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Rings of SLy(C)-characters and the Kauffman bracket skein
module

Doug Bullock

Abstract. Let M be a compact orientable 3-manifold. The set of characters of SLs(C)-
representations of w1 (M) forms a closed affine algebraic set. We show that its coordinate ring
is isomorphic to a specialization of the Kauffman bracket skein module, modulo its nilradical.
This is accomplished by realizing the module as a combinatorial analog of the ring in which tools
of skein theory are exploited to illuminate relations among characters. We conclude with an
application, proving that a small manifold’s specialized module is necessarily finite dimensional.

Mathematics Subject Classification (1991). 57M99.

Keywords. Knot, link, skein theory, representation theory, 3-manifold.

1. Introduction

The Kauffman bracket skein module is an invariant of 3-manifolds which, until
recently, was both difficult to compute and topologically mysterious. A suggestion
of its significance came with the discovery that it dominates the ring of SLo(C)-
characters of the fundamental group [3]. The relationship also provided computa-
tional tools [4] and estimates of the module’s size [2, 3]. The central result of this
paper sharpens the focus considerably, for we show that a specialization, modulo
its nilradical, is exactly the ring of characters.

An oriented knot determines a conjugacy class in the fundamental group of a
3-manifold M. It also determines a function on any set of characters of the group:
simply evaluate each character on the conjugacy class. Now suppose that CLy; is
the vector space spanned by links in M, that X (M) is the set of characters obtained
from representations in SLo(C), and that C¥ (M) is the algebra of functions on
X(M). Let

d:CLy — CXM)
be the linear map determined by sending each knot to the negative of its naturally

induced function, and each link to the product of the images of its components.
The characters form an affine algebraic set [5] whose coordinate ring R(M) lies
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in CX(M)_ The Kauffman bracket skein module of M acquires a ring structure
when its parameter is specialized to negative one. This algebra, denoted V (M),
is a quotient of CLy;. Our main result and its immediate topological consequence
can be summarized as:

Theorem. The map & descends to V(M). Its image is the coordinate ring of
X (M) and its kernel is the nilradical of V(M).

Theorem. If M contains no non-boundary parallel, incompressible surfaces, then
V(M) is finite dimensional.

In the next section (which recapitulates parts of [3] and [5]) we cover the
necessary background and definitions. The proof that ® descends to a map &
on V(M) is quite simple, depending primarily on the following observation: the

Kauffman bracket skein relation maps to the fundamental SLo(C) trace identity,

tr(AB) + tr(AB~!) = tr(A)tr(B).

That ® maps onto R(M) is also fairly elementary. The bulk of the paper is
therefore devoted to characterizing ker ®.

This begins in Section 3 with an investigation of trace identities on the SLo(C)-
representations of a free group. There is a map, ¥, carrying polynomials in traces
to elements of the skein module of a handlebody. Together, & and ¥ make skein
theory into a graphical calculus for manipulating relations among characters. It
turns out that ker & contains exactly those trace identities which ¥ does not
send to zero. The central result is that any homogeneous trace identity on 2 x 2
matrices—restricted to SL9(C)—lies in the kernel of W. The proof turns on a
classification theorem due independently to Procesi [14] and Razmyslov [16].

Section 3 attains sufficient conditions for a trace identity to vanish in the skein
module of a handlebody. Section 4 provides the finishing touch. We rely on a
parameterization of the character set given in [8]. Most of the defining polynomials
turn out to be specialized Procesi identities, while the remaining few succumb to
other tools from Section 3. It follows from a standard result of algebraic geometry
that the only trace identities not vanishing in the skein module are nilpotent. It
is then a small step to extend the result to arbitrary compact 3-manifolds.

The author would like to thank Professors Charles Frohman, Xaio-Song Lin,
Jézef Przytycki and Bruce Westbury for many helpful conversations; the referee for
suggesting stylistic improvements; Adam Sikora in particular for his insight into
the importance of nilpotents; and the organizers and participants of the Banach
Center’s 1995 Mini Semester on Knot Theory, where the ideas in this paper first
began to coalesce.
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2. Definitions and background

Let M be a compact, orientable 3-manifold. Its Kauffman bracket skein module,
K(M), is built from the set L, of unoriented, framed links in M. By a framed
link we mean an embedded collection of annuli considered up to isotopy in M,
and we include the empty collection (. Three links L, Ly and Lo, are said to be
Kauffman skein related if they can be embedded identically except in a ball where
they appear as shown in Figure 1. (Framings are vertical with respect to the page).
The notation L IT () indicates the union of L with an unlinked, 0-framed unknot.

Let R denote the ring of Laurent polynomials C[Aﬂ] and RLy; the free R-
module with basis £3;. If L, Lg and L., are Kauffman skein related then L —
ALg— A= 1L is called a skein relation. For any L in £y the expression LITO) +
(A2 + A=2)L is called a framing relation. Let S(M) be the smallest submodule of
RLy; containing all possible skein and framing relations. We define K (M) to be
the quotient RLy;/S(M).

The indeterminate A is often interpreted as a complex number so that K (M)
becomes a vector space. It seems that the simplest value is A = —1, and we let
V(M) denote this specialization. Notice that the specialized skein relations imply

X =X
in V(M). There is a product on links, L1Lg = L1 U Lo, which makes V(M) into
a commutative algebra with () serving as the identity. If follows from [1, Theorem
1] that V(M) is generated by a finite set of knots.
By a representation we mean a homomorphism of groups

p (M) — SLy(C).
The character of a representation is the composition
Xp = trace o p,

and X (M) denotes the set of all characters. For each v € w1 (M) there is a function
ty 1 X(M) — C given by x, — x,(7)-
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The following theorem appears to have been discovered independently by Vogt
[17] and Fricke [6], first proved by Horowitz [9], and then rediscovered by Culler
and Shalen [5].

Theorem 1. (Vogt, Fricke, Horowitz, Culler—Shalen). There erits a finite set of
elements {y1,... ,ym} in w1 (M) such that every t is an element of the polynomial
ring Cltyy,. ..,y -

For Culler and Shalen, Theorem 1 was an initial step in a much deeper result.

Theorem 2. (Culler—Shalen). If every L., is an element of Clty,,... iy, |, then
X (M) is the zero set of an ideal in Clty,, ...ty ].

Recall that a closed algebraic set X in C™ is the common zero set of an ideal
of polynomials in Clzq,...,2y]. The elements of Clzy,... 2] are polynomi-
al functions on X, and the functions z; are coordinates on X. The quotient of
Clz1,. .. ,zm] by the ideal of polynomials vanishing on X is called the coordinate
ring of X. Different choices of coordinates would clearly lead to different parame-
terizations of X, but it follows from [5] that any two parameterizations of X (M)
are equivalent via polynomial maps. Hence their coordinate rings are isomorphic
and we may identify them as one object: the ring of characters of (M), which
we denote by R(M).

Each knot K determines a unique ¢, as follows. Let K denote an unspecified
orientation on K. Choose any v € w1(M) such that v ~ K (meaning the loop ~ is
freely homotopic to an embedding of K ). Since trace is invariant under conjugation
it makes sense to define Xp([?) = x,(7). Since tr(A) = tr(A~1) in SLy(C) we can
also define x,(K) = x,(v). Thus K determines the map x, — x,(v). Conversely,
any t, is determined by some (non-unique) K. The main theorem of [3] is that
this correspondence is well defined at the level of V (M).

Theorem 3. The map ®: V(M) — R(M) given by

S(K)(xp) = —xo(K)

is a well defined surjective map of algebras. If V(M) is generated by the knots
Ki,..., Ky, then ®(Kq),... ,P(K,,) are coordinates on X (M).

Proof. Let CX (M) denote the algebra of functions from X (M) to C. Define a map
& : CLyr — CXM)

as follows. If K is a knot set

P(K)(xp) = —xp(K).
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If L is a link with components Ky,... , K,, set
n
(L) = [ 2(x).
i=1

Let ®(f) = 1 and extend linearly.

Consider the image of S(M) under ®. For a framing relation, LII () + 2L, we
have

BLILO +2L)(x,) = (L)D(O + 2 0)
(L) (—xp(O) +2)
(L)(—tr(1d) + 2)

Next, let L+ Lo+ Lo be a skein relation in which L and Lg are knots. It follows
that L., has two components, K| and K. Assume embeddings as in Figure 1
and choose a base point * in the neighborhood where L, Lo and L. differ. It is
now possible to find loops a and b in 71 (M, %) so that a slight perturbation of ab
is L. With favorable orientations on the other knots we have ab—! ~ 507 a~K 1,
and b~ Ky. Given any Xp, set A= p(a) and B = p(b) so that

Q(L+ Lo+ Leo)(Xp) = —Xp(L) — xp(Lo) + xo(K1)x,(K2)
= —tr(AB) — tr(AB~ 1) + tr(A)tr(B)
=0.
Finally, note that every skein relation can be written as L' UL+ L' U Ly + L'U Lo,
where L and Lo are knots. Hence ® descends to a well defined map of algebras,
$: V(M) — CcXM)

which is determined by its values on knots.

Let K1, ..., Ky, be generators of V(M). Every element of V(M) can be written
as a polynomial in these knots, so the image of ® lies in C[®(K7),... ,P(Kn)].
Since each ¢, is equal to —®(K') for some knot K, Theorems 1 and 2 imply that the
functions ®(K;) are coordinates on X (M). It follows that ® maps onto R(M).O

Figure 2.
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3. Trace identities

In the previous section we obtained a surjection ¢ : V(M) — R(M) based on
a natural correspondence between knots and functions on X(M). Under this
correspondence elements of S(M) were sent to polynomials that vanish on X (M),
making ® well defined. Our ultimate goal is to show that ker & is the set of
nilpotent elements in V(M). To this end we reverse the correspondence, mapping
polynomials on X (M) to elements of V(M ). For now, we will treat only the case
where M is a handlebody. In this setting the kernel of ® consists of polynomials
that vanish on X (M) but not in V(M).

For the time being we will be concerned only with free groups, so throughout
this section H will denote the manifold P X I where P is the planar surface in
Figure 2. We also fix a base point * in P and a set of generators {ay,... ,ay} for
m1(H,*). Each loop a; travels once across the i-th handle in the direction shown
in Figure 2. Let W denote 71 (H, *) modulo the equivalence generated by

1

w~w <= w =wl or w = gwg~! for some g € 71 (H, *).

Consider the ring of polynomials C[W)].
Example 1.

p = (a1)(a2)(as) — (ara2)(a3) — (a1a3)(az) — (aga3)(a1) + (a1agas) + (arazag)

Example 2

2 2 2

= (a1)? + (ag)? + (a3)? + (ara2)? + (a1a3)* + (agas)
+ (agagas)® + (araz)(atas)(agas) + (ayagas)(ar)(az)(as3)
— (a1aga3)(a1)(agaz) — (aragaz)(a)(aias) — (ajagas)(az)(aias)

— (a1)(a2)(a1a2) — (a1)(az)(a1a3) — (az)(as)(agag) — 4

The parentheses are necessary to distinguish multiplication in 7{(H) from
multiplication in C[W)]. Note that there is some ambiguity in the notation for
an individual element of C[W]. For instance (w?) + (1) — (w)? is the same as
(ww) 4 (ww 1) — (w)(w™1). Occasionally it will be convenient to write a polyno-
mial using non-reduced words.

A representation of w1 (H, *) in S L9(C) is any assignment of matrices to each a;.
Letting parentheses denote the operation of trace, each element of C[W] becomes
a function from the representation space to C. The elements of C[W] that vanish
as functions on the set of representations are called S Lo(C)-trace identities. They
form an ideal 7 C C[W].
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Each w € W corresponds, up to free homotopy, to a unique unoriented curve in
H. We will use K, to denote any knot in this homotopy class. Since crossings are
irrelevant, K, represents a unique element of V(H). The assignment w — —K,,
defines a surjection of algebras,

U CIW] — V(H).

The map ¥ turns an element of C[)V] into a linear combination of links in
V(H). The basic tool for calculating in the skein module is a resolving tree. Let
T be a finite, connected, contractible graph in which no vertex has valence greater
than three. Suppose each vertex is labeled cL for some ¢ € C and some L € L.
Assume further that there is a distinguished vertex cgLq called the root. Define the
potential of a vertex to be the number of edges in a path to the root. A (necessarily
univalent) vertex that is not adjacent to one of higher potential is called a leaf.
We say T is a resolving tree for cgLg if each vertex cL satisfies exactly one of the
following;:

(1) cL is a leaf.

(2) cL is adjacent to exactly one higher potential vertex, —2cL.

(3) cL is adjacent to exactly two higher potential vertices, ¢/’ and ¢’ L”, in which
case cL — L' — ¢"L"” is a skein relation.

Figure 3, in which the dots represent a thrice punctured plane, is a resolving
tree for any knot that projects to the leftmost diagram. It is also an example of
the most common way to produce a resolving tree. Beginning with a projection of
the root, the tree grows by smoothing one crossing at a time. Once all crossings
have been eliminated, trivial circles are removed via framing relations. The sum
of the leaves is the standard resolution of the root—an element of CLy which is
equal to the root in V(H). Although the procedure given here does not result
in a unique tree, the following theorem [15] implies uniqueness of the standard
resolution in CLg.

Theorem 4. (Przytycki). The links in H represented by diagrams in P with no
crossings and no trivial circles are a basis for V(H).

A resolving forest for an element of CLy is simply a collection of trees, one
for each term in the linear combination. As with individual links, there is a
standard resolution of each element of CLy. Summing the potential function over
all vertices assigns a useful complexity to a forest, the total potential.

The remainder of this section is devoted to the establishment of conditions
under which ¥ maps a polynomial to zero.

Lemma 1. In Examples 1 and 2 we have ¥(p) = ¥(q) = 0.

Proof. For Example 1, suppose that P has been deformed to look like Figure 4
and that its fundamental group is generated by the indicated loops. The map ¥
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Figure 4.

Figure 5.

applied to —(ajagas) is the root of Figure 3. The leaves of the tree, reading down
the page, are

—2¥((a1azaz)) + ¥((arazag)) — ¥((araz)(as)) + ¥((ajazaz))
+¥((a1)(a2)(as)) — ¥((agas)(a1)) — ¥((aras)(az)) + ¥((arazaz)).

Since the sum of the leaves of a resolving tree is equal to its root, ¥(p) = 0.
To see that ¥(gq) = 0, resolve the diagram of —V¥((ajag)(aias)(azas)) shown
in in Figure 5. O

If p is a trace identity then a natural way to produce a new trace identity, ¢,
is to substitute new words for each a; in p. If ¥(p) = 0 then one would hope
¥(g) = 0 as well. Although this is true, the proof requires some effort.

Lemma 2. Let p € C[W]. If there exist words w1 and wy such that (wiw3y) +
(wlwgl) — (w1)(wa) divides p, then ¥(p) = 0. Also, if p is divisible by (1) — 2
then ¥ (p) = 0.

Proof. In the first case consider the loop wywy, but perturbed slightly so as to
become an embedding. The resulting knot is, by definition, some Ky, ,. Similarly,
perturb wlwil, w1, we to obtain lewfh K., , Ky,. The perturbations may be
chosen to create embeddings of K, w,, Iz(wlwfl and K, K, that coincide outside

of a small neighborhood of the base point. Within that neighborhood they can be
made to look like Figure 1, so they form a Kauffman skein triple. We now have

0= —Kuyuwy — K, 1 — Kupy K

wiwy

= U((wywe) + (wiwy Y — (wy)(w)),
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which implies ¥(p) = 0.
In the second case ¥(p) contains a factor of O+2 @, which also implies ¥ (p) = 0.
O

Proposition 1. Let p € CWV]. Choose words w1, ... ,wy,, and form a new poly-
nomial q by substituting w; for a; in p. If ¥(p) =0 then ¥(q) =0

Proof. The proof is by induction on a complexity, «(p), which we define as follows.
For each w € W choose a diagram in P representing K,,. Express ¥(p) as an
element of CLy using these diagrams, and then choose a forest for its standard
resolution. Define x(p) to be the minimum total potential over all choices of
diagrams and forests.

Assume first that x(p) = 0, implying diagrams in which ¥(p) is expressed as its
own standard resolution. If ¥(p) = 0, we can invoke Theorem 4 to conclude that
this particular expression of ¥(p) is formally zero in CLy. It is not possible for
a diagram to represent more than one w, so p (and hence ¢) must be identically
Zero.

Now assume that x(p) > 0. Choose diagrams and a forest realizing x(p); also
select a root c¢L which is not a leaf. There are three cases depending on the first
resolution of cL.

Case 1: The resolution removes a self crossing of some component. Letting K
denote that component, we construct loops in 71 (H, ). Begin by choosing a point
z near the crossing in question. Let ag be an arc running from * to x; let a1 be
an arc running parallel to K until it returns to z; and let a9 be an arc parallel to
the remaining portion of K. Set v = aoalaal and vo = aoagaal We now have
K = K, ,. Furthermore, the resolution changes K into K i and K., K,.

The term of p represented by ¢l must contain the mdetermmate (v17v2). Re-
place that appearance of (y1y2) with (v1)(v2)— ('yny ), creating a new polynomial
p’. Since p — p’ is divisible by r = (y172) + (’yl'ygl) — (v1)(72), Lemma 2 implies
¥(p') = 0. Let ¢’ and 7’ be the results of substituting w; for a; in p’ and r (re-
spectively). Removing the root c¢L from the forest for ¥(p) produces a forest for
U(p') with lower total potential. Hence x(p') < x(p) and, by induction, ¥(q") = 0.
Furthermore, " has the form (v]+v5) + (7/17571) — (71)(n4). Since v’ divides ¢ — ¢’
we have ¥(q) = 0.

Case 2: The resolution removes a crossing between two components. In this
case the components involved in the crossing correspond to loops 1 and ~9, for

which the resolution produces K., and K __-1. As in Case 1 we create p’
Y179

by replacing (v1)(v2) in p with (y17v2) + (’yl'y;l). The proof then proceeds by
induction as before.

Case 3: The resolution removes a trivial circle. The trivial circle corresponds
to an appearance of (1) in p. Form p’ by replacing that (1) with the scalar 2. Then
create ¢ and ¢’ as above, noting that (1) — 2 divides both p — p’ and ¢ — ¢’. As
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above, k(p) < k(p), and it follows that ¥(q) = 0. O

We would now like to consider a more general sort of trace identity. Let S,
denote the group of permutations of the set {ay,...,a,}. Let S, denote a group
of permutations of some subset {a;, ,... ,a;, }. Consider the group algebra CS,,.
By writing the elements of S,,, in cycle notation, including trivial cycles, we obtain
expressions in C[W]. (Example 1, for instance). In fact, since no inverses appear
in these expressions, they can be regarded as functions on the set of m-tuples of
2 X 2 matrices. If an element of CS,,, regarded as such a function, vanishes for
every assignment of 2 x 2 matrices we call it a Procesi identity on S,,. Note that
a Procesi identity is clearly an SLo(C) trace identity, but that the converse is just
as clearly false.

Using the group algebra to encode Procesi identities is useful for the theorem
we are about to prove, but there is a drawback as well. Multiplication in CS,, is
not the same as multiplication in C[W)]. If p and ¢ are elements of CS,, we denote
their product in the group algebra as p - ¢, always assuming that p, ¢ and p - ¢q are
written in cycle notation. Note that pg need not lie in CS5,,, and that p - ¢ may
involve elements of W which do not appear in either p or ¢. Fortunately, the skein
module keeps track of how multiplication in S, rearranges the elements of W.

Proposition 2. Let p € CS,,. If U(p) =0 then VU(7-p) =0 for every 7 € S,,.

Proof. As an initial simplification assume that 7 = (a;a;) with ¢ < j, and that Sy,
permutes the set {ay,... ,an}. There are three cases, depending on the intersec-
tion of {ay,... ,an} and {a;, a;}.

Case 1: m < i. As an element of C[W]|, 7 -p factors into (a;a;)p. Hence
¥(p) = 0 implies ¥(7-p) = 0.

Case 2: © < m < j. BEach term of p contains a cycle in which a; appears.
Assume that it is written (a;c) and write 7 - (a;0) as (aja;e). Fix a diagram for
each term of ¥(p) with the property that it traverses handles 1 through m exactly
once and misses the others. In a resolving forest for the standard resolution of
¥(p) the skein relations take place in neighborhoods away from the handles, and
no trivial circle runs once over a handle. Therefore every diagram in the forest
meets the handles in precisely the same set of arcs, and we can apply the operation
shown in Figure 6 to the entire forest. Note that this changes the diagram for
¥((a;a)) into a diagram for ¥((a;a;)), producing a resolution of ¥(7 - p). By
Theorem 4, the resolution of W(p) is formally zero in CLy. Since the resolution
of (7 -p) is obtained by applying Figure 6 to each term, it must also be zero.

Case 3: 7 < m. Each term of p contains either a cycle (a;aa;3) or a product
of cycles (a;c)(a;3). The action of 7 interchanges the two possibilities. Notice
that the operation in Figure 7 interchanges the diagrams for ¥((a;c)(a;3)) and
¥((a;ca;3)). The proof then follows the resolving argument of Case 2.

Subject to our initial simplification, we now have ¥(7 - p) = 0. Retaining the
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Figure 6.
Band sum of ¥(a;a) and ¥(aj).

Figure 7.
Band relating ¥((a;a)(a;3)) and ¥(a;0a;3).

assumption that 7 = (a;a;), we next allow S, to permute any set {a;,,... ,a;, }.
A substitution converts this set into {aq, ... ,an }, but preserves that fact that 7 is
a transposition. Hence, by Proposition 1, we again have W(7-p) = 0. Finally, since
any element of S, is a product of transpositions, ¥(r-p) =0 forall7 € 5,,. O

Our interest in Procesi identities stems from a classification theorem due inde-
pendently to Procesi [14] and Razmyslov [16]. Leron [12] is an excellent reference
for the proof. For the sake of completeness we include some definitions taken
from [7, Chapter 4]. A Young diagram for Sy, is a collection of m boxes arranged
in left justified rows of decreasing length. A Young tableau is an assignment of
@iy, ... ,a;, tothe boxes. Figure 8 is an example of a Young diagram for S19 and
a tableau using {ai,... ,a1g0}. Given a tableau Y define Py to be the subgroup of
Sy stabilizing the rows. For the tableau in Figure 8

Py =2 53 x S3 X S9.

Similarly, define Qy to be the column stabilizer. The Young symmetrizer corre-
sponding to Y is the element

(Z 0) . Z sgn(7)7 | € CSp,.

ocEPy TEQY
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Figure 8.

Theorem 5. (Procesi, Razmyslov). Procesi identities on a fired S,, constitute
an ideal in CS,,. The ideal is generated by Young symmetrizers corresponding to
diagrams with at least three rows.

Lemma 3. Let Y be a Young tableau on {ay,... ,an}, and assume that a,, oc-
cupies the last box of a row and column as shown schematically in Figure 9. Let
Y’ be the tableau obtained from'Y by removing the box containing a,,. Using the
notation re41 = 41 = Gm, we can express Py and Qy as the following disjoint

unions:
s+1

(1) Py = | J(riam) - Py, and
i=1
t+1

(2) Qv = | J(ciam) - Qy.

i=1

Proof. Let Aq,. .., X, be the lengths of the rows of Y. A row stabilizer is a product
of symmetric groups, so

Py = (At) - (A), and
[Pyl = (s + DD - (Aal).

Each coset (r;ay,)- Py~ stabilizes the rows of Y and, since each contains the element
(riam), they are disjoint. Counting elements finishes the proof for Py. The proof
for Qy is similar. O

Theorem 6. Ifp is a Procesi identity then W(p) = 0.

Proof. Implicit in the statement is the fact that p is a Procesi identity on some S,,,
so we proceed by induction on m. By Theorem 5 and Proposition 2 we may assume
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Figure 9.

that p is a Young symmetrizer corresponding to a digram with at least three rows.
If m = 3 there is only one such diagram and p is the result of substituting a,, , a;,
and a;, into Example 1. By Lemma 1 and Proposition 1, ¥(p) = 0.

Now assume m > 3. Choose a diagram with at least three rows and a tableau Y
satisfying the hypotheses of Lemma 3. A symmetrizer corresponding to any other
tableau with the same diagram is obtained from this one by by a substitution.
Therefore, by Proposition 1, it suffices to consider only Y. With notation as in
Lemma 3, let p’ be the symmetrizer corresponding to the tableau Y’. We now
have

() (g o

gC Py TEQY
s+1 t+1

e Z Z (riam) -o . Z Z sgn((cjam) - T)(¢jam) - T
i=1 oE Py =1 \T7€Qy

Z o Z sgn(7)T
P,

i, g€ Py TEQy

= ngn(cjam)(riam) ~(cjam) - (
. p/

- ngn(cjam)(riam) . (cjam)

2

By induction and Proposition 2, ¥(p) = 0. O
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4. The coordinate ring

Consider the following diagram of algebra maps:

W
V(H) —— C[W]

|» I

2

R(H) —— C[W|/T

We know that ¥ and ® are surjections. If we can establish an identification along
the bottom row, then the kernel of ® will be exactly those elements of Z that do
not lie in ker ¥. In Section 3 we developed conditions under which a trace identity
does map to zero; what we lack is a list of generators for 7. In order to complete
the picture we will have to choose coordinates on X (H). In other words, we need
a finitely generated subalgebra of C[W] and an explicitly described ideal so that
the quotient is R(H). The subalgebra and the ideal (up to nilpotents) are taken
from [8]. Our tasks are to show that the restricted ¥ is still onto, to prove that
it carries the ideal to zero, and to clarify the bottom row of the diagram. This
will establish the main theorem for handlebodies, after which it extends easily to
compact, oriented 3-manifolds.

Not only did Vogt [17], Fricke [6], and Culler and Shalen [5] apparently discover
Theorem 1 independently, they all arrived at the same set of generators. Let
¥ = aj ---a;, be an element of G in which each a;; is distinet. Following [8]
we adopt the shorthand notation ¢;, . ;,, for the map ¢,. The generating set in all
versions of Theorem 1is 7 = {t;;...5,, |11 <ig < -+ <ip}.

Note that C[7 ] becomes a subring of C[W)] by replacing ;, ...;,, with (a;, -- - a;,, ),
so W is well defined on C[T]. Theorem 1 says that for every p € C[W] there exists
g € C[T] such that p and ¢ represent the same element of R(H). To maintain
surjectivity of ¥ we need a stronger result, for which we turn to the combinatorial
construction of 7 in [1].

Theorem 7. Let K be a set of knots containing exactly one K. for eacht, € T.
Any link L € L has a resolving tree whose leaves are monomials in C[K].

Corollary 1. For every p € CW)] there exists q € C[T] such that V(p) = ¥(q).

The main result of [8] is the construction of an ideal, Jy, which defines X (H)
in the coordinates 7o = {t;,....., € 7 | m < 3}. The radical of this ideal, /7x,
is the ideal of trace identities in C[Z7g]. The authors of [8] prove that the trace
identities in C[7p] generate those in C[7], but once again we need a slightly stronger
statement.

Lemma 4. (Compare [8, Lemma 4.1.1]). Choose distinct indicesi,j,k,m1,... ,my
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and let « = mq ---my. If

q = — U ike F tirlile = bt ilte = bt e — tittje
+tijtha + tiktai — tikjta + tiljka + tilkai + tklaig

then ¥(q) = 0.

Proof. Let pgy. denote the Procesi identity of Example 1 with the substitutions
a1 = ag, ag = ay and az = a,. Consider the polynomial

p' = (a1a3) - p234 — (agas) - p124 — (a1a4) - p123

as an element of C[W]. By Theorem 5, p’ is a Procesi identity, implying ¥(p’) = 0.
Substituting a1 = a;, a2 = a;, a3 = ap and a4 = amy - Am, in p’ gives g, so
Proposition 1 implies ¥(q) = 0. O

Proposition 3. For every q € C[T] there exists qo € C[Tg] such that ¥(q) =
¥(q0)-

Proof. Let ¢ € C[T]. Define [ to be the maximum length of a subscript appearing
in g and let m be the number of maximum length subscripts. We say that the
complexity of ¢ is the ordered pair (I,m). The proof is by induction on complexity,
ordered lexicographically. If [ < 3 then ¢ can be converted to qo € C[Zg] by
repeated application of the identity in Example 1 (perhaps with a substitution
of indices). The difference between any pair of successive stages is divisible by a
Procesi identity, so Theorem 6 implies ¥(¢) = ¥(qp).

If I > 3 then ¢ contains some ¢;;1, in which ¢jka is a maximum length subscript.
The identity of Lemma 4 allows us to replace t;;;, With an expression involving
only shorter subscripts. The result is a new polynomial, ¢/, with lower complexity

and ¥(q) = ¥(q). O
We now state the main result of [8]. Let

Mii = t? — 47 and

M, Mji = 2tij e titj7 if i< j

ij —

Theorem 8. (Gonzélez-Acutia—Montesinos). X (M) is the zero set of the ideal
Ju in C1y] generated by the following polynomials.

g =12+ t? Y- & t?j F t?k + t?jk + tijtintye + tigptitste
= bigititjr — tigutsilin — tigrtetiy — Litiliy — tillan — titrtie — 4,

in which t, j and k are distinct.
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My Mo My, My,
Moy Moy Moy Moy

= , with2<i<j<n.
7 M My My Mij )=

, with3<i<j<n.
B My Myy Mz My, J

My My Mz M,

1tttk
la 1o la; tag
= (B35 — Eial P, ~Bbate, — i, — Baibn, — Ly o — J
q4 ( 123 132)( ijk T titjty iljk Uik k zg) t3 s tgj tan
2t 1ty
in which 1 <1< j <k <n and ty, denotes t?n —

The next step is to show that all of these polynomials lie in ker ¥. The proofs
involved in this are closely modeled on those in [8]. Our contribution is the ob-
servation that ¢o, g3 and ¢4 lift to Procesi identities, and that ¢; follows directly
from a resolving tree. We will introduce further notation from [8] as it becomes
necessary.

Lemma 5. ¥(q;) =0.
Proof. Example 2, Lemma 1 and Proposition 1. O

Let Aq,...,A4 be 2 X 2 matrices with

S B
Aii(%’ 5¢>'

Define
a1 P11y 01 1 0 0 0 0 0 0 1
| a2 B2 v & [0 0 1 0 . [0 =1 0 0
MAI=l 0y B 33 a7 o100 ™ = lo o 1 o
ag B4 oy4 o4 0 0 0 1 1 0 0 0

In general, (¢;;) will denote a 4 x 4 matrix and |c;;| its determinant. We use A’
to denote the transpose of A.

Lemma 6. (Compare [8, Lemma 4.6]). The polynomial p = |2(z;y;) — (@) (y;)| is
a Procesi identity on the symmetric group permuting {x1,22,23,24,Y1,Y2,Y3,Y4}-

Proof. Clearly p is an element of the group algebra over the permutations of
{z1,22,23,24,Y1,Y2,y3,y4 . To see that p is an identity, assign matrices 4; and
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B; to each z; and y;. Direct calculation shows that
(tr(AiBy)) = M(A:)JM(B;)",

and

(tr(A;iB;) — tr(A)tr(B;)) = —M(A;) JJ*M(B;)".

Since |I — J*| = 0 we have

2 tr(A; B;) — tr(A;)tr(By)| = |M(A;)J(I — J*)M(B;)f| = 0.

Lemma 7. (Compare [8, Corollary 4.12]). The polynomial

p = [(z12923) — (z12322)]
X [2(y1y2y3) + (y1)(y2)(y3) — (y
(1) (z1y1) (21y2) (2193

( 1)
) )
_|(m2) (zay1) (w2y2) (z2ys)
(z3) (z3y1) (z3y2) (z3y3)
2 (y1)  (»2)  (y3)

(y2u3) — (y2)(v1y3) — (¥3)(y1y2)]

is a Procesi identity on {x1,22,23,y1,Y2,y3}

Proof. (Compare [8, Lemma 4.10 and Proposition 4.11]). For any 2 x 2 matrices
Atl,...,A4,B1,...,Bg we have

|tr(A; B;)| = |M(A;) JM(By)|
= [J||M(A:)||M(By)]
= —|M(A:)||M(By)].

If A4 = I then, by direct calculation,
[M(A;)| = tr(A1AgAg) — tr(A1 A3 Ag).
If B4 = I as well then
|tr(AiBy)| = —[tr(A1A2A3) — tr(A1 AgAg)|[tr(B1 B2B3) — tr(B1 B3Ba).
Changing columns in [tr(A;Bj;)| and applying the identity of Example 1, we see
that p vanishes for an arbitrary assignment of 2 X 2 matrices. As in Lemma 6, it

is clearly an element of the appropriate group algebra. O

Lemma 8. (Compare [8, Proposition 4.8]). ¥(¢2) = 0.



Vol. 72 (1997) Rings of SLg(C)-characters and the Kauffman bracket skein module 539

Proof. Create p € C[W] by specializing the Procesi identity of Lemma 6 at 1 =
Y1 = a1, r9 = y2 = az, r3 = y3 = a; and x4 = y4 = a;. Theorem 6 and
Proposition 1 imply ¥(p) = 0. Note that p and g9 are determinants of matrices
that differ only along their diagonals. The differences between diagonal terms are
of the form
2(ap,) — (am)® —th, +4,
which can be rewritten as
2(a2,) — 2(am)? +2(1) — 2(1) + 4.

Hence, g9 may be obtained from p by a finite sequence of substitutions of the form
(a2) = (am)? — (1) or (1) = 2. Each step involves a pair of polynomials whose
difference is divisible either by (amam) + (ama ) — (am)(a; 1) or by (1) — 2, so
Lemma 2 implies ¥(g2) = ¥(p) = 0. O

Lemma 9. (Compare [8, Proposition 4.9]). ¥(¢3) = 0.

Proof. Specialize the identity of Lemma 6 at z1 = y1 = a1, z9 = yo = a9,
3 = y3 = ag, 4 = a; and y4 = a;. Then proceed as in Lemma 8. O

Lemma 10. (Compare [8, Corollary 4.12]). ¥(qq4) = 0.

Proof. Specialize the Procesi identity of Lemma 7 at y1 = a;, y2 = a;, y3 = az
and z,, = ay, for m = 1,2,3. If ¢ > 3 this is precisely ¢. If not, then proceed as
in Lemmas 8 and 9, using the fact that ¢,,,, denotes t%@ - 2. O

This is enough to prove the main theorem for H, but we may as well consider an
arbitrary compact, orientable 3-manifold. Let M be the result of adding 2-handles
to H along curves {cy1,... ¢} in 0H. Choose words w; in 71 (H) so that, as a
loop, each w; is freely homotopic to some orientation of ¢;. For each ¢ and j form
the polynomial p;; = (w;a;) — (a;) € R(H). Using the obvious identification
R(H) 22 C[To]//Tu, create an ideal Jus in C[Tp] generated by Jr U {p;;}.

Theorem 9. (Gonzélez-Acufia—Montesinos). X (M) is the zero set of Ju in
ClTo].

It follows immediately that R(M) = C[Tp]/v/Tar- We know that ® maps V (M)
onto R(M) and it is clear that ¥ maps C[W)] onto V(H), and hence onto V(M).
Using these maps, we can now see how V(M) compares to R(M). Henceforth,
consider ¥ to be the restriction to C[7p].

Proposition 4. Jy Cker¥ C /JTm

Proof. That Jy lies in ker ¥ is the content of Lemmas 5, 8, 9, and 10. To see that
¥(pi;) = 0, construct a knot K, for each generator a;. For each ¢ and j, there
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is a band sum ¢;#pK,; producing a knot K,
have ‘If(pij) = Kaj — Kwiaj =0.

For the second containment, note that Corollary 1 and Proposition 3 imply
that \I/|C[TO] is still onto. It should now be clear that

Since ¢;#pKa; = Ko,y in M, we

5@

N [
ClTo] = V(M) = R(M) = C[Do]/v Tm
is the canonical projection. O
There are various phrasings of the immediate implication of Proposition 4.

Theorem 10. Let M be a compact orientable 3-manifold with ®, ¥, Ty, and Ty

defined as above. Denote the ideal of nilpotents in V(M) by /0.

(1) X(M) is the zero set of ker ¥ in C[7p].

(2) Vker¥ = /Ty

(3) ker ® = /0.

(4) ® induces an isomorphism D V(M)/V0 — R(M).

(5) ¥ induces an isomorphism U C[To) /T — V(M) /0.

(6) Under the identification of R(M) with C[To]//Jar, the maps V and O are
inverses.

Proof.
(1) This is immediate from Proposition 4 and the fact the X (M) is the zero set of

both Ju and v/ Jar.

(2) Nullstellensatz.

(3) Since R(M) cannot, by definition, contain a non-zero nilpotent element, ®(+/0)
= 0. Suppose now that $(a) = 0, and write oz as ¥(3). We have seen that

C[To] ¥ V(M) 2 R(M) = C[To)// Tt

is the canonical projection. Hence, 3 € v/Jas. It follows from Theorem 10(2)
that ¥(5™) = 0 for some n, meaning « is nilpotent.

(4) Theorem 3 and Theorem 10(3).

(5) The composition

7o) & V(M) 5 V(M) & R(OM) = CTo)/ v T

is the canonical projection. (Here 7 is also projection). Hence, ker(w o ¥)
=vVIu.
(6) It is easy to see that both

o~

ClTo)/ /Tt % VM)/VE & R(M) = C[To) /Tt
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and
)
—

VM)V E R(M) = CT5)/7/Tar & V(M)
are the identity. |

We conclude with an application. The author would like to thank Charles
Frohman for suggesting that this result might follow quickly, Victor Camillo for
encouraging us to disregard nilpotents, and Bernadette Mullins for pointing out
the result from ring theory used in the proof. Recall that a 3-manifold is small if
it contains no incompressible, non-boundary parallel surface.

Theorem 11. (Compare |2, Corollary 1]). If M is small then dim V(M) < oo.

Proof. Suppose that X (M) has positive dimension. If follows that some component
of X(M) contains a curve whose smooth projective resolution has an ideal point.
From [5, 2.2.1] we then have a non-trivial splitting of 71 (M), meaning M is not
small. Hence, X (M) consists of a finite set of points and R(AM) is finite dimensional
as a vector space. It is a standard result of commutative algebra that an ideal in
a Noetherian ring contains some power of its radical. Thus, from Theorem 10(2),

we obtain N
(\/.,71\/[) CkerV C /JTm

for some n. Since R(M) = C[To|/V/ T, it is a simple exercise to show that
C|To)/ (v/Tar)"™ is finite dimensional. The result now follows from the fact that
V(M) = C[Tp]/ ker ¥, which in turn is the homomorphic image of C[7p]/ (\/jM)n.
O
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