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The zero-norm subspace of bounded cohomology

Teruhiko Soma

Abstract. Let 3 be a closed, orientable surface of genus > 1. In this paper, non-trivial elements
« of the third bounded cohomology HE'(E; R) with ||| = 0 are given constructively by using
both a hyperbolic metric and a singular euclidean metric on > x R. Furthermore, it is shown
that the dimension of the subspace N3(X) of Hg’ (2; R) consisting of zero-norm elements is the
cardinality of the continuum.

Mathematics Subject Classification (1991). 57M50, 55N99.
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Introduction

Let X be a topological space and C*(X) the k-cochain group of real coeflicient.
The R-subspace CF(X) of C*(X) consists of elements ¢ € C*(X) with

lle|| = sup{|e(o)|;0: A¥ — X is a singular k-simplex} < oo.

Consider the restriction 6} = 5k|ck(x) (CHX) — C’f+1(X) of the coboundary
b
operator 6% : C*(X) — C*1(X). Then, the cochain complex (O (X), §;) defines

the bounded cohomology
Hy(X;R) = Z;(X)/Bg(X),

where ZF(X) = Ker(dF), BF(X) = Im(éffl). We refer to Gromov [7] for funda-
mental results on bounded cohomology. The pseudonorm ||c| of a € Hf (X;R) is
defined by

lloll = inf{|lc||;c € ZF(X) with [¢] = a}.

We say that N*(X) = {a € Hf(X;R);|le| = 0} is the zero-norm subspace of
HF(X;R). For any topological space X, Matsumoto—Morita [9] and Ivanov [8]
proved independently that N*(X) = {0} whenever k¥ < 2. At that moment, any
examples of non-trivial N*(X) were not known for k > 3.
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Here, we are mainly concerned with the case where the space X is a closed,
connected, orientable surface 3. of genus > 1. Then, the structure of the second
bounded cohomology HZ(3; R) was studied by Brooks-Series [2], Mitsumatsu [10],
Barge-Ghys [1], Epstein-Fujiwara [4] and that of the third H(%,R) by Yoshi-
da [18], Soma [11], [12] and so on. We refer to Grigorchuk [6] for other useful
references on bounded cohomology. Furthermore, the author showed in [13] that
N3(%) is non-trivial by invoking Matsumoto-Morita [9, Theorem 2.3]. However,
since the proof of their theorem relies on the Hahn—Banach theorem, we could not
construct any non-trivial elements of N 3(Z) practically.

In this paper, non-trivial elements of N3(E) are given constructively by using
both a hyperbolic metric and a singular euclidean metric on > x R, where the latter
metric is defined by using a measured foliation associated to a pseudo-Anosov
automorphism of . A combination of these two metrics presents a continuous
family {[c,c];0 < r < 1} of elements of N3(3 x R) which are linearly independent
in H3(XxR; R) = H(%; R), see Theorems 1 and 2 in §2 for details. In particular,
it is shown that the dimension of the R-vector subspace N3(X) of H2(3; R) is the
cardinality of the continuum.

The key fact in our arguments is that the bounded 3-cocycle ¢, . given in §2 is
the coboundary of a certain unbounded 2-cochain. For the proof, it is crucial that
the 3-dimensional euclidean space E3 is the product metric space E2 x E'. This
is the main reason why we use a euclidean metric as well as a hyperbolic metric.

¢1. Euclidean and hyperbolic structures on manifolds

Let 3 be a closed, connected and oriented surface of genus > 1. A measured
foliation F on ¥ is a topological foliation with finitely many prong singular points
of degree > 3 and equipped with the transverse measure. The set of singular points
of F is denoted by Sr. An orientation-preserving homeomorphism f: ¥ — ¥
is called a pseudo-Anosov automorphism if there exists A = A\(f) > 1 and a pair
of mutually transverse, measured foliations F*, F* with Sy= = Sr.(= S(f)) and
F(FS) = XLFs, f(FY) = AF¥. We refer to [3], [5] and [16] for the existence and
fundamental properties of such automorphisms and for typical pictures of F* ()
near p € S(f).

Note that the pair of these measured foliations F*, F° determines an incom-
plete, euclidean structure, a smooth structure on ¥° = ¥ — S(f). We will define
a smooth structure on X extending that on °. For any n € N with n > 3,
the euclidean 2-space R? = C; (x,y) = « + /—1y is divided into the n sectors
Vi,...,V, such that

Vi = {rexp(\/—lﬁ) € C;TEO7M <0< %—W}
n n

for K = 1,...,n. The upper half plane H = {z € C; Im(z) > 0} admits the
euclidean structure induced from that on C = R2. Let Xk: Vi — H be the
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homeomorphism defined by
xk(rexp(v—10)) =rexp (x/—l (%9 —(k— 1)7T)> .

Note that the Jacobian of x with respect to the standard euclidean coordinates
on Vi, and H is the constant n/2. Let F§, F} be the measured foliation on H
such that the set of leaves in F}; (resp. Fj;) consists of straight lines parallel
to (resp. straight rays orthogonal to) the z-axis dH and such that the transverse
measures are induced from the euclidean metric on H. Then, the pair {F3, F*}
of measured foliations on R? with the prong singular point (0,0) of degree n is
defined by

Fo= U@, A= Ui ).

For a sufficiently small £ > 0, there exist mutually disjoint neighborhoods U,
of p € S(f) in 3 and homeomorphisms ¢,: U, — D(2) = {z € C; || < &}
such that gop(fS|Up) = fg\D(g)Wp(fu\Up) = }";;\D(g). For Vi(e) = ¢, 1(D(e) N
Vi), the composition xj o Lppyvk(g)f{p}: Vi(e) — {p} — H — {0} is a locally
isometric embedding if Vi(¢) — {p} has the euclidean metric induced from that
on ¥°. Regarding {(Uy,,¢p);p € S(f)} as a family of coordinate systems for 3
in UpU,, one can define the smooth structure on 3 extending that on ¥°. Then,
3} x I admits the product smooth structure, where I is the closed interval [0, 1].
From now on, we identify U,U, x I with U,Dp(g) X I via ¢, x id;’s, where D,(=)
are copies of D(g). Note that the homeomorphism f: 3 x {0} — X x {1} is
not a diffeomorphism with respect to this smooth structure. So, we need another
smooth structure on 3 x /. For any ¢ with 0 <t < 1, consider the elliptic half-disk

E,— {(:c,y) c RQ;A2+2tx2 +)\272ty2 _ 527y > 0}

in H. Set W, = Uy Xk_l(Et) C Dy(g), and
X, ={(g,t);t€l, g€ Wy} CDple) x I C L x I

For simplicity, we denote the product homeomorphism yp xidy: Vpy x I — H x 1
by X%. The homeomorphism v, : X, — Dy(e/X) x I is defined by

bp(q,t) = Xy LNz, Ay, t)

if g € Xlzl(E,;) and xx(¢) = (=,y). By taking {(X,,¥p);p € S(f)} as a coordinte
system for ¥ x I instead of {(U, X I,¢, x idr);p € S(f)}, we have a new smooth
structure on ¥ X I, and denote this smooth manifold by > x I™*¥. Then, f: ¥ X

{0}Y — 3 x {1}V is a diffeomorphism. In particular, the mapping torus
M =3 x IV /{(x,0) ~ (f(x),1)} admits the induced smooth structure.
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Let Vol(1y(B) (resp. Vol(9)(B)) denote the volume of a compact 3-dimensional
submanifold B in X; = X, — {p} x I (resp. in Dy(g/A) x I) with respect to the
incomplete euclidean metric on X7 C X° X I (resp. the standard euclidean metric
on Dp(e/A) x I). Similarly, the areas of subsurfaces I in X7 and Dy(s/A) x I are
denoted by Areay)(F') and Areay)(I”), respectively.

We denote the degree of F° (or F*) at p € S(f) by n(p). Then, the following
lemma holds.

Lemma 1. (i) For any compact 3-dimensional submanifold B of X,

Vol (B) = "ol g (,(8).
(ii) For any compact subsurface F' of X7,

n(p)A
2

Area(D (F) < Area<2> (7/JP(F))

Proof. Since X; C Dp(e)° X I = [Jy_y Vi(2)® x I, if necessary dividing B and
F' into smaller pieces, we may assume that B and F' are contained in Vi (¢)° x I
for some k € {1,...,n(p)}, where V;(€)° = Dp(e) N Vi, — {p}. Set B/ = xx(B)
and F' = Yx(F). Recall that X\k|Vk(s)°><I: Vi(e)° x I — (H —{0}) x I is a
locally isometric embedding if Vi (£)° has the incomplete euclidean metric induced
from that on »°. For the diffecomorphism ¥: H x I — H x I with ¥(z,y,t) =

(Atx, Ay, 1), we have

Vol(l)(B) = Volgxr(B') = Volgxr(¥(B')) and
Areayy(F) = Areamxr(F') < A Areamsr(¥(F')).

Since Xi(¢¥p(B)) = ¥(B') and Xi(¢¥p(F')) = W(F') and since the Jacobian of
xr: Vie — H is n(p)/2, we have

@Vol(g)(qﬁp(B)) = Volyx (¥ (B')) and %p)Area(Q)(w/}p(F)) > Areap i (v(F")).

This completes the proof. O

Let p: M = % x R — M be the infinite cyclic covering associated to 71 () C

71 (M), and set L = S(f) x R. Note that M° = ¥° x R has the product,
incomplete euclidean metric induced from the euclidean metrics on ¥° and R.
For the euclidean area form 7y, on »°, 7 = (*(nx0) is a 2-form on M°, where

¢: 3% x R — 3° is the orthogonal projection. The volume form Q2 on M is
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given by [+ - 77 A dt. The diffeomorphism ]7: M — M with ]7(50715) = (f(z),t+
1) is the generator of the covering transformation group. Since f

51070 27—
> is a euclidean-area-preserving diffeomorphism, f | o I8 a volume-preserving
diffeomorphism, that is, ]7*((23) = f*(ﬁ) A ]?*(dt) = fAdt = Qp. Thus, there
exists the 3-form Qg in M° = M — L with p*(Qg) = Qg, where L = p(L) is a link
in M. Similarly, there exists a 2-form a0 on M° with p*(nar0) = 77. According to
Thurston [17] (see also Sullivan [14]), the smooth manifold M admits a hyperbolic
structure. For the hyperbolic volume form Qg on M, there exists a positive,
smooth function h: M° — R with Qp = hQy. We suppose that M admits the
hyperbolic metric induced from that on M via p.
For the derivative d¢ of the smooth embedding

= U o' U Dple/N) x I —Ex I c M,
pES(f) pES(f)

we set

(&) = inf{||d£z(v)||]\7[; ze pggjm Dy(e/X)xI,v € TU, (pegm Dy(e/X) xz)} >0,

where TU(UpGS(f) Dy(e/X) x I) is the unit tangent bundle over the euclidean
manifold {J,c5(s) Dp(e/A) X 1. We note that the image Y = p(U,c5(5) Dp(e/A)XT)
is a union of solid tori in M, and the complement M —intY of intY is a compact
manifold.

Lemma 2. K| =sup{h(s);s € M°} < oc.
Proof. For any compact 3-dimensional submanifold B of Y — L, we have

4(5)3\/01(2)(@) < Voly (B), where B = p~YB) N (% x I™Y). Then, by Lemma 1
(i), we have

n(f)

sup{h(s);s € M°} < max{max{h(s); seM—intY}, NGE

}<oo7

where n(f) = max{n(p);p € S(f)}. This completes the proof. O

Note that, in general, for a sequence {s,,} in M° converging to a point in L,
the limit lim,,, o h(s,,) does not exist. Then, we can not extend h to a continuous
map on M.

Let @ be a 2-dimensional subspace of T5(M°) for s € M°. There exists a
small, hyperbolic disk D centered at 29 € H? and an embedding ig: D — M
with ig(zg) = s, ig+«(Tey (D)) = Q and such that ig is an isometry onto the image
ig(D) which is totally geodesic with respect to the hyperbolic metric on M. Let
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¢q: D° — R be the smooth function with if,(name) = ¢q - nu on D°, where
D°=D— izgl(L) and 7y is the hyperbolic area form on D. Then, we have

| littmee)l < swpllipa(alle € D YAveans (D), (11)

where Areap (D°) (= Areap (D)) denotes the hyperbolic area of D°. Intuitively,
pq(zo) represents the ratio, in the cross section @, of 7770 to the hyperbolic metric
at s € M. It is easily seen that there exists the maximum

g(s) = max{|pg(zo)]; Q is a 2-dimensional subspace of T, (M°)},
and g: M° — R is a continuous, non-negative function. The following lemma is
proved by the argument similar to that in Lemma 2.
Lemma 3. K9 =sup{g(s);s € M°} < o0.
Proof. As in the proof of Lemma 2, for any compact subsurface ' of ¥ — L, the
inequality L(§)2Area(2)(F) < Areag;(F) holds, where F = p~1(F) N (X x I"W).
If necessary dividing F into smaller pieces, we may assume that, for the inclusion
i: F— ¥° x I, the composition ¢ o ¢ is injective. Then, by the definition of 7,

/ﬁ ji* ()] = Areag. (C(F)) < Areagyy(F).

By this inequality together with Lemma 1 (ii),
, = (A
()| < Areary(F) < —=5 Areap (F),
b)) < Aveay (F) < 5B Areass (1)
where ip: F — Y — L C M? is the inclusion. This shows that

sup{g(s);s € M°} < max{max{g(g); s€M—intY), n(f))\} .

2(¢)?
This completes the proof. O

By Lemma 2, for any hyperbolically straight 3-simplex o : A3 — M .
|, p@l= [ lpoor@ml <K [ ooy (eml - Kivolad),
A3o A3o Ao

where Ag denotes the 3-simplex A3 with the hyperbolic metric induced from that

on M via o and A2° = A3 — o~1(L). Since the hyperbolic volume Vol(A3°) =
Vol(A3) is less than the volume v3 of a regular ideal simplex in H?,

/AS lo* (Qp)| < K1vs. (1.2)
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Similarly, by Lemma 3 together with the equation (1.1), for any straight 2-simplex
A2 — M,

/ 7)) = / ((p o 7)*(mze)] < KoArea(AZ®),
Ao AZo

where AZ denotes the 2-simplex A2 with the induced hyperbolic metric and AZO =
A2 — 7~1(L). Since Area(A2°) = Area(A2) < T,

/ ()| < K. (1.3)
AZo

The inequalities (1.2) and (1.3) will be used in the next section.

§2. Zero-norm elements of bounded cohomology

For a topological space X, the Gromov norm of asingular k-chain z = Z?:l aiaf €
Cr(X) with real coefficients a; € R is defined by

Izl = lail.
i=1

Then, for any bounded k-cochain ¢ € CF(X), we have |c(2)| < ||| ||]].
For any r > 0, € > 0, consider the continuous functions a,.: R — R and
A, R — R given by

¢
oy o (t) = min{e, [¢t| 7}, Ay (1) :/ p o (u)du.
0

Note that lim; o0 ar(¢) = 0 if > 0 and limy o0 Ay () = o0 if » < 1. The
compositions of the projection M =Y xR — R with aye, Ay . are also denoted
by oy M — R and A M— R, that is, o o(p,t) = ar.(t) and A, (p,t) =
A, 2 (t). For a singular n-simplex 7: A" — M, straight(r): A" — M denotes
the straight n-simplex obtained by straightening 7, see [15, Chapter 6] for details.
Let ¢,. € Z3(J\7) be the 3-cycle defined by

Cre (o) = Straight(a)*(ar,sﬁE)
Agtaraight(a)
for any singular 3-simplex o: A% — M. Intuitively, ¢, -(o) represents the “eu-

clidean” volume with weight o, . of the “hyperbolically” straightened simplex.
Since max{|a, .(t)|;t € R} =¢, by (1.2),

lere(o)l <& [straight(o)*(Qg)| < eK1va.
30

straight (o)



Vol. 72 (1997) The zero-norm subspace of bounded cohomology 589

This shows that ¢, . € Zg’(M) and [lc,q|| < eKyvs.
In Theorem 1, we will show that the class [¢, ] € Hg’(M; R) is independent of &
if r > 0. However, Theorem 2 implies that [c, ] strictly depends on 7 if 0 < < 1.

Theorem 1. If 0 <7 <1, then [crc] # 0 in HE(M; R). Ifr > 0, then for any
£,6' >0, [ere] = [erer] in HY(M;R). In particular, if 0 < r < 1, then [c,.] is a
non-trivial element of HP(M;R) with H[crg]H =0.

Proof. We set 3, = ¥ X {n} C M for n € Z. For a sufficiently small 6 > 0, let
Yo be an oriented surface piecewise smoothly embedded in 3 x [—9, §] each piece

of which is a totally geodesic triangle with respect to the hyperbolic metric on AAJ
and such that >y is isotopic to g in ¥ x [—0,d]. Furthermore, we may take g
so that it satisfies (2.1).

For any p € 3, 30 meets the line Cil(p) in a single point. (2.1)

Let 29 € ZQ(M ) be a 2-cycle representing this hyperbolic triangulation of 5.
We set ¥, = f"(X0) and 2, = f7(20). Since z, — zp is homologous to zero in

M , there exists a 3-chain w,, € C3(M) consisting of straight 3-simplices and with
Ow, = zp, — 20. Note that 77 = (*(ny0) and 550 > 0. Thus, we have

/A 77:/ ngo:/A 1l
s JEe =

where i% = 3, — 5, N¢HS(f)) and the second equality is derived from the
property (2.1). We denote the value of these integrals by Ks > 0.
If ¢, ] = 0 in H}(M;R) for some 0 < r < 1, then there would exist a bounded

2-cochain a € C’g(ﬁ) with 62(a) = ¢, .. This implies that, for any n € N,
lere(wn)] = la(zn — 20)| < llall(llzall + ll20ll) = 2llall 1 20]l.

Since A, is an increasing function, A, .(n—9) < A, < A, .(n+9) in 3, x [-0,0]
and A, < g6 in ¥ X [-9,0]. Consider the 2-form 6,. = A, .77 on M°. Since
db,. = aydt N7] = «,.Qp and since straight(w,) = w,, the Stokes Theorem

shows that
L A= [ A
S S

0

> Ay e(n— ) /A 7] — <6 [ a
S S
— (Ayo(n — 0) — e0)Ks.

|ere(wn)| =
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The condition 0 < r < 1 implies that lim, .o Arc(n — ) = oo and hence
limy, o0 [ere(wn)] = o0, a contradiction. It follows that [c,.] is a non-trivial
element of HE(M; R) for any 0 <r < 1.

For any ,&’ with € > &’ > 0, the 2-cochain b € CQ(M) is given by

b(7)= straight(7)* (0, — 0rer)
Aztoraight(‘r)

for any singular 2-simplex 7: A2 — M. Then, the coboundary of b is 62(b) =
Cre — Cper. If 7 >0, then

(€l>—1/7‘
Ky = max{|A4,:(t) — A, o (t); t e R} = / (o o(u) — ap o (u))du < 00.
0

By (1.3), we have

|b(T)| = ‘ , straight(7)* (A, — Ay e )7)
Astoraight(-v—)
< Ky |straight()*(7)]
Aztoraight(r)

<nK9oKy.
This shows that b € C’g(H) and hence ¢, — ¢, o0 € Bg’(ﬁ) for r > 0. By the
definition of the pseudonorm, for any &’ > 0, [cng]H — H[cm/] < &'Kyvs. Thus,
we have H [er.e] H = 0 whenever > 0. O

For two sequences {ay,}, {b,} with an,b, >0 (n € N), a,, ~ b, means that

a,

0 < lim inf % < limsup bn & G0

n—oo n n—oo

The notation in the proof of Theorem 1 still works to prove Theorem 2.

Theorem 2. For a fized ¢ > 0, the elements [c,.] (0 < r < 1) are linearly
independent in H3(M;R.).

Proof. We suppose that

Yilery el +72leryel + -+ Ymler,,s] =0

for 0 < 7y <7y < -+ < my < 1. Then, there exists a bounded 2-cochain
a € C2(M) with

lecT]_,E + ’YQCTQ,E + st + ’Ymcf‘]_,a — (52(01)
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For the straight 3-chain w, € C3(M) given as above, we have
2
M1er e (n)l <D jers,e(wn)] + 185 (@) (wn)].
=2
The argument similar to that in the proof of Theorem 1 shows that
m
M11K3(Ary e(n = 8) —£8) <Y |yl Ka(Ar, e(n + 8) + £6) + 2|l a] || 20ll,
=2

and hence

| < 22 3l o(n +8) +20) 1 2K Hall ol .
= A, (n—0)—c0 ' ‘
Since A, o(n—38) ~nl=7"1, A e(nt+d) ~ nl =7 ifr; < 1,and A, (n+8) ~ logn
if 7, = 1, the right hand side of (2.2) converges to zero as n — oco. This shows
that 1 = 0. Similarly, we have v9 = -+ = v, = 0. Thus, [¢,.] (0 <r < 1) are
linearly independent.

By Theorems 1 and 2, the continuous family {[c,.];0 < r < 1} consists of
linearly independent elements in N3(Z\7). Since the inclusion i: ¥ = $g — M
is a homotopy equivalence, the induced homomorphism *: (HE’(M ;R —
(H, g’(Z; R), ||-]]) is isometrically isomorphic. Thus, we have the following corollary.

Corollary. For any closed, connected, orientable surface . of genus > 1, the
dimension of the zero-norm subspace N?’(E) of Hg’(z; R) is the cardinality of the
continuum. |
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