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Cohomologie des groupes et corps d'invariants
multiplicatifs tordus

Jean Barge

Abstract. We give a cohomological calculation of the unramified Brauer group of a field of
invariants under a twisted multiplicative action of a finite group
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Dans [S3], Saltman détermine le groupe de Brauer non ramifié des corps d'invariants
d'actions multiplicatives tordues

Précisément, soient G un groupe fini et M un G réseau - î e un Z-module
libre et de type fini sur lequel G opère fidèlement - et enfin soit / G->Mun
homomorphisme croisé du groupe G dans le G-module M Hoiriz(M, C*) On
fait opérer le groupe G sur l'anneau de groupe C[M] par la formule

Nous noterons C[M]/ (resp C(M)f) cet anneau de groupe muni de l'action
précédente (resp son corps des fractions muni de l'action induite)

II est important de savoir calculer le groupe de Brauer non ramifié du corps
des invariants C(M)9, car la non-nullité de ce groupe est la première obstruction
à la rationalité stable [S1][S2]

Notons C[M]^ le G-module des unités de l'anneau C[M]/ de sorte que l'on a
la suite exacte (non généralement scindée) de G-modules

Notons ßa l'ensemble des homoinorphisines du groupe Z x Z dans G et ßa le
sous-ensemble de ßa constitué des homoinorphisines p pour lesquels l'application

i* H2(imp,C*)^H2(linp,C[M]*f)

est mjective Nous sommes maintenant en mesure d'énoncer le théorème de Saltman

[S3]
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Théorème 1. Le groupe de Brauer non ramifié Brnr(C(Af)?) du corps d'invariants
9 est isomorphe au noyau des homomorphismes de restrictions:

H2(Imp;C[M]*f).

Le présent article, qui fait suite à [Ba] contient d'abord une nouvelle démonstration

du théorème précédent dans le cas particulier où le G-réseau M est d'indice
fini dans un G-réseau de permutation. Comme dans [Ba] on exploite le fait que les

actions multiplicatives - même tordues - se linéarisent et l'ingrédient fondamental
est bien sûr le théorème démontré indépendamment par Bogomolov et Saltman
qui détermine le groupe de Brauer non ramifié du corps d'invariants d'une action
linéaire.

Théorème 2. /Bo/ Soit F un groupe fini opérant linéairement et fidèlement sur
un C-espace vectoriel V. Le groupe de Brauer non ramifié P»rnr(C(V)r) du corps
d'invariants C(V)r est égal au noyau des homomorphismes de restriction:

H2(T;C*) -^ l[ H2(lmp;C*).
peßr

(voir aussi [C.T])
Le théorème ci-dessus admis, la méthode est la suivante.
Supposons le G-réseau M d'indice fini dans un G-réseau de permutations P de

sorte que l'on a les inclusions de corps

C(M)f c C(M)f C(M) C C(P).

On montre les faits suivants.

a) L'extension C(P)/C(M)? est galoisienne.
b) Son groupe de Galois F, agit linéairement sur C(P).
c) On a la suite exacte :

O^P^T^G^ f

où F est le conoyau de M dans P et cette extension est déterminée par la classe

[/] G H^(G;M) de l'homomorphisme croisé /.
On a donc C(P)r C(M)f et a fortiori Brnr{C{P)v) Brnr(C(M)f). (1)

On applique alors le théorème 2 à F.
La méthode précédente est d'ailleurs réversible, si bien qu'on peut considérer

ce papier, soit comme une nouvelle détermination des groupes de Brauer non
ramifies de corps d'invariants multiplicatifs tordus, soit comme un calcul du groupe
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de Brauer non ramifié du corps d'invariants d'une action linéaire d'un groupe F,
extension quelconque d'un groupe fini par un groupe abélien fini.

Le deuxième paragraphe de cet article est purement cohomologique. Il est
consacré à la constatation que les résultats des théorèmes 1 et 2 sont bien en
accord avec l'égalité (1). C'est donc une nouvelle démonstration du théorème 1,

à partir du théorème 2. Néanmoins, il semble bien que pour les calculs "effectifs"
l'expression donnée par le théorème 2 soit plus maniable. En particulier, il est
facile sous cette forme d'obtenir des exemples d'actions multiplicatives tordues du

groupe Zi/p x Z/p pour p premier quelconque dont le groupe de Brauer non ramifié
du corps d'invariants soit non nul, et donc a fortiori non stablement transcendant

pur. Voir aussi [S3].
La construction de cet exemple occupe le paragraphe 3.

Ce fait contraste avec le théorème de [Ba] qui affirme qu'un tel exemple n'existe

pas pour des actions multiplicatives non tordues.
En fait nous avions montré :

Théorème [Ba]. Soit G un groupe fini. Les deux conditions suivantes sont
équivalentes :

i) pour tout G-réseau M, Brnr(C(M)fi) 0 ;
n) les sous-groupes de Sylow de G sont ahéliens bicycliques.

Nous concluons cet article par la démonstration du

Théorème. Soit G un groupe fini Les deux conditions suivantes sont équivalentes:

i) pour tout G-réseau M et toute action multiplicative tordue f, Brnr(C(M)cj?) 0;
n) les sous-groupes de Sylow de G sont cycliques.

Remerciements. Je tiens à remercier J.-L. Colliot-Thélène et J.-J. Sansuc qui
m'ont initié au sujet, J. Lannes et Srinivas, de leurs suggestions et de leur intérêt
pour ce travail. Cet article a été conçu pendant un séjour au Tata Institute of
Fundamental Research de Bombay, et rédigé pendant un séjour dans la famille
d'André et Catherine Bellaïche. Je remercie les deux institutions.

I. Linéarisation des actions multiplicatives tordues

1-1. Actions multiplicatives tordues

Soient G un groupe fini, M un G-réseau - c'est-à-dire un Z-module libre et de type
fini sur lequel G agit fidèlement - et / : G —s- M un homomorphisme croisé du

groupe G dans le G-module M Homz(M, C*).
On définit alors une action de G dans le corps de fractions C(M) de l'anneau
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de groupe C[M] par la formule g o Xm f(g)(g.m)X9 m.

Cette action est dite multiplicative tordue (par /).Une autre façon utile de la
définir est la suivante:

Le groupe d'automorphismes de l'anneau de groupe C[M] est le produit semi-

direct de GL(M) par le G-module M. Nous noterons Gm l'image réciproque de
G C GL(M) dans ce produit semi-direct de sorte que l'on a la suite exacte:

.—. ~ so

I^M^Gm^G^I (1)

Faire agir G dans C [M] par la formule goXm X9 m fournit une section canonique
de la suite exacte (1) notée so-

La donnée d'un homomorphisme croisé / : G —s- M est équivalente à la donnée
d'une seconde section s so + / de (1) et permet donc de plonger G par s dans

Gm- L'action multiplicative tordue par / n'est autre que la restriction à s (G) de

l'action naturelle de Gm-

1-2. Linéarisation

Supposons maintenant que le G-réseau M soit d'indice fini dans un autre G-réseau
P (qui deviendra rapidement un G-module de permutations) et notons F P/M.

Nous obtenons alors le diagramme suivant où F est le groupe des caractères
du groupe fini F.

0 0

i I
F M. F

i
so

1 —> P —> GP ^ G

i \p ||

so
1 —> M —> GM ^ G

s

i I

Théorème 1-2.1. Notons C(Af)? le corps des invariants de C(M) par l'action
multiplicative tordue par f.

i) L'extension C(P) D C(M)^ est galoisienne ; n) Son groupe de Galois T est

égalàp-l{s{G)).
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On a donc la suite exacte:

1 —> F —> F -^ G —> 1

ni) La classe de cette extensionx € H (G; F) est l'image de la classe de l'homomor-

phisme croisé f par le connectant S, de la suite exacte 0 —> F —> P —> M —> 0 :

x ô[f}.
w) Si l'on suppose en outre que le G-réseau P est un G-module de permutations,

l'action du groupe F sur le corps de fractions rationnelles C(P) est linéaire.

Preuve, i) et ii) Le groupe F =p~1(s(G)), sous-groupe de Gp agit sur le corps des

fractions rationelles C(P).
On a les égalités suivantes:

C(Pf (C(Pfy(G) C(M)S(G) C(M)f

iv) Le groupe Gp est engendré par sq(G) et P. Le sous-groupe sq(G) agit
linéairement car P est un G-module de permutations. ^Le sous-groupe P agit
évidemment linéairement. Il en résulte que l'action de Gp, et à fortiori celle de

son sous-groupe F, sur C(P) est linéaire.

iii) Soit / : G —s- P un relevé ensembliste de l'homomorpliisme croisé / : G —s- M
et soit s (Id, /) un relevé ensembliste de s (Id, /)

s/
G —U G

On calcule alors s^^s^)"1!^)-^ et on trouve /(01.02) - /(01) -01-/(02) ce

qui montre bien que l'extension O^F^F^G^la pour classe la classe ô[f].

1-3. Conclusion

A chaque action multiplicative tordue par / d'un groupe fini G dans un G-réseau
M d'indice fini dans un G-réseau de permutations, P, nous avons associé une
action linéaire d'un groupe fini F (bien déterminé par G, M, P, /) dans C(P) degp
sorte que C(P)r C(M)(J et donc en particulier telle que

Brnr{C{P)T) Brnr{C{M)f). (2)
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II. Le théorème de Saltman [S3]

Le but de ce paragraphe est de donner une nouvelle démonstration du théorème de
Saltman ci-dessous, basée sur la linéarisation, dans le cas particulier où le G-réseau
M est d'indice fini dans un G-réseau de permutations P.

Pour exprimer ce théorème, introduisons quelques notations. Si F est un groupe
on note /3p l'ensemble des homomorphismes du groupe Z x Z dans F. Si U est un
F-module on note Kl(T; U) le noyau des homomorphismes de restriction:

W (Im p;U).

Soient maintenant G, M et / : G —s- M comme précédemment et p G ßa- L'injection
de G-modules i : C* —s- C[M]Î induit une application

i* : H2 (Im p; C*) -> H2 (Im p; C[M] f>

On note ßa le sous-ensemble de ßa constitué des p pour lesquels l'application
ci-dessus est injective et pour un G-module V, Kl(G;V) le noyau des homomorphismes

de restriction:

Théorème II-1. [S3]

Brnr(C(M)f) K2(G; C[M]*f).

Grâce au théorème [Bo] rappelé dans l'introduction et à la linéarisation, le

théorème précédent est équivalent au:

Théorème II-2. Soit

0 —> F —>T -^ G —>1. (e)

l'extension de G par le groupe des caractères du conoyau F de M dans P, d'invariant
x ô[f] eH2(G;F).

Alors les deux groupes

K2(G;C[M}}) et K2(T;C*)

sont canoniquement isomorphes.
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La démonstration repose sur les deux lemmes fondamentaux suivants

Lemme II-3. L'ensemble ßa est l'ensemble des p Z X Z —s- G tels que p*(x) 0

Autrement dit, ßa est l'ensemble des p Z X Z —s- G qui se relèvent à T

Démonstration du Lemme II-3
Considérons la suite exacte de G-modules

0 —, C* -U C[M}* —> M —> 0

La première remarque est que cette suite définit un élément dans Ext^(M, C*)
H^{G, M) qui n'est autre que la classe [/] de l'homomorpliisme croisé / G —s- M

II en résulte que p G ßa si et seulement si l'application

H1 {Imp, M) 'M H2{Imp,C*)

est nulle

Par ailleurs, tout élément u G H^(lmp, M) s'écrit Sv où v G H°(lmp, F)
H°{Z xZ,F)

(Puisque H^(lmp, P) est nul, car P est un G-module de permutations)
L'application p* H2{lmp,C*) —s- H2{Z x Z, C*) est mjective puisque elle

est duale de l'application p* F2(Z x Z, Z) A2Z -s- H2{Imp,Z) A2 (Im p)
évidemment surjective

On arrive donc à l'équivalence

peßa-^^öv Up*{[f]) 0 VveH°{ZxZ,F)
ou encore

/])=0 VveH°{ZxZ,F)
<^oU/(x) 0 VveH°{ZxZ,F)

II suffit maintenant de remarquer que le cup-produit

H°{Z xZ,F)x H2{Z xZ,F)^ H2{Z x Z, C*)

est non dégénéré En effet, la dualité de Pomcaré du groupe Z x Z identifie cet
accouplement à

H°{ZxZ,F) x H0{ZxZ,F) -> H2{ZxZ,C*)
II II II

FG x FG -+ C*
D
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Lemme II-4. Sott p : Z x Z —> G, p € ßa, et considérons le pull-back de

l'extension (e) par p.
On obtient le diagramme

0 0

i i
F F

I
s

i

ï ï
Z x Z -^ G

I i
1 1

où d'après le Lemme II.3, T p est le produit semi-direct de Z X Z et de F. Alors

K2(Tp;C*)=0.

Ce lemme est le phénomène essentiel. Sa démonstration est donnée dans [Ba-
Th3]. D

Considérons maintenant la suite exacte des termes de^bas degré pour l'extension
(e) et pour toutes les extensions scindées p*{e), p G ßa- Nous obtenons le

diagramme ci-après:

(1) H°(G,F) —% K2(G,C*) > K2(r,C*) > K1(G,F) ^ifl"3(G,C*)

G,F)^ H2(G,C*) > ker[fl"2(r,C*) -^ H2(F, C*)] > fl"1(G, F) ^H3(G,

7v(p)*

0 >]^[fl"2(Z X Z,C*) >]^[ker[fl"2(r/9,C*) -^ fl"2(F, C*)] > ^Qff1 (Z X Z, F) > 0

Soit p : Z x Z —s- F un homomorphisme. Comme mentionné précédemment
l'application
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H2 (Im p, C*) ^ H2(Z x Z, C*) étant mjective, le groupe K2(T, C*) est donc aussi
constitué des classes de cohomologie x G H2(T,C*) telles que p*(x) G H2(ZxZ,T)
soit nulle pour tout p G ßr

Le lemme II-4 montre alors que le noyau de l'iiomomorpliisme f] P* évidemment
inclus dans K2(T, C*) lui est en fait égal et on obtient la suite (1) qui est exacte
sauf peut-être en K^(G, F)

Par ailleurs, la suite 0 —s- C* —s- C[M]Î —> M —s- 0 conduit à la suite

H1 {G, M) UM] K2(G, C*) -> ^2(G, C[M]})

-^ X2(G, M) U-K] ff3(G, C*)

qui est exacte sauf peut-être en K2(G, M)
Soit ô le bord de la suite exacte de G-modules

0^ M -> P -> F ^0
Nous obtenons le diagramme commutatif

(1)

(!')

H°(G.

'{
H1 (G,

1

1

0

¦F)

M)

- K (G,

III«

U-^] K2(G,

C*)

i

C*)

-> K2(r,c*)

H'
^ K2(G,C[M]*)

-» Ä" (G, F)

-» K2{G,M)

,-, 7rl//^< n\

^ iî3(G,C*)

||Id

U-^] H3(G,C*)

le second ô vertical est un îsomorphisine ^Pour montrer ce fait il suffit de voir que K2(G,P) 0 Nous avons la suite
d'inclusions

K2(G, P) C H2(G,P) e H2(G, Z[G/H}) e H2(H, Z) 0 H1 {H, Q/Z)
M MM

Par ailleurs tout sous-groupe cyclique de G est l'image d'un p Z x Z —s- G,

Ceci montre que K2(G,P) est contenu dans le noyau

0 kei (H^HiQ/Z) ^ H^C^Q/Z))
H

pour tout sous-groupe cyclique C de H Ce dernier groupe est bien nul
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Soient / l'image de K2(T; C*) dans K\G; F) et /' celle de K2(G; C[M]*f) dans

K2(G;M).
On a les suites exactes

0 -> / -> ker(Ux) -> [Ipe^ #2(z x z;c
i i

s\ s\ 11 Id

o ^ r ^ ker(u[/]) ^ n^Gff2(zxZ;c
ce qui montre que l'isomorphisme S : K^{G\ F) -^ K2(G; F) identifie / et /'.

On a donc le diagramme suivant à lignes exactes

0 - *]£'??? -+ K2(T;C*) - / ^ 0

0 - ttïïtSt "" ^2(G;CM/) -w - o

Pour conclure il manque un homomorphisme (et donc un isomorphisme)
compatible V : K2(T; C*) -> ^2(G; C[M]

En fait nous avons le

Lemme II-5.
i) L'application n ¦ K2(T; C*) -> ff2(F; C[M]*) esi mjectwe.

n) L'application p* : K2(G; C[M]p -> F2(F; C[M]*) esi mjective.
in) Im itf Im p*.

Preuve.

i) En fait nous allons montrer que H2(T; C*)^H2(T; C[M]*) est injective.
On a le diagramme suivant

H°(T; F) -^ Hl{T] M) i F2(r; C*)

où d est le bord de la suite exacte de F-modules O^M^P^FetS celui de la
suite exacte de F-module 0 -> C* -> C[M\* -^ M -^ 0.

La composée ôod est le cup produit par la classe p*(x) G H2(T;F). Cette classe
est tautologiquement nulle. Par ailleurs l'application d est surjective (puisque
iî1(r,P) 0). On en conclut que S est nulle ou encore que i* est injective.

ii) Là encore nous allons montrer que

p* : H2(G; C[M}}) -+ H2(T;

est injective ou de façon équivalente que

Ux: iïo(G;iï1(.F;C[M]j;)) -^ H2(G;C[M]*f)
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est nulle
On a le diagramme commutatif suivant

H®{G,Hl{F,C[M\*f)) ^ H2(G, C[M]*)

H°(G,C*)

4
HX(G,M) ^l H2(G}C*)

et î* o u[/] 0

m) Nous laissons le lecteur se convaincre de ce point D

III. Un exemple

Le but de ce paragraphe est de donner, pour tout nombre premier p, un exemple
d'action multiplicative tordue du groupe G Z/p x Z/p dans un G-réseau M,
telle que le groupe de Brauer non ramifié, BrnrC(M)(f soit non nul

Comme suggéré précédemment, il revient au même de construire une extension

O^F^T^G^l (e)

telle que K2(T, C*) soit non nul En effet, on choisit alors pour G-réseau M le

noyau de n'importe quelle surjection d'un G-module libre L sur F, et un homo-
morphisme croisé / G —s- M, tel que ô[f] [e] G F[2(G, F) où S est le connectant
de la suite exacte de G-module

(observer que H2 (G, L) 0) Ainsi on aura bien l'égalité

K2(T, C*) K2(G, C[M]*f) Brnr(C(M)f)

Nous allons réaliser les 2 conditions suivantes
1) choisir (e) "assez compliquée" pour que tout p Z x Z —s- G Z/p x Z/p,
p G ßa, soit non surjectif
2) choisir F tel que H^(G, F) soit isomorphe à Z/p2

Soit alors x un générateur du groupe cyclique H^(G,F) et considérons l'élément
1
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Puisque H3(G, C*) est tué par p, il existe z G ff2(I\ C*) qui relève l'élément

y et qui est donc en particulier non nul
La condition (1) montre que pour tout p ZxZ^F nous avons le diagramme

commutatif ci-dessous

0 1

Z —->

i
Z x Z -^

i
Z -^
i
0

d'où le diagramme commutatif

H2(T, C*)

F2(Zx Z,C*)

1

r
1

• G Z/p

1

1

y H

xZ/p

\G,F)

|(rr')*

Hl(Z,C*))

qui montre que /0*(z) (r,r')*(y)
Ce dernier élément est nul car l'liomomorphisme r transite par un sous-groupe

d'ordre au plus p Ce qui montre que l'élément z =/= 0 appartient bien à if2 (F, C*)
¦

II reste à réaliser les conditions 1) et 2)

Posons F ~y où I[G] est l'idéal d'augmentation de l'anneau de groupe
Z[G]

Lemme III-1.
H1(G,F)~Z/p2
H1(G,F)~(Z/p)2

Preuve Exercice

La condition 1) résulte du
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Lemme III-2. Soit s : Z X Z —> Z/p X Z/p la surjection canonique. Il existe une
extension

(e) 0 -> -^ -> T -> Z/p x Z/p G -> 1

£e//e (/we l'extension s*(e) sorf non triviale.

Avant de donner la preuve de ce lemme, montrons comment il entraîne la
condition 1).

Soit donc p:ZxZ^ Z/p x Z/p un homomorphisme surjectif et p un relevé

àZxZ, p s o p.
Z x Z -U Z/p x Z/p

Zx Z

Puisque p est surjectif, p est injectif et l'indice de p(Z x Z) dans Z x Z est

premier à p.
Il en résulte que p* : H2(Z x Z; F) —s- i?2(Z x Z; F) est un isomorphisme, donc

que p*{e) est non triviale et p <£ ßa- ¦

Preuve du Lemme III-2. La suite exacte courte

0 —> K ZxZ -^ ZxZ ^^ G Z/p x Z/p —> 0

induit en cohomologie la suite exacte

H2(G;F) -C ker[ff2(ZxZ;i?)(p^rff2(if ; F)l -^ ff^G; HX{K]F))

II faut montrer que l'application s* est non nulle ou donc que l'application S est non
injective. En fait, le domaine de définition de l'homomorpliisme S est isomorphe
aux invariants sous G du G-module F, groupe isomorphe à Z/p2, tandis qu'il
prend ses valeurs dans un groupe tué par p. (Lemme III-1) D

IV.

Le but de ce paragraphe est la démonstration du théorème suivant:

Théorème IV-1. Soit G un groupe fini. Les deux conditions suivantes sont
équivalentes:
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i) Les sous-groupes de Sylow du groupe G sont cycliques.
n) Pour tout G-réseau M et toute action multiplicative tordue (par f le groupe
de Brauer non ramifié Brnr(C(M)^) est nul.

Preuve, i => ii.
Lorsque M est d'indice fini dans un G-module de permutations, cela résulte

du théorème II-1, en observant que la cohomologie d'un groupe s'injecte dans le

produit de celle de ses sous-groupes de Sylow, et du fait déjà utilisé précédemment
que tout sous-groupe cyclique de G est l'image d'un certain p appartenant à ßa-

Le cas général où le G-réseau M n'est plus nécessairement d'indice fini dans

un G-réseau de permutations résulte des deux faits suivants.

Fait 1: Soit M un G-réseau. Alors il existe un G-réseau N tel que M © N soit
d'indice fini dans un G-réseau de permutations.

Fait 2: Si M et N sont deux G-réseaux et / : G —s- M un homomorphisme
croisé, le groupe Brnr{C{M)f) s'injecte dans Brnr(C(M © N)fe0) où 0 désigne

F homomorphisme croisé nul de G dans N.

Nous laissons la démonstration du fait 1 en exercice.

Preuve du fait 2: On observe d'abord que puisque C(M) est transcendant pur sur
C, le groupe Brnr(C(M)^) est en fait un sous-groupe du groupe de Brauer relatif,
à savoir H^{G ;C(M)p. Il reste à voir que ce groupe de cohomologie s'injecte

dansF2(G;C(M©AO*0O).
Pour cela considérons la suite d'injections de G-modules :

C(M)*f ^ (C(M)flN})* ^ (C(M®N)my

La première admet une G-retraction (induite par l'homomorphisme de N dans
le groupe trivial) et donc induit une injection en cohomologie. Quant à la deuxième
i<2, son conoyau s'identifie à © Z où / est l'ensemble des idéaux principaux de

i
l'anneau factoriel C{M)f [N]. Ces idéaux sont permutés par G et donc H^ (G; © Z :

0, ce qui montre que H2(G ; (C(M)f[N])*) s'injecte dans H2(G ; (C(M©W)/e0)*).
ii => i.

• Nous savons déjà [Ba-Th.4] que les sous-groupes de Sylow de G doivent être
abéliens bicycliques pour que le groupe de Brauer non ramifié du corps d'invariants
de toute action multiplicative non tordue soit nul.

• Si G possède un p sous-groupe de Sylow abélien bicyclique, non cyclique, il
contient un sous-groupe H isomorphe à Z/p x Z/p. Il est alors facile "d'induire
de H à G " l'exemple de la partie III pour produire un G-réseau M et un
homomorphisme croisé / : G —s- M tels que Brnr(C(M)^) soit non nul. Nous ne
détaillerons pas cette construction.
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