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Topology of complete intersections*

Fuquan Fang

Abstract. Let X, (d) and X,,(d’) be two n-dimensional complete intersections with the same

total degree d. In this paper we prove that, if n is even and d has no prime factors less than %’—3,

then X, (d) and X, (d’) are homotopy equivalent if and only if they have the same Euler charac-

teristics and signatures. This confirms a conjecture of Libgober and Wood [16]. Furthermore, we

prove that, if d has no prime factors less than "T‘L?’, then X, (d) and X,,(d’) are homeomorphic

if and only if their Pontryagin classes and Euler characteristics agree.
Mathematics Subject Classification (1991). 13C40, 14M10, 57R50.

Keywords. Complete intersection, homotopy equivalence, homeomorphism.

¢1. Introduction

A complete intersection is the transversal intersection of some complex hypersur-
faces given by homogeneous polynomials in a complex projective space. In this
paper we prove that the topology of a complete intersection is determined by
several well-known invariants in most cases. It is a classical result of R. Thom
that the topology of an n-dimensional complete intersection depends only on the
degrees of the homogeneous polynomials. Let X,,(dy,da,...,d,) be a complete in-
tersection defined by r homogeneous polynomials of (n + r) variables and degrees
dy,ds,...,d,, respectively. We call the unordered set d = (dy,do, ..., d,) the multi-
degree and the product dydy - - - d, := d the total degree of X,,(d). It is known that
the total degree d is a homotopy invariant of X,,(d) when n > 3. By the Lefschetz
hyperplane section Theorem, the inclusion

X, (d) — CPtr

is an (n — 1)-equivalence.
In lower dimensions, the topology of a complete intersection is well understood
by the general theory of differential topology. For example, X1(d) is a complex

*Supported in part by Max-Planck Institut fir Mathematik
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curve of genus g = 1 — %(r +2—3" 1d;). Xa(d) is a simply connected com-
plex surface. By M.Freedman’s celebrated work on the topology of 4-manifolds
[8], the homeomorphism type of Xo(d) is determined by its intersection form.
In the smooth category, however, Ebeling [5] and Libgober-Wood [17] indepen-
dently found examples of homeomorphic complete intersections but not diffeomor-
phic. Xs(d) is a simply connected 3-dimensional complex manifold with torsion
free homology groups. A complete classification of such manifolds was given by
C.T.C.Wall [22] and Jupp [10].

n = 4 is the first nontrivial dimension in which we can not refer to any classical
classification theory. In [7], S.Klaus and the author proved that two 4-dimensional
complete intersections are homeomorphic if and only if their total degrees, Kuler
numbers and all Pontrjagin numbers agree. Even in this special dimension, the
homotopy classification problem has not yet been solved.

On the other hand, some interesting partial results on the classification of com-
plete intersections in high dimensions have been obtained under certain restriction
on the total degree d. For example, under the condition that for all primes p with
p(p — 1) < n+ 1, the total degree d is divisible by pl(2nt1D/2p=DI+1 Traying
[21](c.f: [12]) proved that two complete intersections with the same total degree
d are diffeomorphic if and only if their Euler numbers and all Pontrjagin classes
agree. For the homotopy classification, Libgober and Wood [14] proved that, if the
dimension n is odd and the total degree d has no prime factors less than %ﬁ, then
n-dimensional complete intersections with total degree d are homotopy equivalent
if and only if their Euler numbers agree. They made a further conjecture [16] when
n is even. In this situation, the topology becomes much more complicated. We
refer to [15][16] for more details.

The following theorem and the work of Libgober and Wood [14] completes
the homotopy classification problem of complete intersections for which, the total
degree d has no prime factors less than ’%é

Theorem 1.1. Let X,,(d) and X, (d') be two complete intersections of even di-
mension with the same total degree d. Suppose that d has no prime factors less
than %ﬁ Ifn #£ 2, then X,(d) and X, (d’) are homotopy equivalent if and only
if they have the same Buler characteristic and signatures.

Remark. The conjecture of Libgober-Wood [16] is a corollary of Theorem 1.1.

Once the homotopy types of two complete intersections are the same, Sullivan’s
characteristic variety theory can be applied to handle the homeomorphic classifi-
cation problem. Note that, for a complete intersection X,,(d), the i-th Pontrjagin
class p; must be an integral multiple of 2%, where z € H*(X,(d),Z) ~ Z is a
generator if n > 3. This multiple is independent of the choice of the generator z
since p; € H¥(X,,(d),Z). For convenience, throughout the rest of the paper, we
view the Pontrjagin class p; of X,,(d) as the multiple of 2.
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Theorem 1.2. Let X,,(d) and X,,(d") be two homotopy equivalent complete in-
tersections. If d is odd and n # 2* — 2 for all i € Z, then X,(d) and X,,(d') are

homeomorphic to each other if and only if their Pontriagin classes agree.

Remark. Our proof of Theorem 1.2 can not be extended to the case when d is
even. The reason is that we have to use Browder’s result on the Kervaire invariants
of framed manifolds [4].

Combining Theorem 1.1, Theorem 1.2 and [14] on the homotopy classification
of complete intersections of odd dimensions, we solve the homeomorphism classi-
fication problem in the case when n # 2¢ — 2, and d has no prime factors less than
i"'r?’. With some additional argument we will prove

Corollary 1.3. Let X,,(d) and X,,(d’) be two complete intersections of dimension
n > 3 with the same total degree d. Suppose that d has no prime factors less than
”—%ﬁ. Then X, (d) and X,,(d') are homeomorphic if and only if their Pontrjagin
classes and Fuler numbers agree.

Another very natural question is as follows. If X,,(d) and X,,(d’) are diffeo-
morphic/or homeomorphic/or homotopy equivalent, is X,,(d,a) diffeomorphic to
Xn(d’,a) for a natural number a? Here X,,(d,a) is the complete intersection with
multidegree (dy,ds, - ,d,,a).

To give a partial answer to this question, we need a definition. M 2 and N2
are said to be S-diffeomorphic (homeomorphic, homotopy equivalent) if there are
integers r and s such that M2"4rS™ x S and N2"#sS5" x 8" are diffeomor-
phic(homeomorphie, homotopy equivalent).

Theorem 1.4. Let X,(d) and X, (d') be two S-diffeomorphic(homeomorphic,
homotopy equivalent) complete intersections. If ay,--- ,aj are positive integers
such that

maz{ay, - ,ap} < min{d,d’},

then X,,(d, a1, - ,ar) and X, (d',a1,- - ,ax) are S-diffeomorphic(homeomorphic,
homotopy equivalent).

Remark. Without loss of generality, we may assume that the multidegree d does
not contain 1. By the above theorem, if X, (d) and X,,(d’) are S-diffeomorphic
(homeomorphic, homotopy equivalent), then so are X,,(d,2,---,2) and
Xn(d,2,---,2).

The organization of this paper is as follows. In §2 we study the homotopy
types of complete intersections. The proof of Theorem 1.1 is given there. In §3 we
first review Sullivan’s characteristic variety theory. Using this potential theory as a
tool, we prove Theorem 1.2 and corollary 1.3. In §4 we give a proof of Theorem 1.4.
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§2. Homotopy type

In the topological category, every odd dimensional complete intersection is home-
omorphic to the connected sum K#rS™ x S"#N, where K satisfies H,(K) = 0,
N is (n — 1)-connected and

H,(N)2ZaZ

Following [16], we call K the topological core of the complete intersection. We
define K, (d) to be the corresponding core of X, (d).

When n = 1,3 or 7, the piece N is homeomorphic to S™ x S™. For other
odd n, this is true if and only if either there is a homological trivial embedded n-
sphere in X,,(d) with nontrivial normal bundle, or the Kervaire invariant of a well-
defined quadratic function on H"(X,,(d),Zso) vanishes. The Kervaire invariant for
hypersurface was calculated by Morita [18] and independently by Libgober (c.f:
Proc. AMS, vol. 63 No.2, p.148). For general complete intersections, it was
further calculated by J.Wood for d odd and W.Browder for all cases. The main
results are:

Proposition 2.1. (J.Wood [23]) There is no homological trivial n-sphere in X,,(d)
with nontrivial normal bundle if and only if

e The binomial coefficient <:Zii> is even, where n =2m+1# 1,3,7 and [ is

the number of even entries in d.

If e holds, for every element z € H"(X,(d),Zs), its Poincare dual can be
represented by an embedded n-sphere. We know that the normal bundle of this
sphere in X, (d) is stably trivial. In view of homotopy, this implies that the
normal bundle corresponds to an element of the kernel of the stable homomorphism
Tn-1(SO(n)) — 7, _1(S0O). It is well known that this kernel is isomorphic to Zo.
Let g(z) € Za denote this element. This gives a well-defined quadratic function

q: H"(X,(d),Z2) — Zo

The Kervaire invariant is defined to be the Arf invariant of g. We denote by ky (q)
the Kervaire invariant of X,,(d). Clearly, if d is odd, [ = 0. Thus e is satisfied and
the Kervaire invariant is well-defined.

Theorem 2.2. (Browder[3], Morita[18], Wood[23]) If d is odd, then

B { 0, ifd==x1(mod8);
Xld) 71, ifd = £3(mods).

Suppose o holds and d is even. Then kxn(d) =1 if and only if n = 1(mod8), | =2
and d is not divisible by 8.
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Note that, if kx (q) = 1, the manifold N above is the Kervaire manifold.

For n even, the situation is quite different. One can not find a decomposition
with a core K, for which H,,(K) = 0. This is because that there is an element in
H, (X, (d)) which is not spherical. Indeed, by [15] we have a decomposition with
a core K, (d) such that rankH,,(K,(d)) < 5. The precise value of this minimum
rank depends on the type of the intersection form as well as the total degree d. It
is easy to see that, at least up to homotopy, the core is unique.

When n is odd, by [14] the cohomology ring

H*(Kn(d)) = Zle, y]/{z"T = dy,y? = 0}.

If d has no prime factors less than %ﬁ, it is proved [14] that K, (d) has the
homotopy type of the 2n-skeleton of F/, where F is the homotopy fiber of

2™ CP® = K(Za,n+ 1)

Here z € H2(CP>,Zy) is a generator. Thus the homotopy type of K,,(d) depends
only on the total degree d. The similar method does not work when n is even. In
[16], Libgober and Wood conjectured that the same conclusion holds for n even.
This is essentially equivalent to Theorem 1.1. We will give a proof of this fact by
using the surgery theory of F. Quinn.

Let M be a manifold of dimension 2n and N be a codimension 2 submanifold.
Let C = M — intU, where U denotes a tubular neighborhood of N. We say N is
taut if the pair (C,0C) is (n —1)-connected. Let f : M — X be a map transversal
to a CW subcomplex Y C X, where Y has a 2-dimensional normal bundle. Let
E(f,Y) and E(f,X —Y) denote the fiber spaces over M

E(f,Y) — Y
| |
M Lox

and
E(f,X-Y) — X-Y

M S, x

Following Quinn [19], f is called almost canonical with respect to Y if the
natural maps

YY) = B, Y)

and

FFUX-Y) = E(f,X -Y)

are (n — 1)- and n-equivalences, respectively. When f is a homotopy equivalence
and almost canonical, it is easy to see that the maps f : ffl(Y) — Y and f :
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f"YX —Y)— X =Y are (n — 1)- and n-equivalences. The following theorem of
F.Quinn plays an important role in this paper.

Theorem (F.Quinn[19]). Let Y C X have a dimension 2 normal bundle neigh-
borhood. Then every map f: M — X is homotopic holding the boundary fized to
an almost canonical one with respect to Y.

Proof of Theorem 1.1. The necessity is obvious. Assume that X,,(d) and X, (d’)
have the same total degree d and the same signature, where n and d are as in
Theorem 1.1. Since n + 1 is odd, by [14] the cores K,,41(d) and K, 11(d’) are
homotopy equivalent under the hypothesis on d. In our case, d is odd and so
the Kervaire invariant of X,,1(d) and X,,1(d’) are well-defined and the same.
Without loss of generality, we assume that

rankH,, 11 (X, 41(d)) > rankH,, 41 (X, +1(d"))

There is an integer 7 such that X,y 1(d) ~ X, 41 (d)#rS™H x §7HL Let f
Xp11(d) = X, p1(d)#rS™H x 57 be a homotopy equivalence.

Notice that X, (d) € X, 1(d) and X, (d') € X, 1(d")#rs? T x 57+ are
taut submanifolds. They represent the generators of 2n-dimensional homology
groups of the ambient manifolds, respectively. By Quinn’s theorem above, we
can assume that f is almost canonical with respect to the submanifold X, (d’).
Since f is a homotopy equivalence, this implies that f~1(X,(d’)) is also a taut
submanifold of X,,41(d) representing the same 2n-dimensional homology genera-
tor. Freedman’s uniqueness theorem on taut submanifolds [9] asserts that X,,(d)
and f~1(X,(d")) are stably diffeomorphic. By [9] we can add some copies of
5™ x S™ to the taut submanifold f~1(X,(d")) C X, 1(d) and keep f being an
almost canonical map. Thus we can assume that the middle dimensional Betti
number of f~1(X,,(d")) is not less than that of X, (d). Therefore f~1(X, (d")) is
diffeomorphic to X, (d)#r’'S™ x S™ for some nonnegative integer r’.

Now we obtain a map

£ Xp(d)#'S™ x 8™ — X, (d)

which is an n-equivalence. Moreover, f is a degree one map, since the two com-
plete intersections have the same total degree. It follows that the sublattice
kerf. C Hp(X,(d)#r'S™ x S™) is unimodular. From the commutative square
of the Hurewicz homomorphisms it is easy to verify that ker f, consists of spher-
ical elements. Moreover, kerf, is of even type. The signature of this sublattice
is exactly the difference of the target and source manifolds, which is zero. Hence
ker f, is isomorphic to the sum of some copies of the hyperbolic plane H, say mH.
As in [16], from this algebraic decomposition, there is a topological decomposition
M#mS™ x 8™ =2 X, (d)#r'S™ x S™. Note that f is null homotopy when it is
restricted to the factor mS™ x S" — int D", By surgery on these 2m spheres



472 F. Fang CMH

S™ X pt and pt x S™ we get a map [ : M — X,,(d’) with kerf, = 0. From this we
conclude that f’ is a homotopy equivalence. On the other hand, by assumption,
X, (d) and X,,(d’) have the same Euler numbers, hence m = r’.

Therefore X,,(d)#mS™ x S™ and X,,(d')#mS™ x S™ are homotopy equivalent.
Using the same argument of [16] Proposition 3.3, one can check that X, (d) and
Xn(d’) are homotopy equivalent. This completes the proof. O

Remark. The proof above also gives an affirmative answer to the conjecture in
[16] (c.f: page 126).

It has been pointed out in [16] that the condition on d in Theorem 1.1 is sharp.
By using K-theory one can get some stronger restrictions on the multidegrees of
two homotopy equivalent complete intersections. To illustrate this, we give the
following

Proposition 2.3. Let X, (d) and X, (d’) be two complete intersections with ho-
motopy equivalent cores. Let | and ' denote the numbers of even entires in d and
d’, respectively. Then | — U is divisible by 2/(") =1, Here fn), n € Zy, is given
by the following table

1
1

8 . m | 8
1 - f(m)+4

2 3 4 6 7
2 2 3 3 3

5
3

Proof. Suppose that the cores K,(d) and K,(d’) are homotopy equivalent, by
definition, there are two (n — 1)-connected almost parallelizable manifolds, say M
and M’, such that X, (d)#M and X,,(d")#M’ are homotopy equivalent. We warn
that M and M’ are not necessarily smoothable.

By Atiyah [2], the stable normal spherical fibrations of X, (d)#M and
Xn(d)#M' are fiber homotopy equivalent. By the Lefschetz hyperplane Theo-
rem, there are natural (n — 1)-equivalences CPl¥] — X, (d) and CPI3] — X, (d).
Therefore the restrictions of the stable normal bundles of X,(d) and X, (d)
to CP3] are fiberwise homotopy equivalent. In other words, they present the
same element in the J-group J(CP[%]). It is easy to check that the stable nor-
mal bundles of X,,(d) and X,(d’) are H®" @ --- @ H% — (n +r + 1)H and
HYig...@ H4W — (n 4+ r' + 1)H, respectively. Here H is the Hopf line bun-
dle over X,,(d). From the above argument we conclude that

HY@...0 H" —(ntr+1)H = H4®...@ H% —(n+r'+1)H € J(CPIB) (2.4)

Consider the canonical Sl-fibration = : RP28I+1 — cpl3l. The complex
line bundle 7*(H%) has the trivial first Chern class if and only if d; is even
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since HQ(RPQ[%Hl) = Zo. Moreover, if d; is odd, n*(H%) = 7*(H) = 2n €
KO(RPQ[%HI), where 7 is the Hopf real line bundle. Thus by (2.4) we conclude
that

™{(H @ - @ H* —(ntr+1)H)—(H4®- - - @H% —(n+r'+1)H)} =7*'-1)H=0

in J(RPQ[%HI)‘ Therefore 2(I’ — 1) must be a multiple of the order of the J-group
J(RPUSIHY) which is equal to 2/ @[#1H1) by [1]. This completes the proof. O

§3. Sullivan’s characteristic variety

This section is devoted to a proof of Theorem 1.2 and Corollary 1.3 by using Sulli-
van’s characteristic variety theory [20]. Sullivan’s characteristic variety theory is a
very powerful approach to the problem when two homotopy equivalent manifolds
are homeomorphic. For reader’s convenience, we recall some main results in this
theory with adaptations for our use in this paper.

Let M be an oriented PL m-manifold whose oriented boundary is the disjoint
union of n-copies of closed oriented (m — 1)-manifolds L{with the induced orienta-
tions). The polyhedron V obtained from M by identifying these copies of L to one
another is called a Z,,-manifold. Denote L. C V by §V and call it the Bockstein of
V.

A finite disjoint union of Z,-manifolds is called a variety. If X is a polyhedron,
a singular variety in X is a piecewise linear map f : V — X, from a variety V
to X. The Z, manifold provides a nice model for Z,-homology class since every
Zy-manifold V' carries a well-defined fundamental class in H,,(V;Z,). Clearly,
every closed manifold is a Z,-manifold for each n with the Bockstein empty.

For a homotopy equivalence f : L — M, where L, M are closed PL manifold,
let V. — M be an embedded connected singular Z,-manifold of dimension m.
Assume that M, V and §V are all simply connected and dimM > 3. If m = 2s is
even, then f can be deformed to a map f’ such that:

(i) f' is transversal regular to (V,6V) with U = f’fl(V) and oU = f/71(5V).
(ii) ]”71 10U — 0V is a homotopy equivalence.
(i) f': U — V is s-connected.

Let Ky = kerf, C Hs(U, Z). This is a unimodular form. Moreover, when s is
even, it is of even type and so its signature is divisible by 8. When s is odd, one
has an Arf invariant in Zs.

By Sullivan, the splitting obstruction 0¢(V) of f : L — M along V is de-
fined to be the Arf invariant of K, if s is odd, ﬂ%Kr( modn) if s # 2 even and
29K ((mod2n) if s = 2.

In general the splitting invariants 6;(V) of a nonconnected singular variety
V' is defined as the collection of the corresponding invariants along its connected
components.
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Sullivan’s characteristic variety Theorem ([20]). Let f : L — M be a homo-
topy equivalence between two simply connected PL manifolds L and M of dimen-
sion n > 6. Then there is a (characteristic) singular variety in M,V — M, such
that f is homotopic to a PL homeomorphism if and only if the splitting invariants
of f along V is identically zero.

To apply this theorem, one needs to obtain a characteristic variety for a given
manifold. But there is no natural way to define it in general. For the complex
projective space CP™, as noted in [20], the characteristic variety is the union

crP?ucpPiu...ucpr!lccpr

For a complete intersection X, (d), notice that there is an embedding 7 :
cplsl — X, (d), which is a (n — 1)-equivalence. We may identify cpl3l and
cpP* c cpll (k < [5]) with their images under ¢ in X,,(d).

Lemma 3.1. Ifn and d are both odd and n > 5, then

v =0l x5 1 (d)U U2 Xe( D) U UFlep? ¢ x, ()

is a characteristic variety, where n = 2m + 1.

Proof. Note that the homology groups of X,,(d) are all torsion free. Moreover,
H, (X, (d)) is the only nontrivial homology group in odd dimensions if d # 1. By
[20] Theorem 5 the K-homology group

KO_1(Xn(d)) ® Z(pqq) = Us—1(Xn(d)) ®q, Z(,qq) = 0.

By the Atiyah-Hirzebruch spectral sequence it is easy to see that KO_1(X,,(d))®
Z(,qq) has no odd torsion. For a generator z € H%(X,(d),Z), 2% € H*(X,(d), Zs)
is also a generator for n > 5 by the Lefschetz hyperplane section Theorem. Thus
Sq? : HX(X,(d),Zs) — H*(X,(d),Zs) is an isomorphism. By the proof of Sulli-
van’s characteristic variety Theorem( refer to [20] pages 33 and 34), we need only
to show that

(1). A basis of D> pnt Hy;y2(X,(d), Z2) can be represented by the fundamental

classes of V.
(ii). The image of the oriented bordism classes of V' under the natural maps S,
and I, below in the groups Q3% (Xn(d)) ®qse Z(,qq) and @i>1H4;(X(d)) are basis,
where

I - Q3 (Xn(d)) — QL (Xn(d) ®qso Z(oqq)/torsion

is the natural projection and

S, : QL (X, (d)) Mndemental class ) Hy, (X (d))/torsion.
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(i) is clearly satisfied by our variety since d is odd.

To verify (ii), note that Q32 (Xn(d)) ®©0s0 Z(oaa) = Har(Xn(d), 25°) ©0z0 Zi(paa)
is torsion free. Since all 4¢ dimensional homology generators of X,,(d) are repre-
sented by some subvarieties of V', this completes the proof. O

The characteristic variety for n even is more complicated since we have to count
the middle dimensional homology classes and represent them by some singular
manifolds.

Let = € H%(X,(d) be a generator where n is even. We use h to denote
the hyperplane class % N [X,(d)]. By [15], the image of Hurewicz homomor-
phism 7, (X, (d)) — H,(X,(d)) := H is the orthogonal complement h*. Let
B € Hy(X,(d)) satisfy 3- h = 1. Then H = h' + Z3. Notice that this is not an
orthogonal decomposition. By [15] again, every element in h't can be represented
by an embedded n-sphere with stably trivial normal bundle if n > 2 and [ can be
represented by an embedded CP# with normal bundle (5+r)H-Y1H 4 Choose
a basis for A and represent them by embedded n spheres aq,-- - ,ay. Similar to
Lemma 2.2 it is easy to check the following lemma. We omit the details.

Lemma 3.2. Let n=2m > 6 and d be odd. Then

V=u

mi_q B m—1 .
EZl Xosr1(d)U uy:;[%]+1xi(d) U U£:1 lep2iy BCP™) UUE_; 0;(87™) C X (d)

is a characteristic variety.

In general, we can also write down a characteristic variety for a complete in-
tersection when d is even. But it is difficult to compute the splitting invariant of
Arf type for the application of the characteristic variety Theorem.

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. We need only to show the sufficiency. Let f : X,,(d) —
X, (d") be a homotopy equivalence. By the characteristic variety Theorem we
need only to show the splitting invariant 6;(V) = 0, where V' denotes the variety
defined above.

Let us consider first the case when n is odd. Notice that the splitting invariant
along a 4i-dimension subvariety, denoted by Xa;(d’)(or (CP%), is the difference
Sigf1(Xo;(d’)) — SigXa;(d’). By assumption, X,,(d) and X,,(d’) have the same
Pontrjagin classes. Applying the Hirzebruch signature Theorem, it is easy to show
that all splitting invariants along 4¢ (1 <4 < % ) dimensional subvarieties vanish.

The only difficulty is to show that the Arf type splitting invariants vanishes
along V. Fortunately the main difficulty has been overcomed by Browder and
Wood. When d is odd and n # 1,3,7, the Kervaire invariant of X,,(d) is well-
defined and independent of the framing (c.f. [3] or [23]) and its value depends only
on the total degree d(mod8)(independent of the dimension). We prove now that
the splitting invariant along X,, o(d’) vanishes.
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By Quinn’s theorem [19], we may assume that f is almost canonical with respect
to X,,_1(d’). Thus f~1(X,_1(d")) is a taut submanifold of X, (d) representing the
dual of a generator z € H2(X,,(d)). Freedman’s Theorem [9] applies to assert that
fYX,_1(d") and X,_1(d) are stably diffeomorphic. Consider the restricted
map g f 1 (X,_1(d")) — X,_1(d'), applying Quinn’s and Freedman’s Theorems
again we can deform g to get a taut submanifold g—1(X,,_o(d’)) which is stably
diffeomorphic to X,, _o(d). When n — 2 # 1,3 or 7, the Kervaire invariant is a
stably diffeomorphic invariant by the geometric definition. Therefore, with the
exception of n = 3,7 or 9, the Kervaire invariant of g~ 1(X,,_9(d’)) is the same as
that of X,,_o(d) and so as that of X,,_o(d’). By the naturality of the splitting
obstruction, the splitting invariants of g and f along X,, o(d’) are the same. Notice
that the splitting invariant of g along X, o(d’) is the difference of the Kervaire
invariants of g~ 1(X,_2(d’)) and X,,_o(d’), which is identically zero. This implies
that the splitting invariant along X,, _o(d’) vanishes. Proceeding this we can show
that the splitting invariants along X;(d’)(¢ odd) is zero if 7 > 8.

When ¢ = 7, we have to deal with the framing. For a complete intersection,
X, (d) € CP™t" it can be endowed a natural framing X,,(d) x R? C E where E is
a vector bundle over CP™ " representing —(H% + H% ... H¥") ¢ KO(CP"'7).
This framing is not determined by the smooth structure but by the complete
intersection structure. For d odd, the Kervaire invariant is well-defined not only
for n odd but also for n even [3]. Moreover, by Browder [3] page 100, the Kervaire
invariant of a hyperplane section in X,,(d) is the same as the Kervaire invariant
of X,,(d). If

[ Xg(d) — Xg(d')

is an orientation preserving homotopy equivalence, the transversal preimage
FYX7(d")) is a hyperplane section of the complex line bundle H over Xg(d)
and so it has the same Kervaire invariant as that of X7(d) and X7(d’). Therefore
the splitting obstruction along X7(d’) is zero too.

The case of ¢ = 3 is similar. One can also refer to [7] for this detail. This
completes the proof in the case of n odd.

For n # 2 even, the argument is exactly the same but we have to count the split-
ting invariants along the subvarieties o;(S™) and CP% when n = 0(mod4). When
n = 0(mod4), these splitting invariants along «; is the signature of its transversal
preimage f *1(a¢), which is zero since its Pontrjagin classes are zero. The splitting
invariant along CP¥ is Sigf () — 1. Using the Hirzebruch signature Theorem
one can check directly that Sigf~1(3) —1=0.

For n = 2(mod4) and n # 2° — 2, the splitting invariants along o; and 3
are exactly the Kervaire invariant of f *1(041») and ffl(ﬂ) respectively, since both
of a;(S™) and B(CP%) have no nontrivial middle dimensional homology class.
Recall that a smooth framed manifold of dimension n # 2 —2 has trivial Kervaire
invariant [4]. This concludes that the splitting invariants vanish identically along
V.

Now Sullivan’s Theorem applies to conclude our Theorem. O
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Proof of Corollary 1.3. By [14] and Theorem 1.1 and 1.2, we need only to consider
the case when n is even and to show the sufficiency. Note that the cores of X,,41(d)
and X,,11(d’) are homotopy equivalent. We may assume that there is an integer r
such that, Xn+1(d)#r5"+1 x $" 1 and Xn41(d’) are homotopy equivalent. Con-
sider the canonical hyperplane sections X,,(d) C X, 4+1(d), X,(d") C Xp41(d’).
By assumption, one can easily check that all of the Pontrjagin classes of X,,41(d)
and X,,11(d’) are the same. Applying Theorem 1.2(with a slight extension but
identical proof) we conclude that X, 1(d)#rS"t1x S+ and X,, | 1(d’) are home-
omorphic.

Notice that X, (d) € X, 11(d)#rS"H x §7H and X, (d') € X, 41(d) are
taut submanifolds. Freedman’s Theorem [9] applies to conclude that X, (d) and
X, (d’) are stably homeomorphic. With the exception ofd or d’ = (1), (2), (2,2) or
(3), the complete intersection X,,(d) and X,,(d’) can split out a factor S™ x S™(c.f:
[15]). Applying the cancellation Theorem [12] it follows that X,(d) and X, (d’)
are homeomorphic. This completes the proof. O

¢4. Proof of Theorem 1.4.

This section is devoted to the proof of Theorem 1.4. The main idea is to use the
branched covering X,,(d,a) — X,,(d) with branched set X,,_1(d,a) constructed
in [23].

Proof of Theorem 1.4. Without loss of generality, we consider only the case of
n > 4, since lower dimensional complete intersections have been completely clas-
sified. By induction we may assume that k = 1. By [23], X,,(d’,a) is an a-fold
branched cover over X,,(d’) with branched set X,,_1(d,a). Let p’ : X,,(d’,a) —
X, (d") denote this covering map. Let X, (d) and X,,(d’) be S-homotopy equiv-
alent, we want to show that X, (d,a) and X, (d’,a) are S-homotopy equivalent
under the assumption. The proofs for S-homeomorphism and S-diffeomorphsim
are similar.

Suppose

rankH, (X,,(d)) > rank H,(X,(d"))

There is a degree one map f : X,,(d) — X,,(d’) which is an n-equivalence. By
[19], we can assume that f is almost canonical with respect to X, 1(d’,a) C
X, (d). Let Y, 1 = f~1(X,_1(d’,a)). Pulling back this covering to X, (d) we
get a covering w : Y, — X,(d) with branched set Y,, 1. Also we get a map
g:Y, — X, (d’, a) such that the following diagram commutes
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Xn(d) —  X,(d)

One can easily verify that Y, is a connected manifold and g is a degree one map.
From this we conclude that g : Y, —Y,,_1 — X,,(d’,a) - X,,_1(d’, a) is n-connected
and the latter space is (n — 1)-connected. Moreover, f: VY, | — X,,_1(d’,a) is an
(n — 1)-equivalence. Therefore g is an (n — 1)-equivalence.

On the other hand, by the Alexander duality, H,(Y,,Y,—1) = FReaiy —
Y.-1) =0if g # 0,n or 2n. Note that the Euler class of the normal circle bundle
of Y,,_1in Y, is a generator of the 2-dimensional cohomology group. Applying the
Gysin exact sequence it is easy to show that H”*I(Yn) =~ Z if n — 1 is even and
0 if n — 1 is odd. By the diagram above, one can easily verify that g is actually
an n-equivalence. When n is even, we know that the signature of Y,, is the same
as that of X,,(d’,a). Thus Y,, and X,,(d’,a) are S-homotopy equivalent(c.f: the
proof of Theorem 1.1).

We claim that Y,, and X,,(d, a) are stably diffeomorphic. From this we conclude
that X, (d’,a) and X,,(d,a) are S-homotopy equivalent.

To prove this claim, first notice that Y, 1 and X,,_1(d,a) are stably diffeo-
morphic [9], since both of them represent the dual of az € H?(X,,(d)), where z is
a generator. Therefore there is a homotopy

h:X,(d)xI—CPN

(N large) such that hy'{(Xn_1(a)) = X, 1(d,a) and Ay (Xn_1(a)) = Vi 1,
where Xy _1(a) is a hypersurface of degree a. (hg and h denote the restriction of
at the two component of the boundary.) By Quinn [19], we can deform h relatively
to the boundary to get an almost canonical map with respect to Xy _1(a). Set
W =h Y Xy_1(a)). W is a manifold with boundary X,,_1(d,a) and ¥,,_1, and
the map h: W — Xy_1(a) x I is an (n — 1)-equivalence. We conclude that W is
an (n—2)-connected cobordism, i.e., Hy(W,Y,,_1) = Hy(W, X,,_1(d,a)) =0if ¢ <
n—2. In particular, the first homology group of the complement of W in X,,(d)x I
is isomorphic to Z,. Consider an a-fold branched covering M over X,,(d) x I with
the branched set W. The boundary of M is the union of X,(d,a) and Y,, with
opposite orientations. It is easy to show that Hy(M,Y,) = Hy(M, X, (d,a)) =0
for ¢ < n —1. Moreover, each embedded n-sphere in M has trivial normal bundle.
Applying the handle subtraction technique [13] we know that there are two integers
s and ¢ such that Y, #sS™ x 8™ and X,,(d,a)#tS™ x S™ are h-cobordant. Thus
Y, and X,,(d,a) are stably diffecomorphic. This completes the proof. |
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