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A regularized heat trace for hyperbolic Riemann surfaces
of finite volume

Jay Jorgenson and Rolf Lundelms*

Abstract. Let M denote a hyperbolic Riemann surface of finite volume, and let K^it, xiV)
be the heat kernel associated to the hyperbolic Laplacian which acts on the space of smooth
functions on M If M is compact, then we have the equality

/ KM(t,x,x)dß(x)

where {An} is the set of eigenvalues of the Laplacian If M is not compact, then it is well known
that the heat kernel exists yet is not of trace class In this paper we will define a regularized
heat trace associated to any hyperbolic Riemann surface of finite volume, compact or non-
compact After we have defined the regularized heat trace, we study the asymptotic behavior
of the regularized heat trace on a family of degenerating hyperbolic Riemann surfaces Our
results involve pointwise convergence and uniformity of asymptotic expansions in the pinching
parameters In particular, we study uniformity of long time asymptotics of the regularized
heat trace minus the contribution from the small eigenvalues by analyzing the Poisson kernel
and Dinchlet heat kernel in a finite cylindrical neighborhood of the pinching geodesies As
applications of our results, we are able to study asymptotic expansions of the Selberg zeta
function and spectral zeta function on degenerating families, both improving known results in
the compact setting and proving new results in the non-compact situation Results from this
article have been extended to the setting of degenerating hyperbolic three manifolds of finite
volume in [DJ1] and [DJ2]
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§0. Notation and background material

This section contains a brief discussion of the geometry of degenerating families
of hyperbolic Riemann surfaces of finite volume For further details, the reader
is referred to [Al], [A2], [B] and [R] We will follow the notation and conventions
established in [JLul] and [JLu2], which will be assumed throughout this paper

Let h be the upper half plane model of the hyperbolic plane, equipped with
its standard metric of constant curvature equal to —1 and distance function d^
Throughout this paper, all metrics d\i will be hyperbolic metrics

For q > 0, let Cq denote the hyperbolic, infinite cylinder with simple, closed
geodesic of length q, which can be described explicitly by

Cq {(t, 0) t £ R and 0 £ R/Z}

with length form
ds2 dr2 + q2 cosh2(r)d02

A convenient fundamental domain for Cq in h is

{pexp(ia) l<p<exp(q), 0 < a < tt}, (0 1)

with hyperbolic metric induced from h and umformizmg group {exp(kq) k £ Z}
which acts on h by multiplication For any e > 0, let Cq e denote the submamfold
of Cq obtained by restricting \t\ < smh(e/(2q)) A fundamental domain for Cqe
m (0 1) is obtained by adding the restriction

cot"1(e/(2?)) < a < tx - cot^1(e/(2q))

An easy calculation shows that the volume of Cq e is e, and the length of each

boundary component of Cq £ is (q2 + e2/4)1/2 The measure on the boundary of
Cq e induced from the hyperbolic metric will be denoted by dg

Let Co denote an infinite cusp, which is the non-compact Riemann surface
isometric to the punctured unit disc with complete hyperbolic metric A fundamental
domain for Cq in h is

{x + iy y > 0 and 0 < x < 1} (0 2)

with group action which identifies the boundary points ly with 1 + ly For any e >
0, let Co e denote the submamfold of Co obtained by restricting the y coordinate
of (0 2) to y > 2/e The volume of Co e is e/2, and the length of the boundary of
Co e is e/2 Again, the induced boundary measure will be denoted by dg

Given ap-tuple I {(-\,(-2, ,^-p) of positive real numbers, let \l\ be the sup-
norm of I Let Ci be the disconnected surface Ci L)Cik Given e > 0, let
Ci e be the disconnected surface Ci e L)Cik e The family of surfaces {Ci} with
\£\ —s- 0 is called a degenerating family of hyperbolic cylinders of infinite volume
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For notational convenience, we will write I —> 0 when \l\ —> 0 and I > 0 to mean
all 4 > 0

In [JLul] and [JLu2] we gave a construction of a degenerating family Mi of
either compact or non-compact hyperbolic Riemann surfaces of finite volume The
construction we follow allows one to define unambiguously various notions such as

the tracking of points through degeneration and the fixing of points not contained
on pinching geodesies The reader is referred to these articles for complete details,
which will be assumed here The description of the degeneration of Mi to the limit
surface Mq also applies to the degeneration of Ci and Ci £ to their limit surfaces,
2p x Co and 2p x Cq £, respectively In particular, one has convergence of the
hyperbolic metric uniformly away from from the developing cusps

Let Mi be a degenerating family of connected, hyperbolic Riemann surfaces
with p pinching geodesies Although each Mi is connected when £ > 0, the limit
surface Mq need not be connected In addition, the number of cusps on Mq is

equal to the number of cusps on Mi plus 2p For any 0 < e < 1/2, the surface
Ci £ embeds isoinetrically into Mi (see [R] The surface Mq contains 2p embedded

copies of Co e which is the limit of Ci £ C Mi The family of hyperbolic metrics
converges uniformly on Mi \ Ci £ (see [A2]) The heat kernel on M associated to
the hyperbolic metric will be written as KM{t,x,y), where t > 0 and x,y G M If
Mi is a degenerating family, we will denote the family of heat kernels by K{.{t, x, y)
Similarly, the heat kernel on Ci will be written as Kce {t, x, y) On a non-connected
surface M, if x and y lie on different components, KM{t, x, y) is defined to be zero
for all values oft The reader is referred to [JLul] and [JLu2] for various properties
of hyperbolic heat kernels, which will be assumed throughout this paper

§1. Regularized heat traces

Let M be a connected hyperbolic Riemann surface of finite volume, either compact
or non-compact For now, let us assume that M is connected, so then M can be
realized as the quotient manifold F\h, where h is the hyperbolic upper half space
and F is a discrete group of isoinetries of h Let Kh(t,x,y) be the heat kernel on
h We shall assume known that the hyperbolic heat kernel on h is a function of
t > 0 and of the hyperbolic distance of x to y, so

Kh(t,x,y) Kh(t,dh(x,y))
Quoting from page 246 of [Ch], we have, for p > 0

OO 9

we-«
hv "' (Ant)3/2 J [cosh«-cosh p]1^

p

with
OO

1

2tt
0
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The heat kernel KM{t,x,y) on M can be written as a periodization of the heat
kernel on the universal cover h, meaning

,<yy), (1.1)

where x and y are any points in h which are F lifts of the points x and y in M.
The convergence of (1.1) will be addressed in the proof of Theorem 1.1 (a).

Let H(T) denote a set of representatives of inconjugate primitive hyperbolic
classes in F (meaning classes with |Tr(7)| > 2 for any representative in the class),
and let P(F) denote a set of representatives of inconjugate, non-identity, primitive
parabolic classes in F (meaning classes with |Tr(7)| 2 for any representative in
the class). If M is compact, then P(F) is empty. Let F7 denote the centralizer of
7 G F. We can use elementary theory of Fuchsian groups, as in the derivation of
the Selberg trace formula, to write (1.1) as

oo

X X X

We now have the following theorem, which defines what we call the hyperbolic
heat trace associated to M.

Theorem 1.1. Let M be a connected,, hyperbolic Riemann surface offinite volume
with p cusps, and assume notation as above.

a) For each t > 0, the sum

is a well-defined function of x € M.
b) Let (7} be the cyclic group generated by 7 € H(T), and let C7 (7)\h be an

infinite cylinder. Then we have the equality

RTrKM(t)=
M
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c) Let UCq be p coptes of the punctured, unit disk in C equipped with the complete
hyperbolic metric, and identify UCJj£ with the isometric neighborhood of the

cusps of UCq. Given any 0 < e < 1/2 and with j 1,.. ,p, we have

WTiKM{t)= I [KM(t,x,x)-Kh(t,0)]d^x)
M\UC3>e

[KM(t,x,x) - KCo(t,x,x)]diJ,(x)

J [KCo(t,x,x) - Kh(t,

d) The function WTiKM(t) is finite for all t > 0 and has the asymptotic behavior

RTrKM(t) O(e-c/t) as t -> 0, for some c> 0

and

WTrKM(t) O(l) as t -^ oo.

Proof. For the part (a), first note that the sum is at least formally well-defined
since H(T) is fixed under conjugation. What remains is to argue that the sum
converges. Let N-p(x; p) be the number of geodesic paths on M which connect
x to itself and which have length at most p. An elementary argument involving
hyperbolic geometry shows

Nr(x;p) O(eP)

where the implied constant depends on the injectivity radius at x. With this
bound, together with the estimate

with a constant c > 0 which depends on t, part (a) follows. Observe that the
above bounds also imply the convergence of (1.1).

Part (b) follows from formal unfolding of the integral over the fundamental
domain, as in the derivation of the trace formula. Note that for any x G C7, we
have

JTtKh(t,-rnx,x) ±[Kc^t,x,x)
n=l

since the fundamental group of C7 is isomorphic to Z. This accounts for the factor
of 1/2 in (b). The reader is referred to [He2], [M] or [Se] for further details.

Part (c) also is proved by formal unfolding of the integral, provided one can
show that the above integrals are finite for all t and their sum is independent of
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s For this, one applies a bound from [JLu3] and applications of the maximum
principle as [JLu2] Details are as follows

As stated, it suffices to show finiteness for all t, for then the fact that the
relative heat trace is independent of e follows from formal adding and subtracting
of the integrals The first integral is bounded since the integrand bounded over
the compact range of integration Further, observe that from the realization of
the heat kernel on M as the penodization of the heat kernel on h, we have the
estimate

[KM{t,x,x) - Kh(t,0)]d^(x) =O(e~c/t)

for some c which depends on the mjectivity radius of the range of integration
The finiteness of the second integral follows from the bound

[KM(t,x,x)-Kc0(t,x,x)]dp(x)<Z 2e^(/4)2 (lit)1/2 \ 8
uco\uc3 E

(12)
where r\ log(l +e2/8)/4t For a proof of (1 2), the reader is referred to Theorem
3 1 of [JLu3]

It now remains to show finiteness of the integral over the cusps For this, the
key observation is to note that as a function of x with fixed y in UC3 £ such that
x and y he in the same cusp, the difference

D(t,x,y) KM(t,x,y) - KCo(t,x,y)

satisfies, as a function of x and t, the heat equation Fix an eo > e so that all cusps
have hyperbolic neighborhoods of area eo By the maximum principle (see [Ch],

page 180), the maximum of D(t, x, y) will take place when x is on the boundary of
the cusp Cj e0, keeping in mmd that y remains in the interior of the smaller cusp
Cj £ Combining this application of the maximum principle with the positivity of
the heat kernels, we obtain the bounds

- sup KCo(T,z,y) <D(t,x,y) < sup KM(r,z,y) (13)

0<T<t 0<T<t

For each z, the terms in (1 3) satisfy the heat equation on Co £oß with zero initial
data Through a second application of the maximum principle, we obtain the
bounds

— sup Kco{t,z,w) < D{t,x,y) < sup Km{t,z,w) (14)

wedc3 eq/2 wedc3 eq/2
0<T<t 0<T<t
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Standard bounds for the heat kernel (see, for example, page 198 of [Ch]), (1.4)
provide upper and lower bounds for D(x, y,t) that are independent of e. Therefore,
the integral over the cusps can be made arbitrarily small since the area of the cusp
Cje can be made arbitrarily small, thus showing that the relative heat trace is

a well-defined function of t. We remark here that the lower bounds in (1.3) and
(1.4) can be improved trivially to zero combining (1.1) with the observation that
the fundamental group of Cq embeds into the fundamental group of M.

Finally, part (d) follows from the derived upper bounds (1.2) and (1.4) together
with the convergence of the heat kernel on the region M \ UCje, as given by
Theorem 1 of [JLul] or Theorem 1.3 of [JLu3].

'

D

Definition 1.2. Let us define the regularized heat trace as

STrKM(t) KFrKM(t) + vol(M)Kh(t,0).

In the case M is a compact Riemann surface, the regularized, heat trace is simply
the trace of the heat kernel. If M is a hyperbolic Riemann surface of finite volume
hut not connected, let M\, • • • Mn he the connected components, and define

RTrKM(t) J2 HTri^M, (*) and STrKM(t) J^ STrKM, (t).

The following result due to Selberg [Se] evaluates the integral representation
stated in Theorem l.l(b).

Theorem 1.3. Let M he a connected, hyperbolic Riemann surface of finite
volume with p cusps. Let H(T) denote a set of representatives of mconjugate primitive

hyperbolic classes of a uniformizmg group T of M. Let ^(7) be the length
of the geodesic in the homotopy class determined, by 7 € T, so then Tr(^(7))
2sinh(%)/2). Then

smh(n,(7)/2)

The proof of Theorem 1.3 follows directly from Theorem l.l(b) and the following

proposition, which is due to Selberg [Se] (see also [He2] and [M]). For the sake

of completeness, we repeat the proof from [M].

Proposition 1.4. For any q > 0, let 7 fee a hyperbolic element with

2sinh(<//2)>0,
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and let Cq (7)\h Then for any t > 0, we have

2 Z_^ sinh(ng/2)

Proof We model the domain of integration by two copies of the region

{pexp(ia) p G (l,exp(q)], a G (0,tt/2) }

With respect to these coordinates, the hyperbolic metric has volume element equal
to p~^ sm(a)~^dadp Let

a(q,n) dh(peta,pen"eta),

where d^ is hyperbolic distance From page 130 of [Be] we have, for any fixed

p > 1 the formula

cosh(a(ç,n))
2sinh2(nç/2)

sin a
Notice that a(q,n) depends on a but is independent of p Therefore, we can
integrate with respect to p, yielding the equality

_ 7r/2exp(g)

(Kcq-Kh)(t,x,x)dfjL(x)=4\ / Kh(t,a(q,n))-
cq n=1J J psm'a

fw/2 V^ ^^ da
Aq I y Kh(t,a(q,n)) ^— (15)

JO ^[ sin a

We shall evaluate each term in the sum over n in (1 5), specifically, we can use the
integral expression for the hyperbolic heat kernel to write

r/2
Aq I Kh(t,a(q,n))-

da

0 sin a
4?V/2exp(-t/4) r/2 f°° ßexp(-ß2/4t)dßda

(47rf)3/2 Jo Ja(qn) [cosh/3 - cosh(a(g, n))]1/2 sin2 a n g\

Let sin a u so then

cosh a(q,n) 1 + 2-Msmh (nq/2),

and write (1 6) as

2?v/2exp(-t/4) f°° f°° ßexp(-ß2/At)dßdu
(47Tt)3/2 Jx 7o(qn) [cosh/3-l-2Wsmh2(n9/2)]1/2(M_ 1)1/2

(17)
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Define
cosh ß — 1

dfq.n) k
2smh2(n?/2)

Notice that d{q, n) depends on the variable ß If we interchange the order of
integration m (1 7), we can write (17) as

2?v/2exp(-t/4) f°° fd{-qn) ßexp(-ß2/4:t)dudß
(47rt)3/2 Jnq Ji [cosh/3-l-2Msmh2(n?/2)]1/2(M_ 1)1/2

The inner integral now can be evaluated Indeed, from the basic formula

we obtain

d(-q ") du

[cosh/3-cosh(a(?,n))]1/2(M_ 1)1/2

Therefore, we have

which gives the result D

Remark 1.5. If M is a compact surface, then the regularized trace of the heat
kernel is simply

oo

STvKM(t) TrKM{t) J^ e^n^ i1 8)
n=0

where {An} is the set of eigenvalues of the Laplacian which acts on the space of
smooth functions on M Let {rn} be the set of numbers for which 1/4 + r2t Xn

The above calculation establishes then the formula

oo
v—>

a=0

oo
1 f _ 2,=— / e tanh(7rr)riir

2tt y

V ' n=lH(F)
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This formula agrees perfectly with that on page 42 of [He2] In other words, we
have established the formula

1 fft(rn) — / ft(r) tanh(7rr)rdr
n

27r J
n=U n

smh
n=lH(T)

2 *
where /t(x) e~tx and ft denotes Fourier transform By linearity and an
elementary compuation, one shows that (1 9) then holds for any function / of the
form

N

n=l
where tn > 0 and pn is a polynomial From this, and an application of the Stone-
Weierstrass theorem, one obtains the Selberg trace formula for compact hyperbolic
Riemann surfaces (see page 32 of [He2] and references therein) Further details
and discussion of this point of view is given in [HJL2]

Remark 1.6. If M is non-compact, then it is much harder to give a spectral
representation of the regularized heat trace (1 8) Various references exist for such

a calculation, and the end result is the formula

STrKM(t)
C(M)

oo
V I' 2t 1

— / e~r tT'/T(l+ir)dr--(p-Tr®(l/2))
Ztt I 4

where C(M) denotes the (possibly finite) set of eigenvalues corresponding to L2

eigenfunctions on M, and </>(s) is the determinant of the scattering matrix $(s)
For further discussion, the reader is referred to [Se], [He3], or [Mu]

§2. A degenerating heat trace

In this section, we will consider the behavior of regularized heat traces on a
degenerating family of hyperbolic Riemann surfaces Based on Proposition 1 4 above,
we have the following proposition
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Proposition 2.1. Let Mg denote a degenerating family of compact or non-compact
hyperbolic Riemann surfaces of finite volume which converges to the non-compact
hyperbolic surface Mq. Define the degenerating heat trace as the integral

DTrKMt(t) ^ I [KCl(x,x,t) - Kh(0,t)]d^(x).

Then for any t > 0 we have the equality

n=lDH(T)

Proof. This is a direct application of Proposition 1.4. D

The following theorem, which we quote from [JLu3], asserts that given a

degenerating family of hyperbolic Riemann surfaces of finite volume, the hyperbolic
heat trace minus the degenerating heat trace converges pointwise to the hyperbolic
heat trace on the limit surface.

Theorem 2.2. Let Mg denote a degenerating family of compact or non-compact
hyperbolic Riemann surfaces of finite volume which converges to the non-compact
hyperbolic surface Mq. Then for any fixed, t > 0, we have the limit

t{t)] RTvKMo(t).

Outline of Proof. If Mi is a degenerating family of compact surfaces, we can write

[KMe(t,x,x) — Kh(t,0)]d[i(x) (I)

[KMt{t,x,x) - KCt{t,x,x)]dn(x) (II)

[KCe(t,x,x) -Kh(t,(

Integral (I) converges to the corresponding integral over the limit surface Mq by
the heat kernel convergence theorem proved in [JLul] (see also [JLu2] and [JLu3]).
As for integral (II), one applies the maximum priniciple as in the proof of Theorem
1.1. Finally, for integral (III), one uses the bound (1.2), which implies

£—>OO

uc

lim / [KM{t,x,x)-KCo{t,x,x)]dn(x)=O,
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together with a heat kernel convergence theorem for the heat kernel on Cq over
the region Cqtg \ Cqe for any 0 < e < S < oo.

If Mi is a degenerating family of non-compact surfaces, then one needs to
regularize the heat traces near the existing cusps on each Mg. Specifically, one has

the expression

[KMe{t,x,x)-KCo{t,x,x)]d(i{x) (II)

[KCo{t,x,x) - Kh(t,0)]dn(x) (III)

+ f [KMe (t, x, x) - KCt (*, x, x)]d^(x) (II)
J

[KCt(t,x,x) - Kh(t,0)]d^x). (Ill)

We have labeled two integrals by (II) and two integrals by (III) since these terms
are formally identical and will be handled by similarly methods in further
arguments. The reader is referred to [JLu3] for further details. D

Corollary 2.3. Let Mn denote a degenerating family of compact or non-compact
hyperbolic Riemann surfaces of finite volume which converges to the non-compact
hyperbolic surface Mq. Then for fixed ô > 0, there is a positive c such that for all
t<5,

RTrKMe(t) ~ VTrKMt(t) O(e-C/*)

uniformly in £.

Proof. The uniform convergence of heat kernels from [JLul] and [JLu3] implies
that integral (I) has exponential decay as t —> 0, uniformly in £. By applying the
maximum principle, as in the proof of Theorem 1.1, one shows that the asymptotic
behavior of integral (II) as t —> 0 is that of exponential decay, uniformly in £. As in
the proof of Theorem 2.2, we can write integral (III) as a sum of two integrals, one
for which the bound (1.2) implies exponential decay and the other over a compact
region for which one has uniform convergence of heat kernels, we conclude that
integral (III) has exponential decay as t —> 0, uniformly in £. Combining these

bounds, the stated result is proved. D

In summary, Theorem 2.2 proves that the hyperbolic heat trace minus the
degenerating heat trace converges pointwise to the hyperbolic heat trace. Since the



648 J. Jorgenson and R. Lundelius CMH

volume of the hyperbolic Riemann surfaces remains constant through degeneration,

one immediately has that the regularized heat trace minus the degenerating
heat trace converges pointwise to the regularized heat trace on the limit
surface. Corollary 2.3 states that the proof of Theorem 2.2 provides uniformity of
the asymptotics near t 0 of the hyperbolic heat trace minus the degenerating
heat trace. What remains to consider is the uniformity of the asymptotics for all
te R+.

§3. Uniform long time asymptotics

In this section we give a further analysis of the asymptotics of the uniformity of
the pointwise convergence in Theorem 2.1 for values oft near infinity. The main
result of this section is the following theorem.

Theorem 3.1. Let Mg denote a degenerating family of compact or non-compact
hyperbolic Riemann surfaces of finite volume which converges to the non-compact
hyperbolic surface Mq. Let 0 < a < 1/4 be such that a is not an eigenvalue of
Mo. Let

Then for any c < a, there exists a constant C such thai the bound

|HTri^(t) - DTrÄ*(i)| < Cexp(-ct)

holds for all t > 0 and uniformly in £.

Our proof of Theorem 3.1 comes from analyzing the three integrals in Theorem
2.2. For the integral over the portion the surfaces Mi and C{. away from the
developing cusps, we need the following lemma.

Lemma 3.2. Let R,£ denote either Mg or Cg, that is, either a degenerating
hyperbolic surface of finite volume or a degenerating infinite hyperbolic cylinder. For
any a < 1/4 and c < a, the limit

lim exp(ct)^) (t, x, x) exp(ct)K{^ (t, x, x)

is uniform for x € R.£ \ C£j£ and t > 0.

Proof. We shall argue as in the proof of Theorem l(b) of [JLul]. From the spectral
measure, we can express the heat kernel via the integral
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Observe that dNRe(x,x; A) is a positive measure. Let t to + s an(i write

0 < K$(t,x,x) [ exp(-Xto)exp(-Xs)dNRe(x,y,X)
¦Ja

< exp(—as)

* / \ Tr\a.) /. \^ CA-lJl — (_xo IA n \b\J,Jb,Jb\

exp(—at) exp(ato)Kfte (to,x,x);
hence the quantity

0<exp(at)^}(t,x,x)
is monotone decreasing in t. From Theorem 1.3 of [JLu3] and the convergence of
small eigenvalues and small eigenfunctions (see [CC], [Hel] or [HJL1]), we know

that K\; (to,x,x) converges uniformly to Kq (to,x,x) for x G Ri \ Cit£. Therefore,

for t > to, there is a constant C C(e,to) which is independent of £ such
that

exp(at)^)(t,x,x)<C.
If c < a, then

exp{ct)K^'{t,x,x) < Cexp(t(c — a)).
We now can combine the monotonicity and pointwise convergence of the function

exp(at)ÜJ^(t,x,x) to exp(at)Kj^' (t,x,x), as in the proof of Theorem l(b) from
[JLul], to finish the proof. D

Lemma 3.3. Let Mg denote a degenerating family of compact or non-compact
hyperbolic Riemann surfaces of finite volume which converges to the non-compact
hyperbolic surface Mq. Let a < 1/4, c < a, and ô < 1/2. Then there is a constant
C such that for all t > 0 we have

sup \K^(t,C,0 ~ Kce(t,C,O\ <Cexp(-ct).

Proof. As stated in the introduction, results from [R] allow us to take any ô < 1/2.
With this, the claim follows directly from the bounds given in (1.3) and (1.4), to
which we can apply Lemma 3.2 to both the upper bound and the lower bound,
together with the observation that 1/4 is the bottom of the spectrum for Cg. D

Lemma 3.4. Let f(t,x) be a solution to the Dinchlet heat problem on the finite
cylinder C^^, and, for fixed t > 0, let ||/(t, -)\\ce s,2 denote the L norm of f(t,-)
as a function on C^^. Then for all to,t > 0, we have

)lk,a,2 • exp(-t/4).
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Proof. Directly from definitions, we have

2/A/=-2

Therefore,

The result follows from integration. D

To finish the background material necessary for our proof of Theorem 3.1, we
need a basic proposition from [JLu3] for the Poisson kernel on GnyE. For completeness,

let us recall the définition of the Poisson kernel together with a result from
[JLu3]. After this, the proof of Theorem 3.1 will be given.

Definition 3.5. Let K®
s

(£, x, y) be the Dinchlet heat kernel on the domain Cq^.
For any G dCq^, let on^ denote the inward normal derivative. The Poisson
kernel Pqt$(t,x,Ç) of the domain Cq<g is defined, to be

Remark 3.6. From Theorem 5 on page 168 of [Ch], we have the following
characterization of the Poisson kernel. The function Pq^{t,x,C) is an integral kernel
for t > 0 with x G Cqtg and G dCqtg, which solves the following boundary value
problem. Let u u(t,x) satisfy

(A-dt)u 0, m(0,x) 0, and u(t,Ç) /(*,C) foiÇedCqtS-

Then

u(t,x)= [ [ PqtS(t-a,x,C)f((T,C)dg(C)d<T.
JO JdCqtS

The following proposition, which we quote from [JLu3], establishes various
estimates for the Poisson kernel which are independent of q.

Proposition 3.7. Let Cq be a family of infinite volume hyperbolic cylinders. For
any ö > 0, any 0 < e < 5, and any real numbers to,t\ > 0, the following results
hold.
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a) For all 0 < t <ti, x G Cq £ and Ç G dCq g, there is a constant C independent
of q such that

0<PqS{t,x,Q <C
b) For all 0 < to < t < t\, x G Cq g and G dCq g, there is a constant C

independent of q such thai

0<Pqs(t,x,C) <C

c) For fixed s, the L norm \\Pq g(t -\-is, C) II c f2 !S decreasing mt

By combining Lemma 3 4 and Proposition 3 7, we obtain the following bound

Lemma 3.8. For any e < ö, there is a constant C such that

\\Pes(t,C, )||c,E2<Cexp(-t/4)

Proof Pick any to If t < to, then Proposition 3 7 provides a supreinuin bound
which is uniform in I, hence we have a bound on the L2 norm, namely

sup \Pes(to,C,x)\ < c(t0)
s

In fact, since the variables and x are bounded apart, one can take to 0 For
t > to, apply Lemma 3 4 to get

||^ä(*,C, )\\ctE2<\\Pes(tX, )\\cei2<\\Pts(to,C, )\\ctl2 c(to)e-*/4,

which holds since Ai > 1/4 Combining the inequalities obtained in the two cases,
the asserted result is established D

Proof of Theorem 3 1 The uniformity as asserted for integral (III) is given by
(1 2) Lemma 3 2 applies to integral (I), so it remains to consider integral (II) For
this, we need the above lemmas and argue as follows

Let {An i\ be the family of eigenvalues on Mn which converge to the eigenvalues
on Mo which are less than 1/4, and let {4>n t{x)} be the associated family of
eigenfunctions By results from [CC], [Hel] or [HJLul], the sum

varies continuously in £ up to and including £ 0 Let S < 1/2 be fixed, and let
0 < e < S For x, y G Ce s and t > 0, consider the decomposition

N

KMe (t, x, y) - KCe(t, x, y) u(t, x, y) + v(t, x,y) + Y^ e"'A"'i i{x)4
n=l
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where u and v are solutions to the homogeneous heat equation in both x and y
(and t) such that
• u has values identically zero on dGn g and has appropriate initial values,

• v has identically zero initial values but has appropriate boundary values on

Let a < 1/4 be such that Mq has no eigenvalues in the range (a, 1/4) With
the above decomposition, we have

K^>(t,x,y) - KCe(t,x,y) u(t,x,y)+ v(t,x,y)

We shall study the functions u(t,x,y) and v(t,x,y) separately
From two applications of the Poisson kernel, we have the expression

v(t,x,y)= f [ [ [ Pes(t-T,x,Ç)Pio(T-a,y,OD{ea\
JO JdCe s JO JdCt ê

where
D^a) (a, C, 0 K^] (a, C, 0 - KCt (a, C, 0

We need to consider the integral

r
v(t, x, x

If we use the sup-norm on difference of heat kernels, as given in Lemma 3 3, and
the L2 norm of the Poisson kernel, as given in Lemma 3 8, together with the
Cauchy-Schwarz inequality, we obtain the bound

f fv{t,x,x)djjL{x) < Ci i exp( — (t — t)/4) exp( — (t — <r)/4) exp(—ca)dadr,
J J

Cte 0 0

which is easily shown to satisfy the bound O(e~ct)
It remains to consider the L2-norm of u(t,x,x) over C# £ Let N be an integer

which bounds the number of eigenvalues on each Mi less than 1/4, such a universal
choice of N is possible by Buser's theorem (see page 251 of [Ch]) As a function
of x and t with y fixed, u{t,x,y) satisfies the heat equation with zero boundary
data and initial data given by

X! 4>n i{x)4>n i{y) (3 1)

A„^<l/4

Therefore, we can write

u(t,x,y)= I KPs(t,z,x)g(z,y)diJL(z) (3 2)
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Now view (3 2) as a solution to the heat equation on C{. s in the variables y and t
with x fixed This yields the expression

u(t-\-t,x,y) / Kg g(T,w,y)u(t,x,w)diJ,(w)

\cis

Hence,

Kfs(t,z,x)g(z,w)diJ,(z) \ d^{w)
(3;

j Kfs(r, w, y)Kfs(t, z, x)4>n£{z)4>n

Kt's(T,w,y)<l>ne(w)dn(w)\ \ J K?s(t,z,x)<t>ne(z)diJL(z)

\fes

If we set x y and t t, and change the variable in the second integral in (3 4)
from to to z, we get

2

u(2t,x,x)= V I / KeDs(t,z,x)<t>ne(z)dp(z)\ (35)

Now write
oo

"«»me^VmW= / Kgea(t,x,z)<f>ne(z)diJ,(z),
m=l ^ e s

where {tpm(x)} is the orthonormal basis of eigenfunctions of the Dinchlet problem
on Ci s The positivity of the expression (3 5) immediately allows us to conclude
the inequality

0 < Fe(t) I u(t,x,x)dij,(x) < I u(t,x,x)dij,(x) Fs(t),

so it suffices to prove Fs(t) < Cexp(—1/4) for some constant C which is independent

of £ Notice that we have the equality

oo
771 /_i_\ I ft \ 7 / \ X X Z —Amt /O f*\rgyt) I U[t, X, x)dj^{x) y / j an me (^ ")

Ces
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From this formula, it is immediate that Fg(t) is monotone decreasing in t. Further,
from (3.5), it follows that Fs(0) < N. Since Am > 1/4 for all m, we have, from
(3.6), Fg(t) < — l/A)Fs(t). If we integrate this inequality, we conclude

Fs(t) <

from which we obtain

0 < F£{t) < Fs(t) <

With this, the proof of Theorem 3.1 is complete. D

§4. Applications to spectral functions

We shall now consider a few applications of our convergence theorem for the
regularized heat trace and the truncated regularized heat trace. The two applications
we consider involve the Mellin transform, which yields a generalization of the spectral

zeta function, and the Laplace transform with a quadratic change of variables,
which yields the Selberg zeta function.

For any a G (0,1/4), let us define the zeta function

0

If M is compact and a < \\, then

oo
1

where mo(M) is equal to the number of connected components of M. Thus, our
spectral zeta function generalizes the usual definition which applies only in the
case M is compact.

Theorem 4.1. Let Mg denote a degenerating family of compact or non-compact
hyperbolic Riemann surfaces of finite volume which converges to the non-compact
hyperbolic surface Mq. Let a < 1/4 be any number that is not an eigenvalue of
Mq. Then for any s G C, we have

lim 0.
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The convergence is uniform in any half-plane of the form Re(s) > C > —oo.

Proof. By definition, we are to prove

11II1 / O±Ii\ M II I — LJ ±LJ\Me (I) ~ ö II xV h. (I) | I —7" — U.

0

Since voI(Mq) vol(M^), it is equivalent to prove

Jim y [HTrtfg(i) - DTri^(t) - HTrtfg (*)] ts* 0.

o

By the results established in Theorem 2.2, Corollary 2.3, and Theorem 3.1, we can
interchange the limit and integral, and the result follows. D

Remark 4.2. By direct calculation, we have

n_1
v167r)1/2sinh(n^/2)J

where Ks{a,b) is the if-Bessel function

Ka(a,b)=
0

Since

K1/2(b, a) K_1/2(a, b) ^V2a6, (4.1)

we have, in the special case s 0,

Et Ü/2~~—1—7T-ft:-l/2(1/2,^/2)= J^——-—^-jt (4-2)

n^l n^l

(see [JLa2]). As a result, we have proved the following corollary.

Corollary 4.3. For any finite volume hyperbolic Riemann surface, define

Let Mg denote a degenerating family of compact or non-compact hyperbolic
surfaces of finite volume which converges to the non-compact hyperbolic
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surface Mq. Let a < 1/4 be a positive number such that a is not an eigenvalue of
Mq Then

lim logdet^A*-
p-n£

DH(r)n=l V ' \n<a

Proof Since the gamma function has a first order pole at s 0, the degenerating
term is as in (4.2). D

Remark 4.4. The elementary lemma on page 112 of [Hel] states, for Re(s) > 0,
the asymptotic formula

DH(T) n=l V ' DH(T)

Therefore, Corollary 4.3 agrees with some of the main results from [Hel] and [Wo]
in the case Mn is a degenerating family of compact surfaces. However, as stated
above, the methods of proof in [Hel] and [Wo] do not apply to the setting of a

degenerating family of non-compact surfaces, whereas Corollary 4.3 includes these

cases.
To continue, let us now apply the results from sections 2 and 3 to the Selberg

zeta function. Recall that the logarithmic derivative of the Selberg zeta function
is defined via the integral

(2s-l)
0

From the collapse of the if-Bessel function (4.1), we have, following [JLa2], the
evaluation

4 E

2sinh(n%)/2) ' y '

which agrees with Proposition 4.2 on page 67 of [He2]. The constant of integration
obtained by integrating (4.3) is determined by defining, as on page 66 of [He2],
the Selberg zeta function itself via the product

H(T) n=0
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By an elementary argument involving hyperbolic geometry, one can estimate the
asymptotic behavior of the number of closed geodesies of bounded length (see, for
example, Lemma 4 of [JLul] or Lemma 1.4 of [JLu3]). From this estimate, it is

easy to show that the Euler product in (4.4) converges for Re(s) > 1.

For a < 1/4, let

7^'t s\
°°

%^ (2»-:

Theorem 4.5. Lei M^ denote a degenerating family of compact or non-compact
hyperbolic Riemann surfaces of finite volume which converges to the non-compact
hyperbolic surface Mq. Let a be such that M has no eigenvalues in the range
[a, 1/4). Then for any s with Re(s) > 1 or in the region Re(s — s) > —1/4, we
have

lim
za) («)

2sinh(n%)/2)n=l dh(T)
K yi" '

Proof The proof of Theorem 4.5 for s in the region Re(s2 — s) > —1/4 follows
the pattern of the proof of Theorem 4.1, which is a direct application of Theorem
2.2, Corollary 2.3, and Theorem 3.1. From (4.3), we have that the logarithmic
derivative of the Selberg zeta function can be written as a Dirichlet series with
positive coefficients in the region Re(s) > 1. Therefore, the convergence result
extends from the region Re(s2 — s) > —1/4, which contains the line segment

R>l/2, to the Re(s2 - s) > -1/4 together with the entire half plane Re(s) > 1. D

Remark 4.6. As in the case of Theorem 4.1, the convergence result stated in
Theorem 4.5 is related to results contained in [Hel] and [Wo]. Our result applies
to a slightly larger region than considered in [Hel] or [Wo]. Also, as above, our
work applies to degenerating non-compact surfaces as well as degenerating compact
surfaces, whereas the techniques used in [Hel] and [Wo] apply only in the compact
setting. Also, note that if we restrict our attention to Re(s) > 1, then one can
take a 0.

Remark 4.7. The connection between the Selberg zeta function and the spectral
zeta function is as follows. Let

which is defined for Re(z) sufficiently large. Following the proof of analytic continuation

of Laplace-Mellin transform of theta functions, we have, at least formally,
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the formula
exp(-a„CM(0, s(s - 1))) ZM(S)F(S)2s-2 (4 5)

where

J UnKh(t,0) - ±1 e-8^-1)* - log(S(s - 1)

4irKh(t,Q) - —\ dt (4 6)

(see page 184 of [JLal]) In [Sa] it was shown that (4 6) is a meromorphic function
with simple poles and integer residues, hence the integral in (4 6) is indeed the
logarithmic derivative of a meromorphic function F Upon setting s 1 above,
we have

logdet*AM log^(l) + iX(M)co where c0 —4Cq( —1) + \ ~ log(27r)

(4 7)
The constant cq was evaluated in [Sa], which proved (4 5) and (4 7) for compact
surfaces The above analysis applies to establish (4 5) and (4 7) for all hyperbolic
Riemann surfaces of finite volume
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