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The zero-norm subspace of bounded cohomology

Teruhiko Soma

Abstract. Let S be a closed, orientable surface of genus > 1 In this paper, non-trivial elements

a of the third bounded cohomology iï^(S, R) with \\a\\ 0 are given constructively by using
both a hyperbolic metric and a singular euchdean metric on S X R Furthermore, it is shown
that the dimension of the subspace iV3(E) of H^(S, R) consisting of zero-norm elements is the
cardinality of the continuum

Mathematics Subject Classification (1991). 57M50, 55N99
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Introduction

Let X be a topological space and Ck(X) the fc-cocham group of real coefficient
The R-subspace Ck{X) of Ck{X) consists of elements c G Ck{X) with

||c|| sup{|c(<r)|,<7 Afc —> X is a singular fc-simplex} < oo

Consider the restriction 5k 5k\ck{x) Ck(X) —> Ck+1(X) of the coboundary

operator Sk Ck(X) —> Ck+1{X) Vhen, the cocham complex (C6*(X), 5%) defines
the hounded cohomology

where Z^{X) Ker((56fc), BJ;(X) Im(<56fc"1) We refer to Gromov [7] for
fundamental results on bounded cohomology The pseudonorm \\a\\ of a G Hk(X, R) is
defined by

|H|=mf{||C||,CGZ6fc(X)with[c]=a}

We say that Nk(X) {a G i?£(X,R), ||a|| 0} is the zero-norm subspace of
i?^(X, R) For any topological space X, Matsumoto-Monta [9] and Ivanov [8]

proved independently that Nk{X) {0} whenever k < 2 At that moment, any
examples of non-trivial Nk(X) were not known for k > 3
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Here, we are mainly concerned with the case where the space X is a closed,
connected, orientable surface S of genus > 1. Then, the structure of the second
bounded cohomology i?2(£; R) was studied by Brooks-Series [2], Mitsumatsu [10],

Barge-Ghys [1], Epstein-Fujiwara [4] and that of the third i^(X,R) by Yoshi-
da [18], Soma [11], [12] and so on. We refer to Grigorchuk [6] for other useful
references on bounded cohomology. Furthermore, the author showed in [13] that
jV3(£) is non-trivial by invoking Matsumoto-Morita [9, Theorem 2.3]. However,
since the proof of their theorem relies on the Hahn-Banach theorem, we could not
construct any non-trivial elements of jV3(£) practically.

In this paper, non-trivial elements of jV3(£) are given constructively by using
both a hyperbolic metric and a singular euclidean metric on S x R, where the latter
metric is defined by using a measured foliation associated to a pseudo-Anosov
automorphism of £. A combination of these two metrics presents a continuous
family {[cre];0 < r < 1} of elements of ]V3(£ x R) which are linearly independent
in F3(S x R; R) i/63(S; R), see Theorems 1 and 2 in §2 for details. In particular,
it is shown that the dimension of the R-vector subspace jV3(£) of i?3(S; R) is the
cardinality of the continuum.

The key fact in our arguments is that the bounded 3-cocycle cre given in §2 is

the coboundary of a certain unbounded 2-cochain. For the proof, it is crucial that
the 3-dimensional euclidean space E3 is the product metric space E2 x E1. This
is the main reason why we use a euclidean metric as well as a hyperbolic metric.

§1. Euclidean and hyperbolic structures on manifolds

Let S be a closed, connected and oriented surface of genus > 1. A measured

foliation T on S is a topological foliation with finitely many prong singular points
of degree > 3 and equipped with the transverse measure. The set of singular points
of T is denoted by Sy. An orientation-preserving homeomorphism /: S —> S
is called a pseudo-Anosov automorphism if there exists A A(/) > 1 and a pair
of mutually transverse, measured foliations JFS, Tu with Sp* Syu(= S{f)) and

f(Ts) =\-1Jrs, f(Tu) XTU. We refer to [3], [5] and [16] for the existence and
fundamental properties of such automorphisms and for typical pictures of jFs(")

near p G S(f).
Note that the pair of these measured foliations Tu, Ts determines an incomplete,

euclidean structure, a smooth structure on S° S — S(f). We will define
a smooth structure on S extending that on £°. For any n G N with n > 3,

the euclidean 2-space R2 C; (x,y) x + \<r—ly is divided into the n sectors

V\,..., Vn such that

for k l,...,n. The upper half plane H {z G C; Im(z) > 0} admits the
euclidean structure induced from that on C R2. Let Xk '¦ Vk —y H be the
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homeomorphism defined by

—(nB
V V 2

Note that the Jacobian of Xk with respect to the standard euclidean coordinates
on Vfc and H is the constant n/2 Let Tjj, ^h be the measured foliation on H
such that the set of leaves in TSH (resp !Fjj) consists of straight lines parallel
to (resp straight rays orthogonal to) the x-axis dH and such that the transverse
measures are induced from the euclidean metric on H Then, the pair {T^T^}
of measured foliations on R2 with the prong singular point (0,0) of degree n is
defined by

n n

fc=l
' " fc=l

For a sufficiently small e > 0, there exist mutually disjoint neighborhoods Up

of p G S(f) in S and homeomorphisms <pp Up —> D(e) {z G C, \z\ < e}
such that <pP(T"\Up) ^\D{£yVP(fu\Up) K\D{£) For Vk(e) fpl{D{e) n

Vfc), the composition Xk ° ^p|vfc(e)-{p} Vk(£) ~ {p} —> H - {0} is a locally
isometric embedding if Vfc(e) — {p} has the euclidean metric induced from that
on S° Regarding {(Up,tpp),p G S(f)} as a family of coordinate systems for S

in UpUp, one can define the smooth structure on S extending that on S° Then,
Sx/ admits the product smooth structure, where / is the closed interval [0,1]
From now on, we identify L)PUP x / with L)pDp(e) x / via <pp x id/'s, where Dp{e)
are copies of D{e) Note that the homeomorphism /Sx {0} —> S x {1} is

not a diffeomorphism with respect to this smooth structure So, we need another
smooth structure on S x / For any t with 0 < t < 1, consider the elliptic half-disk

2 x2+2t„2 x2-2t„.2 _ JlEt {(x,y) G R2, A2+2*x2 + A2-V e\y >

in H Set Wp t (JLl X* H^t) C Dp(e), and

Xp {{q,t),t eI,qeWpt}c Dp(e) x / c S x /
For simplicity, we denote the product homeomorphism \k x id/ V^ x / —> H x I
by Xk The homeomorphism V'p Xp —> Dp(e/X) x / is defined by

if q e Xkl{Et) and Xk(q) {x,y) By taking {{Xp, ipp),p G S*(/)} as a coordmte
system for S x / instead of {(Up x I,<pp x id/),p G S(f)}, we have a new smooth
structure on S x /, and denote this smooth manifold by S x /new Then, /Sx
jQjnew —y £ x j-^jnew lg a diffeomorphism In particular, the mapping torus
M S x /new/{(x,0) - (/(x), 1)} admits the induced smooth structure
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Let Vo\n\(B) (resp. Vol(2)(-B)) denote the volume of a compact 3-dimensional
submanifold B in X° Xp — {p} x / (resp. in Dp(e/X) x /) with respect to the
incomplete euclidean metric on X° C S° x / (resp. the standard euclidean metric
on Dp(e/X) x /). Similarly, the areas of subsurfaces F in X° and Dp(e/X) x / are
denoted by AYe&n\(F) and Area^iF), respectively.

We denote the degree of Ts (or Tu%) at p G S(f) by n{p). Then, the following
lemma holds.

Lemma 1. (i) For any compact 3-dimensional submanifold B of X°,

(ii) For any compact subsurface F of X°

Area(1)(F) <

Proof. Since X% C Dp{e)° x I Ufc=l^fc(e)° x /, if necessary dividing B and
F into smaller pieces, we may assume that B and F are contained in Vk(e)° x /
for some k e {1,... ,n(p)}, where Vk{e)° Dp(e) C\Vk - {p}. Set B' Xk{B)
and F' Xk(F). Recall that Xfclw ïo r: "^(e)0 x / —> (ff - {0}) x / is a

locally isometric embedding if Vk{e)° has the incomplete euclidean metric induced
from that on E°. For the diffeomorphism ^ : H x I —> H x I with ^(x,y,t)
(Xtx,X~ty,t), we have

Area(1)(F) AreaHx/(JF1/) <

Since Xk(ipP(B)) *(S') and Xk(ipP(F)) *(F') and since the Jacobian of
Xfc : Vfc —> H is n{p)/2, we have

This completes the proof. D

Let p: M S x R —> M be the infinité cyclic covering associated to tti(E) C

tti(M), and set L S(f) x R. Note that M° S° x R has the product,
incomplete euclidean metric induced from the euclidean metrics on S^ and R.
For the euclidean area form rj^o on S°, 77 C*(??£o) is a 2-form on M°, where

(: S° x R —> S° is the orthogonal projection. The volume form Qe on M° is
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given by QE V A dt The diffeomorphism / M —> M with f(x,t) (f(x),t +
1) is the generator of the covering transformation group Since / y,o S° —>

S° is a euchdean-area-preservmg diffeomorphism, / ~o is a volume-preserving

diffeomorphism, that is, f*(ßE) f*(rf) A f*(dt) rjA dt QE Thus, there
exists the 3-form S2E in M° M - L with p*(S2E) S2E, where L p{L) is a link
in M Similarly, there exists a 2-form r]M° on M° with p*(r]M°) V According to
Thurston [17] (see also Sullivan [14]), the smooth manifold M admits a hyperbolic
structure For the hyperbolic volume form Qh on M, there exists a positive,
smooth function h M° —> R with flE hflh We suppose that M admits the
hyperbolic metric induced from that on M via p

For the derivative dl; of the smooth embedding

e U %l U Dp(e/\) x/^Sx /new c M,
pes(f) pes(f)

we set

Dp(e/X)xI,veTuJ \J Dp(e/X) xl)} > 0,

where TU(\J eS/f\ Dp(e/X) x /) is the unit tangent bundle over the euchdean

manifold |Jpes(f) Dp(e/X)xl We note that the image Y p{\Jpes(f) Dp(e/X)xl)
is a union of solid ton in M, and the complement M — int Y of int Y is a compact
manifold

Lemma 2. K\ sup{/i(s), s G M°} < oo

Proof For jany compact 3-dimensional submamfold B of Y — L, we have

t(63v°l(2)(-B) < VoIm(-B), where S p-^-B) fl(Sx /new) Then, by Lemma 1

(l), we have

sup{/i(s),s G M°} < maxjmax{/i(s),s G M - int y}, L\ < oo,
L 2i(C)<3 J

where n(/) max{n(p),p G S(f)} This completes the proof D

Note that, in general, for a sequence {sm} in M° converging to a point in L,
the limit lnrim^oo h(sm) does not exist Then, we can not extend h to a continuous
map on M

Let Q be a 2-dimensional subspace of TS{M°) for s G M° There exists a

small, hyperbolic disk D centered at xq g H2 and an embedding iq D —> M
with îq(xq) s, iq*(Txq{D)) Q and such that iq is an isometry onto the image

which is totally geodesic with respect to the hyperbolic metric on M Let
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(fiQ D° —> R be the smooth function with *q(?7mo) f>Q Vh on D°, where

I(D° D — Iq(L) and r/n is the hyperbolic area form on D Then, we have

(x)|,x G

D°

where AreaM(-D°) AreaM(-D)) denotes the hyperbolic area of D° Intuitively,
(Pq(xq) represents the ratio, in the cross section Q, of i]m° to the hyperbolic metric
at s G M It is easily seen that there exists the maximum

g(s) max{|y>Q(xo)|, Q is a 2-dimensional subspace of TS(M°)},

and g M° —> R is a continuous, non-negative function The following lemma is

proved by the argument similar to that in Lemma 2

Lemma 3. K% sup{<?(s), s G M°} < oo

Proof As in the proof of Lemma 2, for any compact subsurface F of Y — L, the
inequality i(£)2Area(2)(F) < AreaM(-F) holds, where F p^X{F) n (E x /new)

If necessary dividing F into smaller pieces, we may assume that, for the inclusion

i F —> S° x /, the composition C, o i is mjective Then, by the definition of rj,

\i*(ri)\ =AreaEo(C(JF)) < Area(1)(F)

By this inequality together with Lemma 1 (n),

\i*F(r,M°)\ < Area(1)(F) < J^f
where ip F —> Y — L C M° is the inclusion This shows that

sup{Sr(s),sGM°} <max|max{#(s),sGM-mtY},^-2 j < oo

This completes the proof D

By Lemma 2, for any hyperbolically straight 3-snnplex a A3 —> M,

f * ~ f * f * 3o

JA3° JA3° JA3°

where A3 denotes the 3-simplex A3 with the hyperbolic metric induced from that
on M via a and A3° A3 - a~l(L) Since the hyperbolic volume Vol(A3°)

q
Vol(A^) is less than the volume V3 of a regular ideal simplex in H

\a*(QE)\< Ktv3 (12)
A3o
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Similarly, by Lemma 3 together with the equation (1.1), for any straight 2-simplex

t: A2 —>M,

I \t*(t})\= [ |(por)*(«Mo)|<if2Area(A20),
JA2° JA2°

where A2 denotes the 2-simplex A2 with the induced hyperbolic metric and A2°
A2 - t~1(L). Since Area(A2°) Area(A2) < tt,

(n)| < 7TÄ2- (1.3)

The inequalities (1.2) and (1.3) will be used in the next section.

§2. Zero-norm elements of bounded cohomology

For a topological space X, the Gromov norm of a singular fc-chain z Y^=\ aiai ^
with real coefficients at G R is defined by

Then, for any bounded fc-cochain c G C£(X), we have \c(z)\ < \\c\\ \\z\\.
For any r > 0, e > 0, consider the continuous functions are : R —> R and

j4rj£ : R —> R given by

f aT,£
Jo

aT,£{t) min{e, |trr}, Ar,e(t) f aT,£{u)du.
Jo

Note that lim^oo aTjE(t) 0 if r > 0 and linit-nxj^e^) oo if r < 1. The

compositions of the projection M S x R —> R with are, j4re are also denoted

by aTyE : M —s- R and j4rj£ : M —s- R, that is, arj£(p,t) ari£(t) and Ar^(p^t)
ATjE(t). For a singular n-simplex t: A" —> M, straight(r) : A" —> M denotes
the straight n-simplex obtained by straightening t, see [15, Chapter 6] for details.

Let cr<£ £ Z3(M) be the 3-cycle defined by

~
straight(cr)* (aTjEQE)

A3°
straight(<r)

for any singular 3-simplex a: A3 —> M. Intuitively, cre((r) represents the "eu-
clidean" volume with weight are of the "hyperbolically" straightened simplex.
Since max{|arj£(t)|;t G R} e, by (1.2),

|straight(a)*(QB)| < e
A 3o

straight (<t)
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This shows that crj£ G Z$(M) and ||crj£|| <
In Theorem 1, we will show that the class [cre] G H^{M\ R) is independent of e

if r > 0. However, Theorem 2 implies that [cre] strictly depends on r if 0 < r < 1.

Theorem 1. // 0 < r < 1, then [cr,£] ± 0 m F63(M; R). Ifr>0, then for any
e,e' > 0, [crj£] [crj£/] m i7^(M;R). In particular, if 0 < r < I, then [crj£] «s a

non-trivial element o/i?^(Af;R) wrf/i [crj£] =0.

Proo/. We set Sn S x {n} C M for n G Z. For a sufficiently small ö > 0, let

So be an oriented surface piecewise smoothly embedded in S x [—3, S] each piece

of which is a totally geodesic triangle with respect to the hyperbolic metric on M
and such that So is isotopic to So in S x [—(5,(5]. Furthermore, we may take So

so that it satisfies (2.1).

For any p G S, So meets the line C (p) m a single point. (2-1)

Let zq G Z^iM) be a 2-cycle representing this hyperbolic triangulation of So-

We set Sn /"(So) and zn /"(^o)- Since zn — zq is homologous to zero in

M, there exists a 3-chain wn G C^{M) consisting of straight 3-simplices and with
dwn zn — zq. Note that rj C*(vs°) an(i VS° > 0- Thus, we have

v

where S° Sn — Sn n Ç~^~(S(f)) and the second equality is derived from the

property (2.1). We denote the value of these integrals by K% > 0.

If [cr£] 0 in H^(M; R) for some 0 < r < 1, then there would exist a bounded

2-cochain a G C%(M) with 6%(a) crj£. This implies that, for any n G N,

a(zn - zq)\ < \\a\\(\\zn\\ + \\zq\\) 2\\a\\ \\zq\\.

Since Arfi is an increasing function, Ari£(n — ö) < Arfi < Ari£(n + ö) in Sn x [—(5,(5]

and Art£ < eS in So x [—(5,(5]. Consider the 2-form ör£ Art£rj on M°. Since

d6ri£ art£dt Arj art£ClE an(i since straight(wn) wn, the Stokes Theorem
shows that

f f
• £(wn)\= I Ar£j]- I Ar£j]

>Ar,£(n-S) i \rj\-eo f \rj\

(Arte(n-ö)-£Ö)K3.
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The condition 0 < r < 1 implies that lirrin^oo Arfi (n — 6) oo and hence

lirrin^oo |crj£(wn)| oo, a contradiction. It follows that [crj£] is a non-trivial
element of F63(M; R) for any 0 < r < 1.

For any e, e' with e > e' > 0, the 2-cochain b G C2(M) is given by

6(t)= / straight(T)*(ör,e-ör,e/)
JA2°

straight(x)

for any singular 2-simplex t: A2 —> M. Then, the coboundary of b is (52(6)

Cr,e — cT£i. If r > 0, then

if4 max{|Are(t)-Are/(t)|; t G R}= /
JO

By (1.3), we have

(ar£(u) — ar£/(u))du < oo.

A2°
straight(T)

A2°
straight(x)

straight(T)*((Arie - Ar,£,

|straight(r)*(»7)|

<

This shows that b e C%(M) and hence cr_e - cr£> G B$(M) for r > 0. By the
définition of the pseudonorm, for any e' > 0,

we have | [cr<£] | 0 whenever r > 0.
\\\Cr,e'_ Thus,

D

For two sequences {an}, {bn} with an, bn > 0 (n G N), an ~ 6n means that

0 < liminf -p- < lim sup -p- < oo.
n^oo 6n n^oo On

The notation in the proof of Theorem 1 still works to prove Theorem 2.

Theorem 2. For a fixed e > 0, the elements [cre] (0 < r < 1) are linearly
independent in i7^(Af;R).

Proof. We suppose that

7l[cri,e] =0

for 0 <_ri < 7*2 < '¦¦ < rm < 1- Then, there exists a bounded 2-cochain
a G C%{M) with

71cri,e + 72Cr2,e H h 7n>cn,e #6 («)•
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For the straight 3-cham wn G C%{M) given as above, we have

m

|71<Vi e{wn)\ < ^2 \ioCro e(W«)l + \Sb(a)(wn)\

The argument similar to that in the proof of Theorem 1 shows that

m

\ll\Kz{Ari e(n -5)-e5)<YJ Vh \Kz{Ar, e(n + 6) + eö) + 2\\a\\ \\zo\\,

j=2

and hence

J2T=2hUr3s(n + S)+sS) + 2K^\\a\\\\zo\\
1711 " AriE{n-5)-e5 [ '

Since Arie(n-6) -n1"ri, ATj £(n+ö) ~ n1"^ \ir3 < 1, and Arm£(n+ö) ~ logn
if ?*m 1, the right hand side of (2 2) converges to zero as n —> oo This shows
that 7i 0 Similarly, we have 72 7m 0 Thus, [cr£] (0 < r < 1) are
linearly independent D

By Theorems 1 and 2, the continuous family {[cre],0 < r < 1} consists of

linearly independent elements in N3(M) Since the inclusion 1 S So —* A^

is a homotopy equivalence, the induced homomorphism 1* (H^(M, R), || ||) —>
(H^ÇE, R), || ||) is isometrically lsomorphic Thus, we have the following corollary

Corollary. For any closed,, connected,, orientable surface S of genus > 1, the
dimension of the zero-norm subspace N (S) of H^ÇS, R) is the cardinality of the
continuum D
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