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Complete surfaces of at most quadratic area growth

Peter Li*

Abstract. In this article, we study complete surfaces with finite topological type and has at
most quadratic area growth In particular, we show that if the curvature of such a surface does
not change sign, then it must be of finite total curvature
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In 1935, Colin-Vossen [CV] studied the validity of the Gauss-Bonnet theorem
for complete non-compact surfaces In particular, he considered the relationship
between the Euler characteristic x(M) and the integral of the Gaussian curvature
if of a complete surface, M2, without boundary He proved that if for any compact
exhaustion {flt} of M, the limit

fK hm / K
m ^

exists, then

f K <
Jm

< 2ttx(M)

Later on, m 1957, Huber [Hui] proved that if the negative part of the Gaussian
curvature of M defined by

K- max{-K,0}

is mtegrable, then

/ K<2irX(M),
Jm

and M is conformally equivalent to a compact Riemann surface with finitely many
punctures In particular, this implies that M has finite topological type It also

implies that the positive part of the Gaussian curvature K^ m&x{0,K} is

mtegrable and hence M must have finite total curvature, l e
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\K\ <oo.
)M

In 1964, Hartman [H] farther proved that under the assumption

K- < oo
IM

the area A(r) of geodesic balls of radius r at a fixed point must grow at most
quadratically in r. Moreover, (also see [S]),

2A(r)
K + lim —^ 2ttX(M). (1)

The results of Huber and Hartman assert that the finiteness of JM K- implies
the finiteness of x(M) and Iim(j4(r)/r2). Moreover, (1) holds. It is then natural
to ask if the converse of this statement is valid. It turns out that the answer
is negative as indicated by the following example. Let us consider an arbitrary
non-fiat metric on a torus. Its universal Riemannian covering M is given by R2

endowed with a non-fiat Z x Z invariant metric. Clearly, M has finite topological
type and the area growth is quadratic because the metric is uniformly equivalent
to the fiat metric. However, the total curvature and also the integral JM K- are
not finite because of periodicity of the metric.

The purpose of this note is to prove that the finiteness of x(M and Iim(j4(r)/r2)
together imply the finiteness of the total curvature if we assume that the Gaussian
curvature of the surface is of one sign at each end.

We would like to remark that surfaces with finite total curvature have been

extensively studied by [Hu2], [F], and [L-T]. Using a different argument, Chen [C]

independently proved that if M is an immersed minimal surface in Rn of finite
topological type and the volume growth for extrinsic balls is at most quadratic,
then M must have finite total curvature. This is a special case of our theorem.
Indeed, a minimal surface necessarily has non-positive Gaussian curvature and
the extrinsic distance is dominated from above by the intrinsic distance, hence M
satisfies the hypotheses of our theorem and must have finite total curvature.

Theorem. Let M2 be a complete, non-compact surface with finite topological type.

If M has at most quadratic area growth and the Gaussian curvature of M is either
non-negative or non-positive, near infinity of each end, then M must have finite
total curvature.

Proof. The fact that M has finite topological type implies that M is diffeomorphic
to a compact Riemann surface with finite punctures. In fact, a neighborhood of
each puncture corresponds to an end of M. Obviously, the theorem follows if we
can show that \K\ is integrable at each end.

Since each end is diffeomorphic to the punctured disk which is also diffeomorphic

to R2 \ D2, we represent an end by R2 \ D2 with a metric that is complete at
infinity. By extending the metric arbitrarily, we may assume that M is diffeomorphic

to R2 and the curvature is either non-positive or non-negative on R2 \ D2.
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For the case when the Gaussian curvature of M is non-negative near infinity,
the surface satisfies

f/ K- < oo
Jm

and Huber's theorem implies that JM \K\ < oo Hence we only need to prove the
theorem for the case when K is non-positive near infinity

Let us first assume that there exists a simple, closed, C1 * curve 7, in R2 \ D2,

homotopic to S1 3D2 with non-negative geodesic curvature with respect to
the outward normal v Note that a C1 1

curve is C2 almost everywhere Hence

geodesic curvature is defined almost everywhere In particular, the following
argument which involves integrating the geodesic curvature is valid Then non-
positivity of K on R2 \ D2 implies that the curve 7 has no focal point in the
direction of v If Q denotes the domain bounded by 7 and E R2 \ Q denotes the
exterior domain, then we can parametrize E using Fermi coordinates with respect
to 7 In particular, if we take 9 G [0,2tt] to be a parametrization of 7 which is

proportional to arc-length, then each point x G E can be written as (0,r) where

r is the distance from x to 7 and r d(^/(6),x) Also, each coordinate curve i](r)
given by points m E which are at distance r from 7 is smooth Let C(r) denotes
the domain bounded by i](r) Applying the Gauss-Bonnet theorem on C(r), we
have

2ir / KdA + / kg (2)
JC(r) Jr,(r)

where kg is the geodesic curvature of rj(r) with respect to the outward pointing
normal -^ The smoothness of r/(r) and the first variation formula imply that

_ dl(r,(r))

(3,

where l(rj(r)) and A(C(r)) are the length of rj(r) and the area of C(r), respectively

If ds2 has infinite total curvature, (2) and (3) imply that —Qr'i increases
monotonically to infinity for sufficiently large r as r —> 00 This contradicts the
assumption that ds2 has at most quadratic area growth

We now assume that M does not admit aC11 curve 7 m e R2 \ D2 which
has non-negative geodesic curvature with respect to the outward normal Let us
consider the truncated end e(R) e n B{R) where B{R) is the geodesic ball of
radius R with respect to ds2 centered at the origin Let ß > 0 be a fixed constant
such that D2 C B(ß) For R > ß sufficiently large, the truncated end e(R) is

homeomorphic to a cylinder Let us consider a curve \i in e(R) which minimizes
length among all curves homotopic to S1 3D2 If \i lies completely in the
interior of e(R), then the first variation formula for arc-length asserts that /x is a
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geodesic This violates the non-existence assumption of 7 On the other hand, if
/x intersects both boundaries S1 and dB(R) l~l e, of e(R), then the length of /x must
be at least twice the distance d(Sx ,dB(R) fie) from S1 to dB{R) However, since
d{§,x,dB{R) C\e)>{R- /3), we have l(u) > 2{R - ß) By taking

I? > 2/3+2a, (4)

where 2a /(S1), we conclude that /(/x) > 2a This contradicts the minimizing
property of /x Therefore, /x must either intersect S1 or dB{R) n e, but not both

If /x n S1 0, then the first variation formula implies that /x \ S1 is a geodesic
Also, it was proved in [M-S] that /x must be C1 1 Moreover, it was established
in [A-B-B] that the geodesic curvature is non-negative everywhere with respect to
the outward normal This again violates the assumption that 7 does not exist
Hence /x must intersect dB{R) n e non-tnvially for all 2R > 2/3 + 2a

If dB(R) is smooth, the previous argument asserts that /x is C1 1 and has

non-positive geodesic curvature with respect to the outward normal Since the
Km) < 2a, the curve /x must he in the annulus (B(R) \ B(R — a)) n e Let QM

denotes the domain bounded by /x Using Fermi coordinates (0, £) issuing from /x

in the direction of the inward normal and using the fact that e has non-positive
curvature, we can now parametrize the set e n QM given by the intersection of
e and QM Let us define the curve \it {x G e n QM|(i(x,/x) t} and the set

Qp(t) {x G e n QM|(i(x,/x) < t} Observe that the curvature assumption on e

and the fact that /x has non-positive geodesic curvature with respect to the outward
normal imply that the curves \it are smooth for t < R — ß — a In fact, these are
the coordinate curves t) of the Fermi coordinates Applying the Gauss-Bonnet
formula to the domain QM \ QM(£) and using the identity

y dt
ft,

for all 0 < t < R — ß — a, we have

-2tt +

Integrating with respect to t from 0 to -§ — a, we conclude that

In particular, the minimality of /x asserts that

l(dB(R))>l(ri>(%-a)[2n- [ K) (5)
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The facts that jjC)dB(R) =/= 0 and 1{jj) < 2a. imply that \i is at distance at most a
from dB(R) Hence, QM\QM(£)(-j — a) must contain -£>(-§) Inequality (5) implies
that

R-ll{dB{R))>R-l{R/2-a)\2n- [ K)\ Jb(r/2) J

If the integral of —K is infinite, this asserts that R~^l(dB(R)) —> oo, which
contradicts the assumption that the area growth is at most quadratic

To overcome the possibility that dB(R) might not be smooth, we simply
consider a smooth approximation of the distance r by r satisfying

(1 -e)f <r < (l + e)f

and apply the previous argument to f This completes the proof of the theorem D
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