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Cohomologie des groupes et corps d’invariants
multiplicatifs tordus

Jean Barge

Abstract. We give a cohomological calculation of the unramified Brauer group of a field of
invariants under a twisted multiplicative action of a finite group.

Mathematics Subject Classification (1991). 12Gxx.

Keywords. Cohomology of groups, Brauer group, multiplicative fields of invariants.

Dans [S3], Saltman détermine le groupe de Brauer non ramifié des corps d’invariants
d’actions multiplicatives tordues.

Précisément, soient G un groupe fini et M un G réseau - i.e. un Z-module
libre et de type fini sur lequel G opere fidelement - et enfin soit f : G — M un
homomorphisme croisé du groupe G dans le G-module M = Homg(M;C*). On
fait opérer le groupe G sur 'anneau de groupe C[M] par la formule

go X™ = f(g)(gm)Xo™.

Nous noterons C[M]; (resp C(M)s) cet anneau de groupe muni de I'action
précédente (resp son corps des fractions muni de I’action induite).

Il est important de savoir calculer le groupe de Brauer non ramifié du corps
des invariants C(M)%, car la non-nullité de ce groupe est la premiére obstruction
a la rationalité stable [S1][S2].

Notons C[M]} le G-module des unités de I'anneau C[M]; de sorte que l'on a
la suite exacte (non généralement scindée) de G-modules

0— C*LC[M]; — M — 0.

Notons B¢ ’ensemble des homomorphismes du groupe Z X Z dans G et Eg le
sous-ensemble de [ constitué des homomorphismes p pour lesquels 'application

iy s H*(Im p; C*) — HQ(Imp;C[M]’})

est injective. Nous sommes maintenant en mesure d’énoncer le théoreme de Salt-
man [S3].
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Théoréme 1. Le groupe de Brauer non ramifié BT”T(C(M)?) du corps d’invariants
C(M)? est isomorphe au noyau des homomorphismes de restrictions:

HA(G;CM]p) — ] H*(Im p; CIMT5).

pefa

Le présent article, qui fait suite & [Ba] contient d’abord une nouvelle démonstra-
tion du théoréme précédent dans le cas particulier ol le G-réseau M est d’indice
fini dans un G-réseau de permutation. Comme dans [Ba] on exploite le fait que les
actions multiplicatives - méme tordues - se linéarisent et I'ingrédient fondamental
est bien sir le théoreme démontré indépendamment par Bogomolov et Saltman
qui détermine le groupe de Brauer non ramifié du corps d’invariants d'une action
linéaire.

Théoréme 2. [Bo/ Soit I' un groupe fini opérant linéairement et fidélement sur
un C-espace vectoriel V. Le groupe de Brauer non ramifié Br™" (C(V)') du corps
d’inwariants C(V)U est égal au noyau des homomorphismes de restriction:

oA (1,0 — [] #*(Imp;C*).

PEBT

(voir aussi [C.T])

Le théoreme ci-dessus admis, la méthode est la suivante.

Supposons le G-réseau M d’indice fini dans un G-réseau de permutations P de
sorte que l'on a les inclusions de corps

C(M)§ c C(M); =C(M) C C(P).

On montre les faits suivants.
a) L’extension C(P)/C(M)]? est galoisienne.
b) Son groupe de Galois I, agit linéairement sur C(P).
¢) On a la suite exacte :
0—-F—=T—=G—=1

ol I est le conoyau de M dans P et cette extension est déterminée par la classe

[f] € H(G; M) de ’'homomorphisme croisé f.

On a donc C(P)I' = C(M)§ et a fortiori Br" (C(P)') = Br"(C(M)$). (1)
On applique alors le théoreme 2 & I

La méthode précédente est d’ailleurs réversible, si bien qu’on peut considérer
ce papier, soit comme une nouvelle détermination des groupes de Brauer non
ramifiés de corps d’invariants multiplicatifs tordus, soit comme un calcul du groupe
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de Brauer non ramifié du corps d’invariants d’une action linéaire d’'un groupe I,
extension quelconque d’un groupe fini par un groupe abélien fini.

Le deuxieme paragraphe de cet article est purement cohomologique. Il est
consacré a la constatation que les résultats des théoremes 1 et 2 sont bien en
accord avec 1’égalité (1). C’est donc une nouvelle démonstration du théoréme 1,
a partir du théoreme 2. Néanmoins, il semble bien que pour les calculs “effectifs”
Pexpression donnée par le théoreme 2 soit plus maniable. En particulier, il est
facile sous cette forme d’obtenir des exemples d’actions multiplicatives tordues du
groupe Z/p x Z/p pour p premier quelconque dont le groupe de Brauer non ramifié
du corps d’invariants soit non nul, et donc a fortiori non stablement transcendant
pur. Voir aussi [S3].

La construction de cet exemple occupe le paragraphe 3.

Ce fait contraste avec le théoreme de [Ba] qui affirme qu’un tel exemple n’existe
pas pour des actions multiplicatives non tordues.

En fait nous avions montré :

Théoréme [Ba]. Soit G un groupe fini. Les deur conditions swivantes sont
équivalentes :

i) pour tout G-réseau M, Br""(C(M)§) =0 ;
ii) les sous-groupes de Sylow de G sont abéliens bicycliques.

Nous concluons cet article par la démonstration du

Théoréeme. Soit G un groupe fini Les deux conditions suivantes sont équivalentes:

i) pour tout G-réseau M et toute action multiplicative tordue f, BT"T(C(M)?) =0;
it) les sous-groupes de Sylow de G sont cycliques.

Remerciements. Je tiens a remercier J.-L. Colliot-Thélene et J.-J. Sansuc qui
m’ont initié au sujet, J. Lannes et Srinivas, de leurs suggestions et de leur intérét
pour ce travail. Cet article a été cong¢u pendant un séjour au Tata Institute of
Fundamental Research de Bombay, et rédigé pendant un séjour dans la famille
d’André et Catherine Bellaiche. Je remercie les deux institutions.

I. Linéarisation des actions multiplicatives tordues
I-1. Actions multiplicatives tordues

Soient G un groupe fini, M un G-réseau - c’est-a-dire un Z-module libre et de type
fini sur lequel G agit fidelement - et f : ¢ — M un homomorphisme croisé du
groupe G dans le G-module M = Homgz (M, C*).

On définit alors une action de G dans le corps de fractions C(M) de I'anneau
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de groupe C[M] par la formule go X™ = f(g)(g.m)X9™.

Cette action est dite multiplicative tordue (par f).Une autre facon utile de la
définir est la suivante:

Le groupe d’automorphismes de I’anneau de groupe C[M] est le produit semi-
direct de GL(M) par le G-module M. Nous noterons G w limage réciproque de
G C GL(M) dans ce produit semi-direct de sorte que I'on a la suite exacte:

—~ ~ S0
1=M—-Gy=G—1 (1)

Faire agir G dans C[M] par la formule go X™ = X9-™ fournit une section canonique
de la suite exacte (1) notée sg.

La donnée d’'un homomorphisme croisé f : G — M est équivalente a la donnée
d’une seconde section s = sg + f de (1) et permet donc de plonger G par s dans
G m. L’action multiplicative tordue par f n’est autre que la restriction a s(G) de
I’action naturelle de éM

I-2. Linéarisation

Supposons maintenant que le G-réseau M soit d’indice fini dans un autre G-réseau
P (qui deviendra rapidement un G-module de permutations) et notons F' = P/M.

Nous obtenons alors le diagramme suivant ou F oest le groupe des caracteres
du groupe fini F.

0 0
F o4, 5
S
1 — P — @p S & — 1
| E I
o ~ .50
1 — M — Gy = & — 1
P
s
0 1

Théoréme I-2.1. Notons C(M)? le corps des invariants de C(M) par Uaction
maultiplicative tordue par f.

i) L’extension C(P) D C(M)? est galoisienne ; ii) Son groupe de Galois I' est
égal a p~1(s(@)).
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On a donce la suite exacte:

1 — F 1 % — 1

iii) La classe de cette extensionz € H*(G; ﬁ) est l'image de la classe de Uhomomor-
phisme croisé f par le connectant 8, de la suite exacte 0 — F-P—-M-=o0:
z=90[f].

i) Si Uon suppose en outre que le G-réseau P est un G-module de permutations,
Uaction du groupe I' sur le corps de fractions rationnelles C(P) est linéaire.

Preuve. 1) et ii) Le groupe I' = p~1(s(G)), sous-groupe de G p agit sur le corps des
fractions rationelles C(P).
On a les égalités suivantes:

(P = (S(P)F @) = 01y @) = N .

iv) Le groupe Gp est engendré par s0(G) et P. Le sous-groupe sg(G) agit
linéairement car P est un G-module de permutations. Le sous-groupe P agit
évidemment linéairement. Il en résulte que 'action de Gp, et & fortiori celle de
son sous-groupe I', sur C(P) est linéaire.

iii) Soit f:a—= P un relevé ensembliste de I’lhomomorphisme croisé f : G — M
et soit 5= (Id, f) un relevé ensembliste de s = (Id, f)

Gp
5 l
& 2 G

On calcule alors 5(9192)5(92)_1§(g1)_1 et on trouve f(gl.gg) — f(gl) - gl.f(gg) ce

~

qui montre bien que I'extension 0 — F — I' — G — 1 a pour classe la classe 6[f].

I-3. Conclusion

A chaque action multiplicative tordue par f d’un groupe fini G dans un G-réseau
M d’indice fini dans un G-réseau de permutations, P, nous avons associé une
action linéaire d’un groupe fini I' (bien déterminé par G, M, P, f) dans C(P) de
sorte que C(P)F' = C(M)]Cf et donc en particulier telle que

Br"(C(P)Y) = Br (C(M)F). (2)
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II. Le théoréme de Saltman [S3]

Le but de ce paragraphe est de donner une nouvelle démonstration du théoreme de
Saltman ci-dessous, basée sur la linéarisation, dans le cas particulier ol le G-réseau
M est d’indice fini dans un G-réseau de permutations P.

Pour exprimer ce théoreme, introduisons quelques notations. SiI' est un groupe
on note Fr l’ensemble des homomorphismes du groupe Z x Z dans I'. Si U est un
I-module on note K*(I'; ) le noyau des homomorphismes de restriction:

HY{(T;U) — H H' (Im p;U).

PEPT

Soient maintenant G, M et f : G — M comme précédemment et p € . L'injection
de G-modules i : C* — C[M]} induit une application

i H? (Im p; C*) — H? (Im p; C[M]}) .

On note fF¢ le sous-ensemble de fBe constitué des p pour lesquels I"application
ci-dessus est injective et pour un G-module V, K*(G;V) le noyau des homomor-
phismes de restriction:

H(G;V)— ] H (Im p;V) .
PEEG
Théoréme II-1. [S3]
Br(C(M)§) = K*(G; C[M]}).

Grace au théoreme [Bo| rappelé dans l'introduction et & la linéarisation, le
théoreme précédent est équivalent au:

Théoréme II-2. Soit

0 —F —I La¢ —1. (e

Uertension de G par le groupe des caractéres du conoyau ' de M dans P, d’invariant
z = 9d|f] € HX(G; F).
Alors les deux groupes

KXG;CM];) et KX(T;CY)

sont canoniquement isomorphes.
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La démonstration repose sur les deux lemmes fondamentaux suivants.

Lemme I1-3. L'ensemble B¢ est lensemble des p:ZLxXZ — G tels que p*(z) = 0.
Autrement dit, Ba est Uensemble des p: Z X Z — G qui se relevent o T

Démonstration du Lemme 11-3:

Considérons la suite exacte de G-modules

0 — ¢ LCME —M — 0

La premiere remarque est que cette suite définit un élément dans Ext%;(M ,C*) =
HY(@; M) qui n’est autre que la classe [f] de ’homomorphisme croisé f : G — M.

Il en résulte que p € Bg si et seulement si I'application:

HY(Im p; M) oi H?(Im p; C*)

est nulle.
Par ailleurs, tout élément w € H(Imp; M) s’écrit dv ot v € H(Imp; F) =
HYZ x Z; F).
(Puisque H'(Im p; P) est nul, car P est un G-module de permutations).
L’application p* : H2(Imp; C*) — HZ%(Z x Z;C*) est injective puisque elle
est duale de D'application p, : Ho(Z x Z;Z) = A*’Z — Ho(Imp; Z) = A? (Im p)
évidemment surjective.

On arrive donc a I'équivalence :
pE€fa=dwUp(f])=0 Yoe HNZ x Z; F)

ou encore
v Up*d[f])=0 Yve HYZ X Z:F)

o UpHz)=0 Yve HYZ X Z;F)
Il suffit maintenant de remarquer que le cup-produit:

HYZ x Z;F) x HYZ x Z; F) — H*(Z x Z;C*)

est non dégénéré. En effet, la dualité de Poincaré du groupe Z x Z identifie cet
accouplement a:

HYZ xZ;F) x Ho(ZxZ;F) — H2(ZxZ;C")
| |
FG X FG — Cc*
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Lemme II-4. Soit p : ZXZ — G, p € Bg, el considérons le pull-back de

Uextension (e) par p.
On obtient le diagramme

-
l

= Yy —— H — hpHe— o

i
P —

Zx7Z 2.
1

ou d’apres le Lemme I1.3, ', est le produit semi-direct de Z X 7 et de F. Alors

K(I',;C*) =0.

Ce lemme est le phénomene essentiel. Sa démonstration est donnée dans [Ba-
Th3]. O

Considérons maintenant la suite exacte des termes de bas degré pour I'extension
(e) et pour toutes les extensions scindées p*(e), p € Ba. Nous obtenons le dia-
gramme ci-apres:

u B Lo U
() HO(G; F) =% K%2(G ;o) — K2(T; C*) —  KYlaF) = H3G;CY
I
u U
e 2E mB2(Gi¢f)  — ker[HX(T;C) — H2(F;0Y)) —  HY (@R 230 0Y

l " (p)* np*

0 ﬁHHQ(z x Z; C*) ﬂnker[HQ(rp;c*) — H2(F;cYy) ﬂHHl(z X Z; F) —> 0

pEBG PEBG rEBG

Soit p : Z x Z — I’ un homomorphisme. Comme mentionné précédemment
Iapplication
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H? (Im p; C*) LN H?(Z x Z; C*) étant injective, le groupe K2(I'; C*) est donc aussi
constitué des classes de cohomologie z € H2(I'; C*) telles que p*(x) € H*(ZXZ;T")
soit nulle pour tout p € gr.

Le lemme 11-4 montre alors que le noyau de I’lhomomorphisme [] p* évidemment
inclus dans K2(I'; C*) lui est en fait égal et on obtient la suite (1) qui est exacte
sauf peut-étre en K1(@; F).

Par ailleurs, la suite 0 — C* — C[M|} — M — 0 conduit & la suite

s w2 a0t — B2 G; o)
~ ey YW e o

qui est exacte sauf peut-étre en IN(Q(G; M).
Soit § le bord de la suite exacte de G-modules

0—-M-—-P—=F—=0.

Nous obtenons le diagramme commutatif

Uz Uz

(1) HG;F) B KUG,Cr) —  K2T;CY)  — KYGF) B H3G;CM

({ [|1d 1?2 zlé ||1d

W) mem M oReen - Reomy - Kam Homieen

I

0

ofl le premier § vertical & gauche est surjectif (puisque H1(G, P) = 0) tandis que
le second & vertical est un isomorphisme. ~

Pour montrer ce fait il suffit de voir que K2(G;P) = 0. Nous avons la suite
d’inclusions

K*(G;P) c H*G,P) = %HQ(G;Z[G/H]) = %HQ(PL Z) = %Hl(H; Q/Z)

Par ailleurs tout sous-groupe cyclique de G est I'image d'un p : Z x Z — G,

p € Ba. N
Ceci montre que K 2(G; P) est contenu dans le noyau

® ker (H'(H;Q/Z) — H'(C,Q/Z))
H

pour tout sous-groupe cyclique C de H. Ce dernier groupe est bien nul.
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Soient I I'image de K2(I'; C*) dans [~(1(G; F)et I celle de [?Q(G; C[M]}) dans
K2(G; M).
On a les suites exactes

0 — I — ker(Uz) — [z, HAZxZ;C")/HYG;C")

al 5l 11

0 — I' — ker(U[f]) — [z, HAZ x Z;C*)/H*(G;C*)

ce qui montre que I'isomorphisme § : IN(](G; n= [N(Q(G; I') identifie T et I”.
On a donc le diagramme suivant & lignes exactes

72 el ~
0 — SAGOY] KQ(F;C*) — I —= 0

Im Uz

| s

0 - K8 . Rugomly) - T - 0

Pour conclure il manque un homomorphisme (et donc un isomorphisme) com-
patible 1 : K%(I'; C*) — K*(G; C[M]}).
En fait nous avons le

Lemme II-5.
i) L’application i, : K*(I'; C*) — H(T; C[M]3) est injective.

i) L’application p* : K2(G; C[M[}) — H(T; C[M]}) est injective.

iii) Im i, = Im p*.

Preuve.
i) En fait nous allons montrer que H?(I'; C*) 2 H?(T; C[M]}) est injective.
On a le diagramme suivant

HOT; )% HY(T: M) H(T; C¥)

ol d est le bord de la suite exacte de I'-modules 0 — M — P — F et § celui de la
suite exacte de [-module 0 — C* — C[M]} — M — 0.

La composée dod est le cup produit par la classe p*(x) € H2(T; ﬁ) Cette classe
est tautologiquement nulle. Par ailleurs Papplication d est surjective (puisque
HY(T', P) = 0). On en conclut que § est nulle ou encore que 7, est injective.

ii) La encore nous allons montrer que

p*: HA(G; C[M]3) — H(I;C[M]})
est injective ou de facon équivalente que

Uz : HYG; HY(F; C[M]})) — H(G; C[M]})
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est nulle.
On a le diagramme commutatif suivant:

HO(G; HY(F;C[M]) — H*(G;CIM]})

HO(G; C*) T
|
HYG; M) S ey
et i, o U[f] = 0.
iii) Nous laissons le lecteur se convaincre de ce point. O

III. Un exemple

Le but de ce paragraphe est de donner, pour tout nombre premier p, un exemple
d’action multiplicative tordue du groupe G = Z/p X Z/p dans un G-réseau M,
telle que le groupe de Brauer non ramifié, Br""C(M )? soit non nul.

Comme suggéré précédemment, il revient au méme de construire une extension :
0—-F—-T—-G—1 (e)

telle que K 2(F; C*) soit non nul. En effet, on choisit alors pour G-réseau M le
noyau de n’importe quelle surjection d’'un G-module libre L sur F', et un homo-
morphisme croisé f : G — M, tel que 6[f] = [¢] € H?(G; F) ol § est le connectant
de la suite exacte de G-module

0-F—>L—-M—0
(observer que H2(G; f) = 0). Ainsi on aura bien 1'égalité
K*(I;C*) = K%(G; C[M]}) = Br (C(M)§).

Nous allons réaliser les 2 conditions suivantes:
1) choisir (e) “assez compliquée” pour que tout p : Zx Z — G = Z/p x Z/p,
p € Bg, soit non surjectif
2) choisir F' tel que H!(G; F') soit isomorphe & Z/p?.
Soit alors z un générateur du groupe cyclique H 1(G; F) et considérons I’élément
y=pz#0e H(G;F).
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Puisque H3(G; C*) est tué par p, il existe z € H2(I'; C*) qui reléve I’élément
y et qui est donc en particulier non nul.

La condition (1) montre que pour tout p : Z x Z — I" nous avons le diagramme
commutatif ci-dessous

!
e T e— =

|»

N

— N ¢—— X «— N «+— ©

|

L, G=Z/pxZ/p

I

0 1
d’ou le diagramme commutatif
HYT;CY) — HYG; F)

| [y
H%(Z x Z;C*) = HYZ:HY(Z;C*)
qui montre que p*(z) = (r,7")*(y).
Ce dernier élément est nul car ’lhomomorphisme r transite par un sous-groupe
d’ordre au plus p. Ce qui montre que I'élément z # 0 appartient bien & K2(I'; C*).
| |
Il reste & réaliser les conditions 1) et 2).

Posons I = %?—] oll I[G] est I'idéal d’augmentation de I’anneau de groupe

Z[G).

Lemme ITI-1.

Preuve. Exercice.

La condition 1) résulte du :
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Lemme III-2. Soit s : ZXZ — Z/p X Z/p la surjection canonique. Il eriste une
extension

T
(e) O—>[—2]—>F—>Z/p><Z/p:G—>l

p

telle que Uextension s*(e) soit non triviale.

Avant de donner la preuve de ce lemme, montrons comment il entraine la
condition 1).
Soit donc p : Z X Z — Z/p X Z/p un homomorphisme surjectif et p un relevé
aZxZ,p=sop.
ZxZ = Z/pxZ/p

NP Tp
7 x 7

Puisque p est surjectif, p est injectif et I'indice de p(Z x Z) dans Z X Z est
premier a p.

Il en résulte que p* : H2(Z x Z; ﬁ) — H*(Z x Z; ﬁ) est un isomorphisme, done
que p*(e) est non triviale et p ¢ Be. m

Preuve du Lemme I1I-2. La suite exacte courte

0 — K=ZxZ % ZxZ > G=Z/pxZ/p — 0

induit en cohomologie la suite exacte

HYG F) = ker[H2(Z><Z;ﬁ)(pX—M>)*H2(K;ﬁ) 2, HY(G, HY(K;F))

1l faut montrer que 'application s* est non nulle ou donc que ’application § est non
injective. En fait, le domaine de définition de ’homomorphisme § est isomorphe

aux invariants sous G du G-module ﬁ7 groupe isomorphe a Z/pg7 tandis qu’il
prend ses valeurs dans un groupe tué par p. (Lemme I11-1) O

V.
Le but de ce paragraphe est la démonstration du théoreme suivant:

Théoréeme IV-1. Soit G un groupe fini. Les deur condilions suivantes sont
équivalentes:
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i) Les sous-groupes de Sylow du groupe G sont cycliques.
it) Pour tout G-réseau M et toute action multiplicative tordue (par f), le groupe
de Brauer non ramifié BT"T(C(M)?) est nul.

Preuve. 1 = ii.

Lorsque M est d’indice fini dans un G-module de permutations, cela résulte
du théoreme II-1, en observant que la cohomologie d’un groupe s’injecte dans le
produit de celle de ses sous-groupes de Sylow, et du fait déja utilisé précédemment
que tout sous-groupe cyclique de G est I'image d’un certain p appartenant a 3g.

Le cas général ou le G-réseau M n’est plus nécessairement d’indice fini dans
un G-réseau de permutations résulte des deux faits suivants.

Fait 1: Soit M un G-réseau. Alors il existe un G-réseau N tel que M & N soit
d’indice fini dans un G-réseau de permutations.

Fait 2: Si M et N sont deux G-réseaux et f : G — M un homomorphisme
croisé, le groupe Br™"(C(M)§) s'injecte dans Br™"(C(M @ N)fq) ot 0 désigne

I’homomorphisme croisé nul de G dans N.

Nous laissons la démonstration du fait 1 en exercice.

Preuve du fait 2: On observe d’abord que puisque C(M) est transcendant pur sur
C, le groupe Br’”(C(M)?) est en fait un sous-groupe du groupe de Brauer relatif,

& savoir H2(G ;C(M)7%). 1l reste & voir que ce groupe de cohomologie s’injecte
dans H2(G ;C(M @ N)te0)-
Pour cela considérons la suite d’injections de G-modules :

)

C(M); & (C(M);IN)" 2 (C(M & N)sgo)”

La premiere admet une G-retraction (induite par ’lhomomorphisme de N dans
le groupe trivial) et donc induit une injection en cohomologie. Quant & la deuxieme

{2, son conoyau s’identifie & & Z ol I est I’ensemble des idéaux principaux de
I

Panneau factoriel C(M)[N]. Ces idéaux sont permutés par G et donc H' (G; © Z )
I

0, ce qui montre que H2(G ; (C(M)f[N])*) s’injecte dans H2(G ; (C(M@N) a0)*).
il = i

¢ Nous savons déja [Ba-Th.4] que les sous-groupes de Sylow de G doivent étre
abéliens bicycliques pour que le groupe de Brauer non ramifié du corps d’invariants
de toute action multiplicative non tordue soit nul.

e Si GG possede un p sous-groupe de Sylow abélien bicyclique, non cyclique, il
contient un sous-groupe H isomorphe & Z/p x Z/p. 1l est alors facile “d’induire
de H & G 7 l'exemple de la partie III pour produire un G-réseau M et un ho-
momorphisme croisé f : G — M tels que Br’”(C(M)?) soit non nul. Nous ne

détaillerons pas cette construction.
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