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Central quotients of biautomatic groups

Lee Mosher*

Abstract. The quotient of a biautomatic group by a subgroup of the center is shown to be
biautomatic. The main tool used is the Neumann—Shapiro triangulation of S, associated to
a biautomatic structure on Z™. Among other applications, a question of Gersten and Short is
settled by showing that direct factors of biautomatic groups are biautomatic.
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Biautomatic groups form a wide class of finitely presented groups with inter-
esting geometric and computational properties. These groups include all word
hyperbolic groups, all fundamental groups of finite volume Euclidean and hyper-
bolic orbifolds, all braid groups [ECH192], and all central extensions of word
hyperbolic groups [NRa]. A biautomatic group satisfies a quadratic isoperimetric
inequality, has a word problem solvable in quadratic time, and has a solvable con-
jugacy problem. The class of biautomatic groups has several interesting closure
properties. For instance, the centralizer of a finite subset of a biautomatic group
is biautomatic [GS91]. Also, biautomatic groups are closed under direct products
[ECH'92]. The theory of biautomatic groups is briefly reviewed below.

We present a technique for putting biautomatic structures on central quotients
of biautomatic groups:

Theorem A. Let G be a biautomatic group, and let C be a subgroup of Z G, the
center. Then G/C is biautomatic.

Theorem A has several applications. Our first application answers a questions
posed by Gersten and Short ([GS91], cf. proposition 4.7):

Theorem B. Direct factors of biautomatic groups are biautomatic.

Proof. Suppose G x H is biautomatic. The centralizer of H is G x Z H, and this

*The author was partially supported by NSF grant # DMS-9204331.
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is a biautomatic group by [GS91] corollary 4.4. Then Z H is a subgroup of the
center of G X Z H, so by theorem A, G x Z H/Z H = G is biautomatic. O

Several recent discoveries have pointed to the useful concept of poison sub-
groups: certain classes of groups cannot occur as subgroups of word hyperbolic
groups. For instance, the group Z 2 s poison to word hyperbolicity. More gener-
ally, any group which has an infinite index central Z subgroup is poison to word
hyperbolicity ([CDP90], corollaire 7.2). Our next theorem says that among bi-
automaQtic groups, the latter class of poison subgroups occurs no more generally
than Z~:

Theorem C. If the biautomatic group G contains a subgroup with an infinite
index central Z subgroup, then G contains a & subgroup.

Proof. The hypothesis says that GG has an infinite cyclic subgroup Z of infinite
index in its centralizer Cz. The group Cz is biautomatic by [GS91] corollary 4.4.
Since Z is central in Cz, then by theorem A the group Cz/Z is biautomatic. This
group is infinite, so by [ECHT92] example 2.5.12, it has an element of infinite order.
Any infinite cyclic subgroup of Cz/Z pulls back to a Z? subgroup of Cz < G. O

Theorem C raises the stakes on the question of whether biautomatic groups
satisfy an analogue of Thurston’s hyperbolization conjecture: is it true that every
biautomatic group either is word hyperbolic or has a 7* subgroup? This question
can now be restated as follows: if every infinite cyclic subgroup in a biautomatic
group has finite index in its centralizer, is the group word hyperbolic?

Gersten and Short ask whether a biautomatic group can have an infinitely
generated abelian subgroup ([GS91], p. 154). We can reduce this problem as
follows:

Theorem D. Suppose there is a biautomatic group with an infinitely generated
abelian subgroup. Then either there is a biautomatic group with an infinite rank
abelian subgroup, or there is a biautomatic group with an infinite abelian torsion
subgroup.

Proof. Suppose the biautomatic group G has an abelian subgroup H, infinitely
generated and of finite rank n > 0. If n > 1, choose an element h € H of infinite
order. By [GS91] corollary 4.4, the centralizer C;, of h in G is biautomatic. Let
Z Cy, be the center of C. By theorem A, Cp,/H N ZC}, is biautomatic. Note that
he HNZCyp < H < Cp,, so the image of H in Cp,/ HNZ Cp, is an infinitely generated,
abelian subgroup of rank < n — 1. By induction, we obtain a biautomatic group
I" with an infinitely generated abelian subgroup of rank 0, i.e. an infinite abelian
torsion subgroup. O
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Remark. If a group G has an infinite abelian torsion subgroup A then G is not
virtually torsion free, for if K < G were a torsion free subgroup of finite index,
then there would be two elements a # b € A such that 1 # b~ 'a € K, hence b~ 1a
has infinite order; but b~la € A has finite order.

Dani Wise has produced biautomatic groups which are not virtually torsion
free [Wis95].

Remark. Theorem A has been sharpened in recent work of Neumann and Reeves
[NRb], who show that if C is a central subgroup of a biautomatic group G then
the central extension 1 — C — G — G/C — 1 is defined by a “regular cocycle”
of G/C. They have also proved a converse: if H is biautomatic, and if a central
extension 1 — C — G — H — 1 is defined by a regular cocycle of H, then G is
biautomatic. See also [NRa] where the converse is used to prove that every central
extension of a word hyperbolic group is biautomatic.
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Proof of theorem A
First we reduce theorem A to a special case:

Theorem E. If G is a biautomatic group and Z < G is an infinite cyclic central
subgroup, then G/Z is biautomatic.

Proof of theorem A. Let G be a biautomatic group, and let C be a subgroup of
the center Z . Since Z G is biautomatic it is finitely generated. Hence C is a
finite rank central subgroup, say of rank k£ > 0. Now peel off factors of Z one at
a time, as in the proof of [GS91] proposition 4.7. If k > 1 let Z be any infinite
cyclic subgroup of C. Applying theorem E it follows that G/Z is biautomatic, and
C/Z is a central subgroup of rank k — 1. Repeating this argument k times, we
see that there is a finite index free abelian subgroup C’ < C such that C/C" is a
central finite subgroup in the biautomatic group G/C’. But the quotient of any
biautomatic group by any finite normal subgroup is easily seen to be biautomatic;
projecting the biautomatic structure from the total group to the quotient group
gives a biautomatic structure on the quotient. Hence, G/C = (G/C")/(C/C") is
biautomatic. O

The remainder of the paper is devoted to proving theorem E.
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Review of biautomatic groups

An alphabet is a finite set. A word over an alphabet A is a finite sequence of
elements in A. The empty word is sometimes denoted e. The set of all words in
A is denoted A*, and this forms a monoid under the operation of concatenation,
with € as the identity. A language over A is a subset of A*.

The length of a word w is denoted £,,. If w is written in the form w = wiwsq
then w;q is called a prefiz subword and wo is a suffiz subword. If w is written as
w = wiwows then wq is called an infir subword, with associated prefix wy and
suffix ws. For any integer ¢ > 0, w(t) denotes the prefix subword of w of length ¢
if t <4y, and w(t) = w otherwise.

We adopt the graph theoretic notion of a finite state automaton over an alpha-
bet A. This is a finite directed graph M whose vertices are called states, together
with a labelling of each edge by a letter of A, a specified state sg called the start
state, and a specified subset of states called the accept states, such that each state
has exactly one outgoing edge labelled with each letter of A. A failure state is
any state which is not an accept state. A path in M is always a directed path.
Concatenation of paths is denoted by juxtaposition. If £ = £, is the length of =,
then the states of M visited by 7 are denoted «[0], ... ,7[¢], and the subpath from
7[s] to 7[t] is denoted 7[s,t]. Reading off the letters on the edges of 7 in succession
yields a word w, = (ay - - - a¢) where a; is the label on the edge [t — 1,4]. For any
word w and any state s, there is a unique directed path 7 starting at s such that
w = wg; if s = sg then we denote this path by m,. When circumstances require,
we shall also denote w, by w(w) and m, by m(w). The set of all words w such
that 7, ends at an accept state forms a language over A denoted L(M).

A language L over A is called regular if there exists a finite state automaton
M over A such that L = L(M). We say that M is a word acceptor for L.

Given a finite state automaton M, an accepted path is any path from the start
state to an accept state. A live state is any state lying on an accepted path. A
dead end state is any state such that all arrows pointing out of that state point
directly back into it; note that a dead end state may be a live state. Any path
which begins and ends at live states is called a live path; note that all interior
states of a live path are live states. A loop is a path which begins and ends at the
same vertex, so a live loop is a loop passing over live states only. Given a loop T,
if we write m = mmo then momy is also a loop, called a cyclic permutation of x.

The basic definition of biautomatic groups involves 2-variable languages (see
for example [ECHT92] p. 24, or [GS91] p. 135). For our purposes the equivalent
geometric definition of biautomatic groups will suffice ([ECHT92] lemma 2.5.5),
so we shall not use 2-variable languages.

Consider a group G, an alphabet A, and a map .4 — G. This induces a monoid
homomorphism A* — G denoted w — w. Given a € A, we often omit the overline
and consider a as an element of G, even if A — G is not injective. Thus, abusing
terminology, A is called a generating set for G if A* — G is onto. Also, any
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language L C A* that maps onto G is called a set of normal forms for G. If M
is a finite deterministic automaton over A, then for any path 7 in M the group
element w, is also denoted 7.
Given a generating set A for G, for each g € G we define the word length of g to
be |g| = Min{¢,, | @ = g}, and we define the word metric on G by d(g,h) = |g~1h]|.
A biautomatic structure for G consists of a generating set A for G, and a set
of normal forms L C A* for G, with the following properties:
e [ is a regular language
e There exists a constant K > 0 such that for each v,w € L and each a € AU{e},
if ¥ =wa then for all ¢ > 0,

and if av = w then for all ¢ > 0,
d(av(t),w(t)) < K.

The constant K is called a two-way fellow traveller constant for the biautomatic
structure L (to contrast with an automatic structure, in which only the first in-
equality is required). As a consequence, for each v,w € L and any words p,v € A*,
if o = wv, then

d(mo(t),w(t)) < K(lpl+ |v])
for all ¢ > 0.

We shall need the result of [ECH'92] theorem 2.5.1, that any biautomatic
structure on a group G has a sublanguage which is a biautomatic structure with
uniqueness, meaning that each element of G has a unique normal form.

Now we review several results of [GS91] concerning subgroups of biautomatic
groups; these results will be used without comment in what follows. Let L be a
biautomatic structure on a group G. A subgroup H < G is called rational if the
language {w € L |w € H} is regular. If this is so, then H is a biautomatic group
([GS91], theorems 3.1 and 2.2). The centralizer of a subset S C G is denoted Cg;
and Cq, the center of G, is specially denoted Z G. If GG is biautomatic and S is a
finite set or a finitely generated subgroup, then Cg is rational (|[GS91] proposition
4.3); thus, the subgroups Cs, ZG and ZCg are rational, and it follows that all
these subgroups are biautomatic.

For the remainder of the paper, fix a central extension
1-7—-G—H-—1

where Z = (z) is an infinite cyclic, central subgroup of G. Also fix a generating
set A. Note that A projects to a generating set for H as well, and the projection
map G — H does not increase the word metric. Let L be a biautomatic structure
with uniqueness for G over A. Let M be the word acceptor automaton for L.
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A biautomatic structure for G/Z =H

Define a central loop in the automaton M to be any live loop representing an
element of the center Z G. We consider two central loops to be the same if they
are cyclic permutations of each other.

Simplicity Lemma (cf. [NS92], lemma 3.1). Let v be a central loop in M. Then
v is an iterate of a simple loop in M, and every other simple loop in M is disjoint
from ~y.

Proof. If v is not an iterate of a simple loop, then after cyclically permuting ~,
there exist loops u, v with the same initial state as v, such that v = uv # vpu.
Since « is central, it follows that 7% = T '¥5 = 5 = mw. Choose an accepted
path m = mymg concatenated at the common initial state of the loops u,v,~.
Then 71 pvmy and mvpme are distinet accepted paths representing 77, violating
uniqueness of L.

If there is another simple loop v/ in M intersecting v, then after cyclic permu-
tations we may assume that v and 4’ have the same base vertex. Since ~ is central
then 7% =7'%, but vy’ # 4'~. Now proceed as above. O

A central loop is primitive if it is not an iterate of a shorter central loop. Note
that a primitive central loop does not have to be a simple loop in M. A path =
in M is said to be compatible with a set of primitive central loops {v1,...,vr}
if 7 intersects each «;. The set {v1,...,vr} is live if it is compatible with an
accepted path. Define a central cycle in M to be any formal linear combination
with positive integer coefficients of a live set of central loops, ¢ = nyy1+- - -+nryr.
The element ¢ is defined to be ' -+ - 777,

If a path 7 is compatible with a central cycle ¢ = nyvy1 + - -- 4+ nrvyr, then we
may combine 7 and ¢ into a well-defined path as follows. Choose ¢1,... ,¢7 so that
t; is the minimal integer with w(¢;) € ;. Since these numbers are distinct by the
Simplicity Lemma, we may reindex so that {1 < {9 < --- <t;. Now take a cyclic
permutation of «; so that it is based at the point =[t;]; this gives a well-defined
loop, since «; is an iterate of a simple loop. Then the path

make = w0, [y wmlE, tolk - kwltr_g, trlwy ] R mltr, £x

is well-defined. If 7 is an accepted path then m*xc is an accepted path representing
7wc. We say that a path ¢ contains the central cycle ¢ if there exists a path =
compatible with ¢ such that ¢ = mxxc.

A subset of an abelian group is linearly independent if the identity cannot be
expressed as a non-trivial integer linear combination of elements in the set. Note
that a linearly independent set cannot contain torsion elements.

Independence Lemma (cf. [NS92], p. 451). If{~1,...,v1} is a live set of central
loops, then {7q,... 7} is a linearly independent subset of ZG.
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Proof. Let 7 be any accepted path compatible with {v1,... ,~vr}. If the lemma is
false, there is an equation with positive integer exponents of the form

Py 4Ty =Ty 4 ey
where v;, # ;, for 1 < a < A, 1 <b < B. Let ¢f,cg be the central cycles
given by the two sides of this equation, e.g. ¢y = my,v;; + -+ my,v,. Then
kel and makeg are distinet accepted paths representing the same element of G,
contradicting the uniqueness property for L. O

Now define a Z-cycle to be a central cycle representing an element of 7. A
primitive Z-cycle is a Z-cycle which is not a positive multiple of any other Z-cycle
except for itself. Note that a primitive Z-cycle may be a positive multiple of some
central cycle which is not a Z-cycle. Recalling that Z = (2), if ¢ is a Z-cycle with
¢ = z" where n > 1 then c is said to be a positive Z-cycle.

Uniqueness Corollary. There are only finitely many primitive Z-cycles, and an
accepted path can be compatible with at most one of them.

Proof. There are only finitely many live sets of central loops, and by the Inde-
pendence lemma each one has at most one positive linear combination which is a
primitive Z-cycle. If an accepted path p is compatible with two distinct primitive
Z-cycles, then those two cycles taken together give a live set of central loops which
forms a linearly dependent subset of Z GG, contradicting the Independence lemma.

O

Define a sublanguage Ly C L to consist of all words w € L such that w is
compatible with some positive Z-cycle but w contains no Z-cycle. We will prove
that Ly projects to a biautomatic structure on H, but first here is an example.

Consider the group G = Z @ Z = {(a,b | [a,b] = 1) with generating set A =
{a,b,A=a1, B =b"1}, and with the biautomatic structure.

L={a™b",a™B", A"b", A" B" | m,n > 0}.

A word acceptor for L is shown in the figure below. The primitive central loops
in this example are v,, Vs, 74, Y5. The live sets of primitive central loops are

{vats {w} {vat: {ve} {7 1} {ve, v8 Y} {74, v} {7478}

We now consider several examples of infinite cyclic subgroups Z C Z @ Z, and in
each case we describe Ly where H = Z © Z /7.

If Z = (a) then the only positive, primitive Z-cycle is ~,, and in this case
Ly = {ab™,aB™ | n > 0}. If Z = (a*) then the only positive, primitive Z-cycle is
ke, and Ly = {a®b™ a'B™ |1 < i < k,n > 0}.
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The central state is the start state. Any missing directed edges lead to a dead end failure state.

If Z = (ab), then the only positive, primitive Z-cycle is v, + Y5, and Ly =
{ab™,a™b | n > 1}. If Z = {(a®b") with [,k > 1 then the only positive, primitive
Z-cycle is kv, + Iy, and in this case

Ly=1{a'b"|1<i<kn>1}U{a"t |n>1,1<j<I}.

Returning to the general setting, the proof that Ly projects to a biautomatic
structure on H proceeds in three steps. Step 1 proves that Ly is aregular language.
Step 2 proves that each coset of Z is represented by some element of L. Step 3
is the two-way fellow traveller property.

Step 1: Regularity of Ly

In one special case the proof of regularity is particularly simple. Namely, suppose
that each primitive Z-cycle is actually a simple loop of length 1 in the automaton
M. It is easy to construct a new automaton which accepts exactly those accepted
words of M that touch some Z-loop but do not go around it. First take three
separate copies of M denoted M, for “not touched”, M, for “touched”, and M,
for “around”; we imagine these stacked one atop the other. For each edge F of M,
that starts outside a Z-loop and ends on a Z-loop, detach the forward end of F
from M,, and attach it to the corresponding state in M;. For each Z-loop in My,
detach its forward end from M, and attach it to the corresponding state in M,.
The result is an automaton M’. For each accept state in M, the corresponding
state of M, is also an accept state of M’; all other states of M’ are failure states.
The automaton M’ is a word acceptor for Ly.
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In general, a Z-cycle may be a linear combination of non-simple loops. We show
that Ly is regular by reformulating the definition of L as a regular predicate, and
then applying [ECHT92] theorem 1.4.6. For any central loop « in M, the language
L, = {w|m, N~y # 0} is regular, because we may alter M by turning each state
lying on v into a dead end accept state, and the new automaton recognizes L.
Also, the set of words Lj = {w | my contains v} is regular, because we may modify
M by keeping track not only of the state in M visited by m,(¢), but also of the
longest subpath of a cyclic permutation of « traversed by m,(t); this can clearly
be done with a finite state automaton.

For each primitive Z-cycle ¢ = nyyy + -+ - + npyp, the language L. = {w | my,
is compatible with ¢} is the same as L., N---N Ly, hence is regular. Similarly,
the language LT = {w | m, contains ¢} is the same as L;rnl NN Ljnp hence is

1 P

regular.

Finally, let ¢q,...,cn be the finite list of all primitive, positive Z-cycles. By
the Uniqueness corollary, if w € L., then the only possible Z-cycle that m, may
contain is ¢1. Thus,

Ly =L0[(Ley N =L )U - U (Ley N=LE)]
so Ly is regular.

Step 2: Ly represents each coset of 7 in G

For this argument, fix an element ¢ € G. We must show that the coset g7 is
represented by some word in Ly. The proof will depend on the properties of the
Neumann—Shapiro triangulation of the boundary of an automatic structure on an
abelian group.

First we make a reduction: it suffices to construct a word w € L representing g7
such that m,, contains some positive Z-cycle. For then we may write m,, = m,*%xc™
where ¢ is a positive, primitive Z-cycle and m is as large as possible. Then 7, does
not contain ¢, and yet 7, is compatible with ¢, so by the Uniqueness corollary m,
does not contain any other Z-cycle. Hence v € Ly and v represents gZ.

Let C = Z(,, and note that C contains both ZG and gZ. We review the
biautomatic structure on C induced by that on G. Let Lo C L be the regular
sublanguage of words w with w € C. From the proof of [GS91] theorem 3.1, it
follows that there is a generating set B for C, a biautomatic structure L’ for C
over B, and a map ¢: B — A*, such that the induced map B* — A*, also denoted
¢, restricts to a surjection from L’ to Los. By [ECH+92] theorem 2.5.1, we may
replace L' by a sublanguage which is a biautomatic structure with uniqueness for
C, and hence the map ¢: L' — L¢ is a bijection. Let M’ be a word acceptor for
L' over B. Then we may speak about Z-cycles in M’.

Now we make another reduction. We shall prove that the coset gZ is repre-
sented by an accepted path 7 in M’, so that 7 is compatible with some positive
Z-cycle ¢ =nqyy + - +npyr in M.
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Accepting this for the moment, we use it to complete step 2. Write # =
mo7q - - - 7r so that for each k£ > 0, the path

mrkrc’®

= 7T0’Y{m17rl e '7T171'7;m17TI

is an accepted path representing gZ. Under the mapping ¢: B* — A*, the word
w(mxxc’®) € L' goes to a word p* in the language Lo C L. For each k the word
p" represents gZ. For each k and for 1 < i < I, let tf be the moment of time at
which msxc’¥ completes the loop /. Note that the image of w((mxc®)[0,t%])
under ¢ is a prefix of p¥, denoted pf‘ Let sf be the state of M at which the
path 7(p#) ends. Thus, for each k we obtain an I-tuple of states in M denoted
QF = (Si7 ... ,s"). There must be two values ki < kg with Q" = Q*2. Tt follows
that w(p"2) = 7(p™ )xxc for some positive Z-cycle ¢ in M representing @21 ¢ 7.
Thus, 7(p*2) is an accepted path in M representing gZ and containing a positive
Z-cycle, as required to complete step 2.

Now we review the result of Neumann—Shapiro, [NS92] theorem 1.1, which
associates to each automatic structure on the abelian group C, a simplicial de-
composition of the boundary. While their result is only stated when C is free
abelian, we note that their construction is valid more generally when C is abelian.

Fix an identification C = Z* @ F for some finite abelian group F. We shall
sometimes confuse an element of C' with its projection onto Z*. Each non-torsion
¢ € C determines a ray in Z* whose direction is denoted [¢] € §¥~1. Neumann and
Shapiro associate, to a biautomatic structure L’ on C, a rational linear ordered
simplicial subdivision 3 of Sk“l, as follows. Each state of the word acceptor M’
lies on at most one simple loop of M’ (see [NS92] lemma 3.1, or the Simplicity
lemma). Let 7 be a simple live path in M’ initiating at the start state sg. Let
s1 be the first state on = which lies on a simple loop, and let v1 be that loop.
Inductively, let s; be the first state of 7w after s;_1 which lies on a simple loop
distinct from ~y; 1, and let +; be that loop. This induction ends with s;, and let
si141 be the final state of w. Note that {7y,...,7¥,} is a linearly independent set in
C (see [NS92] p. 451, or the Independence lemma). We may now define a rational
linear ordered (I —1)-simplex in S*~1, namely o, = ([¥;],... ,[7,]). Neumann and
Shapiro prove that as 7 varies over all simple paths in M’, the collection ¥ = {0}
is an ordered simplicial subdivision of $* 1.

Since a group element determines a ray, we need to know the relation be-
tween that element and the simplex at infinity which the ray hits. Let 7w be as
in the previous paragraph, and let m; = w[s;_1,s;], so # = mme -+ m41. Define
m(ni,... ) = myy we - mytmgr. Note that each element of C' is uniquely
represented by a path of the form w(nq,... ,n;), for some simple accepted path =
and some nq, ... ,n; > 0. Fix the “visual” metric on $*~1, where the distance be-
tween two rays is equal to the angle they subtend. Although we cannot guarantee
that the ray [7(n1,...,n)] hits the simplex o, the following lemma says that it
comes visually close:
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Visual Lemma. For each € > 0 there exists a ball B C C around the origin such
that if T(n1,... ,n) & B then the visual distance between [T(n1,... ,n;)] and the

point [y 4]"t| € 0 is smaller than e.

Proof. This follows from a geometric principle: as a person walks away from you
at the beach, they appear to get smaller and smaller. This principle applies in
Z", and so also in C which is quasi-isometric to Z". More precisely, for all € > 0
and all § > 0 there exists a ball B C C around the origin, such that if X C C has
diameter at most J, and if X is not contained in B, then X has visual diameter
less than e.

Let & be the length of the longest simple path in A/’. Since

T(n,. .. ,n0)71($~ . W) =71

it follows that d(ﬁ(nh - 7m)7W~ -+7") < 6. Now choose B according to the
above principle, and take X = {'7?(7117 cong), W} to finish the proof. O

To complete step 2, recall that Z = (z), and let Star[z] be the union of those
simplices of 3 that contain [2]. Noting that [z] € int(Star[z]), choose € so small
that every point of S*~1 within visual distance 2e¢ of [2] is contained in int(Star[z]).
Choose a positive integer m so large that [gz™] is within visual distance € of [z],
and so that gz™ lies outside the ball B given by the Visual lemma. Now gz™ is
represented by a path in M’ of the form mw(nq,... ,n;), for some simple accepted
path m and some nq,...,n; > 0 as above. By the Visual lemma it follows that

[y -+ -~]"] € int(Star[z]), hence [2] € 0. Therefore there is a positive Z-cycle ¢
obtained as a linear combination of vy, ... ,v. This shows that gz™ is represented
by an accepted path m(ny,... ,n;) in M’ compatible with the positive Z-cycle ¢,
finishing the proof that the coset g7 is represented by the language L.

Step 3: The two-way fellow traveller property for Ly

To prove this, consider v,w € Ly and any a,b € AU {¢}, and assume that av
and @b are congruent modulo Z. Then a% = whz? for some B. We shall give a
bound || < B, where the constant B depends only on Z and on the biautomatic
structure on G. If K is a two-way fellow traveller constant for L, it follows that
d(av(t),w(t)) < K' = (B|z| + 2)K for all t > 0. Thus, K’ is a two-way fellow
traveller constant for Ly in G, and so also in H. Henceforth, we can and shall
assume 3 > 0.

To give the idea of the proof, we first sketch the case where Z is a rational
subgroup of G. Then each Z-cycle in G is a loop, for by [NS92] theorem 3.4,
the two ends of Z in the sphere at infinity of Z G are vertices of the Neumann—
Shapiro triangulation; and if there were a Z-cycle which was not a loop then that
Z-cycle would determine a simplex ¢ of the triangulation such that the interior of &



Vol. 72 (1997) Central quotients of biautomatic groups 27

contains an end of Z, contradiction. Thus, we can write m,, = 779, concatenated
at a vertex that lies on a primitive Z-loop ~. For simplicity, suppose that ~
represents z itself, not a power (at worst, -y represents a bounded power of z). Then
wz" is represented by the accepted path 7/ = 717 m9. Let w' = wyr = wr, wgwﬂz.
Let k be the length of v, which is bounded independent of . Since ¥ = w’b and
v,w’ € L, then av and w'b are fellow travellers. Assuming by contradiction that 3
is very large, it follows that v has a long subword v’ that fellow travels the subword
wg of w’. Travelling along v" and w?,, at every Eth vertex we keep track of two
pieces of data: the state of M visited by v/, and the word difference between v’
and wg . This data takes values in a finite set, so if 3 is large enough the data is
repeated at two different spots on v’. The subword between these two spots traces
out a loop in M, because the states are repeated; and this subword represents an
element of Z, because the word difference with powers of w(+y) is repeated. Thus,
we have shown that v contains a Z-loop, contradicting the fact that v € L. This
contradiction shows that [ cannot be too large, completing the sketch in the case
that Z is rational.

In the general case, the path m, can be written in the form mymy ... mpm, 1,
with 7; and 7; 1 concatenated at a vertex Vj, so that there is a primitive central
loop v; based at Vj, and there is a primitive Z-cycle ¢ = nivy1 + -+ + npYp
representing z®, where 0 < o < A for some constant A depending only on the
biautomatic structure on G. Now write # = ga -+ r for some integers ¢, > 0 with
r < a,s0r < A. Then there is a word w’ € L such that

7 = Ty = Tuxx(q-c) = 7r1'y‘11n17r2 s Wp'ygnpwp+1

is an accepted path representing w’' = wz9%. It follows that av = w'bz", so
d(av,w'b) < r|z| < Alz|. Thus, the words av and w’ are fellow travellers with a
constant independent of all choices:

d(av(t),w'(t)) < K1 = (Alz] + 2)K.

Let U be the ball of radius K around the origin of G.

Since the automaton M has only finitely many primitive central loops, for each
such loop v there are only finitely many primitive central loops having a power
representing some power of 7; let G, be this set of loops. There is a positive
integer m., such that each loop in G, has a power representing ™.

Recalling the primitive Z-cycle ¢ = nyvyy + - - - +np7p, choose the least positive
integral multiple p; of each m.,; so that p1y1+---+ppvp is a Z-cycle. Note that p;
depends only on the primitive Z-cycle ¢ and on 7. In particular, there is a global
bound p; < R independent of ¢ and j.

Fix 7 =1,...,p for the moment. We show that if 3 is sufficiently large, then
v has an infix subword traversing a loop of M that represents 'yj‘.)j‘ Let L; be

the length of 'y;j . Factor 7’ as ﬂ/l'y;nj w4, and let the corresponding factorization
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of w' be u/leru/2 with wt = w('y?nj).

0 <t <qn;/p;,

We may factor v = vjvtv), so that for

d(av(Tt (L), wiwt (tLy)) < K.
Let d; be this word difference, so d; € U. Let s; be the state of M at which the

word vjvt (tL;) terminates.
Noting that ¢ > (5 — A)/A, then if

Ap; (U] - M|+ 1
pallU1 1M +1)

L

A

B2

it follows that UM+ 1
J 5 oL M+
L
S0
|25 2 o1
Pj
In this case there are integers 0 < 11 < tg < gn;/p; so that dy, = dp, and s¢; = s4,.
It follows that
— 1= to—1t1)p;
T (1) 1o (tg) = 4§V
and that this element is represented by a loop contained in m,. This loop must
be an iterate of some simple loop 4" € G, and there must be a lower iterate of

/ . p] . % % . .
7' representing v;”, since m., divides p;. Hence, 7, contains a loop representing

7i
Y-
Therefore, if 8 > AR(|U|-|M|+1)+ A then m, contains a Z-cycle representing

'yfl +-- ~'y£1” € 7, contradicting the fact that v € Ly. This finishes the proof that
Ly is a biautomatic structure for H.
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