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Symmetric and non-symmetric quantum Capelli
polynomials

Friedrich Knop*

Abstract. We introduce families of symmetric and non-symmetric polynomials (the quantum
Capelli polynomials) which depend on two parameters ¢ and t. They are defined in terms of van-
ishing conditions. In the differential limit (¢ = t* and ¢ — 1) they are related to Capelli identities.
It is shown that the quantum Capelli polynomials form an eigenbasis for certain g-difference op-
erators. As a corollary, we obtain that the top homogeneous part is a symmetric/non-symmetric
Macdonald polynomial. Furthermore, we study the vanishing and integrality properties of the
quantum Capelli polynomials.

Mathematics Subject Classification (1991). 05E05, 12H10, 39A70.

Keywords. Symmetric polynomials, Capelli identity, Macdonald polynomials, difference oper-
ators, Hecke algebras.

1. Introduction

Generalizing the classical Capelli identity has recently attracted a lot of interest
([HU], [OK], [O]], [Sa], [WUN]). In several of these papers it was realized, in various
degrees of generality, that Capelli identities are connected with certain symmetric
polynomials which are characterized by their vanishing at certain points. From
this point of view, these polynomials have been constructed by Sahi [Sa] and were
studied in [KS].

The purpose of this paper is twofold: we quantize the vanishing condition in
a rather straightforward manner and obtain a family of symmetric polynomials
which is indexed by partitions and which depends on two parameters ¢, t. As in
[KS], their main feature is that they are non-homogeneous and one of our principal
results states that the top degree terms are the Macdonald polynomials. It is an
interesting problem whether these quantized Capelli polynomials are indeed con-
nected with quantized Capelli identities (see [WUN]) as it is in the classical case.

*Partially supported by a grant of the NSF
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But the main progress over [KS] is the introduction of a family of non-sym-
metric polynomials which are also defined by vanishing conditions. They are non-
homogeneous and their top degree terms turns out to be the non-symmetric Mac-
donald polynomials. To prove this, we introduce certain difference operators of
Cherednik type of which our polynomials are a simultaneous eigenbasis. Because
of these operators, the non-symmetric functions are much easier to handle than the
symmetric ones. Moreover, the latter can be obtained by a simple symmetrization
process.

More specifically, the non-symmetric vanishing conditions are as follows: For
A€ A :=N"let A := 3 A and let wy be the shortest permutation such that
wil()\) is a partition (i.e., a non-increasing sequence). Let ¢ and ¢ be two formal
parameters and consider the vector p = (1,15*17t*27 e 715*”*'1). Then we prove
that for every A € A there is a polynomial Eyx(z1,... ,2,), unique up to a scalar
factor, which is of degree || and which satisfies the following condition:

Ex(q"wu(e)) =0 for all p € A with |p| < |A] and p # A.

We show that the affine Hecke algebra acts on these polynomials in a natural
way and that there are Cherednik-type operators of which they are simultaneous
eigenfunctions. This gives the link to the theory of homogeneous (symmetric or
not) Macdonald polynomials.

Furthermore, in this paper we show two results which are in a way dual to
each other: the polynomial E contains, in general, much fewer monomials than
there are of degree |A| (triangularity) and it vanishes at many more points than
required by definition (extra vanishing). The extra vanishing is expressed in terms
of an order relation on A which generalizes the order of partitions by inclusion of
diagrams.

Later we prove that the quantized Capelli polynomials can be expressed in
terms of their highest degree component (a Macdonald polynomial) and certain
difference operators (inversion formula). This is used to transfer previous integral-
ity results of mine, [Kn], to the case of Capelli polynomials.

In the final section, we discuss the transition from the quantum to the classical
case. For this we put ¢ = ¢" and let ¢ tend to one.

Acknowledgements
I would like to thank G. Heckman whose questions initiated the research to this
paper and S. Sahi for many discussions on the case of the classical limit.

2. The vanishing condition

Let A := N™ and AT C A the subset of partitions. For A = (\;) € A we write
Al =37, A and {(A) := max{7 | A\; # 0} (with [(0) = 0).
Let k be a field of characteristic zero and P := k[z1,... ,2,] the polynomial

ring and P’ = k[z17z1_17 S 5ot ,zngl] the ring of Laurent polynomials. To each
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X € A corresponds a monomial z* = ” z;" Fix two non-zero elements ¢ and ¢ of
k. Throughout the paper we assume that q°t® # 1 for all integers a,b > 1.

The symmetric group W := S,, acts in the obvious way on A and P. Every
X € A contains a unique partition AT in its W-orbit. Let wy € W be the shortest
permutation such that wy(AT) = X. For all A € A and = = (2;),y = (y;) € k™ let
¢ = (¢™) and zy = (x;y;). Consider the element ¢ := (1,¢~1,¢72,. .. ¢+l ¢
k",

For every A € A we define X := uu(q)‘+ 0). More concretely, i = ¢t % where

The following simple lemma is fundamental:

2.1. Lemma. For A € A with A, # 0 let A\* := (A, — 1,A1,... ,An_1). Then

M=/, A, A1)
Proof. Follows easily from the definition. O

2.2. Theorem. Ford & N let S(n,d) be the set of all X where A € A and |\ < d.
Let f: S(n,d) — k be a mapping. Then there exists a unique polynomial f € P

of degree at most d such that f(z) = f(z) for all z € S(n,d).

Proof. The cardinality of S(n,d) equals the dimension of the space of polynomials
of degree at most d. Hence existence of f will imply its uniqueness.

To show existence, we proceed by induction on n + d. Every polynomial can
be uniquely written as

f(Z]7 7,Zn) :g(’zla 7'377,71) + (Zn _tin+1)h(’z’n/q7 219225 .- 7’277,71)'

Consider first the set So of X € S(n,d) with A\, =0, i.e., A, =t 1. Then, as z
runs through Sp, 2’ := (21,...,2,_1) will run through S(n — 1,d). By induction,
one can choose g such that f takes the required values at 5.

Consider now the set S; of remaining points X with A, # 0. By the lemma,
as z runs through S1, (2,/4q,21,22,... ,2np_1) Will run through S(n,d —1). The
factor z, —t "1 =X, =t *1 is not zero by the choice of ¢ and ¢. By induction,
we can find h of degree at most d — 1 with arbitrary values at S(n,d —1). So f
exists. |

There is also a statement for symmetric polynomials which is the quantized
version of a theorem of Sahi [Sa]. For A € AT let my be the corresponding
monomial symmetric polynomial.

2.3. Theorem. For d € N let ST (n,d) be the set of all X = ¢*o where A € AT
and [N < d. Let f : ST(n,d) — k be a mapping. Then there exisls a unique
polynomial f € P of degree at most d such that f(2) = f(z) for all z € ST(n,d).
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Proof. The proof is completely analogous to that in [Sa]. Again, only existence has
to be proved. Let g — g1 be the linear map from symmetric polynomials in n — 1

variables to those with n variables which sends m(zq —¢t ", ... 2, | —t— D)
to my o(z1 — t*"Jrl7 N t*”Jrl)‘ This map preserves degrees and satisfies
gtz 1, T = g(21, ..., 2n_1). We construct f by setting

flz1,. . zn) =9 (21,. .. y2n) + H(zl —t*”+1)h(z1/q7... 2 2n/q),
i=1

where gt and h are symmetric. Then, as above, evaluation at X € St (n,d) with
An = 0 gives g. Evaluation at the other points gives h. |

We obtain the following Theorem/Definition:

2.4. Theorem. a) For every A € A there is a unique polynomial Ex with Ex(f) =
0 for all p € A with |u| < |A|, p# X and which has an expansion Ex =} exuz"
with exy = 1.
b) For every A € AT there is a unique symmetric polynomial Py with P\(fi) = 0
for all p € AT with |u| < ||, & # X and which has an expansion Py = Zuphumu
with pax = 1.

Proof. By_Theorem 2.2, there is a polynomial Fy satisfying the vanishing condition
with Ex()X) # 0. We have to show that it contains z* with a non-zero coefficient.
Let

E}\(’Z17 A 7zn) - 9(2517 R ,anl) + (Zn - tin+1)h(zn/qazlz 227 = x 7Z’n71)'

If A, =0, then g = Ex» with A = (\q,... , A\, _1). By induction, g, and therefore
f, contains z*. If A, # 0 then g = 0 and h a multiple of Ex«. We conclude again
by induction.

The proof in the symmetric case is analogous. O

Our proof actually gives a bit more. Consider the operators

Af(z1,--. 5 2m) = f(2n/a: 21, 20-1),
and ® := (z, —t " "1)A. Then we have

2.5. Corollary. For A € A with A, # 0 let \* = (A, — 1,A1,... , Ap—1). Then
Ex= ¢ ' ®(Ex)

For A € A let Py C P be the set of polynomials of degree at most |A| which
vanish at all 7 with |p| < |A| and g & WA, Of course, P depends only on At.

2.6. Corollary. We have P = @,cp+Pxr. The set {Eyx | w € W} forms a basis
of Px. Moreover, Px NPW = kPy.



88 F. Knop CMH
Proof. Follows directly from the definition. O

We conclude this section by giving two examples. For k € N we define the ¢-
factorial polynomial as [2; k], := (2 — 1)(2 — ) ... (2 — ¢*~1). Then the following
is obvious.

2.7. Proposition. Let t = 1. Then Ex(z;4,1) = [21;A1]q.- . [2n; Anlq and
Px(z;4,1) is the symmetrization of it.

Now we consider the case t = ¢ in the symmetric case. For A € AT we
define the g-factorial Schur function as sx(z;q) := a1 det|z; Aj + n — jlq where
a = [[;<;(#i — #;) is the Vandermonde determinant.

2.8. Proposition. Lett =gq. Then Px(z;q,q) = q*(nfl)wsh(qnflz; q).

Proof. The proof is the same as in the classical case [KS] Prop.3.3. O

3. Hecke operators

In this section, we are constructing operators which are adapted to the decompo-
sition P = @ ca+Px. Let s; € W be the i-th simple reflection. Then
Ni = (2 — Zi+1)71(1 — 5)
is a well defined operator on P. We define the Hecke operators
H;:=s,—(1—1)N;z; =ts; — (1 —t)z; N,
H, =s; — (1 =)z N, =ts; — (1 =) Niziy1.
They satisfy the relations H; — H;, =t—1and HH, =¢ In particular, both H;

and —H,; satisfy the equation (z + 1)(z —¢) = 0. In addition the braid relations
hold
HiHZ‘+1Hi :HiJrlHiHiJrl = 1,... 7n—2
HlHj:HJHZ [2—]| =1
This means that the algebra H generated by the H; is the Hecke algebra of the
root system A,,_1. For details see [Ch], [M2], or [Kn].

3.1. Lemma. Let p € A and f € P'. Then H;f(i) and H,;f(R) are linear
combinations of f(i) and f(5R) where the coefficients are independent of f.

Proof. We have
= DBig1 oy P — iy,
+ S T f(sm).

Hif(m) = [si — (1 =)z 1N f(B) = p_—mf(ﬂ) + B —Foo 3
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If p1; # piq1 then s;fi = 5;5. Otherwise, fi; —tfi; 1 = 0 by definition of f. |
3.2. Corollary. For every A € AT holds HPx C Pa.

3.3. Corollary. Let X be an operator in the algebra A generated by the H;, z;,
and @ (respectively in the both sided ideal APA). Let A € A and f € P'. Then
Xf(A) is a linear combination of f(f) where p € A and |p| < |A| (respectively
lul < |AD)-

3.4. Corollary. Let A € A with \; = A\j1. Then Hi(Ey) = E\ and Hy(Ey) =
tEx.

Proof. Let us consider E := H,;(E)) and g € A with || < |A] and g # A. Since
also s;u # A, we obtain E)(f) = Fx(5i) = 0, hence E(fi) = 0. This means that
F is a multiple of E). Evaluation at z = A implies that the factor is ¢. O
For i =1,... ,n we define the Cherednik operators
f;l —H,...H, 1{AH...H, 1.
Their relevance will become clear later. Furthermore, we define the operators
2 =2 42 H .. H, (PH{.. . H; 4

which are a priori only well-defined on Laurent polynomials. The following rela-
tions are easily established (see [Kn] §3)

H==51H; i=1,...,n—1; H=y =50, 7§#i441.
3.5. Lemma. The operators Z; act on P.
Proof. Since =; = t*IIT[@EHlEi it suffices to consider the case i = n. Because
En = (o —t ") N -
the assertion follows from the following claim:
&lf=t""1f modz, forall feP
We write f =g for f =g mod z,. First we show by induction
(x)  AHy.. . Hf=t"1As;.. . sf.

We have AHy ... H;f =t 2Asq ... s;_1(ts; —(1—1t)z;N;)f. Then (x) follows from
Asy...8_12 = qilznAsl AT
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For i =n—1, (x) reads & 1 f =t" 1Asy ... s5,_1f. The claim follows from

Ast...sp1f(2) = (21, s 2n-1,20/9) = f(2).
O

The Z; are inhomogeneous versions of the Cherednik operators. Observe, that
deg=;(f) < deg f for all f € P. The main result of this paper is

3.6. Theorem. The E) form a simultaneous eigenbasis for the =;. More precise-

Iy, B ) = e By, for sl ve A ondi=1,... .

Proof. Let d = |A| and write Z; = 27! + X;. Then Z;(Ey) = 2; 'E\ 4+ X, (Ey).
Since F) vanishes in S(n,d — 1), Lemma 3.1 implies that X;(F,) vanishes in
S(n,d). Hence, Z;(Ey) vanishes for all i € S(n,d) with p # X. This implies that

Ei(FEyx) = cEy for some ¢ € k. Evaluation at z = X implies ¢ = X O

i
3.7. Corollary. The operators =1, ... ,=, commutle pairwise.
Next we consider the non-homogeneous analogues of the Macdonald operators:

3.8. Corollary. Letp € PV, Then =, := p(Z1,...,=,) commutes with all H;.
-1
Moreover, =,(Px) = p(A ")Px.

Proof. 2, acts on Py as scalar multiplication by p(j\il). O

3.9. Theorem. Let Ex be the top homogeneous part of Ex. Then fjl(EA) —

e ¥ o —
A, Ex. This means, that By is a non-symmetric Macdonald polynomial. Simi-
larly, the top homogeneous part Py of Py is a symmetric Macdonald polynomial.

Proof. We have =, = &, 1 blus terms which decrease the degree. Therefore, al-
so =, = & 1 plus degree decreasing operators. The theorem follows since the
Macdonald polynomials are characterized as eigenfunctions of the &;. O

There is a (partial) order relation on A. First, recall the usual order on the set
AT we say A > pif

MtXe+...+N>2pm+pe+...+p foralli=1,... n

This order relation is extended to all of A as follows. For every A € A there is a
unique partition At in the orbit WA. For all permutations w € W with A = wA™
there is a unique one, denoted by wj,, of minimal length. We define A > p if either
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AT > pt or At = pt and wy < w, in the Bruhat order of W. In particular, AT
is the unique mazimum of WA,

-
3.10. Lemma. The operators Z; are triangular. More precisely, Z;(2) = \; 2 M+
Z;J,<A CANZM'

Proof. For this we write &; = z[l +H;..H, 11—t DAH .. . H_| =
5;1 +Y; where Y; = zfl — g, T{n,lzglAHl ... H;_1. It is well known
that 5;1 is triangular (see [M2]) with the given coefficient of z*. Since Y; decreases

the degree it suffices to show that T < AT for each monomial z# occuring in
Yi(2*). But that is easy to check. O

3.11. Theorem. For every A\ € A there is the expansion Ey = 2> + > uea expzt
<X
Similarly, if X € AT then Px =mx + Y seat PauMyu-
RPN

Proof. By the triangularity and diagonalizability of =; there must be an eigenfunc-

. . . ~—1 .
tion of the stated form with eigenvalue A, . Thus, it equals Fj. O

4. The extra vanishing theorem

We are going to introduce another (partial) order relation on A which extends the
containment relation on partitions. Let A\, € A. Then we say A<y if there is a
permutation 7 € W such that A\; < ;) if ¢ <m(é) and Ay < gy if ¢ > w(é). In
this case we call 7 a defining permutation for A<p.

4.1. Lemma. If A5y and [N > |p| then X = p.

Proof. All inequalities \; < Hie(s) MuSt the equalities. This can only happen if
¢ > 7(4) for all ¢« which implies 7 = id and A = p. O

If A and p are partitions then Ay is just the usual inclusion relation among
diagrams but in general “<” it is finer than “C”.

We proceed by describing the minimal elements lying above A. For a subset
I={i1,... iy} of {1,... ,n} with 41 < ... < i, we define the cyclic permutation
T L= b1 .. 41— 4 and ef(A) == p € A by

i, = Nip+ 1

Clearly, A < cr(A) with the defining permutation 7;. Conversely,
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4.2. Lemma. Let A\, ;1 € A with X\ < p. Then there is I such that cp(A)=pu.

Proof. Let m be a defining permutation of Ax{p. If # = id then X\; < yu; for some ¢
and we can choose I = {i}. Assume from now on 7 # id.

Let 71 be minimal with (i) # 41. Then necessarily (i) > ¢1. Put ¢ =
7%=1(i1) and let » > 2 be minimal with ty41 > ty. Then we have iy <4, < ... < 9.
Now we take I := {i1,%,...,29} (note that 7, might be equal to ¢1). Then, it
follows from gy > iy + 1, piy > i, ete. that ¢ (A)=<p with defining permutation

-1
T O

The next lemma shows that one doesn’t have to check all permutations to show
AL

4.3. Lemma. Let A\, € A with AXp. Then m = wuw;1 is a defining permuta-
tion.

Proof. First note that « is the permutation with k;(A) = k. ;) () for all ¢ (with

k; as in section 2). Fixing 7 like that certainly defines a new order relation =<’
which is coarser than <. To show that these relations coincide it suffices to show
Ax"cr(A) for all 1.

For this we may assume that [ is maximal among all J with p := ¢;(A) = ¢;(\).
This means that

XA Ny fori=1,...,i1 -1
NiF Ny fori=i1+1,... i9—1;
etc.
N AN, fori=d. 1 +1,... 4 —1;
MiF Ny +H1lfori=id,+1,... ,n.

In this case one verifies easily

k'L](/J*) :k717+1()‘) j:L 77”—1, kh(u) :kll()‘)
and k;(p) = ki(A\) otherwise, i.e., wﬂwgl =7y. O
Definition. A subset S C A is called closed if A € S and A<y implies o € S. If

that is the case let I's C P be the ideal of functions f which vanish in all X with
AeA\S.

4.4. Theorem. Let S C A be a closed subset. Then Z;(Ig) C Is for all i =
1,...,n.

Proof. Let € A\ S and f € Is. We have to show that Z; f(z) = 0. The definition
of Z; shows that =, f(zz) is a linear combination of f(fi) and terms of the form

yi=0;...0n0 1001...0,_1f(R)
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where each operator o; is either s; or 1. This shows that y = f(\) with g = cr(\)
for some I and A € A. Since S is closed we have A € A\ S and therefore, y = 0.00

Now we show the extra vanishing theorem:
4.5. Theorem. Let \,pn € A with A £u. Then Ex(i) = 0.

Proof. Consider the closed subset S = {v € A | Axv}. We have to show E, € Is.
For generic ¢ and ¢ there is a function f € Ig with f(A) # 0. Indeed, take for
example

f&=11 | 11 %z~+1(5\;1z7r(¢)) 11 Wxé(qj\;lzw(i))

meW |i<n(i) i>7 (i)

where ¢ (2) = (z — 1)(z — ¢ 1) ... (z — ¢ *1). Since I is E;-stable there is
Ey € Is with Ex/(X\) # 0. Inparticular, |\'| < |A|. On the other hand, Ex (N) #0
implies ) € S, i.e. AxX. Therefore, N = X (Lemma 4.1). O

4.6. Theorem. Let S C A be closed. Then Is = ®xcskE\.

Proof. By Theorer_n 4.4, we have Ig = @© cg'kE) for some subset S’ C A. Let
A€ S’ Then Ex(\) # 0 implies A € S, hence S' C S. Conversely, let XA € S and
we€ A\ S. Then FEy(i) = 0 by the extra vanishing theorem. Hence F) € Is and
e s’ O

4.7. Corollary. Let E\E, = ZV CKHEV. Then ciﬂ =0 unless \, u<v.

Proof. Let S be the set of v € A with Axv. Then by Theorem 4.5 and Theorem
4.6, the principal ideal PFE) is contained in ®,cskFE,. This shows A<r whenever
CK# # 0. The relation u=<v follows by symmetry. O

The whole discussion has also a symmetric counterpart. As already mentioned,
on A1 the order relation < is just inclusion of diagrams. Then everything works
for this order relation. See [KS] for the precise statements.

5. The inversion formula and integrality results

We have seen that the Macdonald polynomials are obtained from the Ey or Py
by taking the top homogeneous part. In this section we show how to invert this
process.

The Capelli polynomials E and the Macdonald polynomials E form two bases
of P. Define ¥ € Endy P by \P(EA) = F). Another way to describe ¥ is as follows:
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Let Py be the set of polynomials of degree d which vanish in S(n,d —1) and
let P4 the set of homogeneous polynomials of degree d. Then taking the top
degree term gives an isomorphism ¥’ : P; — P,. Since ¥’ maps E) to E) we see
U=yl

The next theorem tells us that Capelli and Macdonald polynomials are essen-
tially the same up to base change by V.

5.1. Lemma. The following table gives for an operator A its intertwined operator
VAL, _
A H &' T=zA =z

7

VAV g, g P 2 — =1

In particular, the operators z; — E;l commute pairwise.
Proof. The endomorphism ¥ maps an eigenvectors of &, L %o an eigenvector of
=; with the same eigenvalue. Thus we obtain ¢, L~ 0. For f € Pq holds
H;f € Py and V' (H,;f) = H;V'(f). Hence, H; commutes with ¥.

We have ®(P;) C Py (Corollary 2.5) and therefore ¥/(®(f)) = ®(¥'(f)) for
all fePqy.

Next consider A € A with A, # 0 and \* as in Lemma 2.1. Then ¢*~1®(Fy.) =
Ex and ¢ '®(Ey+) = Ex ([Kn| Thm. 4.1). This implies ¥® = ®¥.

Finally, for z; observe first that =; is diagonalizable with non-zero eigenvalues.
Hence E;l exists.

According to the definition of Z;, we have

ZlEl —1= Hi...Hn,]q)Hl ...Hi,].

Hence, by Corollary 3.3 and Theorem 3.6, the operator z; — =1 = (2:2; — 1)371

7
maps Py into Pyyi. Looking at the top homogeneous term we see W'((z; —

=0 1) = aW(f).

Remark. The discussion above shows that Macdonald polynomials and Capel-
li polynomials are just two different views of the same picture. Both have their
virtues: the main structure governing Macdonald polynomials is Cherednik’s scalar
product on P. By transport of structure via ¥ also the Capelli polynomials are
orthogonal with respect to a certain scalar product but unfortunately an explic-
it formula for it is not known. On the other hand, the scalar product has its
replacement in the vanishing conditions which turn out to be just as good.

Observe that E;l is no difference operator anymore. Therefore, we introduce

the operator S := tf(g)El ...Z2n which acts on Py as scalar multiplication by

g~ Tt intertwines with the operator § = A™ which acts on Pq by ¢~¢. Now

observe that Z; := (2, — =, 1)5 is a difference operator which corresponds on the

homogeneous side to 2,5 = ¢Sz;.
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Now we can state the inversion formula:

5.2. Theorem. a) The operators Z1,... ,Z, commule pairwise.

b) Let f be homogeneous of degree d. Then W(f) = q@)f(Zl7 coi s D) - 1 (where
1 € P denotes the unity).

Proof. Since f is homogeneous of degree d, we obtain f = q(g)f(zig) -1. Thus b)
follows by applying W. |

This formula can be used to lift results for Macdonald polynomials to Capelli
polynomials. As an example, we investigate integrality properties.

For this we use a different normalization of E. Recall, that the diagram of
X € A is the set of points (usually called bozes) s = (i,7) € Z? such that 1 <i < n
and 1 < j < \;. For each box s we define the arm-length a(s) and leg-length I(s)

as
a

(8) ==X —3J
Uis):=4#{k=1,...,i =15 < M +1< N}
Uisyi=4#{k=i+1,...,n |5 < <N}
I(s):==1U(s)+1"(s)

If A € At is a partition then ’(s) = 0 and I”(s) = I(s) is just the usual leg-length.

S

We define
&y = H(l _ qa(s)Jrltl(s)Jrl)E)\.
SEA
Pa=[J(1 - @O py
SEA

With this normalization, we obtain:
5.3. Proposition. The coefficients of Ex and Py are in Z[q,q 1, t,t71].

Proof The leading terms £, and Py have coefficients in Z[g,t] by Corollary 5.2
and Theorem 6.1 of [Kn]. The result follows from the fact that the operators Z;
are defined over Zlg, q‘17t,t“1]. O
This result can be improved. For m = 1,... ,n we define the operators
Am =HpHpg1.. . Hy 1@
A = FHog1 .. Hy 1@
Then we have the following recursion relation:

5.4. Theorem. Let A € A with m = I(A) > 0. Put \* == (Ap — L Ag,...,
An_1,0,...,0). Then & = 1[4, — Ant™Apm]Exe.
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Proof. Apply ¥ to both sides of the corresponding formula in [Kn] Theorem 5.1.00

5.5. Corollary. Let &y = ZH expzt and Py = Zﬂpmm“. Then

Exps Pop € t*(”*l)(u\*\u\)z[q,t].

Proof. The operators H; and H; are defined over Z[t]. Since ® = (z,, —t " T1)A,
the recursion formula implies ey, € t *Z[g,q1,t] with k = (n — 1)(|]A| — |u|). To
show that no negative powers of ¢ appear observe that z1=1 —1=Hy...H, 19.
Therefore,

OBy ) = A HL L HT ()T = D)6

The claim follows from X} = ¢*=~ =% for some k € N.
The assertion for Py follows by symmetrization as in the proof of [Kn] Theo-
rem 6.1. |

Remark. The assertion of the last theorem is equivalent to

t= DN g @z, 2, € Zg,t, 2]

6. The classical limit

Let o be a formal parameter. If one puts ¢ = ¢ and lets ¢ go to 1 then (1—¢)~ APy

converges to the Jack polynomial J/ga)(z). In this final section, I will discuss the
analogue for our non-homogeneous Macdonald polynomials. For this it is a bit
more convenient to set ¢ = ¢” and let ¢ tend to 1. Then « and r are related by
a=1/r.

We introduce the following notation: Let p(q,t) € Q(q,t), po € Q and k € N.

Then we write p mpo if linri €<q’q;2 = po. For example, ¢*t® — 1 ia +br. (In
q*}

P
purely algebraic terms, linri p(q,q") means: write p(q,t) in terms of z := ¢ — 1 and
q*)

P ;%1[ and put x = 0.)
As g — 1, the points X all collapse to 1. Therefore, we introduce the function

pqlz) = j—:ll— and the affine transformation ¢q(2) = (q(21),... ,¢q(2n)). Set

6= (0,—7,... — (n— 1)r). Then we have @, (X) 27 X where A = A + wyo.
Conversely, we can write X = ¢*.
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The action of ¢, on P is given by ¢ f(2) = f(go;l(z)). We extend our notation

as follows: if X (q,t) and X (r) are operators on P then we write X(q,t) ﬂX(?")
if forall f € P

(}Ln’i(q — 1) e X (g, qr)%—lf =X(r)f.

For example, if X(q,t) is the multiplication operator by g(z;q,t) then
weX(q, qr)apl;l is multiplication by ¢,9 = g o <p[;1. In this way, gﬂ»go has
to be understood. Since Lp;l(ﬁﬂ) = (¢ — 1)z + 1 we obtain, for example, z; A

while Z; — 1 & Zi. B B B
Define the operators Af(z) == f(zn—1,21,... ,2n—1) and ® 1= (2, +(n—1)r)A.

6.1. Lemma. We have A &;A and P i‘i)

Proof. We have <qu<p;1f(z) = f(¥(2n),21,--- ,2n_1) Where ¥(2) = 2,/q —

l/q&zn — 1. Moreover, zn(go(;l(z)) e Bl =g o 1 gy 4 () o B L, Zn+
(n—1)r. O

6.2. Theorem. For every A € A there is a unique polynomial Ex = of degree |)|
and 2*-coefficient equal to 1 which vanishes at all i with |p| < |\ and p # .

Moreover, E M ~A,
Proof. Repeat the proof of Theorem 2.2 with respect to vanishing at <pq(5\). Then
one sees, by induction, that the limit ¢ — 1 exists. |

In the limit ¢ — 1, the symmetric version has been already treated in [KS]. As
above we obtain

6.3. Theorem. For cvery A € AT there is a unique polynomial Py of degree |A|

which vanishes at all fi = p+ o where pp € AT with || < |A| and p # X. Moreover,

IAlr 5
Py —= Pxy.

Next we study the limit of the Hecke operators. Let o; := s; — rIV;.

6.4. Lemma. We have Hi7ﬁi Mai and H; — H; ir.
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Proof. First observe that s; commutes with ¢,. Moreover,

(1-1) Zit1 glzl—t(q—l)zi+1+1M -
2 — Zipl g—1  zi—z4 2 — Zit1
This implies the claim for H,. For H;, use H; = O, +t—1. O

The braid relations for the H; imply them for the o;. Moreover, from HH, =t
we deduce 02 = 1. Hence we obtain

6.5. Corollary. The mapping s; — o; extends uniquely to an action of W on P.

Remark. It is not difficult to see that the standard action of W and the one
defined above are conjugated by an element U € Endpw P =2 M, ;(PW). It would
be interesting to find such a U explicitly. Note however that U is not uniquely
determined.

Observe that_ the commutation r_elations zip1H; = H,z can we rewritten as

Zi410; = 0:2; — T} 2j0; = 0525, J#4,1+1

Therefore, the o; and z; generate a graded Hecke algebra.
We now consider the limit of the Cherednik operators. Let

[1]x

=,

=2 —0;...00_1P01...0;_1.

Then we have

6.6. Theorem. Fori=1,... )T holds =; — 1 i —3-. Moreover, EEA — 5\¢EA
for all X € A. In particular, the Z; commute pairwise.

. 1 o
Proof. Follows from 2,1 —12% —z H, 2% 0, @ 126 and X ' —122-X O

6.7. Corollary. The top homogeneous part of Py and Ey is a Jack polynomial
and Opdam’s non-symmetric analogue [Op], respectively.

The extra vanishing theorem goes through verbatim:

6.8. Theorem. Let \,n € A with A £p. Then Ex(f1) = 0.
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For the inversion formula we introduce

i —=zi—os=0;...0,_1P01...0;_1.

Furthermore, let ¥ : P — P be the linear automorphism which maps the leading
term of F, to E\. Then we obtain

6.9. Theorem. We hcweN Z; iZl Moreover, Z\if — \i/zZ and the inversion
formula holds: V(f)= f(Z1,... ,Zy)-1 for all f € P.

Finally, as for integrality, we choose the following normalizing factors:

&y = H ((a(s)+ 1)+ (I(s) + 1)7")E)\.

SEX
Py = H (a(s)+ (I(s) + 1)7")?)\
EISHN
With this normalization, we obtain:

[AlLr

6.10. Theorem. We have &y 2—’> (—1)“'5} and Px
the coefficients of Ex and Py are in Zr].

Qﬁf(—l)m'}%. Moreover,
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