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Symmetric and non-symmetric quantum Capelli
polynomials

Friedrich Knop*

Abstract. We introduce families of symmetric and non-symmetric polynomials (the quantum
Capelli polynomials) which depend on two parameters q and t They are defined in terms of
vanishing conditions In the differential limit (q ta and t —> 1) they are related to Capelli identities
It is shown that the quantum Capelli polynomials form an eigenbasis for certain q-difference
operators As a corollary, we obtain that the top homogeneous part is a symmetric/non-symmetric
Macdonald polynomial Furthermore, we study the vanishing and integrality properties of the
quantum Capelli polynomials

Mathematics Subject Classification (1991). 05E05, 12H10, 39A70

Keywords. Symmetric polynomials, Capelli identity, Macdonald polynomials, difference
operators, Hecke algebras

1. Introduction

Generalizing the classical Capelli identity has recently attracted a lot of interest
([HU], [Ok], [Ol], [Sa], [WUN]) In several of these papers it was realized, m various
degrees of generality, that Capelli identities are connected with certain symmetric
polynomials which are characterized by their vanishing at certain points From
this point of view, these polynomials have been constructed by Sahi [Sa] and were
studied m [KS]

The purpose of this paper is twofold we quantize the vanishing condition m
a rather straightforward manner and obtain a family of symmetric polynomials
which is indexed by partitions and which depends on two parameters q, t As m
[KS], their mam feature is that they are non-homogeneous and one of our principal
results states that the top degree terms are the Macdonald polynomials It is an
interesting problem whether these quantized Capelli polynomials are indeed
connected with quantized Capelli identities (see [WUN]) as it is m the classical case

* Partially supported by a grant of the NSF



Vol 72 (1997) Symmetric and non-symmetric quantum Capelh polynomials 85

But the mam progress over [KS] is the introduction of a family of non-symmetric

polynomials which are also defined by vanishing conditions They are non-
homogeneous and their top degree terms turns out to be the non-symmetric Mac-
donald polynomials To prove this, we introduce certain difference operators of
Cheredmk type of which our polynomials are a simultaneous eigenbasis Because
of these operators, the non-symmetric functions are much easier to handle than the
symmetric ones Moreover, the latter can be obtained by a simple syminetrization
process

More specifically, the non-symmetric vanishing conditions are as follows For
A G A Nn let | A | ^2\ and let w\ be the shortest permutation such that
w^ (A) is a partition (l e a non-mcreasmg sequence) Let q and t be two formal
parameters and consider the vector g (l,t~^,t~^, ,£~n+1) Then we prove
that for every A G A there is a polynomial E\(z\, ,zn), unique up to a scalar
factor, which is of degree |A| and which satisfies the following condition

Ex(qßwlJ,(g)) 0 for all /x G A with |/x| < |A| and p^A
We show that the affine Hecke algebra acts on these polynomials in a natural
way and that there are Cheredmk-type operators of which they are simultaneous
eigenfunctions This gives the link to the theory of homogeneous (symmetric or
not) Macdonald polynomials

Furthermore, in this paper we show two results which are in a way dual to
each other the polynomial E\ contains, in general, much fewer monomials than
there are of degree |A| (triangularity) and it vanishes at many more points than
required by definition (extra vanishing) The extra vanishing is expressed in terms
of an order relation on A which generalizes the order of partitions by inclusion of
diagrams

Later we prove that the quantized Capelh polynomials can be expressed in
terms of their highest degree component (a Macdonald polynomial) and certain
difference operators (inversion formula) This is used to transfer previous integrality

results of mine, [Kn], to the case of Capelh polynomials
In the final section, we discuss the transition from the quantum to the classical

case For this we put t qr and let q tend to one

Acknowledgements
I would like to thank G Heckman whose questions initiated the research to this
paper and S Sahi for many discussions on the case of the classical limit

2. The vanishing condition

Let A W1 and A+ Ç A the subset of partitions For A (\) G A we write
|A| J2r A* and ;(A) maxj> | A, ^ 0} (with 1(0) 0)

Let fc be a field of characteristic zero and V k[z\, ,zn] the polynomial
ring and V' k[z\,z^ ,zn,z^} the ring of Laurent polynomials To each
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A G A corresponds a monomial zx Y[t z*". Fix two non-zero elements q and t of
k. Throughout the paper we assume that qat ^ 1 for all integers a,b > 1.

The symmetric group W := Sn acts in the obvious way on A and V'. Every
A G A contains a unique partition A+ in its VF-orbit. Let w\ G W be the shortest
permutation such that w\(X+) A. For all A G A and x (xt),y (yt) G kn let
qx := (qx*) and xy := (xtyt). Consider the element g := (I,*"1,*"2,... ,t~n+1) G

kn.
For every A G A we define A := w\(qx g). More concretely, A^ qx%t~k% where

l,... ,i-l | Aj > A,}

The following simple lemma is fundamental:

2.1. Lemma. For A G A u»i/i An ^ 0 Zei A* .-= (An - 1, Ai,... An_i). Then
A* (Xn/q,Xi,... ,Än_i).

Proof. Follows easily from the définition. D

2.2. Theorem. For d G N let S(n, d) be the set of all X where A G A and |A| < d.
Let f : S(n, d) —> k be a mapping. Then there exists a unique polynomial f G V
of degree at most d such that f(z) f(z) for all z G S(n, d).

Proof. The cardinality of S(n, d) equals the dimension of the space of polynomials
of degree at most d. Hence existence of / will imply its uniqueness.

To show existence, we proceed by induction on n + d. Every polynomial can
be uniquely written as

/(*!,... ,zn)=g{zi,... ,zn_i) + (zn -t-n+1)h(zn/lq,z1,z2, ¦ ¦ ¦ ,zn_i).

Consider first the set S*o of Ä G S(n,d) with Xn 0, i.e., Xn t~n+1. Then, as z

runs through Sq, z' := [z\,... zn_\) will run through S(n — l,d). By induction,
one can choose g such that / takes the required values at So.

Consider now the set Si of remaining points Ä with Xn =/= 0. By the lemma,
as z runs through Si, (zn/q,zi,Z2,... ,zn_\) will run through S(n,d — 1). The
factor zn — t^n+1 Xn — t^n+1 is not zero by the choice of q and t. By induction,
we can find h of degree at most d — 1 with arbitrary values at S(n, d — 1). So /
exists. D

There is also a statement for symmetric polynomials which is the quantized
version of a theorem of Sahi [Sa]. For A G A+ let mx be the corresponding
monomial symmetric polynomial.

2.3. Theorem. For d G N let S+(n,d) be the set of all X qxg where X G A+
and |A| < d. Let / : S^(n,d) —> k be a mapping. Then there exists a unique
polynomial f G V of degree at most d such that f(z) J(z) for all z G S+(n,d).
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Proof. The proof is completely analogous to that in [Sa]. Again, only existence has

to be proved. Let g i—s- g+ be the linear map from symmetric polynomials in n — 1

variables to those with n variables which sends m\{z\ — £~n+1,... zn_i — £~n+1)
to m,\fl(zi — £~n+1,... ,zn — £~n+1). This map preserves degrees and satisfies

g+(zi,... ,zn_i,t~n+1) g(zi,... ,zn_i). We construct / by setting
n

/(*!,... ,zn)=g+{Z1,... ,zn) + X\{z%-t-n+1)h{Z1/q,... ,zn/q),
i=\

where g+ and h are symmetric. Then, as above, evaluation at Ä G S+{n,d) with
An 0 gives g. Evaluation at the other points gives h. D

We obtain the following Theorem/Definition:

2.4. Theorem, a) For every A G A there is a unique polynomial E\ with E\(Jl)
0 for all n G A with |/x| < |A|, /x ^ A and which has an expansion E\ ^2^ ex^z^1
with eX\ l.
b) For every A G A+ there is a unique symmetric polynomial P\ with P\(jï) 0

for all ii G A+ with |/x| < |A|, /x ^ A and which has an expansion P\ y^/l,Pxurnu
withpxx 1.

Proof. By Theorem 2.2, there is a polynomial E\ satisfying the vanishing condition
with E\(X) ^ 0. We have to show that it contains zx with a non-zero coefficient.
Let

Ex(zi,... ,zn) =g(zi,... ,zn_i) + (zn -t^n+1)h(zn/q,zi,Z2,... ,zn_i).

If An 0, then g Ey with A' (Ai,... An_i). By induction, g, and therefore

/, contains zx. If An ^ 0 then g 0 and h a multiple of E\*. We conclude again
by induction.

The proof in the symmetric case is analogous. D

Our proof actually gives a bit more. Consider the operators

A/(zi,... ,zn) := f(zn/q,zi,... ,zn_i),

and $ := (zn - t"n+1)A. Then we have

2.5. Corollary. For A G A with \n ± 0 let A* (An - l,Ai,... ,An_i). Then
Ex q^^

For A G A let V\ Ç V be the set of polynomials of degree at most |A| which
vanish at all ß with |/x| < |A| and /x ^ VFA. Of course, V\ depends only on A+.

2.6. Corollary. We have V ©agA+^a- The set {Ew\ \ w G W} forms a basis

ofV\. Moreover, Vx l~l Vw kPx.
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Proof. Follows directly from the definition. D

We conclude this section by giving two examples. For k G N we define the q-
factorial polynomial as [z; k]q := {z — l){z — q).. .{z — qk~^). Then the following
is obvious.

2.7. Proposition. Lett 1. Then E\{z;q,l) [z\; X\]q [zn; Xn]q and

P\(z; q, 1) is the symmetrization of it.

Now we consider the case t q in the symmetric case. For A G A+ we
define the q-factorial Schur function as S\(z; q) := a detfzjj Xj -\- n — j]q where
a n»<i(2:* ~ zo) is the Vandermonde determinant.

2.8. Proposition. Lett q. Then P\(z;q,q) q *¦" ^"x\s\(qn ^z;q).

Proof The proof is the same as in the classical case [KS] Prop.3.3. D

3. Hecke operators

In this section, we are constructing operators which are adapted to the decomposition

V ®AeA+^V Let st G W be the i-th simple reflection. Then

is a well defined operator on V'. We define the Hecke operators

Ht := s, - (1 - t)Ntzt is, - (f - t)ztNt,

Ht := s, - (1 - tK+iiV, tst - (1 - t)NlZt+1.

They satisfy the relations Ht — Ht t — 1 and HtHt t. In particular, both Ht
and — Ht satisfy the equation (x + l)(x — t) 0. In addition the braid relations
hold

HtHl+lHt Hl+lHtHl+l i l,...,n-2
HlHJ=HJHl \i-j\>l

This means that the algebra TL generated by the Ht is the Hecke algebra of the
root system An_\. For details see [Ch], [M2], or [Kn].

3.1. Lemma. Let \i G A and f G V. Then Htf(Ji) and Htf(Ji) are linear
combinations of f(jl) and /(s4/x) where the coefficients are independent of f.

Proof. We have

[st - (f - t)zl+1
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If /x4 ^ /Xj._|_i then Sj/x sT/x- Otherwise, Jlt — fß%Jri 0 by definition of Jl. D

3.2. Corollary. For every A G A+ holds HV\ C V\.

3.3. Corollary. Let X be an operator in the algebra A generated, by the Ht! zt!
and $ (respectively in the both sided, ideal A<&A). Let A G A and f G V. Then

Xf(X) is a, linear combination of /(jö) where /x G A and |/x| < |A| (respectively

3.4. Corollary. Let A G A u»i/i A» Aî+i. Then H%(EX) Ex and H%(EX)

tEx.

Proof. Let us consider E := Ht(E\) and /x G A with |/x| < |A| and /x ^ A. Since
also Sj/x 7^ A, we obtain E\(p) E\(I^£l) 0, hence E(p) 0. This means that
E is a multiple of E\. Evaluation at z X implies that the factor is t. D

For i 1,... n we define the Cherednik operators

Their relevance will become clear later. Furthermore, we define the operators

which are a priori only well-defined on Laurent polynomials. The following
relations are easily established (see [Kn] §3)

i l,...,n-l; HtE3=E3Ht, j^i,i+l.
3.5. Lemma. The operators Et act on V.

Proof. Since S^ t~^H%El-^iH% it suffices to consider the case i n. Because

the assertion follows from the following claim:

Ç-1f tn-1f modzn forall/GP
We write / g for / g modzn. First we show by induction

We have Ai?i... HJ t^2Asi s,_i(ts, - (1 -t)ztNt)f. Then (*) follows from
Asi st_\z% q~xznAsi... Sj_i.
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For i n — 1, (*) reads £,~^f tn~^As\ sn_i/. The claim follows from

Asi sn_i/(z) f(zh ,zn^zn/q) f(z).

D

The Sj are inhomogeneous versions of the Cherednik operators. Observe, that
degSj(/) < deg/ for all / G V. The main result of this paper is

3.6. Theorem. The E\ form a simultaneous eigenbasis for the Et. More precisely,

Et(E\) \ E\ for all X £ A and i 1,... n.

Proof Let d := |A| and write Et z'1 + X%. Then Et(Ex) z~lEx + Xt(Ex).
Since E\ vanishes in S(n,d — 1), Lemma 3.1 implies that Xt(E\) vanishes in
S(n,d). Hence, Sj(£^) vanishes for all \i G S(n,d) with \i ^ A. This implies that

Et(E\) cE\ for some c G k. Evaluation at z Ä implies c=\. D

3.7. Corollary. The operators Si,... ,Sn commute pairwise.

Next we consider the non-homogeneous analogues of the Macdonald operators:

3.8. Corollary. Let p G Vw. Then Sp := p(Si,... Sn) commutes with all Ht.

Moreover, Ep(P\) p(\ )P\.

Proof. Sp acts on V\ as scalar multiplication by p(\ D

3.9. Theorem. Let E\ be the top homogeneous part of E\. Then £~ \E\)

\ E\- This means, that E\ is a non-symmetric Macdonald polynomial. Similarly,

the top homogeneous part P\ of P\ is a symmetric Macdonald polynomial.

Proof. We have Sn £,~^ plus terms which decrease the degree. Therefore, also

Sj £~ plus degree decreasing operators. The theorem follows since the
Macdonald polynomials are characterized as eigenfunctions of the £4. D

There is a (partial) order relation on A. First, recall the usual order on the set
A+: we say A > \i if

Ai + A2 + + \ > j-i\ + ji<i + + j-i% for all i 1,... n.

This order relation is extended to all of A as follows. For every A G A there is a

unique partition A+ in the orbit WX. For all permutations w <sW with A wA+
there is a unique one, denoted by w\, of minimal length. We define A > \i if either
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A+ > /z+ or A+ /z+ and w\ < wM in the Bruhat order of VF. In particular, A+
is the unique maximum of WX.

3.10. Lemma. The operators Sj are triangular. More precisely, Sî(z'>v) \ zx-\-

E

Proof. For this we write Et z~l +Ht... Fn_i(l - t-n+1Z-1)AH1 Ht_x
£"* + Yt where Yt z^1 - t-n+1Ht... Hn_iZ-lAHi i?4_i. It is well known
that £~ is triangular (see [M2]) with the given coefficient of zx. Since Yt decreases
the degree it suffices to show that /z+ < A+ for each monomial zM occuring in
Yt(zx). But that is easy to check. D

3.11. Theorem. For every A € A there is the expansion E\ zx -\-~^2^<ea ex^z^.
/J<A

Similarly, if A G A+ then P\ m\

Proof By the triangularity and diagonalizability of S^ there must be an eigenfunc-

tion of the stated form with eigenvalue Ä Thus, it equals E\. D

4. The extra vanishing theorem

We are going to introduce another (partial) order relation on A which extends the
containment relation on partitions. Let A,/x G A. Then we say A=^/x if there is a

permutation it g W such that A^ < /^w^ if i < ir(i) and A^ < /^w^ if i > 7r(i). In
this case we call it a defining permutation for

4.1. Lemma. If X=4/j and |A| > |/x| i/iera A \i.

Proof. All inequalities A^ < iivu\ must the equalities. This can only happen if
i > Tr(i) for all i which implies tt id and A \i. D

If A and \i are partitions then A=^/x is just the usual inclusion relation among
diagrams but in general "=<;" it is finer than "Ç".

We proceed by describing the minimal elements lying above A. For a subset

I {i\,... ir} of {1,... n} with i\ < < ir we define the cyclic permutation
7Tj : ir \-^> ir-\ h^ • • • h^ H h^ ir an(i c/(A) := /x G A by

\i% =\% i £ I.

Clearly, A -< c/(A) with the defining permutation ttj. Conversely,
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4.2. Lemma. Let A,yU G A with A -< \i. Then there is I such that

Proof. Let it be a defining permutation of X=4^i. If tt id then A^ < \i% for some i
and we can choose / {i}. Assume from now on it ^ id.

Let i\ be minimal with Tv{i\) ^ i\. Then necessarily Tv{i\) > i\. Put i]~ :=
7I"fc~1(*l) and let r > 2 be minimal with ir-\-\ > ir. Then we have i\ < ir < < i<2-

Now we take / := {i\,ir, ¦ ¦ ¦ ,*2J (note that ir might be equal to i\). Then, it
follows from \in > Xn + 1, /xî3 > X,,2 etc. that c/(A)=^/x with defining permutation

The next lemma shows that one doesn't have to check all permutations to show

4.3. Lemma. Let A,/(G A with X=4fj,. Then n wßw^ is a defining permutation.

Proof. First note that tt is the permutation with kt(X) k^/Mjj) for all i (with
kt as in section 2). Fixing tt like that certainly defines a new order relation =4'

which is coarser than ==<!. To show that these relations coincide it suffices to show

A^'c/(A) for all /.
For this we may assume that / is maximal among all J with /x := c/(A) cj(A).

This means that
Xt ^ Xn for i 1,... ,i\ - 1;

X% ^ X%2 for i n + 1,... ,i2 - 1;

etc.

\ =/= \r for i ir-\ + 1, • • • ,ir — 1;

\ =/= AÎ;L + 1 for i ir + 1,... n.

In this case one verifies easily

Mm) ^3+i(a) J !,••• ,'*-!; klr{ij) kn{X)

and ä;4(/x) kt(X) otherwise, i.e., wßw^ ttj. D

Definition. A subset S Ç A is called closed if A G S* and A=^/x implies /i£ä. If
that is the case let Is Ç P be the ideal of functions / which vanish in all A with
AeA\S.

4.4. Theorem. Let S Ç A be a closed subset. Then Sj(/s) Ç Is for all i
1,... ,n.

Proof. Let \i G A\S and / G Is- We have to show that Sj/(/x) 0. The definition
of Sj shows that Etf(jl) is a linear combination of /(jö) and terms of the form

y := a, crn_iAcri at-if(fi)
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where each operator a3 is either st or 1. This shows that y /(A) with \i c/(A)
for some / and A G A. Since S is closed we have A G A \ S and therefore, y O.D

Now we show the extra vanishing theorem:

4.5. Theorem. Let A,/x G A with A =^!/z. Then E\(Jl) 0.

Proof. Consider the closed subset S {v G A | X=4i/}. We have to show E\ G Is-
For generic q and t there is a function / G Is with /(A) ^ 0. Indeed, take for
example

t— 1 t—r t— 1

n y^+i(A* ^w) n

where ipk(z) '¦= (z — 1)(^ — 9 ^) • • • (z — q fc+1). Since Is is S^-stable there is

E\> G /s with E\> (A) ^0. In particular, I A'I < |A|. On the other hand, E\> (A7) ^ 0

implies A' G S, i.e. A^A'. Therefore, A' A (Lemma 4.1). D

4.6. Theorem. Let S Ç A be closed. Then Is (B\eskE\.

Proof. By Theorem 4.4, we have Is (&\es'kE\ for some subset S1 Ç A. Let
A G S". Then SA(X) ^ 0 implies A G S, hence S' Ç 5. Conversely, let A G 5 and

/igA\S. Then E\(Jl) 0 by the extra vanishing theorem. Hence E\ G Is and
A G S'. D

4.7. Corollary. Let ExEß J2U cx^E„. Then c^ 0 unless A,/z^z/.

Proof. Let S* be the set of z/ G A with \=4i>. Then by Theorem 4.5 and Theorem
4.6, the principal ideal VE\ is contained in ®„eskE„. This shows A=4v whenever

e relation yU=^i/ follows by symmetry. D

The whole discussion has also a symmetric counterpart. As already mentioned,
on A+ the order relation =^ is just inclusion of diagrams. Then everything works
for this order relation. See [KS] for the precise statements.

5. The inversion formula and integrality results

We have seen that the Macdonald polynomials are obtained from the E\ or P\
by taking the top homogeneous part. In this section we show how to invert this
process.

The Capelli polynomials E\ and the Macdonald polynomials E\ form two bases

of P. Define * G Endfc V by *(SA) E\. Another way to describe * is as follows:
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Let Va be the set of polynomials of degree d which vanish in S{n,d — 1) and
let Va the set of homogeneous polynomials of degree d. Then taking the top
degree term gives an isomorphism ty1 : Vd —* Vd- Since ty1 maps E\ to E\ we see

The next theorem tells us that Capelli and Macdonald polynomials are essentially

the same up to base change by ^.

5.1. Lemma. The following table gives for an operator A its intertwined operator
1.

A Ht C1 *:=a zt

In particular, the operators zt — S~ commute pairwise.

Proof. The endomorphism * maps an eigenvectors of £~ to an eigenvector of
Sj with the same eigenvalue. Thus we obtain \IJ£~ S^. For / G Vd holds

Htf G Vd and *'(#*/) H^'(f). Hence, Ht commutes with *.
We have ${Vd) Ç Vd+i (Corollary 2.5) and therefore *'($(/)) ?(*'(/)) for

all / G Vd-
Next consider A G A with Xn ^ 0 and A* as in Lemma 2.1. ThengArv~1$(SA*)

SA and qx^-1^(Ex*) Ëx ([Kn] Thm. 4.1). This implies *$ $*.
Finally, for z^ observe first that S^ is diagonalizable with non-zero eigenvalues.

Hence S~ exists.
According to the définition of S^, we have

Hence, by Corollary 3.3 and Theorem 3.6, the operator zt — E^ {z^ — 1)S~
maps Pd into Vd+i- Looking at the top homogeneous term we see ^'{{z% —

S71)/) z^'(f). D

Remark. The discussion above shows that Macdonald polynomials and Capelli
polynomials are just two different views of the same picture. Both have their

virtues: the main structure governing Macdonald polynomials is Cherednik's scalar
product on V. By transport of structure via * also the Capelli polynomials are
orthogonal with respect to a certain scalar product but unfortunately an explicit

formula for it is not known. On the other hand, the scalar product has its
replacement in the vanishing conditions which turn out to be just as good.

Observe that S~ is no difference operator anymore. Therefore, we introduce

the operator S := t^^Si Sn which acts on Vd as scalar multiplication by
q~d. It intertwines with the operator S A" which acts on Vd by q~d. Now
observe that Z% := (z% — S~ )S is a difference operator which corresponds on the
homogeneous side to ztS qSzt.
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Now we can state the inversion formula

5.2. Theorem, a) The operators Z\, ,Zn commute pavrwise

b) Let f be homogeneous of degree d Then *f?(f) q^2' f(Z\, ,Zn) 1 (where
1 G V denotes the unity)

Proof Since / is homogeneous of degree d, we obtain / q^2> f(ztS) 1 Thus b)
follows by applying ty D

This formula can be used to lift results for Macdonald polynomials to Capelh
polynomials As an example, we investigate integrality properties

For this we use a different normalization of E\ Recall, that the diagram of
A G A is the set of points (usually called boxes) s (i,j) G 1? such that 1 < i < n
and 1 < j < Xt For each box s we define the arm-length a(s) and leg-length l(s)
as

a(s) X,, - j
,»-1 j <

î + l, ,n\j<Xk<Xt}
1(8) =l\S) + l"(S)

If A G A+ is a partition then l'(s) 0 and l"(s) l(s) is just the usual leg-length
We define

sex

sG A

With this normalization, we obtain

5.3. Proposition. The coefficients of £\ andVx are in Z,[q,q~^-,t,t~^-]

Proof The leading terms £\ and V\ have coefficients in 1\q,t\ by Corollary 5 2

and Theorem 6 1 of [Kn] The result follows from the fact that the operators Z%

are defined over Z[g, q~ ,t,t~ ] D

This result can be improved For m 1, n we define the operators

Am HmHm+i ffn_i$
Am =HmHm+i Fn_i$

Then we have the following recursion relation

5.4. Theorem. Let X € A with m /(A) > 0 Put X* (Am - l,Ai,
Am_i,0, ,0) x1Ä
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Proof. Apply ty to both sides of the corresponding formula in [Kn] Theorem 5.1.D

5.5. Corollary. Let £x J2ß eAM^M and V\ ]CMPV"V Then

Proof. The operators Ht and Ht are defined over Z[t]. Since $ (zn — £~n+1)A,
the recursion formula implies e\ß G t~kZ,[q, q~^,t] with k (n — 1)(|A| — |/x|). To
show that no negative powers of q appear observe that Z1E4 — 1 H\ i7n_i$.
Therefore,

The claim follows from X^ qx^-1t^k for some k G N.
The assertion for V\ follows by symmetrization as in the proof of [Kn] Theorem

6.1. D

Remark. The assertion of the last theorem is equivalent to

6. The classical limit

Let a be a formal parameter. If one puts q ta and lets t go to 1 then (1— £)

converges to the Jack polynomial J^" (z). In this final section, I will discuss the
analogue for our non-homogeneous Macdonald polynomials. For this it is a bit
more convenient to set t qT and let q tend to 1. Then a and r are related by
a l/r.

We introduce the following notation: Let p(q,t) G Q(q,t), po € Q and k G N.

Then we write p -^po if lim Vi _\d P0- For example, qatb — 1 -^ a + br. (In

purely algebraic terms, lim p{q, qr) means: write p{q, t) in terms of x := q — 1 and

r := ^j and put x 0.)

As q —s- 1, the points Ä all collapse to 1. Therefore, we introduce the function
<Pq(x) := ^j and the affine transformation <pq(z) := {(fq{z\),... ,ipq(zn)). Set

_ 0 r ~
g := (0, —r,... — (n — l)r). Then we have <pq(\) -J-^ A where A := A + w\g.
Conversely, we can write Ä qx.
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The action of cpq on V is given by ipqf(z) f(ip~^(z)). We extend our notation

as follows: if X(q,t) and X(r) are operators on V then we write X(q,t) -^X(r)
if for all / G V

lim (g — l)~k ipqX (q, qr)cp~ f X(r)f.

For example, if X(q,t) is the multiplication operator by g(z;q,t) then

ipqX(q,qr)ip~^ is multiplication by ipqg g o y"1. In this way, g—^ go has

i Or
to be understood. Since <p~ (x) (q — l)x + 1 we obtain, for example, zt ^-^ 1

while zt — 1 ^-^ zt.
Define the operators Af(z) := f(zn — l, z\,... zn_\) and $ := (zn + (n—l)r)A.

6.1. Lemma. We have A -^ À and $ -^ l>.

Proof We have cpqA(p~^f(z) f('ip(zn),z\,... ,zn_\) where 'ip(z) zn/q —

\/q -^ zn — 1. Moreover, ^„(c^1(z)) — t^n+1 (q — \)zn + (1 — £~n+1) -^ zn +
(n-l)r. D

6.2. Theorem. For every A G A there is a unique polynomial E\ of degree |A|

and zx-coefficient equal to 1 which vanishes at all fi with |/x| < |A| and /i ^ A.

Moreover, E\ —'-+ E\.

Proof. Repeat the proof of Theorem 2.2 with respect to vanishing at <pq(\). Then
one sees, by induction, that the limit q —> 1 exists. D

In the limit q —> 1, the symmetric version has been already treated in [KS]. As
above we obtain

6.3. Theorem. For every A G A+ there is a unique polynomial P\ of degree |A|

which vanishes at all ß /x + g where ^ G A+ with |/x| < |A| and /x ^ A. Moreover,

Next we study the limit of the Hecke operators. Let at := st — rNt.

Or 1 r6.4. Lemma. We have Ht,Ht -J-^ at and Ht — Ht -J-^r.
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Proof. First observe that st commutes with <pq. Moreover,

-1
q

This implies the claim for Ht. For Ht, use Ht Ht +t - 1. D

The braid relations for the Ht imply them for the at. Moreover, from HtHt t
we deduce a^ 1. Hence we obtain

6.5. Corollary. The mapping st \-^ at extends uniquely to an action of W on V.

Remark. It is not difficult to see that the standard action of W and the one
defined above are conjugated by an element U G End-pw V Mn\{Vw). It would
be interesting to find such a U explicitly. Note however that U is not uniquely
determined.

Observe that the commutation relations zt^\Ht Hlzl can we rewritten as

(zl+1 - l)H% Ht(zt - 1) - (Ht - Hl) which implies

z,,-\-i(Tt atzt - r; zJal alzJ, j^i,i + l.

Therefore, the at and z3 generate a graded Hecke algebra.
We now consider the limit of the Cherednik operators. Let

Then we have

6.6. Theorem. For i 1,... ,n holds S^ — 1 -^ — S4. Moreover, E%E\ \%E\
for all A G A. In particular, the Et commute pairwise.

Proof. Follows from z
X

— 1 -^ —zt, Ht -^ at, $ -^ l>, and A - 1 -^ -X. D

6.7. Corollary. The top homogeneous part of P\ and E\ is a Jack polynomial
and Opdam's non-symmetric analogue [Op], respectively.

The extra vanishing theorem goes through verbatim:

6.8. Theorem. Let A,/x G A with A ^/x. Then Ëx(fi) 0.
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For the inversion formula we introduce

Z% zt - Et at crn_i$cri o"j_i

Furthermore, let ^ V —> V be the linear automorphism which maps the leading
term of Ex to Ex Then we obtain

6.9. Theorem. We have Z% —> Zt Moreover, Z^ ^zt and the inversion
formula holds *(/) f(Zt, ,Zn) 1 for all f G V

Finally, as for integrality, we choose the following normalizing factors

sex

With this normalization, we obtain

6.10. Theorem. We have £x 2-^-r(-l)|A|4 and Vx 2^r(-l)wVx Moreover,
the coefficients of £x and Vx are in Wj\r\
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