
(ii) v(x) > v(x*) inx1 > Ao + % > A and |z > S

for all z € 3y, A < Ay with |A1 — Xo| < cpe, where ¢y is a small positive number
depending on A\g and v only.

The proofs of both lemmas are contained in [CGS]. Please see Lemma 2.3 and
Lemma 2.4 in [CGS] for their proofs.
For any A, we consider wy(z) = u(z) — u(z*) in X5. Then wy(z) satisfies

AQ’IU)\(%) = b)([lﬁ)u»\ in E}u
wy(z) = Awyr(z) =0 on Th,

edu (z) _ €4u(z>‘)

u(z) — ufz?)
(z) < 0 for z € ¥x, A < Xg and |z| > R. Since v(z) > 0 in R, there exists
1 < Ag such that

where by (z) = 6 > 0 in ). By Lemma 3.1, Awy(z) = v(a?) —

v
A
A
v(z™) < v(z)
for |z| < R and A < A{. Therefore, we have
Awy(z) <0

in ¥ for A < A\;. By Lemma 2.8, lim wy(z) = 0. Applying the maximum

|z| —+o0

principle, we have wy () > 0 in X for all A < Ay.
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Let Ag = sup{\ | v(z*) < v(z) forz e ¥, and p < A}, Since v(z) tends to
zero at 0o, it is not difficult to see that A\g < +o00. We claim that

u(z) = u(z?)

for all x € 3.

The claim will be proved by contradiction. Suppose wy, # 0 in ¥,. By
continuity, Awx,(z) <0 in 3y,. Since wy,(z) tends to 0 as |z| — +oo by (2.38),
the strong maximum principle implies wy,(z) > 0 in X5,. By applying equaiton
(1.7), we have A%wy,(z) = 6(edu(e) — 64“(‘&0)) > 0, which implies Awy, is a
subharmonic function. Applying the strong maximum principle again, we have
AwAO(x) <0in 2/\0.

By the definition of Mg, there exists a sequence Ay, | Ag such that sup Awy, (z) >
Yian
0. Since lim Awy, (z) = 0, there exists z,, € Xy, such that Aw,, (z,) =

|| —+o00
sup Awy, (z) > 0. By Lemma 3.2. =z, is bounded. Without loss of generality,
An
we may assume zg = lim x,. If 29 € X),, then by the continuity, we have

n—-+oo
Awy, (zg) = 0, which yields a contradition to Awx,(z) < 0in Nx,. If zg € T,
then 7(Awx,(z0)) = 0, which yields a contradiction to the Hopf boundary Lem-
ma because Awy, is a negative subharmonic function in ¥,. Therefore, the claim
is proved. Obviously, the radial symmetry of u follows from the claim.

By a straightforward computation, uy(|z|) = log( ) is a family of

2X
1+ 22|z|2
solutions of (1.7) for A > 0. Now let w(r) be a radial solution of (1.7). From the
uniqueness of ODE, w(r) is completely determined by w(0) and Aw(0) = 4w”(0)
(w always satisfies w’(0) = w”’(0) = 0). Without loss of generality, we may assume
w(0) = uxy(0) for some Ag > 0. If w”(0) < uy (0), then w(r) < ux,(r) for small
r > 0. We first claim ux,(r) > w(r) for all v > 0.

Suppose there exists rg > 0 such that ux,(r0) = w(rg) and ux,(r) > w(r) for
0 <r <rg. Then, by (1.7),

o Aung(r) (1) > 0

for 0 < r < rp. In particular, A(ux,(r) — w(r)) > 0 for 0 < r < rg. Since
Uxg () —w(r) = 0 on r = rp, the maximum principle implies ux,(r) —w(r) < 0 for
all 0 < r < g, which yields a contradiction to u,(0) = w(0). Thus, the claim is
proved.

From the proof above, we also have Au,,(r) — Aw(r) is increasing in r. Thus,
w(r) ~ —er? as 1 — oo for some constant ¢ > 0.

If w”(0) > uf (0), then we have w(r) > uxy(r) for all 7 > 0. By the equation
(1.7), Aw(r) — Aux,(r) is increasing in 7. Thus, if w(r) exists for all > 0 then
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w(r) > er? for r large and for some ¢ > 0. Hence, / ellzl) g = 400, and the
R4
proof of Theorem 1.1 is completely finished. O

Lemma 3.3. Suppose that u is a harmonic function in R™ such that exp(u —
clz|?) € LY(R™) for some ¢ > 0. Then u is a polynomial of order at most 2.

Proof. For any unit vector £ € R*, we want to prove uge(x) = a constant. By

Liouville’s Theorem, it suffices to prove uge(x) is bounded from above by a constant

independent of z. Without loss of generality, we may take z = 0 and £ = e;.
Since 4z, 5, is harmonic, we have for any r > 0,

1
'LLzlzl(O) — ™ /;r(o) Ugyxq (m)d:v

1
. / ti, ke
onr™ Jop.0) 2l

where o,, is the volume of the unit ball in R". Integrating the identity along r,
we have

On

n-+1

g0, (0) (32)
€l
= Uy, —dx
/BT el
2
—/ ui(ﬂ)der/ ux—12do
B, Or1 |z| 0B,.(0) ||
1 a2} / x3
= — u(— — —5)dz + u—=do
L e o5, T2
2 2
:—/ idgr:—i—/ ux—lgdx—l—/ ux—12da
B, || B, || 8B, (0) ||

The first integration can be written as

/ idﬂc:/ (][ udo)(noy,)s"2ds
B, |z| 0 8B, (0)

:nanu(())/ s"2ds
0

7"nfl
= nanu(O)n 7
= (20 yn—lyy(). (3.3)

n—1
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By a direct computation, we have

2
il On n-1
dx = 34
/BT IfL’|3 T n— lr I ( )
and
/ A oo (35)
— T 5
dB, ER "
By (3.2), we have
2
T n 1
o 0)=— 0 d, d
n+1u1111( ) n—lu( )+n_1][ BT(O)U M1+][8BT(O)u M2,
33% 2 Yo 3
where dup = de and dus = vido on = 0B,(0). By Jensen’s inequality, we
T
have
2
r
exp( (0))

. T ) o
T <o>><][ Pl (f o )

For any positive ¢; > 0, we have

< exp(—

/1 exp[(muzlzl(O) — e1)r]dr

n

< exp(—5—— 1u(0))(/1 (][ BT(O)ueﬁdul)e*clrzdr)%

(/ (][ ue“d,ule*c”?dr)%. (3.6)
1 8B, (0)

By the assumption, we can choose a large ¢q such that the right hand side of (3.6)
is finite. Thus, we have

Uzyaq (0) < 2(n+1)cy.

By Liouville’s Theorem, we have us, 5, () = constant. Obviously, the conclusion
of Lemma 3.3 follows immediately. O

Proof of Theorem 1.2. Suppose that u is a solution of (1.7) with ¢** e LI(R%).

Let p
o) = [ sttt
4m* JRa ly]
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and w(z) = u(z) + v(z). By Lemma 2.2, we have Aw(z) = —C7 in R*. Applying
Lemma 3.3, we have w(z) = ¥(az2; + bpr) + co, where a;; = aj;. After a
change of coordinate by an orthorgonal transformation, we may assume

4
3
w(z) = 5 / tog 44 gy — S (as0? + i) + o,
R4

4 |z —y] o

where a; > 0,b; and ¢y are constants. Since e** € LI(R4), we have b, = 0
whenever a; = 0. Thus u(z) can be written as

3 n
u(x) = 2 /R4 log |x|3|y|e4u(y>dy - ;ai(xi - 19)2 +¢p (3.7)

After a translation, we may assume 2 = 0. Let @(z) = u(z) + Z a;z2. Then
i=1
u(x) satisfies
A%i(z) = Q(z)e*™®) in RA (3.8)
where Q(z) = 6~ Doy il

If a; = 0 for all 4, then it is the case of Theorem 1.1. Thus, we assume a; # 0

k
for 1 <i<k,a; =0for s>k where 1 <k <4. Lemma2.limpliesa>1~z.

1
As in Lemma 2.8, we let w(z) = u(% ﬁ) Then @ satisfies
x 15

Ad+ Q(z)e*™ =0 in RH\{0} (3.9)

) — alog || = o(log

- CND (B2
where Q(z) = 6e 25 e(i) R
I N 3

Since o > 1 — 7 Ve have Q(z)e*® € LP(By) for some p > 1. By the same
proof of Lemma 2.8, we have w & CO*T(Bl) for some 1 > 7 > 0. In particular, we
have

() = —aloglal + co + ofjzl ™)

at oo, which together with (3.7), yields (1.10). _ } B

If a; < 0 for all 4, then it is easily to see Q(z)e*” e LP(By) for any p > 1.

Thus @ € C°°(By). Therefore, % satisfies both (2.38) and (2.39) for large |z|, i.e.,
we have for large |z|,

i(z) = —alogla| + co + O(|z| 1), (3.10)
~Ad |2+ZT’|”1+0| 2,

ax; B 3.11
—(Ad)g,(z) = — 1 |4 + O(|z| 4)7 ( ;

|
(AG)z,q; = O(l2| ).
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Employing (3.10) and (3.11), we can use, as in the proof of Theorem 1.1, the
method of moving planes to show that @(z) is symmetric with respect to hyper-
plane {z | z; = 0} for 1 < ¢ < 4. In particular, if a1 = ... = ag # 0, then u is
radially symmetric with respect to 0. Hence, we have proved (i) of Theorem 1.2.
If @ > 2, then Q(z)e*® € LP(By) for any p > 1 also. Therefore w € C™(B,;),
and, e*® = O(|z|~8) at co. By (2.31) ~ (2.33), we can prove without difficulty:

lim |z|]=—(z) = —«a, (3.12)

g, ou

‘z‘_l)nJroorg(rﬁ)(x) =0, (3.13)
im Ai(z)|z]? = —2a, (3.14)

and,
im %(Aa)#” = 4a. (3.15)

Applying the Pohozaev identity, we have
1

3577 s (z,vQ)e ¥ dz = 420>

8120 +
Since a > 2, we have 8r2a < 4m2a?. Thus,

/ (z, vQ)e4udx > 0.
R4

Since )
z-yQ =— Zajx?efz‘”zj <0,

we have a; = 0 for all j. Then, by Theorem 1.1, we have o = 2 and u(x) has a
form of (1.8). Hence, (ii) of Theorem 1.2 is proved. O

4. Proof of Theorem 1.3

Let u be a smooth positive solution of
A%y =P in R”,

4
e 1 and n > 5. As in the case of the equation (1.3), we let

for1<p<
7 —

w'(z) = el () (4.1)
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By a direct computation, v* satisfies
A%u* = |z|"u*? in R™\{0}, (4.2)
where 7 =n+4 —p(n —4) > 0. Let v(z) = —Au*(z). By (4.1), we have
v(z) = c0|x|2“” o= 22:1 % + O(w)
v, = —(n = 2)egle| i + O(kx) (4.3)
Vaiz; = O(w)
at oo, where cg > 0 and a; € R. In particular, we have for large |z|,
Au*(z) < 0. (4.4)
As in Theorem 1.1, we need to prove Au*(z) < 0 in R™\{0}.

Lemma 4.1. Let u be a smooth positive solution of
A%y = |z| "u? in B\{0} (4.5)

4
where 1 < p < nt 7T (n+4)—p(n—4) and n > 5. Then Au is a subharmonic
o—

Sfunction in By in the distributional sense.

Proof. First, we want to prove |z| "uf € Ll(B%). Suppose |z|"uf & LI(B%).
Then we have

5] 0
—Auda—/ —Audaz/ z|7Tuf >0 4.6
/MBA o= [ growdo= [ (4.6)

1
for all 0 < s <r < —. Since the right hand side of (4.6) tends to +o00 as s — 0,
there exists r1 > 0 such that

][ g(Au)da < —clrlfn/ |z| T uP, (4.7)

8B, OT

which implies

Audo — Audo < —c1/ 717”/ ||~ TuPdzdr, (4.8)
oB, 8B, s By\B,

and

Audo > cor 12 (4.9)
8B,
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for 0 <r < ro and for some 0 < rg9 <ry. Let @ :][ udo. By (4.9),
8B,

(L@ (1)) > cor. (4.10)

If lim r"_la’(r) > 0, then we have for any r > 0,

r—
n—1_s L 2
T (r) > 5027 (4.11)

which yields,

r 1 i
a(r) z/ a (t)dt > —CQ/ 37" dt = 400,
0 27 Jo

a contradiction. Therefore we may assume there exists 0 < r3 < ro such that for
all » <rg, we have

il (r) < —es, (4.12)
where c3 is a positive constant. Therefore,
a(r) > egr® ™. (4.13)

Suppose u(r) > cqr~* for some ¢ > n — 2. Then, by (4.7) and (4.8), we have
for small » > 0,

(Au(r)) < —epr— o2, (4.14)
Au(r) > e 13, (4.15)
L (r) < —esr— 713, (4.16)
and, )
a(r) > cqr ot5 (4.17)

where & = 7 + po. We note that, in order to have (4.16) held, we need & > 3.
Since r=n+4—pn—4)and o >n—2, we haved > 7+p(n—2) >n+6 > 5.
Since 6 +n—5—poc =7+n—52>0 for n > 5, after a finite time of iterations,
we have

a(r) > r~ (149, (4.18)
@'(r) < —r~2A), (4.19)
a(r) > r 30 (4.20)

and
@ (r) < —p~(4+P) (4.21)
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4
for 0 < r < 2rg Where § = — (Since @' < 0, we have 0 < Au(r) < @” and
p—
a@®)(r) < (Aw) <0). By (4.19) ~ (4.21), we have by Jensen inequality,
a®(r) > A%u(r) > o] Tuf (r). (4.22)

Let v(r) = A(r —rg)~? for ro <r < 2rg. By direct computations, we have

vW(r) = AB(B +1)(B+2)(B+3)(r —10) — (B+4)
=ABB+ 1)(B+2)(B+3)0F(r) <r ToP(r)

for rg <r < 2rg if A is large. If g is sufficiently small, then by (4.18) ~ (4.21),
we have v(r) < a(r) for all rg < r < 2rg. However, lim @ > lim v(r) = o0

r—rg r—rg
yields a contradiction. Therefore, we have proved |z| "u? € L'(B 1 Je

Let ¢ € C§°(B 3 ) be a nonnegative function. We want to prove

/AapAuda: > 0. (4.23)
Let 5. € CSO(B%) satisfy n-(x) = 1 for |z| > 2¢, and n.(z) = 0 for |z| < e. We

also assume 2
J —_
Do) < <

for 1 <j < 4. Multiplying (4.5) by (z)n., we have
0< [ e@m@lel u (o)t
~ [ Atet@m:@)dua)ds (4.24)
~ [ @} {Ap@n:@)+ 29 ¢(@) v+ o) An e
Let ¢(z) = 2 ¢(z) V1 + @(x)An:(z). We have ¢(x) = 0 for |z| <  and for
lz| > 2¢, and |A¢(z)| < cet.
Since2+I:é+4>4wherelzl—l,wehave
q '4 P q P
| [ Aute)pta)ds| < [ u@svio)lds
<c 574(/ lz| " "uP (z)dx) /PeatE
e<|z|<2e

<cedtit 0,
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as € — 0. Therefore, by (4.24), we have

/Au(x)Ago(:c)dx = limo/ng(x)Au(x)Ago(x)dx
= /Lp(x)|x|77up(x)d$ > 0.
Thus, Au(zx) is a subharmonic in B%. O

Proofs of Theorem 1.5. and Theorem 1.4. Let v(z) = —Au*(z). By Lemma 4.1
and (4.3), we have v(z) > 0 in R*\{0} and v(z) satisfies for any r > 0,

v(z) > inf w(z) >0, for =€ B,(0). (4.25)
oB,(0)

Since v*(z) is a superharmonic function in B,(0)\{0} and v*(z) > 0, then we have

w*(z) > inf u*(y) for z € B,(0) (4.26)
8B-(0)

(For a proof of (4.26), please see Lemma 2.1 in [CLn]).

Following notations in Section 3, we let wy(z) = u*(z) — u*(2*) in ¥x. Since
v(z) = —Awu* has a harmonic expansion (4.3) at infinity, by Lemma 3.1 and (4.25),
there exists a A\g < 0 such that

Awk(x) <0 in X%y
for all A < Ag. By the maximum principle, we have
wx(x) >0 in X

for all A < Xg.

. n
We consider the case p < T

4 first. Let
—4

n
Ao =sup{A < 0| Aw,(z) <0 in ¥, for pp < A}

Suppose Ag < 0. Although «* may has a singularity at 0, by (4.25) and (4.26), we

still can apply the same arguments as in Theorem 1.1 to prove wx,(z) =0 in 2,,.

Since 7 < 0, it yields a contradiction. Thus we must have A\g = 0 and

u(—z1,29,... ,2,) <ulzy,29,...,2,) for 1 >0.

By applying the method of moving planes along any direction in R", u*(z) is
radially symmetric with respect to 0. Since we can take any point in R" as the
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origin, we conclude that if v is a positive smooth solution in R", then u = constant
in R™ which implies » = 0 in R", a contradiction. Thus, Theorem 1.4 is proved.

4
For the case p = n_+4, we also let
i —

Ao =sup{A < 0| Aw,(z) <0 in ¥, for p < A}

If Ao < 0, by applying the same arguments again, we can show wy,(z) = 0.
Thus, v*(z) has a removable singularity at 0 and w itself satisfies (4.3) at infinity.
Therefore, we can directly apply the method of moving plane to u itself to yield
the radial symmetry of u about some point zg in R™. If Ag = 0, then we can do the
same procedure by moving the hyperplane T from positive direction of z1. Thus,
we can prove either u* has a removable singularity at 0 or v*(z) is symmetric with
respect to the hyperplane {z | 1 = 0} . In any case, the radial symmetry of u
follows immediately.

Suppose that u is radially symmetric with respect to 0. We can take another
point zg # 0 as the origin of the ”Kelvin” transformation, and do the same
procedure as the above. Since u is not radially symmetric about x{, we have
Ao # 0, namely, u(x) satisfies (4.3) at infinity. In particular, we have Au(z) — 0
as |z| — +o0.

A n—4
By a direct computation, we can see that uy(xz) = Cn(l-l—)\—2|x|2)T is a
solution of (1.12) for any A > 0. Suppose w(r) is a radial solution of (1.12) and
w(0) = ux,(0) for some Ag > 0. If Aw(0) > Auy,(0), then we can prove w(r) blows
up in finite r. Because, if w(r) exists for all » > 0, as in the proof of Theorem 1.1,
then we can show w(r) > ux,(r) for all r > 0 and (Aw — Au)/(r) > 0 for all » > 0.
Therefore

Aw(oo) = lim (Aw — Auxy)(r) > (Aw — Auy,)(0) > 0,

r——+to00

which yields a contradition to  lim  Aw(z) = 0 which was already proved for

any solution of (1.12). If Aw(0) < Auy,(0), then, by the same proof, w(r) must
become zero at a finite . Thus the proof of Theorem 1.3 is considered completely
finished. |

In fact, the same proof can imply
Theorem 4.2. Suppose u is a positive smooth solution of
A%y =P in R™{0},

n-+ 2

where 1 < p < 1 Assume 0 is a nonremovable singularity, then u is radially

n—
symmeltric with respect to the origin.
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Corollary 4.3. Let u be a solution of

{ A%y =uP in B1\{0},
u >0,

4 _ 1
where 1 < p < n—n Then u(z) < c|z| 71 for |z| < 5 where ¢ is a constant,
n

depending on n a?uip only.

Corollary 4.3 is an immediate consequence of Theorem 1.3 and a blow-up ar-
gument due to R. Schoen for the equation (1.3) (for example, please see [P].) We
omit the details of the proof.
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