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A theory of cobordism for non-spherical links

Vincent Blanleeil and Frangoise Michel

Abstract. We define an equivalence relation, called algebraic cobordism, on the set of bilinear
forms over the integers. When n > 3, we prove that two 2n — 1 dimensional, simple fibered links
are cobordant if and only if they have algebraically cobordant Seifert forms. As an algebraic link
is a simple fibered link, our criterion for cobordism allows us to study isolated singularities of
complex hypersurfaces up to cobordism.

Mathematics Subject Classification (1991). 57R, 57R80, 57R90, 57M25, 57Q45, 328,
32855, 14B05.
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0. Introduction

In this work we present a cobordism theory for links which is motivated by the
study of the topology of isolated singularities of complex hypersurfaces. Let us be
more precise:

(0.1) Let f : (C**10) — (C,0), be a holomorphic germ with an isolated
singular point at the origin. We denote by D?k the compact ball of radius §
centred at 0 in C*, and by Sgk’lits boundary. The orientation-preserving home-
omorphism class of the pair (D22 f=1(0) 0 D2"*2) does not depend on the
choice of a sufficiently small ¢, by definition it is the topological type of f.
The orientation preserving diffeomorphism class of the pair (S2* 1 K(f)), where
K(f) = (f71(0)) n 82"+ is the link of f. The Milnor’s conic structure theorem
(see [M3, 68]) shows that the link K(f) determines the topological type of f.
Moreover, J. Milnor has also proved that:

L. f/|f| : Sgn+1 \ K(f) — Sl is a differentiable fibration which is trivial on

U\ K(f), when U is a sufficiently "small” open tubular neighbourhood of
K(f).

2. The manifold K(f) is (n — 2)-connected.

3. The adherence F' of a fiber of f/|f| is a compact, oriented, (n — 1)-connected
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smooth submanifold of SEQ"+1 having K(f) as boundary. By definition F'is the
Milnor fiber of K(f).

(0.2) More generally, we will say that a link is a (n — 2)-connected, oriented,
smooth, closed, (2n — 1) dimensional submanifold of S2ntl A knotis a spherical
link (i.e. a link abstractly homeomorphic to SQn*l). It is well-known that, for
any link K, there exists a smooth, compact, oriented 2n-submanifold F' of g2+l
having K as boundary ; such a manifold F' is called a Seifert surface for K.

(0.3) Following M. Kervaire [K1, 65], we say that two links Ky and Ky, ab-
stractly diffeomorphic to the same manifold KC, are cobordant if there exists an
embedding ®, ® : K x [0,1] — 5271 x [0,1], such that:

B(K % {0}) = Ko and ®(K x {1}) = K7,

where —K{ is the link Ky with the orientation reversed.

(0.4) Let I be a 2n dimensional oriented smooth manifold of $27*+1 and let
G be the quotient of H,,(F,Z) by its Z-torsion.

The Seifert form associated to F' is the bilinear form A : G x G — Z defined
as follows (see also [K2, 70] p.88 or [L2, 70], p.185): let (z,y) be in G x G, then
A(z,y) is the linking number in S2"t1 of 2 and iy (y), where iy (y) is the cycle
y2”pulshed77 in (52n+1 \ F') by the positively oriented vector field normal to F' in
Gertl,

By definition a Seifert form for a link K is the Seifert form associated to a
Seifert surface for K.

When n > 2, J. Levine ([L1, 69]) and M. Kervaire ([K2, 70]) gave a complete
characterization of cobordism classes of knots in terms of Witt-equivalence classes
of Seifert forms.

(0.5) A simple link is a link which has a (n—1)-connected Seifert surface. A link
K is a simple fibered link if there exists a differentiable fibration ¢ : 2"\ K —
517 @ being trivial on U\ K, where U is a ”small” open tubular neighbourhood of
K, and having (n — 1)-connected fibers, the adherence of which are Seifert surfaces
for K. In this paper we define in §1 (see (1.2)) an equivalence relation on integral
bilinear forms which is much more sophisticated than ” Witt-equivalence” and the
theorems 2 and 3, stated in §1, imply:

Theorem A. Ifn > 3, two simple fibered links are cobordant if and only if they
have algebraically cobordant Seifert forms.

(0.6) By definition an algebraic link is a link K(f) associated, as described
above, to a holomorphic germ f with an isolated singularity. Furthermore, Milnor’s
theory of singular complex hypersurfaces implies that algebraic links are simple
fibered links. So theorem 2’ and 3 stated in §1 imply:

Theorem B. Ifn > 3, two algebraic links are cobordant if and only if the Seifert
forms associated to their Milnor’s fibers are algebraically cobordant.
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In [Lé, 72], D.T. Lé showed that two cobordant algebraic links of plane curves
(i.e. when n = 1) are isotopic. In [DB-M, 93], P. du Bois and F. Michel found
(using the classical cobordism theory for knots of M. Kervaire and J. Levine), for
all n > 3, examples of non isotopic but cobordant algebraic knots. But in general
algebraic links are not spherical links. So theorem B gives a cobordism theory for
algebraic links.

Furthermore, having algebraically cobordant Seifert forms is also a necessary
condition of cobordism for simple fibered links when n is 1 or 2. So we obtain in
85, without any restriction of dimension, a ”Fox-Milnor” relation (see [F-M, 66])
for the Alexander polynomials of cobordant simple fibered links which implies:

(0.7) Corollary. Let Ko and K1 be two algebraic links having respectively Ag
and A1 as characteristic polynomials of monodromy. If Ko and K{ are cobordant
then the product Ag.Aq is a square in Z[X].

(0.8) Comments. In [V1, 77] and [V2, 78] R. Vogt gave, when n > 3, a suf-
ficient, but not necessary, condition of cobordism for simple links having torsion
free homology groups. As shown in [DB-M, 93] the sufficient condition of cobor-
dism for algebraic links given in [Sz, 89] by S. Szczepanski, cannot be true. So
the problem of finding a criterion for cobordism of simple fibered links was largely
open. Our definition of algebraic cobordism for Seifert forms solves the problem.

(0.9) In this paper we use the following notations: If X is a differentiable

manifold we denote by 0X its boundary, by X its interior and by Hy(X) the kt*-
homology group of X with coefficients in Z. If a is a k-cycle of X we denote by
[a] its homology class in Hi(X). If G is an abelian group let rk(G) be the rank of
G, and Tors(G) be the torsion subgroup of G.

1. Definitions and statement of results

Let A be the set of bilinear forms defined on free Z-modules G of finite rank.

Let € be +1 or —1.

(1.1) If A'is in A, let us denote by AT the transpose of A, by S the s-symmetric
form A 4 AT associated to A, by S* : G — G* the adjoint of S (G* being the
dual Homgz(G;Z) of @), by S : G x G — Z the s-symmetric non degenerated

form induced by S on G = G/Ker g*- A submodule M of G is pure if G/M is
torsion free. If M is any submodule of G let us denote by M” the smallest pure

submodule of G which contains M. In fact M Ais equal to (M ® Q) NG. For a
submodule M of G we denote by M the image of M in G.

Definition. Let A : G X G — Z be a bilinear form in A. The form A is Witt
associated to 0 if the rank m of G is even and if there exists a pure submodule
M of rank % in G such that A wvanishes on M ; such a module M is called a
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metabolizer for A.

(1.2) Definition. Let A; : G; X G; — Z, i=0,1, be two bilinear forms in A.
Let G be Gog @ Gy and A be (Ag @ —Ay). The form Ag is algebraically cobordant
to A1 if there exists a metabolizer M for A such that M is pure in G, an iso-
morphism ¢ from Ker S§ to Ker S} and an isomorphism 6 from Tors (Coker S)
to Tors (Coker 57) which satisfy the two following conditions:

c.l: M NKerS* ={(z,p(z));z € KerS§},

c.2: d(S*(M)") = {(z,0(z)); = € Tors (Coker S§)}, where d is the quotient map
from G* to Coker S*.

In §2 (see (2.3)) we prove:
Theorem 1. Algebraic cobordism is an equivalence relation on the set A.

(1.3) From now on, Ag and A; will always be two Seifert forms associated to
some (n — 1)-connected Seifert surfaces Iy and Fp, of two simple links Kg and
K. Let us justify the definition of algebraic cobordism. As a generalization of
the Kervaire-Levine theory of knot cobordism we obtain in §3 (see (3.10)):

Proposition. If Ky and K1 are cobordant simple links, then A = Ag & —A1 has
a metabolizer.

Remark. Let £ be (—1)", then for i=0,1, S; = A; + gAiT is the intersection form
on H,,(F;), Ker S} is the image of H,, (K;) in H,(F;) and Coker S} is isomorphic
to I:In,l(Ki). So for spherical links, both Ker S} and Coker S} are zero, and
conditions ¢.1 and ¢.2 in definition (1.2) vanish. Then, for spherical links, two Witt
associated Seifert forms are algebraically cobordant, and we recover the Kervaire-
Levine criterion for cobordism.

In the non-spherical case, the topology of the cobordism implies that the re-
striction of Ag on Ker Sjj is isomorphic (on Z) to the restriction of Ay on Ker S (it
is easy to check it directly, and it is also implied by the more general proposition
(3.10)). This necessary condition for cobordism is not implied by the fact that
Ag @ —A; is Witt associated to 0, but by condition c.1 in definition (1.2). The
topology of the cobordism also implies that the linking forms on Tors (H,,_1(K;))
are isomorphic. This necessary condition for cobordism is contained in point ¢.2
of definition (1.2).

(1.4) The major result of this work is theorem 2 proved in §3 (see (3.10) and
(3.13)):

Theorem 2. Let Ko and K1 be two cobordant simple links. If Ko and K1 have
(n — 1)-connected Seifert surfaces Fy and Fy with unimodular Seifert forms Ag
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and A1, then Ag is algebraically cobordant to Aj.

Remark. Let ¢ be 0 or 1. Let us suppose that K; is a simple fibered link and let
F; be a (n — 1)-connected fiber of a fibration ¢; : 2"+ \ K; — S1 : then, the
Seifert form A; associated to F; is unimodular. Conversely, if n > 3 and if A4; is
unimodular then K; is a simple fibered link (see [K-W, 77] chap. V, §3, p.118).

So, theorem 2 implies:

Theorem 2°’. Let Ky and K{ be two simple fibered links having Iy and F1 as
(n — 1)-connected fibers of differentiable fibrations g and p1. If Ky is cobordant
to K1, then the Seifert forms Ag and A1, associated respectively to Fy and Fy, are
algebraically cobordant.

(1.5) Using classical methods of surgery, we prove in §4 (see (4.4) and (4.5)):

Theorem 3. Let n be greater or equal to 3 and let Ko and K1 be two 2n — 1
dimensional simple links. If the Seifert forms Ag and Ay, associated to some
(n — 1)-connected Seifert surfaces Fy and Fi of Koy and Ky, are algebraically
cobordant then Kq is cobordant to K.

(1.6) Proposition (3.10), which does not use (as remarked in (3.12)) any hy-
pothesis on the Seifert forms, gives:

Theorem 4. Let Ky and Ky be two cobordant simple links. If Ag (resp. A1) is
a Seifert form associated to any (n — 1)-connected Seifert surface for Ko (resp.
K1), then Ag @ —A1 has a metaboliser M such that M NKer S* = {(z,¢(x));z €
Ker S5}, where @ is an isomorphism between Ker S§ and Ker Sf.

2. Algebraic cobordism

(2.0) Let Apg and A be two algebraically cobordant forms, let A be the form
Ag @ —Aq defined on G = Gg @ G1 and S be A + ¢ AT. 1In this section we
prove proposition (2.1) which shows that the algebraic cobordism between Ag and
A1 allows us to describe S ; this characterization of S is fundamental to prove
theorem 3 (see §4). Let M, ¢ and 0 be as in (1.2), let m be rk(G) and r be
rk(Ker S§). Then definition (1.2) implies that s = rk(S*(M)) = %rk(S*(G)) and
tk(M) =r+s5= 3.

We use the following notations: if F is any subset of G we denote by (F) the
submodule of GG, generated by E. If L is any submodule of G then:

Lt ={zeq@ st. Sz l)=0viel}
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Homz (G, 2) = {f € G* st. f()=0Vie L}

Moreover if L1 and Lo are two submodules of G, orthogonal for S, we denote by
L1 @+ Ly their (orthogonal) direct sum.

Lemma. We have: S*(G) N S*(M)" = S*(M™).

Proof. Let r be the rank of Ker Sj and s be the rank of S*(M). As M is a
metabolizer for S which fulfills condition ¢.1 in (1.2) we have:
rk(Ker §*) = 2rk(M N Ker 5*) = 21 k(Ker 5§) = 27, tk(5*(G)) = 25 and
tk(M*) = s +27. Hence M+ = (M + Ker S*)" and S*(M+) C S*(G)NS*(M)".
Moreover, S*(M) is of finite index in Homz(G|ML; Z). As HomZ(G|ML;Z)
is a pure submodule of G*, we get S*(M)" = HomZ(G|ML;Z). So if S*(z) €

S*(M)", then S*(x,1) =0 for all / in M+ and z is in M. O

Since S*(M) is of finite index in S*(M)", one can write (S*(M)A)/S*(M) =
@Z/a' 7 Where a; € N\ {0} and q; divides a; 11 (we do not exclude that there
=1

exists an integer [ such that a; =1 for¢=1,...,1).
Proposition. The submodule M is pure in G if and only if S*(M*) = S*(M).

Proof We suppose that M is pure in G. As M N Ker S* = A(y) has rank r, the
rank of M + Ker S* is s 4 2r. So M + Ker S* is of finite index in M. Let z be in
M ; there exists a positive integer k such that kz = y + m, where y is in Ker S*,
m isin M ; so @ = kT. Since M is pure in G then T is in M, so there exists
y’ in Ker $* such that z 4+ ¢’ is in M. Finally S*(z) = S*(z +y') € S*(M), and
S*(M*) C S*(M). But M C M+ so S*(M1) = S*(M).

We suppose that $*(M) = $*(M™1). First we prove that ML is pure in G. Let
z be in M+ with Z = kT where z is in G and k is a positive integer. So there exists y
in Ker S* such that kz = z+y. For all m in M we have S(kz,m) = S(z+y,m) =0,
so S(z,m) = 0 and = is in M. Now we prove that S*(M~*) = S*(M) implies
M = MY, Let z bein ML, If S*(z) = f there exists m in M such that $*(m) = f.
So z—m =y isin KerS*, and Z =m is in M. Finally, since M7Tis pure in G and
ML c M we get ML ="M is pure in G. O

By definition (1.2) M is pure in G, so lemma (2.0) and proposition (2.0), and,
conditions ¢.1 and ¢.2 in definition (1.2) imply that CokerS* is isomorphic to

ZQT ® (@Z/al Z)2
$i=il.
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(2.1) Proposition. There exists a basis B = {m;,m};i=1,...s+r} of G such
that:
1. {my;i=1,...,s4r} is a basis of M,
2. {my,m};i=s+1,... str} is a basis of Ker S* and {m};i=s+1,...,s+r} is a basis of
Ker 53,

1
3. the submodules (m;,m}),i=1,... ,str ; are orthogonal for S, i.e.: G = @ {my,mfy,

1<i<s+r
3. when i=1,...,5,S(m;, m) = a;.

Definition. Such a basis is called a good basis of G associated to M.

The form S = A+cAT is always an even form. Moreover, when the a; are odd
we get the following corollary:

Corollary. When the a; are odd, the isomorphic class of S is given by m = rk(G)
and the isomorphic class of Coker S*.

Proof of proposition (2.1). In (2.0) we have seen that S*(M)" = HomZ(G|MJ_; 7).

Let Mg be any direct summand complement of (M NKer S*) in M. There exits a
basis {m;;i=1,...,s} of Mg and a basis {h;;i=1,...,s} of HomZ(G|ML;Z) such that

S*(m;) = a; h; where a; € N\ {0} and a; divides a; 1. Let m} be any element in
@ such that G = Ker by @ (m}) and hy(m}) = S(my,m}).a;’ = 1.

Claim. For all z in G, a1 divides S(z,m]).
If a1 = 11it is obvious. If a1 > 1, condition ¢.2 in (1.2) implies that (S*(G)A)/S*(G)
is isomorphic to (S*(M)A)/S*(M))Q = (@ Z/a Z)2 and the rank of S*(G) is 2 s.
i=1

So ay divides S*(z) for all z in G.

Now, we will construct an orthogonal complement (M; @ Rq) for (mq,m]) in
G such that:

i) M =(m1)® M,

i) Kerhi = M & Ry.

Let M; be the submodule of M generated by m) = m; — a;l S(mg, mj).mq,
2 <i < s, and M N KerS*. By construction My is orthogonal to (m1,m]) and
M = (m1) ® M.

By construction Ker hq is orthogonal to m1 and M is in Ker k.

If {z;,4=2,... s+r} is a basis of any direct summand complement of M in Ker hy,
let Rq be the submodule of Ker k1 generated by 2 where: z} = xi—afl S(xi, mi).m1.
Then Ker hy = (m1) ® M1 ® Ry and Ry is orthogonal to m].

Now we have an orthogonal decomposition of G in (my,m}) &+ (My @ Ry). By
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induction on s we obtain an orthogonal decomposition:
G = (@ {mi,m})) & (M, & R,) where Ker §* = M, & R,.

Let {mgs41,... ,msqr} be any basis of Ker S* N M. Thanks to condition c.1,
Ker S*NM = {(z, ¢(2)); = € Ker Sj}. So we can choose any basis {m}, {,... ,m{, }
of Ker S§ to build up a basis of G which fulfills proposition (2.1).

(2.2) Now, we use the notations established in §1 and the following convention:
if f : R — S'is an isomorphism of Z-modules, A(f) is the submodule {(z, f(x));z €
R} in Re® S. To prove theorem 1, we need the following proposition which gives
an equivalent definition of algebraic cobordism.

Proposition. Let Ag and Ay be in A. Then Ag is algebraically cobordant to Ay if
and only if there exists a pure submodule H of G = Go®G1 on which A = Ag®— Ay
vanishes, an isomorphism ¢ from Ker Sg to Ker ST and an isomorphism 6 from
Tors (Coker S§) to Tors (Coker ST) such that:

c.1l: A(p) C H,

c.12: the image T of H in G = G/Ker g* isa metabolizer for S =55 & —57,

e.2: d(S*(H)™) = A(9).

Proof. Let M,p,0 be as in definition (1.2). Then M satisfies ¢.1 and ¢.2. The
existence of ¢ shows that Ker Sjj and Ker ST have the same rank, r. So the rank of
G is (mg+m1 —27). By c.l MNKerS* = A(yp) and rk(M) = 2™ because M
is a metabolizer for A. So rk(M) = M%l — 7 and S vanishes on M. It implies
that M is a metabolizer for S.

Conversely let H, and € be as in the statement of proposition (2.1). As A(y)
is pure in H and in Ker §*, there exists a direct sum decomposition H N Ker §* =
A(p) ® Mp. As Ker S* is pure in G, there exists also a direct sum decomposition
H = My @ (HnKerS*). Let M be My ® A(p). By construction A vanishes on
M, M NnKerS* = A(p) and S*(M) = S*(H). So M, ¢ and @ satisfy c.1 and ¢.2
of definition (1.2). Furthermore, H = M; = M and by c.12 the rank of H is
m — 7. But M being isomorphic to My, the rank of M is m and M is
a metabolizer for A. O

(2.3) Proof of theorem 1. The only non trivial property to check is the transi-
tivity of the relation ” algebraic cobordism”.

(24) Lemma. Let B; : G; X G; — Z bein A, 1 =0,1,2. Let m; be the rank of
G;. If there exists a metabolizer Hoy (resp. Hya) for Bo® —By (resp. B1® —Bsg)
and if the B; are non-degenerate, the form By ® —Bg vanishes on Hpo = m(L)
and vk Hoy = %rk(Go ® Ga), where: G = Gy @ G1 ® G1 ® Go, H = Ho1 ® Hyo,
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A={(y,y) e G1DG1; ye G1}, L=HN(Gy® A® Gq) and 7 is the projection
of G on Gy & Go.

Proof. As By @& —By vanishes on Hpo by construction, it is sufficient to prove
that the rank of Hpg is m—DJrrml. The definition of Hogo gives the following exact
sequence:

0—>LﬂA—i>Ll>HDQ—>O.

So we get:
(%) k(L) =rk(L N A) + rk(Hp2).

If v is in H, there exists unique « in Gg, y1 and y2 in G1 and z in G9 such that
v=(z,y1,y2,2). Let p: H — G1 ® G be defined by p(v) = (y1 — v2,0). Let us
denote by L the image p(H). By construction L is the kernel of p and we get the

exact sequence: 0 — L LHSEL L1 — 0. Both this sequence and () show:

(55) mo*”++2ml —rk(Ly) = rk(L A A) + tk(Hog).

Claim. By (B1 @ —B1), AN L is orthogonal to L1 @ A.

Indeed, A is self-orthogonal ; if (y,y) is in AN L, then (0,y) is in Hopp and (y,0)
is in Hig. On the other hand, an element of Lq is of the form (y1, —y2) where
there exists (z,y1) in Hoy and (y2,2) in His. So Bi(y,y1) = Bi(y1,y) = 0 and
—Bi(y,y2) = —Bi(y2,y) = 0.

The rank of L1 & A is my + rk(L1). The claim implies that the rank of the
restriction of By @ —Bj to (ANL) x (Gy @ Gy) is smaller or equal to m1 —rk(Ly).
But B1 @ — By is non-degenerate by hypothesis, so: rk(ANL) <mjy —rk(L1). By
(#+) it implies: 20472 < yk( Hoo).

As By and By are non-degenerate by hypothesis and as By @& —Bs vanishes on
Hps, rk(Hop2) < M-Jgﬂz It ends the proof of the lemma. |

Let us go back to the proof of theorem 1. Let A; be algebraically cobordant to
Aip1,1=10,1. Let M; ;41 be a metabolizer for A; ® —A;;1 with the isomorphisms
¢; and 6; fulfilling conditions ¢.1 and ¢.2 in definition (1.2).

Let us take the following notations: G = Go ® G1 ® G1 ® Go, Sgo = So @ — 959,
Gue=Gy DGy, S=5Sp®-5S1®51® 52, A={(z,z2) ; z€ G1} CG1 D Gy, d
be the quotient map from G to Coker S* and dps the quotient map from Gy to
Coker S§,. Let 7 (resp. ) be the obvious projection from G (resp. Coker S*) to
Gp® Gy (resp. Coker Spj,). Since M ;1 is pure in G; @G, 1 we have the following
decompositions M;-Hl = A(pi) @ Ker S @ R; ;41 with M, ;41 = Alpi) ® R iq1,
and R; ;1 is pure in G; @ Gjy1. Let @; ;11 be any direct summand complement
of Mz‘%@ﬂ in G; © Gy, UTi;401 = Rii1®© Qj41, then we have the following
decomposition G' = Ker S§; @ Ker STy @ To1 ® T12. Let us denote by Tp (resp. 17,
T{, T) the projection of Tp1 (resp. To1, Th2, T12) to Go (resp. G1, G1, Ga). We
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modify Ri9 and @12 by adding to them some elements of A(yq) in order to have
P = Tl/. Moreover, we have the following equalities: G; = Ker S/ & T, i =0,1,2.

Let Tpo be Toa = w(Tpy @ Tio) = To ® Th. Let Rpa be the smallest pure
submodule of Tpa which contains the projection of (Rgy @ R12) N (Go © A ® Ga)
on Tho: Rog = (n((Ro1 ® R12) N (Go® A® G2)))" ; and let A be Ag @ —As, ¢ be
w1 0w and @ be —(f1 o ).

By proposition (2.2), to prove that Ag is algebraically cobordant to Ao it is
sufficient to prove that H = A(p) @ Rp2 is a metabolizer for Ag & — A9, and, H
fulfill conditions c.11, ¢.12 and ¢.2 of (2.2). First we remark that H fulfills ¢.11 by
definition.

(2.5) Lemma. We have the equality doa(Sge(H)™) = A(—01 0 bp).

(2.6) Lemma. The submodule H is a metabolizer for A, and H is a metabolizer
for S() D SQ

Proof of lemma (2.5). By construction: d(S*(G)") = Tors(Coker S*) and
doa(Sgo(H)™) = 7(d(S*(L)")). But c.2 implies:
d(5* (L)) = (A(80) ® A(91)) N d(S*(Go ® A @ Ga)"), s0
d(S*(L)N) = {(z,00(z),y, 01(y)); = € Tors(Coker S§) , y = —bp(z)}.
Finally: doa(Sge(H)") = {(x, —01 06p(x)); z € Tors(Coker S§)} = A(—01 o).
O

Proof of lemma (2.6). The restriction S; ;11 ITsy on T; ; 41, of the e-symetric

bilinear form S; ; | 1, is non-degenerate ; and the submodule R; ;1 is a metabolizer

for Sl7z+1|T”+1, ; = 0,1. By construction Ty (resp. Ti, T2) is the projection
of To1 (resp. Tp1, T12) onto Gy (resp. Gp, G2). So we have Si7i+1|Ti oy =

S"|E®_S"+1|T¢+1' We use lemma (2.4) replacing B; by S"|Ti’ S0 502|T02 vanishes
on Rpo and rk Rgg = %rk Tp2. Since the pure submodule H of Gpo = Ker S35 @ T
is defined by the equality H = A(¢) @ Rgg then rk H = %rk Goa. Moreover for
all hq, hg in H there exist two integers a1 and a1 such that for z = 1,2 we have:
a; hy = w(m;) and m; = (:chapo(xz) wolxi), p(xi)) + (Mo, m1;,me;,me ;) is in
Moy @ Mya. So A(hy,he) = ——(Ao1 @ —A12)(m1,ma) = 0, so A vanishes on
the pure submodule H of Goa. i?‘lnally H is a metabolizer for A By construction
SOQ'T is isomorphic to Sga, so as Rgy is pure in Tps then Rgg is a metabolizer

for Spo. O

The above properties of H, and, lemmas (2.5) and (2.6) imply conditions ¢.12
and c¢.2 of proposition (2.2), and Ag is algebraically cobordant to As. This ends
the proof of theorem 1. O
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3. The necessary condition to have a cobordism

Let Ko and K1 be two cobordant links. Let us denote by S the product $27t1 x
[0,1] and by ¥ its oriented boundary. The definition of cobordism gives a sub-
manifold C = ®(K x [0,1]) of S such that XN C = Ko[[(=K1). Let N be
FyuCU(—F1) where F; is a Seifert surface for K;. By construction N is a closed,
compact, oriented, 2n-submanifold of S.

(3.1) Lemma. There exists a smooth oriented, compact, submanifold W of S
such that N is the boundary of W.

Proof. This lemma is a consequence of classical obstruction theory. If n > 3 a
proof is written in [L2, 70], p. 183. As the existence of W is fundamental to
obtain theorem 2, we write a proof which works in any dimension.

Let C; for j = 1,...,k be the k connected components of C. As C has
a trivial normal bundle in &, it is possible to choose disjoint, closed, tubular
neighbourhoods U; of C; and a diffeomorphism ¥ : €' x D? U = H U;.

1<j<k

Now we have meridians m; on 9U; defined by: m; = ¥(P; x S') where P; is
some point of C; and m; is oriented such that the linking number of m; and Cj

(in §) is +1. Let X be S\ U, v be the diffeomorphism induced by the inclusion
of 8X in U, e be the excision isomorphism and 8" (resp. 9%) be the connectant
homomorphism for the pair (S,U) (resp. (X,0X)). Then we have the following
commutative diagram:

0% o

=X HYX,0X) & HYWWX) % HY9X) 2 HY*X,0X) —

~Te T v e

1 1 1 =o' 2
= HY(S,U) — 0=H(S) — H(WU) = H{(SU — 0

The commutativity of all the squares of the above diagram implies that the homo-
morphism p is zero so ¢ is injective and 9% is surjective for 0 < ¢ < 2n—1. We have
the following direct sum decomposition: H'(8X) = o(HY(X)) ® v(HY(U)). Any
element of o( H1(X)) is represented by a differentiable map from X to S1, which
is, up to homotopy, characterized by its degree on each meridian m;, and which
has a unique extension to X. Let g : X — S be the unique, up to homotopy,
differentiable map which has degree +1 on each meridian. Thanks to the Thom-
Pontriagin construction there exists a differentiable map f : ¥\ (Ko [[ K1) — S*

o e}
which has Fy [[(— F1) as regular fiber and f has degree +1 on the meridians of
the connected components of Ko [[(—K1). So f and g have homotopic restrictions
on X MY and we can choose g such that its restriction on X N> coincides with f.
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Then g has a regular fiber W such that WY = (Fy [[—F1) N X. The union of
W with a small collar in U is the manifold W such that N = oW. O

(3.2) Let us take Agp (resp. Ajp) the Seifert form associated to a (n — 1)-
connected Seifert surface Fy (resp. F1) for Kqg (resp. Ki). Let 7 : Ko — K be
the diffeomorphism defined by: 7(P) = ®(® 1(P) x {1}) where P is any point
of Kg. The diffeomorphism 7 induces isomorphisms 6; : H;(Ko) — H;(Ky) such
that for any j-cycle z of Ko, (,0;(z)) is a boundary in C' = (K x [0,1]). Let
xi » Hp(K;) — Hy (F;) and X; : H, (F;) — H,(N), ¢ =0, 1, be the homomorphisms
induced by the inclusions K; C F;, C N. The Mayer-Vietoris exact sequence
associated to the decompostion of N in the union of Iy UC and C'U (—F) gives:

— H,(Ko) X H,(Fo) @ Hy(Fy) 2 Hy(N) 2 H,_1(Ko) —

where x = (x0, X1 © 0») and A = (A9, A1)

(3.3) Remark. Let m; be rk(H,,(F};)), m be rk(H,,(IV)) and r be rk(x(H,(Kp))).

By Poincaré duality m = mg + mq, r = rk(6(H,(N))) and r = rk(Ker S}) where
S is the adjoint of the intersection form S; on H,, (F;).

(3.4) Construction of the isomorphisms ¢ : Ker S§ — Ker ST and
6 : Tors(Coker S§) — Tors(Coker S7).

Let S;, : Hu(F;) — H,(F;,K;) and 0 : H,(F;,K;) — H, 1(K;) be the
homomorphisms given by the long exact sequence for the pair (F;, K;). Let
U : H"(F;) — Homgz(H,(F;);Z) be the universal coefficient isomorphism (F; is
(n — 1)-connected) and let P : H,(F;, K;) — H"(F;) be the Poincaré duality
isomorphism. We have the following commutative diagram:

0 — xi(Ho(Ki) — Hu(F) = H,.(F;, K;) — OH,(F,K;) —

l I ~|UoP L A

|=

0 —  KerSF — Hu(F) 2% Homg(H,(F):Z)

Coker S7 —

0

0
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By definition A, : O(H, (F}, K;)) — Coker S} is the quotient of the isomorphism
Uo P, so A; is an isomorphism.

Let us consider again the isomorphism 6; : H;(Kq) — H,;(K), which is defined
in (3.2) thanks to the existence of the cobordism. Since F; is (n—1)-connected then
OH,(F;, K;)) = H,_1(K;) and 0, (Ker xo) = Ker x1, so 0,,_1 o d(H,,(Fp, Ko))=
O(H,,(F1, K1)).

Let 6 be the restriction of the isomorphism Ajo06,_10 Aal on the Z-torsion
of Coker Sg.

Let ¢ be the restriction of 8,, on xo(H,(Kp)). As x;(H,(K;)) = Ker 5F , so ¢
is defined on Ker Sj.

We denote by A(g) the submodule {(z, ¢(z)); = € Ker S5} of Hy, (Fo)®H, (F1).

(3.5) Remark. By construction ¢ fulfills: ¢ o xg = x1 06, and A(p) =
x(Hn(Ko)) where x = (x0,x100x») asin (3.2).

(3.6) To prove theorem 2, we will construct a metabolizer M (in H,,(Fo [ —F1))
for A = Ag ® —Aq1. This metabolizer M will fulfill conditions ¢.1 and ¢.2 in
definition (1.2) of the algebraic cobordism, for the isomorphisms ¢ and 6 defined
in (3.4). To do that, we have to choose an oriented submanifold W of & with
(W) = N (thanks to (3.1) such a W exists). Let j : H,(N) — H, (W) be the
homomorphism induced by the inclusion of N in W.

(3.7) Lemma. The form A= Ay @ —Ay vanishes on X\~ (Ker j).

Proof. Tt is sufficient to prove that A vanishes on A~!(Kerj). Let a = [z] and
b = [y] be two homology classes in A1 (Kerj). As X is induced by the inclusion
of Fp[]—F1 in N (see (3.2)), there exists two (n + 1)-chains & and 8 in W such
that da =z and 93 = y. Let iy be the positively oriented normal vector field to
W in S. The intersection of « and i () is zero. Hence the linking number in %
of z and i4(y) is zero. But this linking number is, by definition, equal to A(a,b),
so A(a,b) =0 and the lemma is proved. O

(3.8) Lemma. Let m be the rank of H,,(N). The rank of Kerj is 5.

Proof. The long exact sequence for the pair (W, N) gives the exactness of:
0 — Hop41(W) — Hopy 1 (W, N) — Hop(N) — ... = Hy (W, N) — Kerj — 0

The alternating sum of the ranks in this exact sequence together with the Poincaré

duality give:
k(H, (N
rk(Ker 7) = Th(Hn (V) 2( ) = —ﬂ;.

(3.9) Lemma. There exists a direct summand decomposition of X~1(Ker /) in
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A(p)® Ry ® R where A(p) = {(z,¢(z)); = € KerS§}, Ro = A1 (Ker ;") NKer Sg,
and R is any direct summand complement of \~1 (Ker 3" )NKer §* in A1 (Ker j).

Proof. As the considered submodules of Afl(Ker 4™) are pure, the lemma comes
from the following equalities:

x(H,(Kp)) = Ker A € A1 (Ker j) (see (3.2)),

A(p) = x(Hn(K0)) (see (3.5)),

Ker §* = x(H,,(Kp)) @ Ker S§. O

(3.10) Proposition. The submodule M = A(p) ® R of A1 (Ker ) is a
metabolizer for A = Ag @ — Ay, which fulfills: M N Ker S* = A(y).

Proof. By lemma (3.9), M NKer S* = A(¢). By (3.6), A vanishes on M. So we
only have to show that M is of rank %. As remarked in (3.3), r = rk(6(H,.(V))),
so tk(§(Ker ) < r. Let us consider the following exact sequence induced by
(3.2): 0 — A(p) 2 A~ 1(Ker 52) 2 Ker 57 £ 5(Ker 7°) — 0. This exact sequence
together with the equalities: rk(Kerj") = & (see (3.8)), tk(A(p)) = r ; give
tk(A~!(Ker j7)) = r + B — rk(d(Ker j")). So tk(A~!(Ker j")) > 2.

We can remark that if A is non degenerated (as supposed in theorem 2) then
we have rk(A~!(Ker j")) < %rk(Hn(Fo) @© H,(F1)) = %, because A vanishes
on A\~ (Ker ;") (see (3.6)). So, if A is non degenerated, rk(A~!(Ker j*)) = 2.,
rk(6(Ker j°)) = r, rk(Ro) = 0 and M = A~ (Ker j”) is a metabolizer for A.

Come back to the general case. Let rg be the rank of Ry. By construction:
k(M) = tk(A\~ ! (Ker j2)) — o = r + & — rk(3(Ker 57)) — ro.

(3.11) Lemma. The rank | of 6(H"(N))/(5(KerjA) is greater or equal to rq.

Proof. Let {e;}, j = 1,...,70 be a basis of Ry. Let {e}} be in H,(N) ®z Q
such that Sn(A(ej),e}) = di; where Sy is the intersection form on H,(N) ®z Q.
The e; exists because Sy is unimodular. Let R* be the submodule of H,,(N)®7Q
generated by {ef}. Since Ry N Ker A = {0}, then rk(A(Rp)) = r0. As S vanishes
on Rp, then Sy vanishes on A(Rp). It implies that rk(R*) = rk(Ro) = 79, and
Ker jnR* = {0}. Since Ry C Ker S, we have S(x,y) = 0 for all z in Ry and ally in
Ho(Fo [T -F1). So B* N A(Ha (b [T -F1)) = {0} and rk(6(Ha(N) /5K er 1)) =

|

I > 1k(6(R*)) = tk(R*) = rg.

In order to end the proof of (3.10), we only have to show that tk(R) = & — 7.
But rk(6(Ker 52)) = r — I ; so we already have shown that rk(R) = rk(M) —r =

Z—(r=10)—ro.
By lemma, (3.11), we have [ —rg > 0, so rk(R) > & —r. But RN KerS* = {0}

by construction, and the form S induced by S on H,,(Fp]] _Fl)/Ker G+ is non-
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degenerate of rank m — 27. So rk(R) < % — r because 'S vanishes on R =

R/(RNKer S*)-

O

(3.12) Remark. We have found a metabolizer M = A(y) ® R for A which
fulfills condition c.1 of the algebraic cobordism without any condition on A. We
already have got theorem 4 (see (1.6)). To prove condition ¢.2 and M is pure in
G, we will have to choose (n — 1)-connected Seifert surfaces I for K; on which
the Seifert forms A; are unimodular. So the following proposition (3.13) together
with proposition (3.10) imply theorem 2 stated in (1.4).

Let 6,1 be the isomorphism betweeen H,_1(Kg) and H,,_1(K7) defined in
(3.2), and let @ the isomorphism between Tors(Coker Si) and Tors(Coker ST) de-
fined in (3.4). Using the notation of (2.2), let A(6,,_1) (resp. A(#)) be the group
{(z,0,-1(z)) ; € Tors(H,,_1(Kp))} (resp. {(z,0(z)) ; = € Tors(Coker S§)}).

(3.13) Proposition. If Ag and A1 are unimodular the metabolizer M = A(p)®
R of A= Ap@—Aq, fulfills d(S*(M)N) = A(9) ; and M is pure in H”(F)/Ker 5%

Proof. Let us denote Fo []—F1 by F', Ko]]—K; by K, and 5 @ —ST by S*.
We consider for F' the following commutative diagram already constructed for F;
in (34):

S
-

0 — KerS, — Hy(F) H.(F, K) L HHL(FK)) — 0

[ l = UoP =] Ao ® Ay

0 — KerS* — H,(F) = Homg(H,(F);Z) 2 CokerS* — 0

(3.14) Lemma. The equality d(S*(M)"™) = A(0) is equivalent to the equality
S (M) = A(6,,—1).

Proof. The lemma is a consequence of the two following statements:

The restriction of Ag & Ay on A(6,_1) is an isomorphism to A(f) because

0o Ag = Aj 06, 1 by construction (see (3.4)).
The restriction of Ag @ Ay on (S (M)") is an isomorphism to d(S*(M)")
because the commutativity of the above diagram gives U o P(S,(M)") = S*(M)".
O

Let x : Hy(N) — H,, (N, C) be the homomorphism which is defined in the long
exact sequence for the pair (N,C) and p : H,(N,C) — N, (F, K) be the inverse
of the excision isomorphism induced by the inclusion of the pair (F, K) C (N,C).
Let ¢ = pok : Hy(N) — Hy(F,K) and = (Id,6,,_1) : H,_1(Ko) — H,_1(K).
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With the notations used in (3.2) we have the following commutative diagram:

- Ho(Koy) 2 H(F) 2 H(N) 2 H, 1Ky —

(%) @ Le (I 1o

— Ho(K) & H,(F) (LK) 2 H, 1K) —

The square (I) is commutative by fonctoriality, and (II) is commutative by defini-
tion of & and 6.

_ (3.15) Lemma. If Ay and Ay are unimodular, then we have §(Kerj") =
H,,—1(Ko).

We first show that lemma (3.15) implies proposition (3.13).
We show that M is pure in H"(F)/Ker g*» which is equivalent to prove that

the quotient H"(F)/(Ker S* + M) is torsion free. Since A = Ag @ —A; is non-

degenerate M = A~ 1(Ker ;). Furthermore by diagram () we get A(Ker §*) =
Ker&. Let pr be the projection of H,,(N) on H”(N)/(Kerj/\ + Kerg) Ker (pro

A) = M + Ker S*. The quotient of pr o A induces an injective map from
H”(F)/(KerS* 4 M) into H"(N)/(Kerj/\ + Kerg).

Claim. The module H"(N)/(Kerj/\ + Ker¢) is torsion free.

Proof of the claim. There exists z;,7 = 1,... ,r, in Ker j” such that I:In,l(Ko) =

@((5(@))@Tors(f]n,1([(o)). Let (ys)i=1,... » a basis of Ker  such that Sy (zi,v5) =
i=1
d;5. By induction on r, we can construct these bases such that H,(N) =T aolT+t

where T' = @(x“yJ If we denote by D the module D = T+ N Ker j* and by
i=1

D* any direct summand complement of D in T, then we get:

H”(N)/(Kerf + Ker j7) = D* which is torsion free. O

Finally Hn(F)/(Ker S* 1 M) is torsion free and M is pure in Hn(F)/(Ker 5+

So if n = 1, the links Ky and K have torsion free homology groups (K is a
one dimensional compact manifold), so Tors(Coker $*) = {0} and we have already
proved proposition (3.13).

Now let us take n > 2.

Thanks to lemma (3.14), the equality: A(0,_1) = 9(S«(M)") gives propo-
sition (3.13). The above diagram (x) and lemma (3.15) imply: 8(H, _1(Kp)) =
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A1) T O(S(M)™). To show that the inclusion: A(6,,_1) C d(S.(M)") is an
equality, it is sufficient to take any z in (8(S,(M)")No(H (Fo Kjp)), and to show
that such a z is zero.

Let us denote by L (resp. L;) the linking form on Tors (H,_1(K)) (resp.
Tors (H,,_1(K;))). By definition (see remark (3.16)) such a form L = Lo & —Lq
is non degenerated and vanishes on 9(S,(M)") because Sy @ —S1 vanishes on M.
Let (y,60,_1(y)) be in A(6, _1). Then L{z,(y,0, 1(v))) = Lo(z,y) = 0 for all
y € Tors(H,_1(Kp)). The non degeneracy of Lo implies z = 0. This ends the
proof of proposition (3.13). O

(3.16) Remark. The linking form L is defined as follows (see [L-L, 75] prop.
2.1): Let z,y be in Tors (H,,_1(K)) such that p and ¢ are the smallest positive
integers with p.z = q.y = 0. Let T and g be in H,,(F') such that 9(5.(T) ® %) = 2
and 0(5.(7) ® %) =y. Then: L(z,y) = p—'lq S(Z,7) mod Z.

Proof of lemma (3.15). As shown in (3.10), if Ag @ —A; is non degenerated,
M = X !(Kerj") has rank % and is the chosen metabolizer. So A induces a
monomorphism X on Hn(F)/M to H”(N)/Kerj/\ and we get the following exact
sequence:

0 = Hu(F) g 2 Hul) jcep 11 2 Fu1 (o) g(iger oy = 0.

As X is injective and M is pure in H,(F) there exists two Z-bases {€j;=1,...,%}
of Hn(F)/M and {kj;j=1,...,2} of Hy(N )/K er such that X(g;) = p;.k; Wlth
p; € Z\ {0}. Let E (resp. H) be a direct summand complement of M (resp.
Kerj") in H, (F) (resp. H,(N)). Let also {ej;j=1,...,%} (vesp. {k;;s=1,..,%}) be
a Z-basis of E (resp. H) such that e; = €; mod M (resp. k; = k; mod Ker j").
By construction A(e;) —p;.k; = € Ker j*. So there exists a (n+ 1)-chain v in W
and a positive integer a such that: 9y = aX(e;) —ap;.k;. Let p be a (n+ 1)-chain
of $27 1 %[0, 1] with dp = k;. So ae; is the boundary of y+ap;.p in S2H x [0, 1].

Statement: for all m in M, p; divides A(e;,m).

Let m be in M = A~ !1(Kerj") and A be a (n + 1)-chain in §2**1 % [0;1] such
that A = i} (m). By definition A(ae;,m) is the intersection in S?*+1 x [0,1] of
v+ apj.p and A. But A(am) € Ker j so there exists a (n+ 1)-chain p in W such
that dp = am. We have 0(iq(p)) = aiq(m). Since daA) = aiy(m), we get
yN(aA) =~N(iy(p)) =0. But a > 0, s0 a(yNA) =0 implies yNA = 0. Finaly
Alaej,m)=ap;.(pNA) and p; divides A(e;,m).

If Ais unimodular the statement implies that p; = £1 forallj =1,... ,%. So
X is an isomorphism and his cokernel is zero. As asked we have got: §(Ker ) =
H,,_1(Kp). This ends the proof of lemma (3.15). O

(3.17) Remark. As above we can also prove that: for all m in M p; divides
A(m, e;).
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4. The sufficient condition to have a cobordism

(4.1) Let Ko and Ki be two 2n — 1 dimensional simple links, with n > 3. We
suppose that there exists (n — 1)-connected Seifert surfaces Fy and I, for Ky and
K, such that the associated Seifert forms Ag and A are algebraically cobordant.
We consider Ky (resp. —K1) as embedded in the sphere $2"t1 x {0} (resp.
§2n+1 % 11}) which are oriented as the boundary of $27+1 x [0,1].

Let x be in S?*1 % {0} such that (z x [0,1]) N (Fy []—F1) is empty, and let
U be a "small” open ball around = in $2"t1 x {0}. The boundary S of the disk
D = (%1 % [0,1])\ (U x [0, 1]) contains Fy [[—Fy. Let G be the closure of the

connected sum, in S, of the interiors Fig and — F'{. By construction A = Ag® — A1
is the Seifert form of Ko [] —K1, associated to G.

(4.2) Proof of theorem 3. In order to prove theorem 3 we will do in D, an
embeded surgery on G, the result of which being a manifold G diffeomorphic to
K % [0,1].

By proposition (2.1) we can choose a good basis B = {(m;,m});i=1,... s+r} of
H,,(G). Thanks to J. Milnor ([M1, 61] lemma 6 p. 50), any cycle of G can be
represented by the image of an embedding of S™. Furthermore:

(4.3) Proposition. There exists s+ disjointed embeddings «; - D"t x D" —
D such that for any i € {1,... s+ r} we have

1- [1hi(S™ x {0})] = ms,

2- (DT x D™) NG = (D" x D) N S = 4 (S™ x D™).

Proof. Let ¢; : S — G be an embedding of 5™ which represents m;. Let i,
with ¢ # 7, be in {1,..., s+ r}, then m; and m; are in the metabolizer M and
we have: S(m;,m;) = A(mi,m;) + (=1)" A(m;,m;) = 0. Since n > 3, thanks to
Whitney’s procedure [Wh, 44| we can choose the ¢; such that ¢;(S™) N, (S™) = 0.
Since n > 2, the Whitney obstruction to extend ; to disjoint embeddings #; of
D"+ in the (2n 4 2)-disk D, is the matrix A(m;,m;) which is zero. Furthermore,
A(m;,m;) = 0 is the classical obstruction to extend ; to ; : Drtl x pr D,
(see [Br, 72] and for details see [Bl, 94] proposition 5.1.2, p.58). We choose this
extension ¢; such that the restriction to S™ x D" is a tubular neighbourhood of

i (S™) in G. O

So thanks to proposition (4.3) we obtain a submanifold G of D as follows:

str s+r
G =@\ (JTwts™ x Dy ([ wa(omtt x 57 h).
=1 i=1

(4.4) Proposition. The inclusion k, (resp. k1) of Ko (resp. K1) in G, induces
isomorphisms ko ; (resp. ki ;) from H;(Ko) (resp. H;(K1)) to H;(G) for all 5.
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(4.5) Corollary. We have H, (G, Kg) = H,(G, K1) = 0.

This corollary (4.5) and the h-cobordism theorem imply that G is diffeomorphic
to Kp x [0,1]. More precisely dim G = 2n > 6 and:

h-cobordism Theorem [M2, 65]. Let M be a k-dimensional differentiable com-
pact manifold with OM = Mo My such that M, Mg and M1 are simply
connected. If Ho (M, Mp) =0 and k > 6 then M is diffeomorphic to Mg X [0,1].

So to end the proof of theorem 3 we only have to prove proposition (4.4).

Proof of proposition (4.4). According to proposition (2.1), the intersection form
on H,,(F) splits in an orthogonal sum on the submodules (m;,mf), i =1,...,s+r.
So the proof of (4.4) when s+ r = 1 implies the general case.

Let us suppose that rk(A/) = 1 and let m be a generator of M, then H,,(G) =
{m, m*). We denote by ¢ : Dl D" . D an embedding choosen as in propo-
sition (4.3), by : 8™ — G an embedding such that [n(S™)] = m*, and by Gp the
manifold Gp = G\ ¥(S"x D™).

(4.6) The Mayer-Vietoris sequence associated to the following decomposition
of the manifold: G = Gp U(S™ x D™) gives:

0 — H, ((8™ x S"™1)) — Ho(Gr) @ Hy(4h(S™ x D)) — H,(G)

2 H, 1 (w(S™ x 87 1)) — H,_1(Gr) — 0.

where ¢ is given by the intersection of cycles with m.
(4.7) The Mayer-Vietoris sequence associated to the following decomposition
of the manifold: G = Gp Uy(D"H x §7~1) gives:

0 — H, (9(S™ x §°71) 2 Ho(Gr) — Ha(G) 5 Hy1 (4(S™ x S™71))

L H, 1D x 5" Y@ H,_1(Gr) = Ha_1(G) — 0.

Remark that the homomorphism 3 is injective into H,,_1(¢(D™1 x §7~1)) hence
~ = 0 and the sequence (4.7) splits up into:

(4.8) 0 — H, (¢(S™ x 8" 1)) & H,(Gr) — H,(G) — 0,
(4.9) 0 — H,_g((S™ x 577 1) 2 H,_y (D" x s* 1)) @ H,_1(Gr) —

anl(é) — 0.
Since k(M) = 1 = s+r we have to consider the two following cases: s = 0,r =
land s=1,r=0.

* 1%% case: s =0 and r = 1, then Ker $* = (m, m*).

In sequence (4.6) we have Ker § = (m, m*), then H,,(G7) = ([¢2(S"x{1})], [n(S™)])

and H,_1(Gr) = ([»({1} x 8" 1)]). In sequence (4.8) we have Ima —=
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*

([p(S™ x {1})]), so Ho(G) = (n(S™)]). By construction of the good basis
(2.1), [n(S™)] is a generator of Im (H,,(Kg) — H,,(G)). So the inclusion of Ky
in G induces the isomorphism: ko + Ho(Ko) = H,(G).

Since H,,_1(G7) = ([¢({1} x S»1)]) in sequence (4.9), we have H, _1(G) =
([$({1}xS™ 1)]). Condition c.1 of the algebraic cobordism gives that there ex-
ists a in Ker S§ such that m = (a,¢(a)). If we denote by vo : H, (Ko) — Hn(G)
the homomorphism induced by the inclusion, then we can choose bin H,,_1(Kg)
such that H,_1(Kg) = (b) and b is the dual of 70“1(11) for the intersection form
of Kg. There exists B in H,,(G, Kg) such that 9B = b and the intersection be-

tween B and m is +1. The boundary of the n-chain (B — (BNy(S™x DO"))) is
homologous to the (n—1)-cycle b— () ({1} x S™ 1)), hence b and [({1} x $™1)]
are homologous in H, _{(@) = ([b({1} x §*~1)]). Thus the inclusion of Kg in
G induces the isomorphism: kon—1: Hp1(Ko) 5 Hn,l(é).

274 case: s = 1 and r = 0, then Ker S* = {0} and H,,(K{) = 0.

In sequence (4.6) we have Kerd = (m), then H,(Gr) = ([¢(S™ x {1})]) and

H,_1(Gr) = ([$({1} x 8~ 1)]). In sequence (4.8) we have Im a = ([1)(S™ x {1}]).

Since H,, (Gr) = {[(S™ x {1})]) we have H,(G) = 0 = H,,(Ky).

5.

— if S,(m) is indivisible (i.e. H,_1(Kp) = 0), then ¢ in (4.6) is surjective.
Thus H,_1(G) = 0 = H,_1(Kp).

— If a # 1 is the greatest divisor of Si(m) (i.e. H, 1(Kp) = Z/aZ) then
condition c¢.2 of algebraic cobordism together with lemma (3.14) give that
there exists ¢ in H,,_1(Kp) such that 8(% Si(m)) = (¢,0,-1(c)). Let b in
H,,_1(Kg) be the dual of ¢ for the linking form of Kgy. There exists B
in H,,(G, Kp) such that 8B = b and the intersection between B and m is

+1. As before the boundary of the n-chain B — (B N ¢(S™x 5”)) is the
n-cycle b— ({1} x $™1), hence b and [ ({1} x $7~1)] are homologous in
H,,_1(G). Since H,_1(G7) = ([0({1} x §*~1)]) in sequence (4.9) we have
H, 1(G) = ([v({1} x $*1)]). Thus b and [({1} x §*1)] are homologous
in Hn,l(é) and the inclusion of Ky in G induces the isomorphism: kg ,—1 :

H,_1(Ko) — H,_1(G).
Since G is obtained by surgery on n-cycles, this surgery only modifies homology

~

groups of dimensions n and n — 1. Hence for & # n,n — 1 we have Hy(G) =
o,k -
Hi(Kg) = Hg(G). By symmetry we also have the same results with K.

Finally ko ; and kq ; are some isomorphisms for all . This ends the proof of
proposition (4.4), and the proof of theorem 3. O

Appendix — Alexander polynomials of cobordant links.

Let K be a 2n — 1 dimensional simple link, and € = (—1)"™. One can associate a
polynomial A € Z[X] to any Seifert surface F' for the link K, defined by: A(X) =
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det (X A 4 £AT), where A is the Seifert form associated to F. Such a polynomial
A is called a Alexander polynomial for the link K. Changing the Seifert surface
to another multiplies A by X" with m in Z.
For a polynomial ~ in Z[X] we define the polynomial v* by: v*(X) = Xdegv (X 1)

(5.1) Proposition. Let Ky and K1 be two cobordant simple 2n—1 dimensional
links. If Ag and A1 are Alexander polynomials for Ko and K1, then there exists
v in ZIX] such that: v~v* = £Ag Aq.

Remark. If IV is the Milnor fiber of an algebraic link K, then the associated
Alexander polynomial is the characteristic polynomial of the monodromy. Hence
the above proposition and the monodromy theorem imply corollary (0.7).

Proof of proposition (5.1). We denote by Iy and Fy two (n — 1)-connected
Seifert surfaces for Ko and K, and by Ag and A; the associated Seifert forms.
The links Ko and K are cobordant so proposition (3.10) implies that the form A =
Ag®—Aj has a metabolizer M. Therefore, there exists a basis for H,, (Fp)®H,, (F1)

0 By
By Bs
matrices. We have Ag(X).A1(X) = det (XA + cAT), hence Ag(X).A(X) =
e.det (X By+¢eBJ).det (XBa+eBT). Let v(X) be det(X By +eB3), then v*(X) =
det(X By +eBY). Finally we get v.v* = £A0.A. O

such that in this basis the matrix for A is < where B;, i=1,2,3 are square
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