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The K-theory of p-compact groups

A. Jeanneret and A. Osse*

Abstract. In this paper, we show that the p-adic K-theory of a connected p-compact is the ring
of invariants of the Weyl group action on the K-theory of a maximal torus. We apply this result
to show that a connected finite loop space admits a maximal torus if and only if its complex
K-theory is A-isomorphic to the K-theory of some BG, where G is a compact connected Lie
group.
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Introduction

Let G be a compact Lie group and BG its classifying space. In [5] Atiyah and Segal
have shown that the complex K-theory ring K*(BG; Z) is isomorphic to the I-adic
completion of the complex representation ring R(G). Assume G is connected and
fix a maximal torus T' C G with Weyl group W. The preceding result is equivalent
to the isomorphism
K*(BG;Z) = K*(BT; Z)", (%)
where the last term stands for the ring of invariants of the natural W-action on
K*(BT;Z) (see [4]).
In [15] Dwyer and Wilkerson introduce the concept of p-compact group, where
p stands for a prime. Their original results and subsequent works ([16], [23], [24])
show that these objects constitute a natural homotopy theoretic generalization
of compact Lie groups. For instance, p-compact groups have maximal tori, Weyl
groups, etc. We refer to Section 1 for the precise definitions. In this introduction,
we would like to emphasize the fact that all the structure of a p-compact group
is concentrated at the single prime p. Therefore it is natural to consider p-adic
K-theory rather than ordinary K-theory. In this framework, our main result is the
following generalization of the isomorphism (x):
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Theorem. Let X be a connected p-compact group, i: T — X a mazimal torus
and W the corresponding Weyl group. The classifying map Bi: BI' — BX
induces a ring isomorphism

K*(BX;Z;) = K*(BT;Z;)".

As a first application we study the ordinary complex K-theory of finite loop
spaces. More precisely, if L is a connected finite loop space, we show that
KYBL;Z) = 0 and K%BL;Z) is torsion free and without zero divisors. Our
results are much more complete for finite loop spaces with maximal tori. In the
case of a compact connected Lie group, we obtain a non-analytical proof of the
isomorphism (x). Moreover we have the following generalization of a result due to
Notbohm and Smith ([27, Theorem 5.1]):

Theorem. Let L be a connected finite loop space. Then L admits a mazimal torus
if and only if there exists a compact connected Lie group G such that K*(BL;Z)
is A-isomorphic to K*(BG;Z).

In Section 1, we recall the basic definitions of the theory of p-compact groups.
In the same section we use a theorem of Kane and Lin to deduce that the p-
adic K-theory of a l-connected p-compact group is an exterior algebra. As the
reader will see, our arguments depend heavily on this result. Section 2 contains
the crucial step of the proof of our main result, namely the map Bi: BT' — BX
above induces a finite ring homomorphism in mod p K-theory. To achieve this
goal, we appeal to Dwyer’s transfer and we show that any p-compact toral group
P “embeds” into some unitary group U(N). The technical Section 3 deals with
the reduction of the general situation to the 1-connected case. In Section 4 we
combine Dwyer’s transfer with Kane and Lin’s theorem and the finiteness result of
Section 2 to conclude. Some consequences of our main result are given in Section 5.
The last section is devoted to the announced application to finite loop spaces.

Notations. Throughout the paper, p is a fixed prime number, Z; the ring of p-
adic integers and Q5 = Q®Z; the fraction field of Z;. For any space Y the symbol
Hg_(Y) stands for Q® H*(Y; Z;) and Y} for the Bousfield-Kan p-completion of Y.

1. Backgrounds

The purpose of this section is to fix the notation and to recall the definitions and
the results we are going to use. The interested reader is referred to the seminal
paper of Dwyer and Wilkerson ([15]) for a much more complete presentation.

A loop space X is a triple (X, BX;e), where X is a space, BX a connected
pointed space and e: X — QBX a homotopy equivalence; BX is called the
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classifying space of X. Such a loop space will be called a p-compact group if the
following additional conditions are satisfied:

1. X is Fp-finite, i.e., H*(X;F,) is a finite dimensional Fp-vector space;

2. mp(X) is a finite p-group and 7, (X) is a finitely generated Zgz-module for

any n > 1.

A morphism f: X — Y between two p-compact groups is a pointed map
Bf: BX — BY. The morphism f is a monomorphism (respectively, an epimor-
phism) if the homotopy fiber Y/ X of Bf is F,-finite (respectively, the classifying

space of a p-compact group). A short ezact sequence X Ty 2.7 of p-compact

groups is a sequence such that BX 2I. By 2% BZ is a fibration up to homotopy.

Two morphisms f,g: X — Y are conjugate if the maps Bf and Bg are freely
homotopic.
The centralizer of a morphism f: X — Y of p-compact groups is the loop
space
Cy (f(X)) == (QMap(BX,BY )ps, Map(BX, BY )gy;id).
The morphism f will be called central if the basepoint evaluation map
ev: Map(BX,BY )gy — BY

is a homotopy equivalence.

A p-compact torus (of rank n) is a p-compact group 7' such that BT ~ K(Zg7 2).
A p-compact toral group P is a p-compact group fitting into a short exact sequence
T — P — 7, where T' is a p-compact torus and = a finite p-group. A mazximal
torus for a p-compact group X is a monomorphism ¢: T' — X whose centralizer
is a p-compact toral group. One of the fundamental results of [15] says that any
p-compact group admits a maximal torus, unique up to conjugacy.

Let i: T' — X be a maximal torus for a p-compact group X. We replace the
map Bi: BT — BX by an equivalent fibration BT' — BX; the Weyl space
Wr(z) is defined as the space of self-maps of BT’ over BX. In Proposition 9.5 of
[15], it is shown that the space Wp(X) is homotopically discrete and Wy (X) :=
mo(Wr (X)) is a finite group under composition; Wy (X) (or simply Wx) is called
the Weyl group of X (with respect to the maximal torus ¢). By construction the
Weyl space Wr(X) acts on BT”; the Borel construction of this action gives a loop
space called the normalizer of T' and denoted AV(T'). Thus we have a homotopy
fibration sequence BT — BN (T') — BWp(X). In general, the loop space N'(T')
is not a p-compact group: mo(N (7)) = Wr(X) is seldom a p-group. However, one
obtains a p-compact group N,(T") by performing the Borel construction for the
action of the submonoid Wy (X), given by the union of components of Wr(X)
which project onto a p-Sylow subgroup of Wr(X); NV,(T') is called the p-normalizer
of T

For future use, some other important results of [15] are recorded in the following

Theorem 1.1. Let i: T — X be a mazrimal torus for a connected p-compact
group X, with Weyl group Wx.
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1. The homotopy action of Wx on BT induces a faithful representation of Wx
as a reflection group in the Qg-vector space HéA(BT).
P
2. The map Bi induces a ring isomorphism

H (BX) = HS (BT)"*.

Throughout the paper we will be dealing with Z/2-graded K-theories. The
ordinary periodic complex K-theory will be denoted K*(—;Z). For any abelian
group A, K*(—;A) denotes the K-theory with coefficients in A, as defined by
Adams in [1, p. 220]. In the sequel we will be mainly interested in the cases
A=7Z/p" and Zj. Apart their relevance to our problem, these theories enjoy the
following property ([17]). Assume that A = Z/p" or Zz. If Y is a CW-complex
and {Y,} the family of its finite subcomplexes, then

K*(Y; A) 2 lim K*(Y,; A).

In other words, there are no phantom maps for these K-theories. From this result,
it is straightforward to check that

K*(—;Z) = lim K*(—;Z/p").

We also observe that K0(—; Z;) is represented by Z; x BU;, while K(—; Zys) is
represented by Uy; as usual U stands for the infinite unitary group.
The K-theory of 1-connected mod p finite H-spaces has been computed by Kane

and Lin (see [18, §44-1]). For the p-compact groups, their result implies

Theorem 1.2. Let X be a 1-connected p-compact group.
1. The K-theory of X is an exterior algebra

K*(X7Zf)) = EZ,;(UL- c 7777”)7

where the generators m1, .. .,n, are in K'(X; Zs).
2. The K-theory of BX is a power series ring

K*(BX;Zp) = Zy[ls1, - - -, 6],
where the generators €1,. .., & are in KO(BX; Zs).

Proof. By Theorem 1.1. above and Theorem 3.1 in [7], there is a connected CW-
complex Y of finite type with BX =~ Y;. Since BX is 2-connected, the construction
in [7] also shows that Y is 1-connected. Given this fact, Proposition V1.6.5 of
[12] implies that (Q2Y); ~ Q(Y;) = X. Hence standard arguments show that
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®;>0H; (QY; Z(p)) is finitely generated over the ring Z(p) of p-local integers. As
QY is an associative H-space, we can use Corollary 10.4 of [10] to show that
K*(X;Z;) = K*(QY;Zp) is an exterior algebra over Z;. The second assertion
follows from a Rothenberg—Steenrod spectral sequence argument and the fact that
there are no phantoms in p-adic K-theory. |

We write H@’;(—) for the direct product ], 5o H&,; (=); it is a Z/2-graded Q-
algebra, graded by:

HE () = [ Hoz (=), HE (=) =[] HE (=),
n>0 n>0

The Chern character
ch: K*(—;Zﬁ) — 62(—)

is a Z/2-graded ring homomorphism whose definition is as in [19, p. 282].

Proposition 1.3. Let X be a 1-connected p-compact group.
1. The rationalization of the Chern character

ch@Q;: K*(X;Z5) Q) Qy — & (X)

is an isomorphism.
2. The Chern character

ch: K*(BX;Z;) — 6’;(BX)
is a monomorphism.

Note. The rationalization of the Chern character for BX is not necessarily onto.
This is due to the non-surjectivity of the inclusion Z;[[¢]] ® Q — Q;[[¢]].

Proof. Let us first consider the case of the space X. Proceeding as above, there
is a 1-connected CW-complex of finite type V whose p-completion is homotopy
equivalent to X. Take any finite subcomplex V' of V' such that V' — V induces an
isomorphism in cohomology with Zg-coefficients and observe that the composition

VeV oV X

induces an isomorphism in p-adic K-theory. The problem is now reduced to the
case of a finite complex where the assertion is true (see [4]).

To treat the case of BX, let us fix the exterior generators 7i,...,n, of
K*(X;Zs). By the first part of the proof, we have H@ﬁ(X) = EQﬁ(y17...7yr)7
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where y; = ch(n;) for ¢ = 1,...,7. The map a: ¥X — BX, adjoint to the
homotopy equivalence e: X — QBX, induces a commutative diagram

K*(BX;Z;) —“— K*(2X;Z;)

o |

HE (BX) 2 & (2X).

Now observe that the generators £1,...,&, of K*(BX;Z;) may be chosen so that
a*(&) = o(n:), with o the suspension isomorphism. Similarly, it is possible to

choose generators z1, ..., z, of Hj' (BX) such that o™ (z;) = o(y;). The commu-
tative diagram above implies that ch(¢;) is congruent, modulo decomposables, to
z;. We now invoke Theorem 1.2 to conclude the proof. O

2. A finiteness result

Let R and S be graded commutative rings; a ring homomorphism ¢: R — S
is called finite if S is a finitely generated ¢(R)-module. The present section is
devoted to the proof of

Theorem 2.1. Let X be a p-compact group and i: T — X a mazimal torus.
Then the map Bt induces a finite ring homomorphism

Bi*: K*(BX;F,) — K*(BT;F,).

This result will follow from a sequence of five propositions. The principal
ingredients are the “main theorem” of [15] and Dwyer’s transfer ([14]).

Proposition 2.2. If X is a p-compact group, then there are homogeneous classes
bi,...,b, € H*(BX;TF,) which generate a polynomial subalgebra R = Fp[by, ..., by]
in H*(BX;TF,) and such that the inclusion R C H*(BX;F,) is finite.

Proof. By Theorem 2.4 of [15] (alias the “main theorem”), H*(BX;F,) is a finitely
generated graded algebra over IF,,. It suffices then to invoke the graded version of
Noether normalization theorem (as stated for example in [8, Theorem 2.2.7]). O

Before going farther, a well-known observation is in order. Suppose that there
exists a monomorphism h: X — U(n);, where U(n); denotes the p-compact group
obtained by p-completing the unitary group U(n). Let j: T'(n) — U(n); be a
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maximal torus. By [15, Prop. 8.11], there exists a monomorphism g: T" — T'(n)
making the following diagram commutative:

BT(n)

I

BT £ Bx £ BU(n);

The map Bg induces a surjective (hence finite!) homomorphism in mod p K-
theory. Using the Atiyah—Hirzebruch spectral sequence, one shows that Bj*:
K*(BU(n)z; Fp) — K*(BT(n);Fp) is also finite. It follows that the morphism
Bi*: K¥(BX;F,) — K*(BT;F,) is finite.

Unfortunately we do not know yet if every p-compact group admit a monomor-
phism into some U (”)13' But for the present purpose, the following proposition
will be sufficient.

Proposition 2.3. Let P be a p-compact toral group. Then there exists a monomor-
phism ¢: P — U(n)ﬁ for some integer n.

Proof. If P is finite the answer is well-known; thus we may assume that P fits into
a short exact sequence T' — P — 7, where T' is a p-compact torus of rank » > 1
and 7 a finite p-group. The discrete approximation of this sequence gives rise to
a short exact sequence of discrete groups (see Proposition 3.7 in [16])

{1} =T —P—r—{1},

with 7' = (Z/p™)". We write [ for the order of 7 and embed the latter into the
symmetric group ¥, via the regular representation. By a theorem of Kaloujnine
and Krasner (Theorem 7.37 in [29]), there exists an embedding of P into the
wreath product 7%, = (Z/p> 1 %;)". Our candidate for the monomorphism ¢ is
the p-completion of the composite

P @y L oyt L U c utn.

The morphism + is just the inclusion of the normalizer of the standard maximal
torus of U(l)". By a result of Quillen (see [28]), By and the classifying map
of the last inclusion induce finite homomorphisms on mod p cohomology. The
morphism 3 is given by the natural inclusion Z/p™ C Sl; therefore B3 induces an
isomorphism on mod p cohomology. By Proposition 9.11 of [15], we will be done
if we can prove that the composite

B(Boa): BP — B(S'1%))"
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induces a finite morphism on mod p cohomology.

In the proof of Proposition 12.1 of [15], it is shown that there exists a finite
subgroup inclusion v: P,, — P with Bv*: H*(BP; F,) — H*(BP;F,) injective
and finite. Consider now the diagram

&aoy

SN (Sl 221)7"
Poo

*'U(ng

The ring homomorphism B(Soaov)* is finite, by Quillen’s result ([28]). Since
H*BESh %) F,) is noetherian and Br* injective, the ring homomorphism B(3o
a)* is finite; it follows that B¢* is also finite. O

Proposition 2.4. Let X be a p-compact group and i: T — X a mazimal torus.
If the Atiyah—Hirzebruch spectral sequence

EBy*(BX) = B (BX; K*(pt;F,)) — K*(BX;F,)

degenerates (i.e., there exists an integer ng such that F, (BX) = Eo(BX)), then
the ring homomorphism Bi*: K*(BX;F,) — K*(BT;F,) is finite.

Proof. We write Z,,(BX) C Ea(BX) for the pre-image of the submodule of cycles
in F,,(BX). We clearly have a chain of inclusions

Fy(BX) D Z3(BX) D+ D Zn(BX) D -+ D Zuo(BX) = () Zn(BX).

n>2
For n > 2, set
n—1 n—
R, =F, 00" ... 07" '@ K*(pt;F,) C Ey(BX),
where bq,...,b, are as in Proposition 2.2. For all n > 2, the inclusion R,, C

E5(BX) is finite and (by construction) R,, is contained in Z,,(BX). By hypothesis
there is an integer ng such that Zy,(BX) = Zoo(BX), thus Ry, C Zoo(BX). Since
i: T'— X is a monomorphism, B7 induces a finite ring homomorphism in mod p
cohomology; it follows that the composite

Ruy — Bo(BX) 22 By(BT)

is also finite. At the E.-level, we obtain a diagram

Ruy — Boo(BX) 228

Eoo(BT),
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whose composite coincides with the preceding one (since Fo(BT) = E.(BT)). In
particular the morphism R,, — FE(BT) is finite; this imply the finiteness of
the map Foo(Bi*): Foo(BX) — E(BT). We now invoke Corollary 1 (p. 41) of
[9] to conclude that Bi*: K*(BX;F,) — K*(BT;F,) is finite as claimed. O

Proposition 2.5. Let X be a p-compact group and i: T — X a mazimal torus.
Let N, denote the p-normalizer of this mazimal torus. If the Atiyah—Hirzebruch
spectral sequence degenerates for BNy, then it also degenerates for BX.

Proof. Let j: N, — X be the canonical monomorphism and
T (BXy); — (BNp)t)s
be the transfer associated to the map By (see [14, Example 1.1]). Here the notation

(Y3); stands for the p-completion of the suspension spectrum of the space Y =
Y [Ipt. We consider the diagram

Ey(BX) DZo(BX) DD Zp(BX)D ... D Zo(BX)
I
Eo(BN,) D Zy(BNp)D -+ DZn(BNp) D ... D Zo(BNy)

Since 7* is induced by a stable map, we have 7*(Z,(BN,)) C Z,(BX) for all
n > 2. By hypothesis there exists an integer ng such that Z,,(BN,) = Zoo(BN,).
Let z € Z,,,(BX), then Bj*(z) € Z,,,(BNp) = Zoo(BN,) and

T = Xfl(T* o Bj*)(z) € Zoo(BX),

where x is the Euler characteristic of the space X/N,. Dwyer and Wilkerson have
shown that x is invertible mod p (see the proof of 2.4 (p. 431) in [15]). Thus we
have proved that Z,,(BX) = Z..(BX). O

Proposition 2.6. For any p-compact toral group P, the Atiyah—Hirzebruch spec-
tral sequence for BP degenerates.

Proof. By Proposition 2.3 there exists a monomorphism ¢: P — U(n)ﬁ. Hence
the induced homomorphism B¢*: H*(BU(n);F,) — H*(BP;F,) is finite. Since
H*(BU(n);Fp) is concentrated in even degrees, the naturality of the spectral se-
quence implies that R = Im(B¢*) ® K*(pt;F,) consists of permanent cycles. We

can now invoke Proposition 4.1 of [6] to conclude. O

To complete the proof of Theorem 2.1, it suffices to recall that the p-normalizer
N, is p-toral. We close the section by our main application of this theorem.
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Theorem 2.7. Let X be a 1-connected p-compact group and i: T — X a maxi-
mal torus. The ring homomorphism

Bi*: K*(BX;Z;) — K*(BT;Z)
makes K*(BT';Zg) into a free and finitely generated K*(BX;Z;)-module.
Proof. For simplicity, we set
Sx = K*(BX;Z;) and Sr:= K*(BT;Z).
It is well-known that St is a power series ring over Z;. By Theorem 1.2, the same
is true for Sx. Consequently we have the universal coefficient formulas (see [1,
p. 201])
K*(BX;Fp) = Sx®z,F, and K*(BT;F,)= Sr®z,F,.
Our Theorem 2.1 and Theorem 8.4 (p. 58) of [21], imply that the homomorphism
Bi*: Sx — St is finite. We now observe that both rings are noetherian, local,

regular and of the same dimension. And so we can apply Proposition 22 (p. IV-37)
of [30] to conclude that Sy is free over Sx. O

3. Reduction to the one-connected case

The following results of [24] and [23] will play an important role in this section.
Theorem 3.1. Let X be a connected p-compact group and 7 the torsion subgroup
of m(X). SetY = X(1) x S, where X (1) denotes the 1-connected cover of X and

S a p-compact torus of rank dimg,(m1(X) ® Q).
1. There is a short exact sequence of p-compact groups

1 —rtyLx—qy
where the monomorphism f: m —Y is central.
2. Letiy: Ty — X(1) and ¢: Tx — X be mazimal tori for the respective
p-compact groups. Set also Ty =T1 X S, then
j:il X id: Ty—>Y
is a maximal torus and there exists a short exact sequence

{1}—>7I‘i>Tyl>Tx—>{1}
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which makes the following diagram commutative (up to homotopy):

Br Br
wl
By 22, BY
Bvl lBg

BTx —2 BX.

3. Let Wy (respectively Wx ) denote the Weyl group of the mazimal torus j
(respectively i); note that, by construction, the group Wy acts trivially on
BS. There exists an isomorphism ®: Wy — Wx such that, for any w in
the Weyl group Wy , the diagram

BTy —— BTy

B | |2

BTy 2% ppy

commutes (up to homotopy).

Proof. The first part is proved in [24, Theorem 5.4], while the last two are contained
in [23, Theorem 2.5]. O

In order to exploit fully the theorem above, we must study some properties of
central monomorphisms. The main tool of this study is an observation of Dwyer
and Wilkerson ([16, Lemma 5.3]):

Lemma 3.2. Let

be a diagram of p-compact groups and suppose that the morphism fo is cen-
tral. Then there is up to conjugacy a unique morphism of p-compact groups
w(f1,f2): Z1 X Za — Zo which is conjugate to f1 on Z1 x {1} and to fo on
{1} x Z3.

Until further notice we will keep the data and notation of Theorem 3.1. The
classifying space B possesses a multiplication

Bup: Br x Br — B
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the unit for By will be chosen to be the basepoint of Br. Let R denote either
a ring Z/p" (r > 1) or the p-adic ring Z;. By a well-known result of Atiyah
(see [3]), K*(Bm; R) is free and finitely generated over R. This fact implies
for any p-compact group Z, that K*(Brm x BZ;R) is naturally isomorphic to
K*(Bm; R)@pK*(BZ; R) (see [3, Lemma 1.4]). Thus the multiplication of Br
induces a Hopf algebra structure on K*(Bm; R).

By Lemma 3.2 there is up to conjugacy a unique morphism k: 7 x ¥ — Y
which is conjugate to f on 7w x {1} and to the identity on {1} x Y. It is easily
checked that the homomorphism

Bk*: K*(BY; R) — K*(Bm; R)® g K*(BY; R)

defines a K*(Bm; R)-comodule structure on K*(BY'; R).
Let us now consider the maximal torus j: Ty — Y, with Weyl group Wy. By
Lemma 6.5 of [16], ¢ is up to conjugacy the unique morphism making the following

diagram commutative
B/ JBj

Bf
Br —— BY

This uniqueness implies that the morphis ¢ is Wy -invariant, i.e., for any w in the
Weyl group Wy, the morphisms ¢ and w o ¢ are conjugate.

We proceed as above to obtain a morphism x: 7 x Ty — Ty (unique up to
conjugacy) such that

Br*: K*(Bly; R) — K*(Bm; R)orK*(BTy; R)

defines a K*(Bm; R)-comodule structure on K*(BTy;R). The uniqueness of
% and the Wy-invariance of ¢ imply that, for all w € Wy, the induced map
w*: K*(BTy; R) — K*(BTy;R) is a K*(Bm; R)-comodule homomorphism.
Once again Lemma 3.2 implies that Bj*: K*(BY;R) — K*(BTy;R) is a
K*(Bm; R)-comodule homomorphism.

We write A for K*(Bn;Z;) and A, for K*(Bm; Z/p”). The universal coefficient
formula implies K*(Bm;Z/p") = K*(Bm;Z;) QZ/p", that is, A, = AQZ/p".

Since BX is 1-connected, we may and we will assume that the fibration Bmr —
BY — BX is principal. This allows us to use the Rothenberg—Steenrod spectral
sequence for this fibration. Its Fo-term is given by

Ey* = Cotory (K*(BY;Z/p");Z/p").

Recall that Cotor’; (—;—) is the n-th derived functor of the cotensor product
—0a,— (we refer to [3] for more details).
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The next proposition is due to Anderson and Hodgkin ([3, Prop. 3.5]). It is
the main ingredient for the study of this spectral sequence.

Proposition 3.3. For all A,.-comodules B and all n > 0,

Cotor’y (B;Z/p") =0.

The problem with the above fibration is that K*(BY;Z/p") is not a finite
Z/p"-module, hence the spectral sequence may not converge. This difficulty can
be solved by replacing BX by the p-completion Z; of a CW-complex of finite type

Z ([7]). For the m-th skeleton Z(™) of Z, consider the induced principal fibration
Br —— pL(z(m)
|
7(m)

By Proposition 3.3, the Rothenberg—Steenrod spectral sequence of this fibration
collapses. It follows that

K*(BX;Z/p")

lim K*(Z™);Z/p")

> lim K*(p~ 1 (Z")); Z/p )04, Z/p"
K*(BY;Z/p")0a,Z/p".

I

Note that the third isomorphism is due to the fact that A, is a free Z/p"-module.

Theorem 3.4. Let X be a connected p-compact group, w the torsion subgroup
of m1(X) and A = K*(Bm;Z;). Let Br =L By 2% BX be the fibration of

Theorem 3.1. The map Bg induces an isomorphism

Bg*: K*(BX;Z;) — K*(BY;Z3)04Z;. (1)

Note. The isomorphism (1) is equivalent to the exactness of the sequence
0 — K*(BX;Z;) 25 K*(BY;Z;) % K*(BY;Z5) ® A,
where ¥ is the definig morphism for the cotensor product.

Proof. We give only the main steps. To begin with, recall that A = lim A, and
K*(BY;Zs) =2 lim K*(BY;Z/p"). Moreover the modules A and A, are free over
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their respective ground rings. Apply the left exact functor lim(—) to the inverse

—

system of exact sequences
0 — K*(BX;Z/p") 225 K*(BYZ/p") % K*(BY;Z/p") ® A,
to conclude. O

Our next step is to investigate the relationship between the K-theory of BX
and the K-theory of its maximal torus BT'x. Of course Theorem 3.4 applies to

the fibration Bw B BTy BT, BTx. By naturality we obtain, for any w in the
Weyl group W, the commutative diagram (with exact nows):

0 — K*(BTx;Zp) B, K*(BTy;Zg) - K*(BTy;Zs) ® A
w*l @(w)*l @(w)*@idl
0 — K*(BTx;Z;) —2— K*(BTy;Z;) —%— K*(BTy;Z;)® A.
It follows that the projection B~: BTy — BTx induces an isomorphism
K*(BTx;Zs)"* = K*(BTy; Z;)"Y OaZ;. (2)

The isomorphisms (1) and (2) fit together in the commutative diagram:

K*(BX;Z;) = K*BY;Z;)04Z;

E E

K*(BTx;Zs)"* = K*(BTy;Zy)"V0O4Z;

The theorem we want to prove asserts that the ring homomorphism Bi*:
K*(BX;Z;) — K*(BTx;Z;)"V* is an isomorphism. Obviously this will be
achieved if we can prove that Bj* is an isomorphism onto the ring of invariants
K*(BTy;Zz)"Y . We recall here that

BY =BX(1) x BS, Bly =BI; x BS and Bj= Bij xid.

As the Weyl group Wy acts trivially on S, it suffices to show that B7{ induces an
isomorphism onto the ring of invariants. In other words it is enough to deal with
the 1-connected case. This is settled in the next section.
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4. The one-connected case

In this section X is a 1-connected p-compact group, i: T'— X a maximal torus
and j: N — X the normalizer of <. Thus we have a commutative diagram

BT

I\

BN —— BX
Bj

Let 7: (BX1); — (BNy); be the transfer associated to the map Bj ([14,
Example 1.1]). Since the Euler characteristic of X/N is equal to 1 (this is a
consequence of Proposition 9.5 in [15]), the composite

T (B .);9
(BX4); — (BN4); %, (BX4);5

is a homotopy equivalence; its inverse will be denoted . We introduce further
notations:
i) 7 is the composite

P T
(BX4); — (BX4)p — (BNy)p;
ii) F is defined by the cofibre sequence

iii) @ denotes the composite

W (Bj)

(BNy); ~ (BNy); V (BNy); — 2 F V (BX4);.

Proposition 4.1.
1 . For B*(—=) = H*(—;Z3) or K*(—;Zy), the map

EX0): B*(F)@D E*(BX4) — E*(BNy),  (y,2) = v*(y) + (Bj)*(2)

is an isomorphism.

2 . For anyy € K*(F;Z;), (Bh* ov*)(y) = 0.

Proof. Let us first notice that E*(BX ) = E*((BXy)p), and similarly for BN .
By the definition of 7, we have

(Bj)goT ~ id(BX+);;' (3)
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Granted this fact, the long exact sequence in E*(—) of the cofibration
(BX{); = (BNy); % F

yields an inverse for E*(0).

By the second part of Theorem 11, Bj*: H§ (BX) — H{ (BN) is an iso-
morphism; hence (by what we have just proved), }Nlé(F) = 0. The second claim
follows from a diagram chase in

K*(F;Z;)®K*(BX;Z;) — K*(BN;Z;) 25 K*(BT;Z;)

ChJ chJ cﬂ

*k = *%k BR*™* *k
HEN(BX)  ——— HE(BN) 25 HE (BT)

R

O

Proposition 4.2. The maps 7o Bi and Bh induce the same homomorphism in
p-adic K-theory, hence

Im(Bi*) = Im(Bh*) C K*(BT;Zy).

Proof. Let z € IN(*(BN; Z;). By Proposition 4.1, there exist y € [N(*(F;ZZ;) and
2 E I?*(BX;ZZ;) such that x = v*(y) + Bj*(2). On the one hand, Proposition 4.1
implies
Bh*(z) = Bh*(v*(y) + Bj*(2))
— (B ov*)(y) + (Bj o BR)*(2)
=0+ Bi*(z).
On the other hand, (3) implies
(Bi* o 7)(z) = (Bi* o 7°)(v* (y) + Bj*(2))
= (Bi* o7 ov")(y) + Bi*"((Bj o 7)*)(2)
=0+ Bi*(2).
And we have obtained Bi* o 7* = Bh*. O

The preceding proposition reduces the determination of the image of Bi* to
that of BRh*. A partial description of Im(Bh*), which is sufficient for our purpose,
is provided by
Proposition 4.3. Let |W| denote the order of the Weyl group W = mg(N), then

Im(Bh*) ® Zy[1/|W|] = K*(BT; Z;)V @ Z;[1/|W]).
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Proof. As easily checked, there is (up to homotopy) a fibre square
BT xW —X— BT

Pnl JBh

BT 5h . BN

where p(z,w) = w(z) and pri(z,w) = z, for any z € BT and w € W = Wp(X).
Let ¢r be the transfer associated to the map Bh. Using the naturality and the
product formulae for the transfer (see Theorem 2.6 and Theorem 2.8 in [14]) and
applying p-adic K-theory, we obtain, for any £ € K*(BT;Z;):

(Br*otr*)(€) = ) w*(é). (4)

weW

The proposition is an immediate consequence of this equation. O

Note. As the reader may have noticed, the equality (4) is the well known double
coset formula for finite coverings. If one could prove such a formula for the fibration
Bi: BI' — BX, then most of the arguments in this section would drastically
simplify.

We are now in position to complete the proof of our main result:

Proposition 4.4. Let X be a 1-connected p-compact group, i: T — X a maz-
imal torus and W the Weyl group. Then the classifying map Bt induces an iso-
morphism

K*(BX;Zs) = K*(BT; Z;)" .

Proof. The injectivity of Bi* follows from Proposition 1.3 and the commutativity
of the diagram

K*(BX;Z;) 25 K*(BT;Z;)

n Jo

sk

Bi
HQﬁ(BX) — HQ}; (BT)
To show that the image of Bi* is the ring of invariants, we consider the diagram

K*(BT;Zs)"V —— Frac(K*(BT;Z;)")

K*(BX;Z;) — Frac(K*(BX;Z;)),
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where Frac(—) denotes the field of fractions of the corresponding integral domain.
By Propositions 4.2 and 4.3, the right vertical map is an isomorphism. In Theo-
rem 2.7, we showed that Bi*: K*(BX;Z;) — K*(BT';Z) is finite, in particular
K*(BX;Z;) — K*(BT; Zﬁ)W is integral. As K*(BX;Z;) is integrally closed (it
is a power series ring over Z};)7 we obtain that the left vertical map is also an
isomorphism. O

5. Applications to p-compact groups

Having completed the proof of our main result, we can safely turn to some of its
consequences. The first one generalizes Proposition 1.2 in [27]:

Theorem 5.1. Let T be a p-compact torus and X a connected p-compact group.
The natural map

[BT, BX| — Homx(K*(BX;Z;), K*(BT; Zs))
is a bijection, where Homy(—, —) stands for the set of A-ring homomorphisms.

Proof. Let i1x: Tx — X be a maximal torus for X and Wx the corresponding
Weyl group. It is not difficult to check (or see Proposition 1.2 of [27]) the bijectivity
of the natural map

[BT, BTx] — Homy(K*(BTx; Zs), K*(BT; Z3)).

The Weyl group Wx acts on the domain and codomain of this map, and the latter
is equivariant with respect to these actions. As easily seen, left composition with
Bix induces a commutative diagram

[BT, BTx|/Wx ——— Homy(K*(BTx;Z;), K*(BT;Z;))/Wx

| I

[BT,BX] ——  Homy(K*(BX;Z;), K*(BT;Zs)).

Proposition 8.11 of [15] and Proposition 4.1 of [25] imply that the left vertical arrow
of the diagram is bijective. Next we combine our main result with Theorem 4.1 of
[31] to obtain the surjectivity of the right vertical arrow. To show its injectivity,
we first observe that a nonzero vector space over an infinite field cannot be a union
of a finite number of its proper subspaces (see [20, p. 78]). It follows that we can
adapt the proof of [26, Lemma 7.1] to obtain our injectivity result. This completes
the proof of our theorem. O
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Our second application extends Proposition 1.3 to all connected p-compact
groups.

Theorem 5.2. Let X be a connected p-compact group.
1. The Chern character

ch: K*(BX;Z;) — HE(BX)

is a monomorphism.
2. For allz € H, (BX), there exists £ € K*(BX;Zg) such that

ch(€) = Mz + higher terms,
where M denotes the order of the Weyl group of X.

Proof. Let ix:Tx — X be a maximal torus and Wx the corresponding Weyl
group. The naturality of the Chern character and of the action of Wx implies the
commutativity of the diagram

ok
Biy

K*(BX;Z;) —%~ K*(BT;Z;)"x

chl lch

ok
Biy

HE (BX) —2—  HE (BT)Wx.

To complete the proof, we invoke our main result and the fact that the claims are
true for tori. (|

The third application will be useful in the sequel:
Proposition 5.3. Let X be a connected p-compact group and let
Ey' = H*(BX; K'(pt; Z3) = K*t'(BX; Z;)

be the p-adic Atiyah—Hirzebruch spectral sequence for BX. Given s,t, there exists
an integer v = r(s,t) such that B3 = B¢

Proof. Recall that there are no phantoms in p-adic K-theory. Thus one can adapt
the “proof of necessity” of Theorem 3.3 in [13], but their reference to Theorem 3.2
of that paper has to be replaced by our Theorem 5.2. This change in their argument
is needed because of the following example: the work of Anderson and Hodgkin
([3]) imply that K*(K(Z,3);Z;) = 0, but Héﬁ(K(Z7 3)) = Q. O
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6. Applications to finite loop spaces

In this section we study the K-theory of finite loop spaces; let us first recall the
basic definitions.

A loop space (L, BL;e) is said finite if H.(L;Z) is a finitely generated Z-
module. By a well-known result of Hopf, H*(L;Q) is an exterior algebra whose
number of generators is called the rank of the finite loop space. A connected finite
loop space L admits a mazimal torus if there is a pointed map Bi: BT — BL,
with BT = K (Z™;2), satisfying the two conditions:

1. The homotopy fiber L/T of Bi is Z-finite, that is, H,(L/T;Z) is a finitely

generated Z-module.

2. The ranks of T" and L are equal.

The Weyl group of a maximal torus ¢: T — L is defined exactly as in Sec-
tion 1. The relationship between finite loop spaces and p-compact groups has been
investigated by Mgller and Notbohm:

Proposition 6.1 ([25]). Let L be a connected finite loop space with mazimal torus
¢:T'— L. Then for any prime p:
1. The triple (Ls, BLs,ep) is a p-compact group and the p-completed map
ip: Ty — Ly is a mazimal torus.
2. Let W (respectively, W;) be the Weyl group of the mazximal torus i (respec-
tively, i;). The p-completion induces an isomorphism Wy = W.

Let us begin with a general result on the K-theory of finite loop spaces.

Theorem 6.2. Let L be a connected finite loop space.
1. The Chern character

ch: K°(BL;Z) — H®*"(BL; Q)
is injective. Consequently the ring KO(BL;Z) is torsion free and has no
zero divisors.

2. KYBL;Z) = 0.
Proof. For the first point, consider the commutative diagram
K%BL;Z) —%— TIK%BL;Z;)
P
o | | )

He*N(BL;Q) —— [] HE™(BL).
P

By Theorem 5.2, the right vertical map is injective. Since

H.(BL;m41(BU) ® Q) =0,
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Lemma 2 in [22] implies that the map € is also injective.

Let us deal with the second point. For any sufficiently large prime number p,
H*(BL;Zj) is concentrated in even degrees; hence the p-adic Atiyah-Hirzebruch
spectral sequence is trivial for such p. This observation, our Proposition 5.3,
Lemma 4.1 in [2] and Theorem 3.3 in [13] imply that:

KYBL;Z) = lim KY{(BL™; 7),

where the inverse limit is taken over the skeleta of BL. Now Lemma 2 in [22]
implies that K''(BL;Z) injects into [] KY(BL; Zj) and this product is zero by our
main result. O

For finite loop spaces with maximal tori, we have an integral version of our
main result:

Theorem 6.3. Let L be a connected finite loop space with mazimal torusi: T —
L and W the corresponding Weyl group. Then the map Bt induces a ring isomor-
phism:

K*(BL;Z) = K*(BT; Z)" .

Proof. The version of Sullivan’s arithmetic square given by W. Meier (in [22])
applies in our case. It gives rise to the following commutative diagram, with exact
rows:

0— K%BL;Z) —— K%BL;Q)® K%BL;Z) —— K°%BL; Aj)
Bi*l Bi*l Bi*l (5)
0 — K%BT;Z) —— K%BT;Q)e K%BT;Z) —— K°(BT; Ay)

where Z is the profinite completion of Z and Ay = Z® Q the ring of finite adeles.
Recall that if £ is a Q-algebra (in particular, £ =Q or E = Ay), then

K= B)= [[ (= B).
n>0

In our case, Theorem 1.2 of [25] implies that KO(BL; F) =~ K%(BT; E)V. On the
one hand the map Bi: BT — BL, p-completion and Proposition 6.3 provide a
commutative square

K%BLyZy) —— KOBL;Zy)

| l

K%(BTy;2;)"% —— KOY(BT;Zs)"W.
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On the other hand, KO(—;Z) = HKO(—;ZZ;)7 where the product is taken over
all the prime numbers. With all these observations, an easy diagram chase in (5)
yields KO(BL;Z) =~ KY(BT;Z)" . O

In [25, Theorem 1.2] Mgller and Notbohm showed that the Weyl group of a
connected finite loop space with maximal torus is crystallographic. This combines
with the preceding theorem to imply that a connected finite loop space with a
maximal torus has the K-theory of the classifying space of some compact connected
Lie group. We will now show that this condition characterizes the finite loop spaces
which have maximal tori.

Theorem 6.4. Let L be a connected finite loop space. Then L admits a maxi-
mal torus if and only if there exists a compact connected Lie group G such that
K*(BL;Z) is A-isomorphic to K*(BG;Z).

This result can be viewed as a generalization of a theorem of Notbohm—Smith
([27, Theorem 5.1]). In fact, our proof will follow the same pattern as theirs. We
deal first with some preliminaries.

Let L be a connected finite loop space. Consider the two filtrations of K*(BL; Z)
defined by setting, for n =0,1,...

i) Sp(L) = Ker(K*(BL;Z) — K*(BL"1:7Z)), where BL™ is the n-th

skeleton of BL.

i) Cpo(L) = {§ € K*(BL;Z) s.t. ch.(§) =0, for r = (0,1,...,n — 1}, where
ch,.(—) denotes the r-th component of the Chern character.

Then one easily checks that:

1. For any n, S,,(L) and C,, (L) are A-ideals of K*(BL;Z) and S,,(L) C C,,(L).
Moreover if L is a torus 7', then S,(T) = C,(1') = I™ where I is the
augmentation ideal.

2. For any prime p,

K*(BL;Zp) = liin(K*(BL; Z)/Sn(L) ® Zy).

3. For any prime p,
K*(BL;Qp) = lim(K*(BL; Z)/S,(L) ® Q;)
=~ lim(K*(BL; Z)/Cn(L) ® Q;).

—

Next we consider the integral version of Theorem 5.1.

Proposition 6.5. Let L be a connected finite loop space and T a torus. Then the
natural map
a: |[BT,BL] — Homy)(K*(BL;Z), K*(BT;Z))

is a bijection.
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Proof. Let ¢: K*(BL;Z) — K*(BT;Z) be a A-homomorphism. Consider the
composite

@n: K*(BL;Z)/Sn(L) — K*(BL; Z)/Cn(L) — K*(BT;Z)/I",

where the first arrow is the canonical surjection and the second arrow is induced
by ¢ (the notation is as above). Then define

wp: K*(BL;Z;) — K*(BT; Zj)

as the inverse limit of the ¢,, ® Z;'s. Since ¢; is a A-homomorphism, it is induced
by a map f;: BT; — BL; (see Theorem 5.1). On the rational side, the -
homomorphism ¢ induces (via the Chern character) a graded homomorphism

vg: H*(BL; Q) — H*(BT;Q).

As BL and BT are rationally products of Eilenberg-MacLane spaces, ¢q is induced
by a map fo: BTy — BLg.

To obtain a map f: BT — BL out of the f;’s and fg, we will use Sullivan’s
arithmetic square (as presented in [22, Theorem 4]). Thus it suffices to check that,
for any prime p, the two composites

fs
BT — BT; —— BL; — (BL)q,

BT — BTy —°— BLy — (BL;)g

are homotopic. By choosing a rational equivalence BL — Hle K(Z,2n;) and
observing that the two composites represent elements of the product
Hle H?(BT; Q;), it is sufficient to show the commutativity of the following
diagram

*

* fﬁ *
Hg, (BL;) 2 H (BT;)

CP(L> / " & \ CP<T)
H*(BL; Q) H*(BT;Q;)
RN eo(L) co(T) &

f*
H*(BLqg; Q;) = H*(BTg; Q;)-
This is equivalent to showing that the two homomorphisms

1 = cp(T) ofg ocp(L)_1 and 19 = (1) oféocD(L)_1
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are equal. Since 11 and 19 are Q;-linear, it is sufficient to check the equality on the
subring H*(BL;Q) C H*(BL;Q;). Assume that we are given z € H*(BL;Q).
As KYBL;Z) = 0, there exists n € K9(BL;Z) and an integer M such that
ch(n) = Mz + higher terms (see [13, Theorem 3.2]). By construction the following
diagram is commutative

H*(BL;Q;) & K*(BL; Z;) W) pevBL:7) D B(BL Q) Y B (BL; Q;)

T R

H(BT;Q;) & k(BT 25) 22 kBT, 2) & 5(B1;Q) 2D B (BT Qp).
By Theorem 4 in [22], we have choi,(L) = ig(L) och on the upper horizontal line
and choi,(T") = ig(1") och on the lower one. This implies the desired equality; and

we have shown that « is surjective. Its injectivity is a consequence of Theorem 2
and Lemma 2 in [22] and of our Theorem 5.1. O

Proof of Theorem 6.4. One of the implications has been established in Theorem 6.3;
thus we are left with the second one. By hypothesis, there is a torus 1T" and a finite
group W of A-automorphisms of K*(BT';Z) such that

A
K*(BL;Z) =~ K*(BT;Z)" .

Let ¢ denote the composite K*(BL;Z) = K*(BT;Z)W < K*(BT;Z); the pre-
ceding theorem provides us with a map f: BT — BL inducing ¢ in (integral)
K-theory. Clearly the ranks of T' and L are equal. Thus we will be done if we can
show that the homotopy fiber V of f is Z-finite. We have the following properties:
1. V is homotopy equivalent to a CW-complex of finite type;
2. For any prime p, V is Fj-good and 71 (V) = m1 (V) ® Z; (see Section 7 in
[11]).
Let us now fix a prime p and consider the p-completion f;: BT; — BL;. Let
also Biy,: BTy, — BL; be a maximal p-torus. By Proposition 8.11 in [15], there
exists a map B¢: BT; — BT, such that Bij o By = f;. In p-adic K-theory this
yields the following commutative diagram

K*(BTy; Zﬁ)
IBQ N

P
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Since K*(BL;Z;) = K*(BT;Z;)V (via f3), Theorem 4.1 in [31] provides us with
a A-ring homomorphism ®: K*(BTj;Z;) — K*(BTL;Zg) such that q)of; = Bij,
Passing to fields of fractions and using some Galois theory, one checks that the
composites ® o By* and By* o ® are Ad-isomorphisms. In other words, By induces
an isomorphism in p-adic K-theory. It follows that B is a homotopy equivalence,
so that fz: BT; — BL; is also a maximal torus. Since the homotopy fiber of f;
is V; (see [11, Proposition 4.2]), we obtain that H.(V;;F,) = H.(V;F,) is a finite
dimensional Fz-vector space. Property 1) above now combines with the universal
coefficient theorem to imply that H,(V;Z) is a finitely generated abelian group.[]
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