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Gabriel filters in real closed rings

Niels Schwartz

Abstract. Real closed rings arise in semi-algebraic geometry and topology as well as in the
investigation of partially ordered rings It is shown that localizations of real closed rings with
respect to Gabriel filters, or more generally multiplicative filters, are again real closed Thus,
real closedness is preserved under a large number of important ring theoretic constructions For
a few particularly simple cases the multiplicative filters are classified and the localizations are
determined

Mathematics Subject Classification (1991). 13B30, 14P10, 06F25, 54C30
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Gabriel topologies provide a very general method of localization which is even
applicable in noncommutative situations (cf [14], [17], [46], [47]) In commutative
algebra a large number of important constructions are special cases of Gabriel
localizations Among these are classical rings of quotients, complete rings of
quotients ([29], Chapter 2) and sections of quasi-coherent modules over open quasi-
compact subsets of affine schemes (Dehgne's formula, cf [48], Proposition 5 16)
The present paper deals with these techniques m a context arising m real algebra

Real closed rings ([38], [39], [40]) were first introduced m order to extend semi-
algebraic geometry as developed by Delfs and Knebusch (cf [11], [27]) to cover the
geometry of arbitrary real spectra But there are other contexts where these rings
appear naturally Arbitrary rings of continuous functions into the real numbers are
real closed ([44]) In real algebra a systematic investigation of monorefiectors of
the category of reduced partially ordered rings shows that real closed rings play a

very distinguished rôle m this category ([34]) When working with real closed rings
m various applications it is frequently necessary to know that certain constructions
when applied to real closed rings will yield real closed rings The mam results of
this paper show that Gabriel localizations have such a preservation property

Throughout most of the paper localizations are discussed with respect to
multiplicative filters (section 2) instead of the more special Gabriel filters This extends
the scope of the applications considerably without any additional effort For
example, it is possible to include results about Nagata's ideal transforms ([2], [9],

[25], p 30) although they are not Gabriel localizations Therefore, section 2 con-
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tains some basic material about multiplicative filters. In section 3 it is shown how
Gabriel localizations can be used to describe global rings of sections of certain
subschemes of affine schemes. These results are related to Deligne's formula as

presented in [48], Proposition 5.16. They show that many rings arising in semi-
algebraic geometry are Gabriel localizations of real closed rings. When dealing
with multiplicative filters in real closed rings it is possible to a large extent to
restrict attention to /-ideals. (Note that real closed rings are always /-rings.) It
is shown in section 1 that every ideal in a real closed ring can be closely approximated

by an /-ideal. Therefore, every multiplicative filter has a basis consisting
of /-ideals. The advantage of dealing with /-ideals compared with arbitrary ideals
is that the relationship between different /-ideals is much easier to understand.
This becomes particularly evident in sections 4, 5 and 7. In section 4 the
multiplicative filters of finite type and their localizations are studied. Similarly, section
5 deals with multiplicative filters in real closed domains. Section 7 relates the
multiplicative filters of a real closed ring to the multiplicative filters of its residue
domains. The situation becomes particularly simple when the real closed ring has

only finitely many minimal prime ideals. The main results of the paper are
contained in section 6. It is shown that every localization of a real closed ring with
respect to a mulitplicative filter is real closed. Just to mention a few applications,
this implies that complete rings of quotients of real closed rings are real closed,
that ideal transforms of real closed rings are real closed, and that many rings of
sections over subsets of real closed schemes are real closed.

Notation and terminology All rings are commutative and have a unit. If A is

a ring then A* is its group of units. If A Ç B is an extension of rings, if x G B
and C is an intermediate ring then (A : x)c {y G C;yx G A}. The reference
to the ring C will be dropped if this does not lead to ambiguities. The Zariski
spectrum is Spec(A). The subspaces of maximal or minimal ideals are Max(A)
and Min(A). If p G Spec(A) and a G A then the canonical image of a in A/p is

frequently denoted by a{p). If X Ç A is any subset then

{peSpec{A)-X%p},
{peSpec{A)]X<Zp}.

The real spectrum of A is denoted by Sper(A). Basic information about this space
can be looked up in [6]; [10]; [28]. Both Spec(A) and Sper(A) are spectral spaces in
the sense of [24]. If x and y are points of a spectral space then x is a specialization
of y and y is generalization of x if x G {y}. If X is a subset of a spectral space then
Gen(X) denotes the set of all generalizations of elements of X. The set X is said to
be genencally closed if X Gen(X). A subset of a spectral space is constructible if
it belongs to the Boolean algebra of subsets generated by the open quasi-compact
sets. The constructible sets are the basis of a topology of the space which is called
the constructible topology. A subset of the spectral space is proconstructible if it is
closed with respect to the constructible topology. General references for schemes
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are [18] and [20]. The terminology concerning lattice-ordered groups (/-groups)
and /-rings is the same as in [5]. In this paper all /-rings are reduced. If x belongs
to some /-group then x+ sup(x,0), x~ sup(—x,0), and x\ x+

1. /—ideals in real closed rings

Any real closed ring A is an /-ring by [40], Corollary I 3.4. Therefore the set

Id{A) of all ideals of A contains the set Lld(A) of /-ideals as a subset. It will be
shown in this section that the set Lld(A) is quite dense in Id{A) and that it has

very favorable arithmetic properties.

Proposition 1.1. Let A be an f-rmg with bounded, inversion (i.e., if 1 < a, G A
then a, G A*). If G Ç A is a convex l-subgroup of the additive l-group of A then
the ideal GA generated, by G is an I-ideal.

Proof. It is only necessary to show that 0 < |x| < \y\ with y G GA implies x G GA.
Because of 0 < x+,x~ < |x| and x x+ — xr one may assume that 0 < x. If
y ^2gtat, gt G G, at G A, define g J^ \gt\ G G and a J^ \at\ G A. Then it
follows that 0 < x < ga. Writing

a sup(a, 1) inf(a, 1)

and using bounded inversion one gets

0 < xsup(a, 1) < </inf(a, 1) < g.

By convexity of G, xsup(a, l)^1 G G, hence x G GA. D

Corollary 1.2. If A is an f -ring with bounded inversion then every ideal I C A
contains a largest I-ideal.

Proof. In the additive /-group of A there is a largest convex /-subgroup G which is

contained in / ([5], (2.2.6)). By Proposition 1.1, GA is an /-ideal. Since GA Ç I
one concludes that G GA and that this is the desired /-ideal. D

The largest /-ideal contained in the ideal / is denoted by L{I). Changing
slightly the définition of [30], Introduction, an /-ring is said to have the 2nd

convexity property if 0 < x < y2 implies that x G (y). It was pointed out to me
by Warren McGovern that the 2nd convexity property implies bounded inversion.
For, if 0 < 1 < x then also 0 < 1 < x2, i.e., 1 G (x), hence x G A*. For rings having
the 2nd convexity property the connection between / and L(I) is particularly close:
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Proposition 1.3. Suppose that A is an f -ring with the 2nd convexity property.
Then I Ç L(I) for each ideal I Ç A.

Proof. Consider the following set:

J {x e A;3a e I2 : \x\ < \a\}.

It is claimed that J is an /-ideal. Clearly 0 < \x\ < \y\ with x G A and y G J
implies x G J. Therefore it suffices to prove that J is an ideal. Pick x,y G J,
say \x\ < \a\, \y\ < \b\ with a,b G /2. Writing a J^a^, at,/3t G / one has

a\ <J2ar + ß^i i-e-> there is some 0 < c G Ï1 such that \a\ < c. Similarly, |6| < d
for some d G 1 But then

x + y\ < \x\ + \y\ < c + d \c+ d\

with c+de /2. Thus, J is additively closed. If x G J, |x| < |a| as before, and if
c G A then |cx| < |ca|, ca G /2 implies that ex G J. This completes the proof that
J is an ideal.

Since /2 Ç J is trivial it suffices to prove J Ç I. For, then /2 Ç J C L(/). Pick
x G J, |x| < |a| with a G /2. Since x x+ — xr and 0 < x+,x~ < \x\ one may
assume that 0 < x. Writing a Y^ o^tßt, o^t,ßt € /, one has 0 < x < Y^ a2+/52- By
the Theorem of Riesz ([5], Corollaire 1.2.17) there are yt,zt G A with 0 < y% < a2,
0 < zt < /32 and x J2Vi + zi- The 2nd convexity property now implies that
yt G (at) Ç / and zt G (ßt) Ç /. Altogether one concludes that x G /.

The set of ideals of any ring is a complete lattice with intersection as meet and
sum as join. Quite clearly, in an /-ring A, intersections of /-ideals are /-ideals. By
[5], Proposition 2.1.12, sums of /-ideals are also /-ideals. Thus, Lld(A) Ç Id{A)
is a complete sublattice. If A has bounded inversion then L : Id{A) —> Lld(A)
preserves arbitrary intersections, but it does not preserve joins, in general. In any
/-ring, a trivial computation shows that (/ : J) {a G A; aJ Ç /} g Lld(A)
whenever / G Lld(A). If A has the 2nd convexity property then finite products
of /-ideals are /-ideals ([30], Theorem 4.4(2)) and radical ideals are /-ideals ([30],
Theorem 4.1(2)). With the additional condition that every nonnegative element
of A has a nonnegative square root it can be shown that the idempotent ideals

are exactly the radical ideals. For, if / /2 then / is radical by [30], Theorem
4.3. Conversely, if / \fl then / is an /-ideal (as noted above), hence / is square
dominated (cf. [31] or [32], p. 3111). Now [30], Theorem 4.3, applies to show that
/ /2.

In any /-ring the irreducible l-ideals ([5], Définition 8.4.2) are of particular
importance. These are exactly the /-ideals / for which A/1 is totally ordered ([5],
Théorème 9.1.5). Since all /-rings are reduced in this paper this is also equivalent
to / containing some prime ideal ([5], Théorème 9.3.2). Every minimal prime
ideal is an /-ideal ([5], Théorème 9.3.2); every prime ideal which is an /-ideal is
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irreducible. Any /-ideal is an intersection of irreducible /-ideals ([5], Proposition
8.4.6); for example, / G Lld(A) can be written as D{I+p;p G Lld(A)DSpec(A)}.
Following [26], p. 212, the set of irreducible prime /-ideals is called the Keimel
spectrum of A and is denoted by SpeK(A). The sets

S {a) {/G SpeK(A);a<£I}

form a basis for a topology of SpeK(A). It follows from [5], section 10.1, that
SpeK(A) is a spectral space in the sense of [24]. For any homomorphism / : A —s- B
in the category of reduced /-rings the map SpeK(f) : SpeK(B) —> SpeK(A) :

J —> /~1(J) is a morphism of spectral spaces. In this way SpeK is a functor from
the category of reduced /-rings to the category of spectral spaces.

It was shown above that in an /-ring A with the 2nd convexity property any
ideal / is very closely approximated by the /-ideal L(I). It is an obvious question
for which /-rings one actually has Id(A) Lld(A). For rings of continuous
functions an answer has been known for a long time: Given a completely regular
space X, let C{X) be the ring of continuous functions into R. Then every ideal of
C{X) is an /-ideal if and only if X is an F^space, if and only if every prime ideal of
C{X) contains a unique minimal prime ideal ([15], Theorem 14.25). If this is the
case then C{X)/p is a convex subring of the real closed field qf{C{X)/p) (which
follows from [15], Theorem 4.7 and Theorem 14.24), i.e., C{X) is an SV-i'mg in
the terminology of [22].

Proposition 1.4. Let A be an f-rmg. In A every ideal is an l-ideal if and only
if the following two conditions hold:

(i) Ifp Ç A is a prime ideal then A/p is totally ordered and convex in its quotient
field;
(n) every prime ideal of A contains a unique minimal one.

Proof. First suppose that every ideal is an /-ideal. If p Ç A is a prime ideal then p
is an irreducible /-ideal, hence the domain A/p is totally ordered and every ideal
of A/p is convex. It is well known (or easy to check) that then A/p is a convex
subring of qf(A/p). Next, pick two minimal prime ideals p,q Ç A, p ^ q. It
is claimed that p + q A. As p and q are incomparable there is some a G A
such that a(p) > 0 in A/p and a(q) < 0 in A/q. Since (a) is an /-ideal one has

a\ c ¦ a for some c G A. This implies c l(mod p) and c — l(mod q), i.e.,
2 (1 - c) + (1 + c) G p + q. Since (2) G Lld(A) and 0 < 1 < 2 it follows that
lep + q.

For the converse it suffices to pick a, b G A with \a\ < \b\ and to show that then
a G (6). To start with, let p Ç A be any prime ideal, q Ç p the minimal prime ideal
contained in p. Then q is an /-ideal and A/q is a totally ordered domain which is

convex in its quotient field. Thus, p/q is a convex ideal of A/q. This implies that
p Ç A is an /-ideal as well, i.e., the set of prime /-ideals is all of Spec(A). Then
every radical ideal is an /-ideal as well. If / Ç A is a radical ideal then it is clear
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that A/I satisfies the conditions (l) and (u) as well Now let / C)D(b) and let
¦k A —> B A/1 be the canonical homomorphism The canonical map Spec{-K)
is a homeomorphism of Spec(B) onto D(b) {r G Spec(A), 3p G D(b) p Ç r}
Suppose that there is some c G B with 7r(a) ctt(6) Then picking x £ A such
that c tt(x) one has a xb For, if a ^ xb then there is some p G <Spec(j4) with
a — xb <£ p If p £ -D(fr) then |a| < \b\ implies that a,b G p, hence a — xb G p, a
contradiction But if p G -D(è) then there is a unique g g Spec(B) with p 7r~1(qr)

and

once again a contradiction So, it suffices to show that c G B exists with 7r(a)

ctt(6) Therefore, one may assume that D{b) is dense in A, l e that D{b) contains

every minimal prime ideal
If q G Max(A) let n(q) G Min(A) be the unique minimal prime ideal contained

in q Define

From \a\ < \b\ it follows that \x(q)\ < 1 in qf(A//x(g)), by convexity of A/n(q) in
its quotient field one gets x(ç) G A/n(q) Pick i, 6 4 with image x(g) in A/n(q)
The subsets {/x(g)} and

of 5*^60(^4) are proconstructible, closed under generalization and are disjoint
Therefore there is some open constructible neighborhood Vq of {^(q)} with Vq D

Uq 0, say Vq D(sq), sq G A The canonical image of xq in j4S(j is denoted by
cq If q, q' G Max(A) are given then it is easy to check that the images of cq and

Cqi in ASqS agree Thus, considering the scheme Spec(A) one has an open cover
formed by the Vq and a section cq over each V^ such that the sections are
compatible By glueing these local sections together one gets a global section c G A
Since a cb locally it follows that the same holds globally D

It was pointed out before the proposition that the conditions (l) and (n) are
not independent for rings of continuous functions In fact, (n) implies (l) for these

rings, but the reverse implication is false This follows from [23], Theorem 2 8

For arbitrary /-rings the implication (u) => (l) is also false In fact, it is
false even for real closed rings A counterexample is provided by any real closed
domain A which is not a valuation ring For, in a real closed domain the prime
ideals always form a chain (since the support function supp Sper(A) —> Spec(A)
is a homeomorphism - cf [40], Proposition 13 8) Such domains can be obtained
through the D + M-construction of [16], Appendix 2 Let V Ç R be a convex
subrmg in a real closed field, let R be the real closed residue field, M Ç V the
maximal ideal If Rq Ç V is any maximal subfield then Rq Ç V —s- R is an
isomorphism ([37], p 89, Satz 6, [28], p 66, Satz 3), hence V Ro + M If
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Rl Q Rq is anY real closed subfield then R\ + M is a real closed domain ([36], p.
18, Korollar; [41], Example 13). Whenever R\ C Rq is a proper subfield the ring
R\ + M is not a valuation ring.

Since every ring of continuous functions is a real closed ring ([44], Theorem
1.2) the conditions (i) and (ii) of Proposition 1.4 are independent for real closed

rings.
All the results proved in this section apply to real closed rings. It was mentioned

already that real closed rings are /-rings. They have bounded inversion by [40],

Proposition I 3.1, and the 2nd convexity property by [40], Proof of Proposition
3.8. Nonnegative elements have nonnegative square roots by [40], Proposition I
3.3. Real closed rings have a large number of special properties in addition to
these: all prime ideals are convex ([40], Propositon I 3.8); residue fields at prime
ideals are real closed ([40], Corollary I 3.26); reduced factor rings are real closed

([43], Lemma 3.7), just to mention a few.

According to [12], Introduction, or [3], Definition 1, a domain is called divided,

if every prime ideal is comparable with every principal ideal.

Proposition 1.5. Real closed, domains are divided domains.

Proof. If / is any ideal in the real closed domain A and if p Ç A is any prime ideal
then both L(I) and p are convex in A, hence they are comparable. If / % p then
I2 % p, hence L(I) % p (Propositon 1.3). But then p Ç L(I) CI. D

The prime ideals in a real closed domain A form a chain, hence A is local.
According to [38], Proposition 9, real closed domains are integrally closed. By
[35], Corollary 11, real closed domains are going down domains.

It is clear from Proposition 1.4 that most real closed rings have ideals which
are not /-ideals. On the other hand, arbitrary ideals can be approximated very
well by /-ideals (Proposition 1.3). Therefore, in the investigation of localizations
of real closed rings it is frequently sufficient to deal with /-ideals.

A Gabriel filter is a set T Ç Id{A) having the following properties:

(a) T is a filter; and

(b) if / G T and J G Id(A) and J : x) G T for each xel then J e J7

(cf. [7], Chapitre 2, Exercises, p. 157 ff; [46], section 1.3; [47], section VI. 5). More
generally, call T a multiplicative filter of ideals if T has property (a) and:

(c) if /, J G T then /J G T
(cf. [19], p. 601). Note that every Gabriel filter is a multiplicative filter, but not
vice versa. Now suppose that A is a real closed ring. If T is a multiplicative filter
then TC\LId{A) is a filter in Lld(A) having properties (a) and (c). Thus, one may
speak of a multiplicative filter of /-ideals. Moreover, Proposition 1.3 shows that
T n Lld(A) is a filter basis of T. Therefore, there is a bijective correspondence
between multiplicative filters in Id{A) and in Lld(A).
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2. Multiplicative filters in arbitrary rings

If A is any ring then usually the set of multiplicative filters of A lies in between
the set of topologtztng filters (cf. [7], Chapitre 2, p. 157, Exercise 16; these are
called pretopologtes in [46], p. 13) and the set of Gabriel filters. Therefore every
multiplicative filter determines a left exact preradical tjr of A —Mod ([7], Chapitre
2, p. 157/158, Exercise 17; [46], Proposition 3.3; [47], Proposition VI. 4.2). Also,
T yields another left exact functor Ijr : A —Mod —> A —Mod which is defined
by It{M) lim HomA{I,M) on the objects ([7], Chapitre 2, p. 158, Exercise

ieF
17 c)). The canonical maps vf,m '¦ M —s- l^(M) define a natural transformation
vj: : *dA-Mod ~^ If- Going beyond what is possible to do with topologizing filters,
a multiplicative filter allows the definition of a bilinear map

Vm : It{A) x lT{M) -+ lT{M).

On the level of representatives the map is defined exactly as for Gabriel filters
([7], Chapitre 2, p. 159, Exercise 19; [46], §7). Suppose that a G If{A) and

x G lp(M) are represented by a : I ^ A, £ : J —s- M with I,JeF. Then
a~^{J) contains IJ G J7, hence belongs to T. Now ripM{a,x) is defined to be the

canonical image of a~^(J) -^ J —> M in lj^(M). With 'ipA as multiplication,
lF {A) is a commutative ring with 1. Using i/jm as multiplication by scalars,
acquires the structure of an /jr(J4)-module. The canonical map vj:,a '¦ A —> If (A)
is a ring homomorphism. The iteration IfIf °f the functor Ijr is denoted by Ljr.
This construction will be considered only if T is a Gabriel filter. The principle
properties of Lj: may be found in [7], Chapitre II, p. 157 ff., or [46], §7.

If ip : A —s- B is a homomorphism between rings then there are several canonical

maps between the multiplicative filters of A and B, resp.

Lemma 2.1.
(a) If J- is a multiplicative filters of A then

is a multiplicative filter of B (cf. [7], Chapitre 2, p. 160, Exercise 21 c)

[7], p. 96).

(b) If Q is a multiplicative filter of B then

is a multiplicative filter of A.

(c) If the given filter in (a) or (h) is a Gabriel filter then so is the new filter.
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(d) V*V*T D T, <p*<p*Ç Q Q-

(e) If ip '¦ B —> C is another homomorphism and TL is a multiplicative filter on
C then Vw*-?7 {4"P)*F and <p*ip*H (ip<p)*H. D

Now let ip : A —> It (A) be the canonical map vt,a and define

7) {qe

It will be necessary to study the relationship between these two sets. With A
A/tp{A) the map (p factors into ip : A —> A and lu : A —> lj^(A). Set Q

ip^J7, H (fitJ7 lü*Q.

Lemma 2.2. If tt is the functonal map Spec(ip) : Spec(A) —> Spec(A) then tt
restricts to a homeomorphism D(Q) —s- D(!F).

Proof. If q e D(Ç) then ^{q) <£ J7, i.e., Tr(q) G D(T). Thus, tt restricts to a well-
defined map D{Q) -+ D(T). It is also clear that D{Q) ^{D^)). (Note for
later use that no special property of ip has been used to get this map. Therefore, if
ip is any ring homomorphism, this map is always well-defined.) Now suppose that
p£F. Then tT{A) Ç p: Pick a e tT{A) and choose / G T such that ai {0}.
There exists some b G /\p. Since ab 0 G p one sees that a G p. Because of
ït{A) Ç p there is a unique prime ideal q Ç A with ir{q) p. It remains to show
that q G D{Q). For, then the homeomorphism Spec(A) —> V{t^{A)) obtained from
¦k by restriction of the codomain restricts further to the bijection D{Q) —> D{!F);
this is a homeomorphism as well. If one assumes that q <£ D(Q) then q G G, i.e.,

p n(q) 4>~^{q) G J7, contradicting the choice of p. D

Because of Lemma 2.2 it is the same thing to study the relationship between

D(T) and D{U) or between D{Ç) and D{U). If a G It {A) has a representative
a: I —s- A with I £ J7 then set J V;(^) € ö- Since a<p(x) <p(a(x)) G w(.A)
([46], Lemma 7.4) one sees that for every a G It{A) there is some ideal J ÇL G with
acü(J) Ç w(j4). Therefore, the extension w : A —> /^-(.A) is a special case of the
following situation: Consider an extension y> : A -^ B and a multiplicative filter
JF in A such that for every b G -B there is some ideal I £ J7 with 6y(/) Ç y (.A).

Again, define (/ (p^J7. The relationship between D{T) and -D(^) will be studied

in this situation. By the proof of Lemma 2.2 the functorial map it Spec(tp)
restricts to a well-defined map it' : D(Q) —> D(!F). The following considerations
serve to define a map in the opposite direction. Let p G D(!F) and set S A\p.
A subset q Ç B is defined by

q {b G B; 3s G 5 :
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One checks easily that q is a prime ideal. Next it is claimed that ir{q) p.
Obviously, <p(p) Ç q. Now let a G A and suppose that <p(a) G q, say <p(a)<p(s) G

<p(p). This implies as G p, hence a G p since s <£ p.
Altogether, a map A : D(!F) —> -D(ö) has been defined such that tt'A id. It

is claimed that A is surjective: Suppose that q G D(Q), set p ir(q) and S A\p.
Then p G D(T) and / n S ^ 0 for each / G T. If 6 G q there is some s G S such
that b<p(s) <p(a) for some a £ A. Since 6 G g, it follows that a G p, hence that
b G A(p). Thus, q Ç A(p). On the other hand, if b G A(p), say 6y(s) G f(j>) Q q

then b £ q because <p(s) <£ q. Thus, q A(p). This proves most of

Proposition 2.3. (cf. [7], Chapitre 2, p. 161/162, Exercise 21 b)) Suppose

if : A —* B is mjective and T is a 'multiplicative filter in A such that for each b G B
there is some I G T with btp(I) Ç <p(Ä). Then the functorial map it Spec(tp)
restricts to a homeomorphism n' : D^ip^J7) 7r^1(_D(jF)) —s- D{!F).

Proof. It remains to show that it' is open. A basis of open sets of D(Q) is formed
by the sets D{Q) n D{b) with b G B. Let p ir{q) G ir{D{Ç) n D{b)) and set
S A\p. Again, there is some s G S such that btp(s) <p(a). It suffices to
show that D{T) C\ D{a) contains p and is contained in ir{D{Q) l~l D{b)). Assume
that a Ci p. Then b<p(s) G f(j>) Ç q yields b G q because of <f(s) <£ q. This is a

contradiction, hence p G D{Jr)C\D{a). Now suppose that p' G D{Jr)C\D{a). Since
¦k' is bijective, there is a unique q' G D{Q) such that Tr'(q') p'. If </' ^ D{b) then
6 G </', hence <p(a) b<p(s) G q'.But then a G 7r(g') p', a contradiction. D

On the basis of Proposition 2.3 it is an obvious question whether the close

relationship between the prime spectra of A and B extends to the local rings of A
and B at corresponding prime ideals. The next result gives an answer:

Proposition 2.4. In the situation of Proposition 2.3, let p G D{!F) and q G

D(ip*J-) such that ir(q) p. Then the canonical homomorphism ipp : Ap —> Bq is

an isomorphism.

Proof. First pick j G Ap such that fp{j) 0, i.e., there is some t G B\q with
t(p(a) 0. Let / G T such that t<p(I) Ç <p(A). Choosing r G /\p one gets
t<p(r) <p(c), hence tp(ac) t<p(a)<p(r) 0. Since t <£ q and r <£ p it follows
that t<p(r) <£ q, thus c <£ p. Now ac 0 implies that j 0 in Ap. This proves
injectivity. For surjectivity, suppose that | G Bq. There is some ideal / G T such
that bip(I) Ç ip(A) and tip(I) Ç ip(A). Because of p G D{F) Ç D(I) one finds some

s G /\p. Then hp{s) <p{a) and t<p{s) <p{r) with r i p. Now ^p(f) g^ f,
and the proof is complete. D

Corollary 2.5. Keeping the notation and the hypotheses of Proposition 2.3, sup-
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pose that D(a) Ç D(J-) for some a G A. Then the canonical homomorphism
ipa : Aa —> S m is an isomorphism. D

An immediate consequence of the last couple of results is

Theorem 2.6. Let <p : A —s- B be a monomorphism of rings and let T Ç Id(A)
be a multiplicative filter such that D(!F) Ç Spec(A) is open. Assume that for each
b G B there is some I G J~ with bip(I) Ç <p(A). Then D(ip*J-) Ç Spec(B) is open.
Considering both D(J-) Ç Spec(A) and D(ip*J-) Ç Spec(B) as open subschemes,
the functonal morphism Spec(ip) : Spec(B) —> Spec(A) of schemes restricts to an
isomorphism D(ip*J-) —> D(J-). D

Returning to the original situation, namely the canonical homomorphism tp :

A —? It (A) where T is any multiplicative filter in A, the preceding results yield

Corollary 2.7. The functonal map it Spec(tp) restricts to a homeomorphism
it' : D^ip^J7) tt~^{D{!F)) —> D{!F). For every p G D{!F), the homomorphism
<Pp : Ap —s- /^¦(-A)7r-i(p) is an isomorphism. If a £ A has the property that D(a) Ç

D(!F) then <pa : Aa -^ /^•(-A)¥,(a) is an isomorphism. If D(!F) Ç Spec(A) is open
then it' is an isomorphism between schemes. D

Example 2.8. Let I Ç A be an ideal.The set

Ti {J Ç A; 3n £ N : In Ç J}

is a multiplicative filter of A. If / is finitely generated then Ti is even a Gabriel
filter ([48], p. 72). The ring ij^^A) will be denoted by Ai, the canonical homomorphism

is vi : A -s- Ai. The direct image of Ti is Tvl^Al. The sets D(T) D{I)
and D{yi*Ti) D(i/j(I)Ai) are open subschemes of Spec(A) and Spec(B). The
restriction D{vi{I)Ai) —> -D(/) of Spec{vi) is an isomorphism of schemes. D

If T is any multiplicative filter then the isomorphism

lT{A) Km HomA(I,A) -=-> Km Km HomA(In,A) lim A/
/el7 /el7 new /el7

suggests that the rings Ai are particularly useful for the investigation of arbitrary
localizations with respect to multiplicative filters. They will be used for the proof
that It (A) is real closed whenever A is real closed.

Given a homomorphism (p : A —s- B, two canonical maps between the sets of
multiplicative filters of A and B were introduced in Lemma 2.1. For a special case
there is yet another canonical map:

Lemma 2.9. Suppose that ip : A —> B is a surjectwe homomorphism of reduced

rings and that for every a G A there exist some 2 < n G N and some b G A with
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a bn. If Q is a multiplicative filter of B then

Lp-lg {IÇA;3JeÇ:I f-\j)}
is a multiplicative filter of A. If' Q is a Gabriel filter then so is <p~^Q.

Proof. It is obvious that ip~ Q is a filter. To show that ip~ Q is multiplicative
pick / <p-l{J),r ¥~1{J') € ¥~lG- Then //' ip-l{J)ip-l{J') Ç ip-l{JJ')
holds trivially. In fact, the ideals are equal: If x G ip~^(JJ') then ip(x) J2^K
with bt G J, b[ G J''. By surjectivity of (p there are at G /, a[ G /' such that
(fi(at) bt, ip{a[) b[, hence y x — ^2ata't G ker(<p). Writing y zn for
2 < n G N one notes that z G ker(<p) (since B is reduced) and z G I C\ I'.
Therefore, x E«X + zz^1 € //'.

Now assume that Q is a Gabriel filter. Suppose that / y>~1(J) G ip~^~G

and that if Ç 4 is an ideal with {K : x) G ip~^~G for all x G /. To start with,
pick x G ker(tp) Ç / and write x yn, 2 < n G N. Then y G ker(tp) Ç / and
y"^1 G ker(ip) Ç (if : y) imply that x yn~^y G if, i.e., ker(ip) Ç if. It is easy
to check that (<p(K) : f(x)) <p(K : x) for all x G i. Since ^(if : x) G £ one
concludes that <p(K) G ö, hence if tp~l{ip{K)) G <f~1G-

In arbitrary rings there is a type of Gabriel filters that is particularly easy to
construct (cf. [48], (5.7)): Let Y Ç Spec(A) be any subset, let T(Y) {I Ç

A;Y Ç D(I)}. Then T(Y) is a Gabriel filter. It is obvious that D{F{Y))
Gen{Y). Evidently, F(Y) is the largest Gabriel filter T with D{T) Gen{Y).
If Y is open and constructible then there is a finitely generated ideal I with
Y D(I) and in this case !F{Y) Ti is the only Gabriel filter T of finite
type with D(!F) Y (cf. [48], p. 79). More generally, if Y is proconstructible
then !F{Y) is of finite type ([48], p. 75) and again this is the only Gabriel filter
T of finite type with D{T) Y. In this way there is a bijective correspondence
between Gabriel filters of finite type and generically closed proconstructible subsets
of Spec(A). Explicit examples of Gabriel filters which are not of the form !F{Y)
can be obtained from [8], Theorem 3.3: Suppose that V is a nontrivial valuation
ring in an algebraically closed field or a proper convex subring in a real closed
field. Let M Ç V be the maximal ideal. In either case, M M2. Therefore
T {M, V} is a Gabriel filter. If V is of finite rank (more generally: if there is a

largest prime ideal properly contained in M) then T ^ ^(Y) for any set Y.
In connection with Gabriel filters of the type !F{Y) it is an obvious question

what the maps y>* and tp* associated with a homomorphism tp : A —s- B do with
such filters. The functorial map Spec(tp) : Spec(B) —> Spec(A) is denoted by it.

Lemma 2.10. Suppose that ip is surjectwe.
(a.) If Y Ç im{ir) then <p*F{Y) ^{^{Y)).
(b) IfY Ç Spec(B) then cp*T(Y) T(tt(Y)).

Proof, (a) Suppose that J G f*T{Y). If q G tt^1(Y) then ^(J) % Tr(q)
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ip~^(q), hence J % q This proves one inclusion For the other one, pick J G

J7(tt~^(Y)) It is claimed that y>~1(J) % p for every p G Y Given such p, there
is q G 7r~1(y) with n(q) p Since J % q one finds x G y>~1( J) with y(x) G J\g,
hence x G ^(J^p This finishes the proof of (a) - (b) If / G <p*F{Y) and

p ir{q) G tt{Y) then y>(J) g g, hence / g y"1 (g) p Thus, / G -F^fT))
Conversely, if / G T^irÇY)) and g G Y then 7r(g) g it (Y), hence / g 7r(g) This
implies that y>(J) g g, hence y>(J) G -T7^), i e / G ^FÇY) D

3. Deligne's formula

Generalizing a formula of Dehgne, Gabriel localizations can be used to describe the
sections of a quasi-coherent sheaf of modules over an open quasi-compact subset
of an affine scheme ([48], Proposition 5 16, see also [33], section 4) If one asks

only for the global ring of sections of the structure sheaf of some restriction of an
affine scheme then the same formula holds in a far more general situation

Suppose that A is a reduced ring The structure sheaf of the affine scheme

Spec(A) is denoted by O Oa, the restriction to any subspace X Ç Spec(A) is

O\x Let Y Ç Spec(A) be a subset satisfying the following conditions

(A) Y is genencally closed,
(B) there is an open cover Y |J YK such that each YK is an intersection of a

kEK
family D(sK\), A G AK, of basic open subsets of Spec(A)

For each k let SK be the multiplicative subset of A generated by {sK\, A} The
locally ringed space (Yk,ö\yk) is canomcally lsomorphic to the affine scheme

Spec{AsK) In particular, (Y,O\y) is a scheme Here are two situations in which
these hypotheses are satisfied

Example 3.1. Any open subset Y Ç Spec(A) has properties (A) and (B) D

Example 3.2. Suppose that A is a real closed ring and that Y Ç Spec(A) is a

genencally closed subspace ([40], Definition II 2 1) By definition, Y has an open
cover UYK such that each YK is proconstructible in Spec(A) As Y is genencally
closed it is clear that so is each YK Then YK is an intersection of quasi-compact
open subsets of Spec(A) It suffices to realize that every quasi-compact open
subset is actually a basic open subset of Spec(A) This follows from

D{a\)\J U D{c?r) D{a\ + + c?r)

D

With Y one associates the Gabriel filter T{Y) (section 2) It will be shown

eventually that there is a canonical isomorphism Lj7iY){A) —> T{Y) T{O\y)
For preparation a few auxiliary results are needed
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Lemma 3.3. If A is a reduced ring and T is a multiplicative filter then the torsion
ideal tj^(A) Cj4is radical. D

In particular, the ring B A/t-FfY'j(A) is reduced. Let tp : A —s- B be the
canonical homomorphism; let it Spec(tp) be the functorial map of the associated
affine schemes.

Lemma 3.4. The subset Z tt~^(Y) Ç Spec(B) is dense and has properties
(A) and (B). The restriction Z —s- Y is a homeomorphism and the morphism
tt' : (Z,Ob\z) —> (Y,OA\y) obtained, from tt by restriction is an isomorphism of
locally ringed spaces. D

Because of Lemma 3.4 there is a commutative diagram

<p

A —^ B

T(Y) > T{Z)

At a later point this diagram will be used to reduce the problem to the case
that Y Ç Spec(A) is dense.

Lemma 3.5. There is a unique ring homomorphism a : ljrfY)(A) —>¦ T(Y) such

that p av (where p : A —s- T(Y) is the restriction homomorphism and v

Proof. To start with, let / Ç A be any ideal with Y Ç D(I). A homomorphism
a'j : HamA(I,A) -> T(D(I)) is defined as follows: If a G HamA(I,A) and x G /
then ?-*p- G Ax is a section of Spec(A) over D{x). Because of

a{x) _ yajx) _ a(yx) _ xa(y) _ a(y)
x yx yx xy y

in Axy, these sections are compatible and can be glued together to yield a section
<r}(a) G T(D(I)). It is obvious that a\ is a homomorphism of A-modules. Then
also <tj, the composition of a\ with the restriction T(D(I)) —> F(Y), is A-linear.
If J Ç / then the diagram

HomA(I,A) —> HomA(J,A)

T(Y)

is commutative. Going to the limit one obtains a homomorphism a : ljrfY) (A) —>¦

F(Y) of A-modules. The explicit définition of the multiplication in lj:(y){Ä) shows
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that a is even a ring homomorphism. It is obvious that p av. This proves the
existence of a. For uniqueness, suppose that a' : lj:iY\{A) —> T{Y) is another

homomorphism with p a'v. Pick some a G lj:iY\{A) and a representative a :

I -> A of a (where / G -F(X))- Note that Annr(y)(/9(/)) (0), i.e., p{I) C T{Y)
is a dense ideal. If x G / then z/(a(x)) av{x) ([46], Lemma 7.4), therefore

a(a)p(x) a(av(x)) p(a(x)) a'' (av(x)) a'(a)p(x).

It follows that a(a) — a'(a) G Ann-ptY'j(p(I)), hence a(a) a'(a). D

Lemma 3.6. Let A be a reduced ring, I Ç A an ideal. If a £ HoniA(I,A) and

xel then D{a{x)) Ç D{x) m Spec(A).

Proof. Assume by way of contradiction that there is some p G D(a(x))\D(x).
Since D(x) is quasi-compact there exists a <£ p with a G C\D(x). As A is reduced
this implies that ax 0, hence also aa(x) a(ax) 0. But a(p)a(x)(p) ^ 0

yields a contradiction. D

Lemma 2.10 (a) shows that the Gabriel filters T{Z~) and ip^!F{Y) of B both
agree. Note that B and lj7iY\{A) are jF(Y)-torsion free. AsZÇ Spec(B) is dense,

B is also jF(Z)-torsion free. The canonical homomorphisms

are therefore all isomorphims ([46], Lemma 7.6). By [7], Chapitre 2, p. 159,
Exercise 19 c), and there is a unique homomorphism ljrfZ\(B) —> lj:(Y\{B) making
the diagram

B : B

commutative. In fact, this homomorphism is an isomorphism ([7], Chapitre 2,

p. 162, Exercise 21 c)). Similarly, there is a unique homomorphism ljriY\{B) —>

LjrfY\ (A) making the diagram

B
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commutative. According to [46], Lemma 7.6, this homomorphism is an isomorphism.

Consider the following diagram:

~T{Z)

By the uniqueness of the various isomorphisms and the uniqueness of aa and ob
there exist unique homomorphisms a'B : lj7(y){B) —? F(.Z'), a'A : Lj7iY){A) —> T(Y)
making the entire diagram commutative.

Theorem 3.7.
morphism.

The canonical homomorphism a'A : is an iso-

Proof. By the définition of a'A it suffices to show that a'B is an isomorphism.
This, in turn, is equivalent to ob being an isomorphism. Therefore it remains to
show that a is an isomorphism if Y Ç Spec(Ä) is dense. First injectivity: Pick
a G lj7iY){A) such that a(a) 0. Choose a homomorphism a : I —s- A representing

a. Then a (a) is determined by the family of sections —^-p- G Ax over D{x) for all

x G /. Since Y l~l D(x) is dense in D(x) the fact that ^^-lynDix) 0 implies

—^-p- 0. Since A is reduced this yields xa{x) 0 in A. If a{x) ^ 0 then there
is a minimal prime ideal p with p G D{a{x)). Lemma 3.6 shows that p G D{x),
hence x(p)a(x)(p) =/= 0, a contradiction. Thus, a(x) 0 for every x G /. This
implies a 0 in /_^(y)(-A), and <r is injective.

To prove surjectivity, suppose that 7 G F(Y). Since Y Ç 5*^60(^4) is dense the
restriction p : A ^ T(Y) is injective. It is claimed that the ideal

(A : {x G Ç A

belongs to !F(Y), i.e., that Y Ç D(I). For any peY there is a neighborhood
Y1 C Y of p such that y p| D(s) for some multiplicative set S Ç A. The

ses
canonical homomorphism ps : As —> F(y)/9/s\ T(Y') is an isomorphism. Hence

there exist x G A and s G S* such that ps(f -[ in r(Y)prsy This means that
p(tx) p(ts)j in F(y) for some t £ S. But then jp(ts) G p(-A), i.e., ts G /. Since

p G D(ts) it follows that p G D(I). This proves that / G FÇY), hence HomA(I, A)
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contributes to l-pfY\(A). In particular, consider the A-linear map

a : I —> p(A) ^—s- A

If a G l-ffY\(A) is the class of a then it is claimed that a(a) 7 in F(Y). It
suffices to compare the canonical images of a (a) and 7 in each local ring Ap with
peY. But it is clear from the définitions of a and a that these germs agree. This
finishes the proof. D

4. Filters of finite type in real closed rings

A Gabriel filter is said to be of finite type if it has a filter basis consisting of
finitely generated ideals ([48], p. 75). This définition can be extended immediately
to multiplicative filters. However, it is easy to see that every multiplicative filter
of finite type is, in fact, a Gabriel filter (cf. [48], p. 72/73). It was pointed out in
section 2 that there is a bijective correspondence between Gabriel filters of finite
type and generically closed proconstructible subsets of the prime spectrum. The

purpose of this section is to give a complete description of the Gabriel filters of
finite type in a real closed ring.

It turns out that these filters are trivial in the sense that the corresponding
localizations are classical rings of quotients.

Proposition 4.1. Let A be a real closed, ring, let J7 be a Gabriel filter of A. Then
the following statements are equivalent:

(a) J7 is of finite type.
(b) J7 has a basis consisting of principal ideals (i.e., J7 is a 1-topology, cf. [47],

p. 148).
(c) -D(jF) C Spec(A) is proconstructible.
(d) The localization functor LT has property (T) (cf. [17], p. 28; [48], p. 93).

If this is the case then Ljr(A) As with S {s G A; (s) G J7}. In particular,
A —s- Ljr(A) is a flat epimorphism.

Proof The equivalence of (a) and (c) is already clear. The implication (6) => (a)
is trivial. To prove (a) => (6), pick some finitely generated ideal / G J7, say /
(ai,... a,k). Define a a\ + + a% and consider the principal ideal (a). It
is clear that (a) Ç I2 Ç /. On the other hand, I4 Ç L((a)) and L((a)) Ç (a)
(section f), hence (a) G T. - (6) => (d) If (6) holds then LT(A) As with
S {s G A\(s) G J7} and LT(M) M (£>A As ([48], p. 78). This is exactly
property (T). - Finally, (d) => (a) is shown in [48], p. 95. D
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Because of [33], Proposition 2.5, the proposition has the following immediate

consequence:

Corollary 4.2. If A is a real closed, ring then the following three sets are in
bijectwe correspondence with each other:

- the set of isomorphism classes of flat epimorphisms over A;
- the set of Gabriel filters of finite type;
- the set of generically closed, proconstructible subsets of Spec(A). D

By [40], Theorem I 3.29 and Theorem I 4.9, the results of this section imply
that Lj^(A) is a real closed ring whenever T is a Gabriel filter of finite type in a
real closed ring.

5. Filters in real closed domains

In this section the Gabriel filters in real closed domains and in some cases also
their localizations are determined. The results are reminiscent of the description
of the Gabriel filters of a valuation domain in [8], section 3. Let A be a real
closed domain. The set Lld(A) of /-ideals is the totally ordered set of convex
ideals. Every proper /-ideal is irreducible, hence Lld(A) SpeK(A) U {A}.
Every multiplicative filter T is completely determined by T C\ SpeK(A) (section
1). Hence, the set of multiplicative filters is totally ordered. The first result shows

that there is no need to distinguish between multiplicative filters and Gabriel
filters.

Proposition 5.1. If A is a real closed domain and T is a 'multiplicative filter
then T is a Gabriel filter.

Proof. Suppose that / G T and that J G Lld(A) with J : x) G T for each x G /.
Because of section 1 one may assume that / is also convex. It is claimed that
J £ J7. If /" Ç J for some n then there is nothing to prove. So suppose that
J C In for every n. There is some 0 < x G / with x3 £ J. Then x1 £ J : x)
and (J : x) is an /-ideal. Therefore, 0 < y < x1 or 0 < — y < x2 for every
y G (J : x), and the 2nd convexity property implies that (J : x) Ç (x). But then
J : xf Cx(J :x)CJ shows that J e T because J : xf £ T. D

The filters of finite type are easy to recognize: In Spec(A) a set is generically
closed and proconstructible if and only if it consists of the generalizations of a

single point. Thus, T is of finite type if and only if there is a prime ideal p Ç A
with T {I Ç A;p C /}. The following is just another way of phrasing this
condition:
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Proposition 5.2. The Gabriel filter J- in the real closed domain A is of finite
type if and only if there is a largest ideal not belonging to J-'. If this is the case
then this largest ideal is prime.

Proof. One implication is already clear; for the other one suppose that p is the
largest ideal not in T. Since A is a divided domain (Proposition 1.5) it suffices

to show that p is a prime ideal. (Note that then every ideal is comparable with
p, hence T {I;p C /}.) First let p be the convex hull of p. From p2 Ç L(p)
it follows that p2 Ç L(p) Ç p. If p ^ p then p G J7, hence p2 G T. This implies
that p G J7, a contradiction. Now assume that p is not prime. There exists some

x G A such that x2 ^ p, but x4 G p. Being convex, p and L((x)) are comparable.
Since x2 G L((x))\p one knows that p C L((x)), hence L((x)) G J7. But then also

(x) G .F and (x4) G J7. Now (x4) Ç p shows that p G J7, a contradiction. D

Now assume that there is no largest ideal not belonging to the filter T. Let
p p| T. Then p is convex since every ideal in T contains a convex ideal belonging
to T. Moreover, p is a prime ideal: Suppose that x, y <£ p. There are convex ideals

/, J G T with x <£ I, y <£ J. Since / and J are comparable one may assume that
x,y £ I. This implies that 0 < \z\ < |x|, \y\ for all z G /. Assume that xy G /2.
Then one finds some 0 < z G / such that 0 < |x| \y\ < z2, a contradiction. Thus,

xy ^ /2, hence xy £ p (since /2 € J7). This shows that p is prime. It is claimed that
p G J7, i.e., that p is the smallest element of T. Assume by way of contradiction
that this is false. Then p ^ ?'. Since there is no largest ideal not belonging to J7,

there must be some I £ J7 such that p C /. Then also p C /2 Ç L(J) Ç /, hence

L{I) i T. Pick any x G L(I)\p. There must be some J £ J7 with x £ J. Then
also L(J) G .F and L(J) is comparable with L(I). Since x G L(I)\L(J) it follows
that L(J) QL(I). This is impossible since L(J) G T and L(J) ^ J7. Altogether
this finishes the proof of the following result:

Proposition 5.3. Let T be a Gabriel filter in the real closed domain A. If J7 is
not of finite type then there is some prime ideal p such that T {/ Ç Ayp Ç /}.D

The last two propositions determine the set of all Gabriel filters of the real
closed domain A. The rest of the section is devoted to computing localizations
with respect to Gabriel filters. If T Id(A) then Lj^(A) 0. This exceptional
and trivial case is excluded in the further considerations, i.e., it is assumed that
(0) ^ T. Note that A is then .F-torsionfree, hence L^{A) lp(A) ([46], Lemma
7.6). Moreover, the localization is a subring of the real closed field qf(A). It can
be described in the following ways:

Lr(A) {xe qf(A); (A : x)A e T}
{xeqf(A);3IeJ7:xIÇA}

(cf. [13], p.
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If T is of finite type then let p be the largest ideal not belonging to T. It is

clear from section 4 that Lj^(A) Ap. Note that pAp p since A is a divided
ring ([12], Introduction). Now suppose that T is not of finite type. Let p f] T.
Then {p} is a basis of the filter J7, hence

LT(A) HomA(p, A) {A : p)q/(A) (p : p)qf(A) ¦

The first equality is due to the fact that p p2 for any prime ideal in a real
closed ring. For the last equality, suppose that a £ qf(A) and that ap Ç A. It is

claimed that even ap Ç p. Suppose that 0 < x £ p. Then yfx exists in p, hence

a^fx G A. This implies ax (ayjx)yjx G p.
The set J7' jF\{p} is a Gabriel filter of A as well. Since it is of finite type

its localization is known to be L^>(A) Ap. Let (p : A —> Ap be the canonical
homomorphism. The direct image (p^J7 agrees with the Gabriel filter Fa\p °f Ap
described in [8], Proposition 1.2. One sees immediately that (p^J7 {Ap,pAp}.
By [7], Chapitre 2, p. 162, Exercise 21 c), the rings Lj^(A) and Lv_t^(Ap) can
be identified canonically. Thus, to determine the localization Lj^(A) it suffices to
deal with the case that T {A, M}, M the maximal ideal of A.

Theorem 5.4. Lj^(A) is a real closed, domain with maximal ideal M.

Proof. Let V Ç qf(A) be the largest convex valuation ring with center M in A,
i.e., M A D N where N is the maximal ideal of V. Then Ljr(A) Ç V: If
0 < a G qf(A)\V then a"1 G N and there is some 0 < b G M with 0 < a"1 < b.

Then also 0 < aT^ < b? G M. This implies that a? a a~^ < a b?. Since

a"2 <£ V and V is convex one concludes that ab^ <£ V, hence ab^ <£ A. Thus,

a£{A:M)qf{A)=LT{A).
Next it is claimed that Lj^(A) D N M. One inclusion holds trivially, for the

other one pick a G Lj^(A) n N. For any x G M one has ax G A. By the choice of
V there is some x G M with 0 < \a\ < x. Then |ax| < x? implies that ax G (x) in
A ([42], Satz 1). Writing ax ex with c £ A one sees that a c £ An N M.

It is now clear that M Ç Lj^(A) is a prime ideal. It is even the unique maximal
ideal of Lj^(A), i.e., Lj^(A) is local with maximal ideal M. Suppose that a £
Lp(A)\M. It is claimed that also a^1 G Lp(A). Assume by way of contradiction
that a'1 M % A, say aTlx £ A with 0 < x G M. If |ax| < xr for some 1 < r G Q
then ax £ (x) ([30], Satz 1), hence ax ex with c £ A. But then a c £ A\M
A*, i.e., a^1 G A and a~^M Ç A, a contradiction. Therefore, xr < |ax| for all
1 < r G Q. By [42], Satz 1, this implies x1 £ (ax), hence arlx ^ G A, a
contradiction. This finishes the proof that M L^(A)\L^(A)*.

To show that Lj^(A) is a real closed domain the criterion of [42], Satz 1, will
be used. It is clear that Lj^(A) is a domain with quotient field qf(A). Since A
is real closed this is a real closed field. To show that Lj^(A) is integrally closed
consider an equation

an + an_ian-1 + + a0 0
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with a G qf(A), at G Lj^(Ä). For any x G M one gets

{ax)n + (an_ix)(ax)"-1 + + aoxn 0.

Note that a,,xn~% G A for each i 0,... n — 1. Since A is integrally closed one
concludes that ax G A. Thus, a G (A : M)q^A\ Lj^(A). Finally, suppose that
0 < a < b in Ljr(A). It is claimed that a2 G (6): If 6 G L^(.A)* then this is trivial.
Otherwise b G Lj:(A)\Ljr(A)* M. From 0 < a < b it follows that a G M as

well. But then a? G (6) in A, hence also in Lj^(A). D

By Theorem 5.4 the maximal ideal of Lj^(A) is known. The structure of the
ring Ljr(A) is particularly simple because of the following general result about real
closed domains:

Theorem 5.5. Let A be a real closed, domain. Then there is a field R Ç A such
that the homomorphism R Ç A —> A/M is an isomorphism. Thus, A R -\- M.

Proof, (cf. [28], p. 66, Satz 3; [37], p. 89, Satz 6) The field of real algebraic
numbers is contained in A. Zorn's Lemma shows that there is a maximal subfleld
RCA. Since A is integrally closed in the real closed field qf(A), R is algebraically
closed in qf(A), hence is real closed. Let R Ç R/M be the image of R. If x G A/M
is transcendental over R then R[x] Ç A is a polynomial ring with R[x] DM (0).
But then R(x) Ç A and R C R(x) is a proper extension. This contradicts the
maximality of R. Thus R Ç A/M is an algebraic extension. Since both fields are
real closed they must agree. D

By [1], Theorem 3.10, A Ç Lj^(A) is a pair of rings having the same prime
ideals. In fact, [1], Proposition 3.3, shows that Lj^(A) is the largest extension of A
having this property. Therefore, and in view of Theorem 5.5, the computation of
Lj^(A) boils down to determining the residue field. A lower bound for L^{A)/M
is provided by A/M. A first upper bound is obtained as follows: Suppose that
V Ç qf(A) is the largest convex subring such that M ADN, where N Ç V is the
maximal ideal. Then LT{A) Ç V and M LT{A) n N, hence LT{A)/M Ç V/N.
Suppose A is a pseudo valuation domain (cf. [21]), i.e., for all x,y G qf(A) and
all p G Spec(A) it follows that x G p or y G p whenever xy G p. According to
[21], Theorem 2.7, in this case V (A : Af)q/(A) Lj^(A). In particular, one has

Lr(A)/M V/N. This proves

Propositon 5.6. If the real closed, ring A is a, pseudo valuation domain then
is the largest convex subring V Ç qf(A) which dominates A. D

Note that every real closed ring of dimension 1 is a pseudo valuation domain
([38], Lemma 8). Arbitrary real closed pseudo valuation domains are constructed
as in [1], Proposition 2.6, where V is a convex valuation ring in a real closed field
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and k Ç K is a real closed subfield of the residue field. It follows from [36], p. 18,

Korollar, that the rings so constructed are real closed.

If A is any real closed domain and p Ç M Ç A is a prime ideal let tp : A —> A/p
be canonical. The maximal ideal of A/p is M/p and T f^J7 {A/p,M/p}.
By [7], Chapitre 2, p. 160, Exercise 19 d) and p. 162, Exercise 21 c), there is a
canonical homomorphism

Lr(A) -^ Lr(A/p) L?(A/p)
which is a local homomorphism between local rings. Therefore

Lr(A)/MÇLr(A/p)/(M/p).
It is easy to find examples where LT{A/p)/{M/p) C V/N. Thus, LT{A/p)/{M/p)
is a better upper bound for L^(A)/M than V/N.

Theorem 5.7. Suppose that A is a real closed domain in which there is a largest

prime ideal p that is properly contained in M. Then Lj^(A)/p is the largest convex
suhnng of qf(A/p) which dominates A/p. In particular, Lj^(A)/M is isomorphic
to LT(A/p)/(M/p).

Proof. Since A/p is a pseudo valuation domain the ring Ly{Ajp) has been
determined in Proposition 5.6. It is only necessary to show that Lj^(A) —> Ly{Ajp) is

surjective. Since M/p is the maximal ideal of L-^(A/p) it suffices to prove that
Lnp(A/p)* belongs to the image. Let it : Ap —> qf(A/p) be the canonical
homomorphism. In qf(A/p) the largest convex subring dominating A/p is Ly(A/p).
Let W ¦K^1{Ly{A/p)) Ç Ap. Then ir{W) L^{A/p), and it suffices to show
that W Ljr(A). It is clear that Lj^(A) Ç W. For the reverse inclusion, pick
a eW. If x G M then 7r(a)7r(x) G A/p (since ir(a) G Ly{A/p) and ir(x) G M/p),
say Tr(ax) tt(6) with b G A. But this implies ax — b G p Ç A, hence ax £ A. D

The theorem applies to all real closed domains of finite dimension, in particular
to the factor domains of any ring of semi-algebraic functions on an affine semi-
algebraic set.

6. Localizations of real closed rings are real closed

The localizations that were considered in the preceding two sections are real closed

rings. This is a special case of a far more general phenomenon which is studied in
this section. It will be shown, for example, that the ring Aj lp(A) is real closed
whenever A is real closed and T {J Ç A; 3n : In Ç J} (see section 2).

Lemma 6.1. Suppose that A is a reduced f -ring with hounded inversion and that
B Ç A is a convex subring. Then there is a multiplicative subset S Ç B such that
A BS.
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Proof. Define
S {s £ B;0 < s eA*}.

The inclusion i : B —s- A induces is : Bs —? A. Evidently, is is injective. For

surjectivity, pick a G A and write

a sup(a, 1) sup(—a, 1) sup(inf(a, 1), —1).

Since A has bounded inversion, sup(a, l),sup(—a, 1) G A*. But then sup(a, I)"1,
sup(—a, l)^1 G S. Since sup(inf(a, 1), —1) G B the claim follows immediately. D

Corollary 6.2. With A and B as in Lemma 6.1, A is real closed, if and only if
B is real closed.

Proof. If A is real closed then so is the convex subring B ([39], Theorem I 7.8). If
B is real closed then so is any classical ring quotients of B, in particular A ([40],
Theorem I 3.29, Theorem I 4.8). D

Now consider following situation: A Ç C is an extension of real closed rings,
/ Ç A is an ideal and let T {J Ç A; 3n : In Ç J}. Define B {b G C; 3n :

bln Ç A}. Obviously, this is a subring of C. The main result of the present section
is that B is a real closed ring. The proof will eventually be done by using Corollary
6.2. This requires that first a couple of properties of B are established. Because
of the results of section 1 it may and will be assumed that / is an /-ideal of A.

Lemma 6.3. B is a sub-f-rmg of C.

Proof. (With help by Warren McGovern) Given b G B with b 6+ — b~ in
C it will be shown that 6+ G B. It suffices to prove that bln Ç A implies
è+/n C A. By assumption / is an /-ideal, hence so is /". If x x+ — x~ G /"
then 6+x 6+x+ — 6+x~ and è+x+, è+x~ G A imply è+x G A. Therefore one

may assume that 0 < x. But then bx b+x — b~x with inf(b+x,b~x) 0,

i.e., (6x)+ 6+x. Because A Ç C is a sub-/-ring and bx £ A one concludes
6+x (6x)+ G A. D

Lemma 6.4. TTie f-rmg B has bounded, inversion.

Proof. Suppose that 1 < b G B and that bln Ç A. Being real closed, the ring C
has bounded inversion, hence è^1 exists in C. It is only necessary to show that
6~1J Ç A for some ideal J G T. It is certainly true that b~l{bln) Ç A. So it
suffices to show that bln G T. It will be shown that I2n Ç bln. It is enough to deal
with nonnegative elements of /2n. So, pick 0 < x G /2n and write x ^y^ with
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yt,zt eln. Then t =J2\Vt\ + N eln (since / is an/-ideal) and 0 < x < t2 < (6t)2.
The 2nd convexity property implies that x G (et) in A, hence x G bln. D

Lemma 6.5. In B the squares are exactly the nonnegative elements.

Proof. The squares are nonnegative since B is an /-ring. Now suppose that 0 <
b G B and that bln ÇA. In C there exists some 0 < c with b c2. Because

In is an /-ideal it suffices to show that ex Ci A for every 0 < x G In. Because of
0 < bx? G A Ç C there is a unique nonnegative square root of this element both
in A and in C, namely ex. This implies ex G A. D

Corollary 6.6. Every prime ideal q Ç B is an I-ideal and the residue domain
B/q is totally ordered. The positive cone of B/q is formed by the squares. In
particular, the support map supp : Sper(B) —s- Spec(B) is a homeomorphism. D

The preparations for the proof of the main result of this section are finished
now:

Theorem 6.7. B is a real closed, ring.

Proof. The results proved so far show that Corollary 6.2 is applicable to the ring
B. Thus, it suffices to show that the convex hull H Ç B of A is real closed. Let

pH ¦ H —? p{H) be the real closure of H ([40], Definition I 4.1). It will be shown
that ph is an isomorphism. By [40], p. 10/11, there is a unique homomorphism

t : p(H) —s- C such that the following diagram commutes:

H
Ç

: B

PH

p(H) —^ C

Being a convex subring of B, H shares all the properties with B that were
established above. In particular, supp : Sper(H) —> Spec(H) is a homeomorphism,
hence pn is an essential epimorphic extension in the category of reduced partially
ordered rings ([45], Corollary 2.14). Therefore t is a monomorphism and all the
rings in the diagram can be considered as subrings of C'. Note that the convex
hull of H in p{H) is all of p{H). This implies that H B n p{H). Since pH is a

monomorphism one only needs to show that pn is surjective. So, pick h G p{H).
It will be shown that h G B, i.e., that hln Ç A for some n G N.

The inclusion (p : A —s- H and the multiplicative filter T satisfy the hypotheses

of Theorem 2.6. Let Y be the open subscheme D(!F) D(I) Ç Spec(A),
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Z the open subscheme D{ip^!F) Ç Spec(H). The functorial map Spec(<p)
restricts to an isomorphism Z —s- Y. If x G / then Spec(<p) restricts further to
an isomorphism Dh(x) —s- _D^(x). Since D^fi) is a real closed scheme, so is

Dh(x). But then the restriction DprH\(x) —> Djj(x) of the functorial morphism
Spec(pff) : Spec(p(H)) —> Spec(H) is an isomorphism as well. In particular,
/ix| r> Cj-i may be considered as an element of r(_DJ4(x)). A constructible section

a(x) on Spec(Ä) over A is defined by setting a(x)(p) hx(p) for p G _D^(x),
a(x)(p) 0 otherwise.

It is claimed that a(x) is also a compatible secton. So, pick p,q G <Spec(j4),

p Ç q. If p,q Ç. Y then there exists some y & I such that p,q & Da{v) Q D(I).
Under the isomorphism £>p(if) (y) -> DA(y) the sections a(x)|Da (y) and hx\D^H) (y)

correspond to each other. Since /ix|D is compatible, so is o-{x)\DAiyy Now

suppose that p,q <£Y. In this case a(x)(p) 0, a(x)(q) 0, and there is nothing
to prove. Finally, suppose that p G Y and q <£ Y. Let r be the closed point in
{p}nDa(x), s the generic point in {p}\_DJ4(x). Then compatibility holds for a(x)
between p and r and also between s and q. If a(x) is also compatible with respect
to r and s then transitivity of the compatibility condition (cf. [36], Lemma 5.5)
implies that a(x) is compatible with respect to p and q. So, one may assume that p
is a closed point both of Da(x) and Y and that q is a generic point of Spec(Ä)\Y.
Let p' Ç H be the unique prime ideal with p'flA p. Since Dh(x) —s- D^fi) is

an isomorphism the canonical homomorphism p(p) —> /o(p') of the residue fields is

an isomorphism. These fields are identified. As p(H) is the convex hull of H in
p(H) and by the définition of H there exists some a £ A such that 0 < \h\ < a.

In particular, evaluating at p and p' one gets 0 < |/i(p')| < a(p). Therefore h(p')
belongs to the convex hull of A/p in pip). In A/p one has ax(p) G / + p/p. The
ideal /+p Ç A is convex and /+p Ç q. Thus, I+p/p Ç q/p in A/p and I+p/p is

convex. By [38], Lemma 8, q/p is not only convex in A/p, but also in pip). Because
of 0 < \hxip')\ < \axip)\ one concludes that hx(p') G q/p. Now a(x)(p) hx(p')
belongs to the maximal ideal of the largest convex valuation ring Cqp Ç pip) with
center q/p in A/p. Hence the residue map Xqp : Cqp —> Cqp/Mqp maps a(x)(p) to
a(x)(qr) 0. This finishes the proof that a(x) is compatible.

Being a constructible and compatible section on SpeciA) over A, a(x) G A.
Considering a(x) as an element of piH), it is clear that a(x) /ix. This proves
that hi Ç A, hence that h G B n piH), and the proof is finished. D

In the rest of this section, Theorem 6.7 will be applied to show that a number
of important ring theoretic constructions applied to real closed rings always yield
real closed rings. For the notion of an ideal transform see e.g. [2]; [9]; [25], p. 30.

Corollary 6.8. Let A he a real closed ring, I Ç. A an ideal. Then the ideal

transform of A with respect to I is real closed.

Proof. The total quotient ring TotiA) of A is a real closed ring ([40], Theorem I
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3.29, Theorem I 4.8). Since

B {a, G Tot(A); 3n : aln Ç A}

is the ideal transform, the assertion follows immediately from Theorem 6.7. D

Suppose that A is real closed and / Ç A is an ideal. It will be shown now that
the localization Aj is real closed. Let T {J Ç A; 3n : In Ç J} and set Y
D{!F) D{I). In the proof of Lemma 3.5 the homomorphisms <tj : Hoitia(J,A) —s-

T(Y) where defined for every J G T. Let a : Aj limHoniA(J, A) —s- T(Y) be

the limit of the a,j. It is clear that a is injective. The ring F(Y) is the global ring
of sections of the real closed scheme Y, hence F(Y) is real closed ([40], Theorem I
4.12). As before, let p : A —> F(Y) be the canonical restriction homomorphism, let
A p(A). This is a real closed ring as well ([43], Lemma 3.7). One checks easily
that p maps / bijectively onto p(I). Thus, / will be identified with p(I).

Theorem 6.9. For the extension A Ç T(Y) of real dosed rings one has

In particular, Aj is a real closed, ring.

Proof. Suppose that 7 G Ai. Then 7 has a representative a : In —> A. If
x G In then 7X p(a(x)) G A (cf. [46], Lemma 7.4). This proves one inclusion;
for the other one pick 7 G T{Y) with 7/" Ç ~Ä. But then -fln+1 Ç /, and

a : /"+1 —s. / C A : x —s- 7X is an A-linear map representing an element a G Ai.
From the définition of a it is clear that a (a) =7. D

Corollary 6.10. IfA is a real closed, ring and, T is 'multiplicative filter then
is real closed,. If J- is a, Gabriel filter then also Lj^(A) is real closed,. D

In a reduced ring the set of all dense ideals forms a Gabriel filter T [7], Chapitre
2, p.164, Exercise 24). The localization lj^(A) Lj^(A) is the complete ring of
quotients ([29], section 2.3). Therefore:

Corollary 6.11. Let A be real a, closed, ring, Q(A) its complete ring of quotients.
Then Q{A) is real closed. D

There are other ways to prove this result. For example, coming from another
direction, this is a special case of the following general result: Let C be a monore-
fiective subcategory of the category PO/N of reduced partially ordered rings.
Then for any object A of C the complete ring of quotients also belongs to C.
The category of real closed rings is a monorefiective subcategory of PO/N, hence
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complete rings of quotients of real closed rings are real closed. (Monorefiectors of
PO/N are investigated in [34]). Or, one may note that Q{A) is the direct limit
of all rings of global sections of dense open subschemes of Spec(A) if A is reduced
(cf. [4], section 3; or, Theorem 3.4). If A is real closed then every such ring of
sections is real closed, and Q(A), being the direct limit of real closed rings, is real
closed ([40], Theorem I 3.29, Theorem I 4.8).

7. Multiplicative filters and the Keimel spectrum

Filters of the form !F{Y), Y Ç Spec(A) (section 2), have always played a particularly

important rôle in the investigation of Gabriel filters. Let G{A) and M.{A) be
the sets of Gabriel filters and multiplicative filters of A, let S{A) be the set of subsets

of Spec(A) closed under specialization. Each one of these sets is a complete
lattice. Define

V :

£ : S (A) -> Q{A) : Z -> T(Spec(A)\Z).

It is clear that V is a homomorphism of complete lattices and that £(P\Zt)
P\£(Zt) for all families (Zt)t in S(A). But £ is not homomorphic with respect to
join, in general. Also, one has V£ id, but £V ^ id.

For real closed rings this technique for studying the sets Ai (A) and G{A) can
be refined by using the Keimel spectrum. Let Sk(A) be the set of subsets Z Ç

SpeK(A) which are closed with respect to specialization and for which / G Z
implies In G Z. It is clear that VK{F) T C\ SpeK(A) G SK(A) for every
T G M (A). Thus, there is a map

One checks immediately that Sk (A) is a complete lattice and that Vk is a
homomorphism of complete lattices. If A is even a real closed domain then it is evident
from section 1 that Vk is a bijection. This is not true in general, but recall that T
always has a basis consisting of /-ideals and that each /-ideal is an intersection of
irreducible /-ideals. Thus, T has a basis which consists of intersections of elements

oîSK(A).
There are two natural maps in the other direction. To define them, pick a set

Z G Sk (A) and let p C A be a prime ideal. As usual, SpeK{A/p) is considered
as as subset of SpeK(A). Then Zp Z n SpeK{A/p) G Sk (A/p) is the basis of a
Gabriel filter Zp on A/p. Let <pp : A —> A/p be the canonical map. Then both

¥*PZP {I Ç A;3J e Z :JCI
(see Lemma 2.1) and

<p-lZp {IÇA;3JeZ:PÇJÇI}
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(see Lemma 2.9) are Gabriel filters of A. Let £q{Z) be the smallest multiplicative

filter containing {Jcpp^Zp, let £\{Z) f]cppZp. Both £q{Z) and £\{Z) are
p p

multiplicative filters, £\{Z) is even a Gabriel filter. Thus, two maps

£X : SK(A) -^ g (A) Ç M(A)
have been defined. The principal properties of £q and £\ are contained in

Proposition 7.1.
(a) If (Zt)t is any family in Spc(A), then £o(T)Zt) (~)£o(Zt), £o(UZt) is the

smallest multiplicative filter containing every £(Zt) and £\(C\Z%) r\£\(Zt).
(b) VK£0 id, VK£X id.
(c) £o(Z) is the smallest multiplicative filter T with Vpc(J-) D Z; £\{Z) is the

largest multiplicative filter T with Vpc(J-) Ç Z.
(d) £Q{Z) {IÇA; 3/i, ,Ir e Z : h n C\Ir Ç I}; £X{Z) {I Ç A; VJ e

SpeK{A)\Z :I<£J}.

Proof. Suppose that p,q G Spec(A) and that / G ip~^Zp. Pick J G Z with
pÇJÇI. Then also JÇI + q, hence / G <p*Zq. This shows that £q(Z) Ç £i{Z).
Next, if / G Z then there is a prime ideal p Ç / ([5], Théorème 9.3.2), hence

/ G ip^Zp Ç £o(Z). On the other hand, suppose that / G £\{Z) n SpeK(A).
Once again, pick a prime ideal p Ç / ([5], Théorème 9.3.2) and note that / G <fipZp,
hence / / + p G Z. This shows that

Z ÇVK(£0(Z)) ÇVk^Z)) Ç Z,

i.e., (b) has been proved.
If T is some multiplicative filter containing Z then Zv Ç J7 for every p. Since

Zp is a basis for the filter ip~^Zp one concludes that £q{Z) Ç T, i.e., £q{Z) is the
smallest multiplicative filter containing Z. Let T be some multiplicative filter with
Z' Vk{T~) Ç Z. Let p G Spec(A) and / G T. Since T has a basis consisting of
/-ideals one may assume that / G Lld(A). Then I + p G Vk{F), hence I +p G Z.
This shows that / G fpZp. Therefore T Ç <p*Zp for every p, i.e., T Ç £\(Z), and
the proof of (c) is complete.

For the description of £q{Z) in (d), first note that the set is clearly contained
in £q(Z). Also, it contains Z and is a filter. So it remains prove that it is a

multiplicative filter. For this it suffices to show that a product //' with /
/l n n Ir and /' I[ n n I's, lp,l'a G Z, belongs to the set. Since I D I'
belongs to the set and (/n/')2 Ç //' the problem is further reduced to proving that
/2 is in the set. If p is any prime ideal then I+ p G Z. For, I\ +p>,... ,Ir +p G Z,
hence also Ip C\(Ip+p) G Z. Suppose that a\,... ,ar G Ip and write ap bp + cp

p

with bp G Ip, cp G p. Then

a\ ¦ ¦ ar b\ ¦ ¦ br + c £ I\ ¦ ¦ Ir + p Ç I + p.
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This implies that ij Ç. I + p, hence that / + p G Z. Now, for each p choose some

prime ideal pp Ç Ip and observe that f](I + pp) I. Since it has just been shown
p

that I + pp £ Z one may assume that Ip I + pp.
For every p one has (I + p)2 /2 +p, hence I2 +p <E Z. For, it is clear that

(/ + p)2 Ç /2 + p. The other inclusion is proved as follows: If a G /2 +p then
write a XI aA + x with aî; bt <E I, x <E p. In the real closed ring A, x+ y2 and

x" z2 with y,z £p. Now a ]TaA + 2/2 ~ z2 e (I+p)2.
It is claimed now that /2 f](I2 +pp). One inclusion is obvious. For the other

p

one note that both ideals are /-ideals. Therefore, given a G n(/2 +pp) it suffices
to find some b G / such that 0 < \a\ < b2. First write a ^2uplvp% + wp for every

p, where upt,vpt e I, wp e pp. Define u J2 \upt\ + \vpt\ € / and xp \wp\? G pp.
p,i

It is then clear that 0 < \a\ < v? + x2 for each p. With w inî{xp;p} one gets
0 < \a\ < u2 +w2 < (u + w)2. Since eachpp is an /-ideal one knows that w G (~)pp.

From / Ç I+r\pp Ç n(I + pp) I it follows that 0 < |a| < 62 with b u + w G /.
This finishes the description of £q(Z).

As for £\{Z), first suppose that / G fi(-Z') and assume that J G SpeK(A)\Z,
I Ç J. Then there is a minimal prime ideal p Ç J ([5], Théorème 9.3.2) and there
is some K £ Z such that if Ç I+p Ç J. This implies JeZ, a contradicton. Now
pick / ^ £\{Z). Then there is some p such that I+p does not contain any element
of Z. In particular, I + p <£ £\{Z). Therefore one may assume that I I + p. If
L(I) I then / Ç / g SpeK(Ä)\Z and the proof is finished. Therefore, suppose
that L(I) C /. Let I be the /-ideal generated by /. Then I G SpeK(A) and

/ is a convex ideal contained in / (because of the 2nd convexity property), hence

I2 Ç L{I). Therefore 7 £ Z. Altogether, / Ç 7 and 7 G SpeK(A)\Z. This finishes
the proof of (d).

For the proof of (a), note that C\Z% Ç Zo for every j and Zo Ç £q(Z0), Zo Ç

£\{Zj). Now (c) implies that £§{C\Z%) Ç n£o(Z») and £\{C\Zl) Ç r\£\{Zl). It
follows from

Vi<r(n5i(z,)) m/K(£i(^)) nzt
and from (c) that n£i(Zt) Ç £i(f\Z%). Finally, pick some /-ideal / G C\£q{Z%). By
(d), for any j there are I\,... ,Ir G Z3 with I\ n l~l /r Ç /. Then

l l + l1n...nlrçn(l + y.
It will be shown that these /-ideals are equal. So, choose some a G (1(1 + Ip). It
suffices to find some 6 G / such that 0 < \a\ < b. There are up G /, vp G Ip such
that a up + vp. With u ^ |up| one has 0 < |a| < u + \vp\ for each p. Setting
v mî{\vp\; pj one gets 0 < \a\ < u + v. Since v G I\ (1 (1 Ir Ç / it follows
that u + v G /, hence a G /. For all indices i, it now follows from / G £q(Z%) and

I QI + Ip that / + Ip G Vr:(£o(-ZO) Z», hence / + Ip G nZ». Now (d) implies
that / n(7 + Ip) G £((lZt).
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To finish the proof of (a), let T be the smallest multiplicative filter containing
each £{Zl). Since VK(£o(UZt)) UZ% D Z3 it follows from (c) that £q{UZ1) D

£q(Zj), hence £o(UZt) 2 T. The other inlcusion also follows immediately from (c)
since VK{F) 2 UVK(£0(Zt)) UZt. D

According to Proposition 7.1 (a), £q is a homomorphism of complete lattices.
Let A4o(A) Ç A4(A) be the image of £q. Then £qVk is a retraction of the complete
lattice Ai (A) onto its complete sublattice Aio(A).

The set of multiplicative filters of the ring A is most accessible in cases where
£q £\. For example, it is known from section 5 that this is the case if A is a real
closed domain. More generally one has

Corollary 7.2. If A has only finitely many minimal prime ideals then £q £\.
In particular, every multiplicative filter is a Gabriel filter.

Proof. Suppose that Z G SK{A) and let / G £\{Z) l~l Lld(A). If p\,... ,pr are
the minimal prime ideals then / (1(1 +pp). It follows that / +p\,... ,/ + pr G

VK(£1(Z)) Z. By Proposition 7.1 (d) one concludes that / G £q(Z). D

Continuing with the situation of Corollary 7.2, the set of Gabriel filters of
A can be described completely by using the maps (pp* where p G Spec(A) and

(fip : A —> A/p is canonical. The description is reminiscent of a description given
for h-local domains in [8], section 2. There is a map

r
V* ¦ G (A) -^ I] Q(A/pp) : T -^ {^Vp,T)p.

Because of Corollary 7.2 this map is injective. To determine its image, call a tuple
(J7!,... ,J>) G Y\G{A/pp) compatible if the following holds: Whenever p%1p3 Ç

p

p G Spec(A) then ^m^T% ^mo*T3 (with cppPp : A/pp —>¦ A/p the canonical
map). Since T £i(Vk(J7)) for every Gabriel filter it is easy to see that im(<p*)
is exactly the set of compatible tuples.

If T G G{A) then it is also possible to determine Lj^(A) to the same extent
as the (fipptJ7 can be determined (cf. section 5). Let Y Spec{A)\VK{F) and
let Yi,... ,YS be the connected components of Y. Each Ya is a generically closed
subset of Spec(A). Since \Ya D Min(A)\ < \Min(A)\ < oo the closure Ya consists
of the specializations of the elements of Ya. Define Ia P\Ya and let <pa : A —>

A/Ia be canonical. Then L^{A) f]Lv<jtjc-(J4//(T). So it suffices to handle the

case that Y is connected. Now p\,... ,pr have a common specialization p G Y.
Let ip : Ap -^ p(p) be the canonical residue map. Then LVptjr(A) Ç p(p) and

The class of rings covered by the hypotheses of Corollary 7.2 includes, of course,
all real closed rings with |<Spec(j4)| < oo. A less trivial class of examples is provided
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by the localizations of rings C{X) of continuous functions from an SV-space X
into the real numbers ([22], Theorem 4 1)

References

[1] D F Anderson, D E Dobbs, Pairs of rings with the same prime ideals Can J Math
32 (1980), 362-384

[2] J T Arnold, J W Brewer, On Flat Overnngs, Ideal Transforms and Generalized Trans¬
forms of a Commutative Ring J Alg 18 (1971), 254-263

[3] A Badawi, On domains which have prime ideals that are linearly ordered Comm m Alg
23 (1995), 4365-4373

[4] B Banaschewski, Maximal rings of quotients of semi—simple commutative rings Arch
Math 16 (1965), 414-420

[5] A Bigard, K Keimel, S Wolfenstein, Groupes et Anneaux Reticules Lecture Notes in
Mathematics 608, Springer, Berlin 1977

[6] J Bochnak, M Coste, M F Roy, Geometrie algébrique reelle Springer, Berlin 1987

[7] N Bourbaki, Algèbre commutative, Chapitres 1,2 Hermann, Paris 1961

[8] W Brandal, E Barbut, Localizations of torsion theories Pac J Math 107 (1983), 27-37
[9] J Brewer, The Ideal Transform and Overnngs of an Integral Domain Math Z 107(1968),

301-306
[10] M Coste, M F Roy, La topologie du spectre reel In Ordered Fields and Real Algebraic

Geometry (Eds D W Dubois, T Recio), Contemporary Mathematics, Vol 8, American
Math Soc Providence 1982

[11] H Delfs, M Knebusch, Locally semialgebraic spaces Lecture Notes in Mathematics 1173,
Springer, Berlin 1985

[12] D E Dobbs, Divided rings and going-down Pac J Math 67 (1976), 353-363
[13] M Fontana, N Popescu, Sur une classe d'anneaux de Prüfer avec groupe de classes de

torsion Comm m Alg 23 (1995), 4521-4533
[14] P Gabriel, Des Categories Abehennes Bull Soc Math France 90 (1962), 323-448
[15] L Gillman, M Jenson, Rings of Continuous Functions Graduate Texts in Mathematics

43, Springer, New York 1976

[16] R Gilmer Multiplicative Ideal Theory Queen's Papers in Pure and Applied Mathematics
12, Queen's University, Kingston 1968

[17] O Goldman, Rings and Modules of Quotients J Alg 13(1969), 10-47
[18] A Grothendieck, J A Dieudonne, Elements de Geometrie Algébrique I Springer, Berlin

1971

[19] A W Hager, J Martinez, Functonal rings of quotients the ring of hyperfractions Forum
Math 6 (1994), 597-616

[20] R Hartshorne, Algebraic Geometry Graduate Texts in Mathematics 52, Springer, New
York 1977

[21] J R Hedstrom, E G Houston, Pseudo-valuation domains Pac J Math 75 (1978),
137-147

[22] M Hennksen, S Larson, J Martinez, R G Woods, Lattice-orderd algebras that are sub-
direct products of valuation domains Trans AMS 345 (1994), 195—221

[23] M Hennksen, R Wilson, When is C(X)/P a valuation ring for every prime ideal P?
Topology and its Appl 44 (1992), 175-180

[24] M Höchster, Prime ideal structure in commutative rings Trans AMS 142 (1969), 43-60
[25] J A Huckaba, Commutative Rings with Zero Divisors Marcel Dekker, New York 1988

[26] P T Johnstone, Stone spaces Cambridge Studies in Advanced Mathematics 3, Cambridge
Umv Press, Cambridge 1982



Vol 72 (1997) Gabriel filters in real closed rings 465

[27] M Knebusch, Weakly semialgebraic spaces Lecture Notes in Mathematics 1367, Springer,
Berlin 1989

[28] M Knebusch, C Scheiderer, Einführung m die reelle Algebra Vieweg, Braunschweig 1989

[29] J Lambek, Lectures on Rings and Modules Chelsea, New York 1976

[30] S Larson, Convexity conditions on /-rings Can J Math 38 (1986), 48-64
[31] S Larson, Square dominated I—ideals and I—products and sums of semiprime I—ideals in

/-rings, Gomm m Alg 20 (1992), 2095-2112
[32] S Larson, I—ideals of the form (I\/T), I V7, ideals satisfying (I2) 1(1 V7), and primary

Z-ideals in a class of /-rings, Gomm in Alg 11 (1994), 3107-3131
[33] D Lazard, Epimorphismes plats In Séminaire d'Algèbre commutative (P Samuel),

1967/68
[34] J J Madden, N Schwartz, Reflections of partially ordered rings In preparation
[35] S McAdam, Simple going down J London Math Soc 13 (1976), 167—173

[36] M Prechtel, Endliche semialgebraische Räume Diplomarbeit, Regensburg 1988

[37] S Pneß-Crampe Angeordnete Strukturen Gruppen, Korper, projektwe Ebenen Springer,
Berlin 1983

[38] N Schwartz, Real Closed Rings In Algebra and Order (Ed S Wolfenstein), Research
and Exposition in Math 14, Heldermann, Berlin 1986

[39] N Schwartz, The Basic Theory of Real Closed Spaces Regensburger Math Schriften 15,
Fakultät fur Mathematik, Univ Regensburg, Regensburg 1987

[40] N Schwartz, The Basic Theory of Real Closed Spaces Memoirs AMS, No 397, Amer
Math Soc Providence 1989

[41] N Schwartz, Open morphisms of real closed spaces Rocky Mountain J Math 19 (1989),
913-938

[42] N Schwartz, Eine Universelle Eigenschaft reell abgeschlossener Räume Comm in Alg 18
(1990), 755-774

[43] N Schwartz, Inverse real closed spaces Illinois J Math 35 (1991), 536-568
[44] N Schwartz, Rings of Continuous Functions as Real Closed Rings In Ordered Algebraic

Structures (Eds WC Holland, J Martinez), Kluwer, Dordrecht 1997, pp 277-313
[45] N Schwartz, Epimorphic hulls and Prüfer hulls of partially ordered rings Preprint
[46] B Stenstrom, Rings and Modules of Quotients Lecture Notes in Mathematics 237,

Springer, Berlin 1971

[47] B Stenstrom, Rings of Quotients Springer, Berlin 1975

[48] A Verschoren, Relative Invariants of Sheaves Marcel Dekker, New York 1987

Niels Schwartz
Fakultät für Mathematik und Informatik
Universität Passau
Postfach 2540

D-94030 Passau

Germany

(Received August 26, 1996)


	Gabriel filters in real closed rings

