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Sur les feuilletages algébriques de Rolle

Frédéric Chazal

Résumé. L’objet de ce travail est Pétude des feuilletages algébriques de Rolle dans R™. On
montre que leur restriction au complémentaire d’un nombre fini de feuilles posséde une structure
de produit. On précise aussi la topologie de certaines de leurs feuilles.
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Introduction

Soit w = Pidzy + ... + P,dx, une 1-forme intégrable (w A dw = 0) définie sur
R™ ou P4, ..., P, sont des éléments de I'anneau des polynémes a n indéterminées
R[X1, ..., Xy] et solent Sing(w) = {z € R"/Pi(z) = ... = Py(z) = 0} son lieu
singulier. La restriction & M = R™\Sing(w) de 1’équation de Pfaff w = 0 définit
un feuilletage algébrique F de codimension un transversalement orienté par w sur
M. Le couple E = (F,Sing(w)) est le feuilletage singulier défini par w = 0.

Nous dirons que F (ou F) est un feuilletage de Rolle si toute courbe transverse
a F coupe au plus une fois chaque feuille de F. Cette hypothese est clairement
vérifiée si w est exacte. Elle I'est aussi lorsque codim(Sing(w)) > 3 d’aprés un
argument classique de Haefliger puisque M est alors simplement connexe ([Hae
1], [Mo-Ro 2]). Dans toute la suite de ce travail F = (F,Sing(w)) désigne un
feuilletage algébrique de Rolle. On déduit deux propriétés de ’hypothese de Rolle.
D’une part, les feuilles ' de F sont des hypersurfaces orientables et fermées de
M. D’autre part, si t — «(¢) est une courbe transverse & F, elle coupe chaque
feuille de Sat(v), le saturé de v pour F, en un unique point. Ainsi Papplication
p de Sat(v) dans v définie par p,(x) = vy N Fy, oll Fy, est la feuille passant par
z, est bien définie. De plus la paramétrisation ¢ — ~(¢) est un plongement d’un
intervalle de R dans M et nous noterons également p., I'application 'y*l O Py

Ces deux propriétés sont de nature différente. La premiere porte sur la topolo-
gie des feuilles. La seconde établit une bijection entre une courbe transverse au
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feuilletage et I’ensemble des feuilles que cette courbe rencontre. Elle permet, en
particulier, de munir 'espace des feuilles d’une structure de variété topologique
de dimension un possédant des points des branchement. Le but de cet article
est d’utiliser de telles propriétés pour étudier la structure de F. Par exemple,
la considération de I’espace des feuilles et d’une relation d’ordre parmi les points
de branchement permet de donner une classification complete des feuilletages non
singuliers de R? ([Ka], [Hae-Re]). Lorsque ceux-ci sont algébriques, le nombre de
points de branchement dans leur espace des feuilles est fini ([Mu], [S-S]). En dimen-
sion plus grande tout se complique. L’espace des feuilles ne permet pas de décrire
les feuilletages algébriques de Rolle. 1l existe des feuilletages algébriques non sin-
guliers de R? dont Pespace des feuilles est homéomorphe & R et qui possedent deux
feuilles non homéomorphes (voir I’exemple 2). Cependant la structure des feuil-
letages algébriques de Rolle reste relativement simple comme le montre le théoréeme
suivant.

Théoreme 1. Un feuilletage algébrique de Rolle F posséde un nombre fini de
feuilles Fy, ..., F, telles que : chaque composante connexe V de M\(Fy U ..U F)
est le saturé dune courbe v de classe C* et la projection p. : sat(y) =V — ~
est une C*°-fibration triviale.

Ainsi les feuilles [, ..., F, “séparent” M en composantes sur lesquelles F
possede une structure de produit. Nous dirons que ce sont des séparatrices pour F.
Les deux exemples suivants illustrent le théoreme précédent et mettent en évidence
deux types de séparatrices : les unes caractérisées par la structure transverse a
F, les autres par la structure “tangente” a F, c’est-a-dire par les variations de la
topologie des feuilles.

Exemple 1. Soit Fj le feuilletage sans singularité de R? défini par 1’équation de
Pfaff
wi = zdx + (1 — 22)dy = 0.

La fonction g(z,y) =y — %h] | 1 — 22 | est une intégrale premiére de Fy (voir la
figure 1).

Les feuilles Fy = {z = —1} et Fy = {z = 1} satisfont au théoreme 1. Ce sont
deux points de ramification dans ’espace des feuilles.

Exemple 2. Soit Fy le feuilletage sans singularité de R3 obtenu par “rotation
autour de axe Oy” du feuilletage précédent (voir la figure 2). Il est défini par
I’équation de Pfaff

wy = udu + (1 —u?)dy =0, avec u=2>+ 22

Au voisinage de la feuille ' = {u = 1} la topologie des feuilles change. Certaines
feuilles sont homéomorphes a des cylindres et d’autres a des plans. La courbe ~
de la figure 2 est transverse & Fo et coupe toutes les feuilles. L’espace des feuilles
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y

Figure 1

Figure 2

est homéomorphe & R. La structure transverse & F2 ne suffit pas & caractériser la
feuille F'.

Le résultat suivant, bien connu dans le cadre algébrique complexe ([B], [Ha-Le]),
est un corollaire immédiat du théoreme précédent. On le déduit aussi de résultats
classiques de géométrie algébrique réelle ([B-R] 2.7 p.98, [B-C-R] 9.3 p.195).

Corollaire 1. Si P est un polynéme, il existe un sous-ensemble fini {1, ..., \p}
de R tel que la restriction de P & R™\P~Y({\1, ..., \p}) soit une C™-fibration
localement triviale.

La preuve de 'existence des séparatrices pour F est assez “constructive”. On
en déduit que la topologie de certaines feuilles de F est liée a la géométrie de son
lieu singulier.
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Théoréme 2. Si F est non singulier, il existe des composantes conneres du com-
plémentaire des séparatrices Iy, ..., Fy, qui contiennent des feuilles C*°-difféomorphes
a des variétés planaires, i.e. difféomorphes a lintérieur de sous-variétés compactes
a bord de R"1.

De la preuve du théoreme 2 on déduit le corollaire suivant.

Corollaire 2. Si P est un polynome, il existe des réels A et p tels que pour toute
valeur s de P contenue dans R\[\, u1], chaque composante connexe de P~1(s) est
Co-difféomorphe & S™ 1 ou & une variété planaire.

Il est alors naturel de se poser la question suivante : sous quelles conditions les
feuilles d’un feuilletage algébrique de Rolle non singulier sont-elles planaires? La
question est encore ouverte lorsqu’on impose a la forme w d’étre non singuliere et
exacte. En particulier, je ne connais pas d’application polynomiale de R3 dans R
sans singularité dont une composante connexe d’un des niveaux soit une surface
de genre non nul. Par contre la réponse a cette question est négative dans le cas
général comme le montre le résultat suivant qui illustre la richesse possible de la
topologie des feuilles.

Théoréme 3. Si V' est une hypersurface C> compacte sans bord de R™ et
P, ..., 0k, k > 1, des points de V', il existe un feuilletage algébrique de R™ sans
singularité possédant une feuille C*°-difféomorphe a V\{p1,...,pi}.

Cet article est divisé en 5 parties. La premiere est consacrée a 1’étude d’une
relation d’ordre sur I’espace des feuilles qui permet de construire les séparatrices
de F. Cette construction, donnée dans la partie 2, est le point essentiel de cet
article. La preuve du théoreme 1 est donnée dans la partie 3. La quatrieme partie
est consacrée a 'étude de la topologie des feuilles. Dans la derniere partie on
étudie les feuilletages non singuliers et on prouve les théoremes 2 et 3.

[’auteur remercie Christian Bonatti, Jean-Marie Lion et Robert Moussu de
I’avoir encouragé dans ce travail.

1. Structure d’ordre sur ’espace des feuilles

L’espace des feuilles de F est 'espace quotient M/F de M par la relation d’équiva-
lence associée & F. On note I : M — M/F la projection sur Pespace des feuilles
muni de sa topologie quotient. Si F est une feuille de F, la notation F' désigne
a la fois 'hypersurface de M correspondant & cette feuille et le point II(F). Un
point F' de M/F est un point de branchement s'il existe un point F " distinet de
F tel que tout voisinage de F' rencontre tout voisinage de F' et on dit que I et
F' sont non séparés. 1l est connu que 'espace M/F est une variété topologique
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de dimension un possédant éventuellement des points de branchement ([Hae 2]).

Une courbe dans M de classe C* paramétrée, v : t — ~(t) est dite F-positive
si wv(t)('y’ (t)) > 0 pour tout ¢t. L’espace des feuilles est muni de la relation de
Novikov [N] : un point F est dit inférieur & un point F', et on note F < F'
5’1l existe une courbe F-positive rencontrant les feuilles ' et F' en (t) et ~v(t')
respectivement avec ¢ < 1.

Lemme 1.1. La relation < est une relation d’ordre partiel sur M/F. Toul point
de M/ F posséde des points qui lui sont inférieurs et supérieurs.

Ce lemme est une conséquence de 'assertion classique suivante.

Assertion. Soient v1 : [0,1] — M et 9 : [0,1] — M deux courbes F-
positives, telles que v1(1) et v2(0) appartiennent a la méme feuille. Pour tout
£ €]0, %[, il existe une courbe F-positive ¥ telle que ¥(t) = v1(2t) sit <1/2—¢ et

) =722t —1) sit > 1/2+¢.

Preuve du lemme 1.1. Soient F', F' et F” trois points de M/F tels que F < F
et I < F’. En appliquant ’assertion précédente a deux courbes F-positives
joignant F' a F et F' a FN, on obtient une courbe F-positive joignant F' a F" et
onal < F”. Si F et F' sont deux points distincts tels que F' < F et F' < F
il existe, d’apres ’assertion précédente, une courbe F-positive coupant deux fois
la feuille F'. Le feuilletage F étant de Rolle, on a F' = F'. La relation < est bien
une relation d’ordre. Si F' est une feuille, il existe une courbe F-positive coupant
F. Ainsi il existe des points supérieurs et des points inférieurs a F'. O

Notons que deux points non séparés ne sont pas comparables pour <. Ainsi,
cette relation n’est pas, en général un ordre total. D’autre part cet ordre possede
une signification géométrique : si v est une courbe F-positive, sa paramétrisation
définit un ordre total sur « et la restriction de II & v est un homéomorphisme
de ~ sur TI(y) respectant l’ordre. On dit que la courbe v paramétre 1’'ensemble
II(~y). Réciproquement le lemme suivant montre que tout intervalle de M/F est
paramétré par une courbe transverse a F.

Lemme 1.2. Tout sous-ensemble ouvert I de M/F homéomorphe 4 un inter-
valle est totalement ordonné. Plus précisément, il existe une courbe F-positive
paramétrant 1.

Preuve. Soient F et F' deux points de I. Le segment d’extrémités I et F' " est
recouvert par une union finie d’ouverts I1(+;), 7 = 1, ..., p ol les ~; sont des courbes
F-positives. En appliquant I’assertion on construit une courbe F-positive joignant
les feuilles F et F.

Soient (F},) et (Gy,) deux suites de points de I telles que (F,) soit strictement
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croissante, non majorée dans I et (G,,) soit strictement décroissante, non minorée
dans I. On construit une suite (v,) de courbes F-positives telle que pour tout
entier n, vy, joigne les feuilles F,, et Gy, et v, C v,41. La réunion v des courbes
~n est une courbe C* transverse a F telle que II(vy) = I. O

2. Fonctions tapissantes et séparatrices

I’étude de I'ensemble des points de tangence de F aux niveaux d’une fonction
tapissante bien choisie permet de définir et de caractériser les séparatrices du
théoreme 1.

2.1. Fonction tapissante

Une fonction définie sur M & valeurs dans Rt est dite tapissante au sens de Thom
si elle est propre et possede seulement un nombre fini de valeurs critiques. C’est
le cas des applications Q, : M — Rt définies par Q.(z) = exp((z1 +£1)> + ... +
(2 +&n)2)(P(z))~! avec P = P2 + ... + P2. En effet pour € € R” fixé, Q. est
propre, et son lieu singulier étant algébrique, elle n’a qu’un nombre fini de valeurs
critiques.

Lemme 2.1. Il existe un sous-ensemble semi-algébrique S de R™ de dimension
strictement inférieure a n tel que pour € € R™\S les trois propriétés suivantes
sotent vérifées :

i) Uensemble Y., des points de tangence de F avec les niveauz de @z est une union
finie de courbes algébriques lisses disjointes,

i) Uensemble T, des points de tangence de F a Yo est une union finie de points
et de courbes lisses compactes dans des feuilles de F,

iii) toute feuille F' coupe Y. et le nombre de composantes conneres de Yo N F
est magoré par un entier ko dépendant seulement des entiers n et d ou d est le
mazimum des degrés des polynomes P, ..., P,,.

Preuve. L’ensemble ¥ = {(z,2) € M x R"/w A dQ. = 0} est un sous-ensemble
algébrique de M x R™. Notons @ la projection de 3. sur R™ définie par 0(z,c) = &
et S l'ensemble de ses valeurs critiques. Pour £ € R™, I’ensemble 9*1(5) = Ye
est Iensemble des points de tangence de F aux niveaux de Q.. Aussi il suffit
de prouver que l’ensemble algébrique 3 est lisse et de codimension n — 1. En
effet, d’apres le théoreme de Bertini-Sard, S est un ensemble semi-algébrique de
dimension inférieure ou égale a n — 1 et pour toute valeur réguliere ¢ de 8, 6‘_1(5)
est lisse et de dimension un. L’ensemble ¥ est défini par les n(n — 1)/2 équations

Epi(z,e) = Pr(z)A(z,e) — P(z)Ap(z,e) =0, 0<k<I<n
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oll A; est le polynéme 2(z; + £;)P(x) — OP/0z;(x) pour j € {1,...,n}. Locale-
ment, seules n — 1 de ces équations sont indépendantes. En effet si Uy = (M X
Rn)\Pgl(O) on a Uk N S = Fl;l(()) avec Fk = (El,k7 ~'~7Ek71,k7Ek,k+1,~~~7Ek,n)~
La différentielle de I'application Fj est de rang n — 1 en tout point de Uy et
ainsi Fy~ 1(O) est une sous-variété lisse de Uy de codimension n — 1. Les ouverts
Uy,...,U, recouvrant M x R™, '’ensemble Y est une sous-variété algébrique lisse
de codimension n — 1 de M x R™.

Choisissons une valeur réguliere € de 6. L’ensemble T, des points ou 3, est
tangent aux niveaux de (). est un sous-ensemble algébrique de ... 1l possede
un nombre fini de composantes connexes. Chacune d’elles est un point ou une
composante connexe de Y. contenue dans l'intersection d’une feuille de F et d’un
niveau de Q.. L’ensemble . étant lisse, ses composantes connexes contenues dans
des niveaux de la fonction (). sont des courbes lisses compactes.

Soit F' est une feuille de F. F' étant fermée dans M, la restriction de Q). a I est
propre et atteint son minimum en un point de ¥.. Les composantes connexes de
Y:\T: sont des courbes transverses & F et F' coupe au plus une fois chacune d’elles.
Le nombre de composantes connexes de F'NY.; est borné par la somme des nombres
de composantes connexes de ¥ \T; et T.. Le degré des équations définissant >,
et T; ne dépendant que des entiers n et d, il existe un entier kg = ko(n,d) qui
majore ce nombre. O

Il est naturel de se demander si on peut choisir € tel que I’ensemble T soit un
ensemble fini de points. En remplacant ’exposant —1 dans I'expression de Q). par
un exposant —gu, o > 0, on peut raffiner la preuve précédente et prouver que pour
un choix convenable de £ et p, I'ensemble T, =T} , est fini.

Dans toute la suite, £ est un point fixé de R™\S et on pose @ = Q., ¥ = ¥,
T = T.. On note O, l'ouvert {x € M/Q(z) < r} de bord H, = {z € M/Q(x) =
r}. La théorie de Morse permet de montrer que la topologie d’une feuille /' du
feuilletage F est déterminée par les singularités de la restriction de @@ & F'. Plus
précisément, on a le résultat suivant qui sera utilisé plusieurs fois dans la suite.

Lemme 2.2. §i F' est une feuille de F et p un réel positif tel que F' soit transverse
a H, pour tout r > p, alors I est C°°-difféeomorphe a F'NO,. Pour chaque feuille
F, un tel réel p existe.

Preuve. D’apres le lemme précédent, 3 N F' étant compact, il existe un réel p > 0
tel que 3 N I soit contenu dans I'ouvert O,. Le lemme est un résultat classique
de la théorie de Morse ([E], [Mi 2]) : “si g est une application C*°, propre, d’une
variété V & valeurs dans R, sans singularité dans g—1([p; +-00[), alors V est C>-
difféomorphe & V N g_l([O; r[) pour r > p”, avec g = Q|p.
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2.2. Séparatrices

Les propriétés de 3 et T' établies dans le lemme 2.1 permettent de définir et de
caractériser les feuilles I, ..., F}, du théoreme 1. L’ensemble T' étant inclus dans un
nombre fini de niveaux de la fonction @ et le nombre de valeurs critiques de ¢ étant
fini, il existe rg > 0 tel que ¥:\O,, soit une union finie de courbes lisses disjointes
C1, ..., C; transverses aux hypersurfaces lisses H, pour tout r > rg. Dans toute la
suite ce nombre réel rg est fixé. Les courbes C1, ..., C; sont transverses & F et nous
les paramétrons positivement. Si la fonction @) o C;(t) est croissante, A; désigne la
réunion des feuilles se projetant sur les éléments minimaux éventuels de ’ensemble
des majorants de I1(C;). De tels éléments sont appelés bornes supérieures de I1(C;).
L’ensemble A; se caractérise aussi topologiquement. On a

A = () 5at(C\Oy)

n>rg

et en utilisant la terminologie des dynamiciens, on dit que A; est l'ensemble w-
limite de C; . Sila fonction QoC;(t) est décroissante, on définit de méme A; comme
I’ensemble des feuilles se projetant sur les éléments maximaux de I’ensemble des mi-
norants de I1(C;) (bornes inférieures de I1{C;)). 1l possede la méme caractérisation
topologique que précédemment et est appelé ensemble a-limite de C;. On note A
la réunion des ensembles o ou w-limite A;. Une feuille contenue dans A est appelée
une séparatrice de F relativement a la fonction tapissante Q).

Lemme 2.3. L’ensemble TI(A) est fini.

Preuve. D’apres le lemme 2.1, toute union infinie de feuilles contient deux feuilles
coupant la méme composante connexe de ¥\7T". Les composantes connexes de ¥\7T'
étant transverses a F, toute union infinie de feuilles contient deux feuilles dont
les images par Il sont comparables dans M/F. Deux points de II(A;), bornes
supérieures (ou inférieures) d’'un méme ensemble, sont non comparables pour la
relation d’ordre <. L’ensemble II(A;) est donc fini. O

L’algébricité des ensembles ¥ et T' va permettre de majorer explicitement le
cardinal de Pensemble TI(A). D’aprés Milnor [Mi 1] et Thom [T] on sait que

si 'V est un ensemble algébrique dans R™ d’équations g1 = ... = gp = 0 ot
g1, .-, gp sont des polynémes de degré < d, la somme des nombres de Betti de V
est magorée par d(2d — 1)*~1. Appliquons ce résultat & ¥ et 7. Les équations
définissant 3. étant de degré < 2d + 1, le nombre de composantes connexes de
¥ est majoré par ks, = (2d + 1)(4d + 1)" 1. Les équations définissant 7' étant
de degré < (2n — 1)d, le nombre de composantes connexes de 7' est majoré par
kp = (2n — 1)d(2(2n — 1)d + 1)» L. Puisque ¥ est une union disjointe de courbes
lisses, le nombre de composantes connexes de ¥\ 7' est majoré par ky:+kp. L’entier
ko = ks + 2k majore le nombre de composantes connexes de l'intersection d’une
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feuille avec . Pour tout ¢ € {1,...,1}, #II(A;) est majoré par la somme des
nombres de composantes connexes de Y\T et de T', c’est & dire par kg. L’entier [
étant majoré par 2ky: on a finalement §I1(A) < 2kx:(ks: + 2k7).

3. Preuve du théoréme 1

Dans la suite R™ est muni de la structure euclidienne usuelle et on note (. | .) le
produit scalaire euclidien. Nous allons tout d’abord montrer que le théoreme est
une conséquence des deux lemmes suivants.

Lemme-clé. Soit y une courbe C*° transverse a F dont Uadhérence est compacte
et ne rencontre pas A. Il existe p > rq tel que toute feuille F' incluse dans Sat(vy)
soit transverse aux hypersurfaces H, pour r > p.

Lemme de fibration. Soient v une courbe F-positive et p un réel supérieur a
rQ tels que v soit contenue dans O, et les feuilles de Sat(vy) soient transverses aux
hypersurfaces H, pourr > p. La projection p., : Sat(y) — ~v est une C*™-fibration
triviale. De plus, Sat(T) est fermé dans M pour toute courbe T telle que T C .

Preuve du théoréme 1. Soient V une composante connexe de M\A et F' une
feuille contenue dans V. Appliquons le lemme de fibration & une courbe compacte
T coupant F' et satisfaisant aux hypotheses du lemme-clé. 1’ensemble Sat(7) est
un voisinage de F, saturé, fermé dans M et C°°-difféomorphe & F' x 7. Ainsi
F n’est pas un point de branchement. L’ensemble II(V) est un ouvert connexe
sans point de branchement. L’espace des feuilles étant une variété topologique de
dimension un, II(V) est homéomorphe & un intervalle. D’apres le lemme 1.2 il
existe une courbe F-positive vy paramétrant I1(V') et d’apres le lemme de fibration
la projection p, de Sat(y) =V sur v est une C*°-fibration triviale. |

Preuve du lemme-clé. 11 suffit de montrer qu’il existe p > 0 tel que ¥ N Sat(7)
soit inclus dans O,. Supposons que ce ne soit pas le cas. 1l existe une suite {z,,}
de points de 3 N Sat(7) telle que la suite {Q(x,,)} soit croissante et non majorée.
Puisque ¥\ Oy, est une union finie de courbes, on peut supposer que les z,, appar-
tiennent & une méme courbe C;. Pour tout entier n, notons y, l'intersection de
7 et de la feuille passant par z,,. La courbe 7 étant compacte et {Q(zy)} étant
croissante, la suite {y,} converge vers un point y de 7. Le sous-ensemble I1(C;)
de M/F est totalement ordonné et Q(z,,) tend en croissant vers I'infini lorsque n
tend vers l'infini. Il en résulte que si @ o C;(t) est une fonction croissante de ¢, la
suite {II(z,,)} est croissante et non majorée. Ainsi II(y) est une borne supérieure
de T1(C;). De méme si @ o C;(t) est une fonction décroissante, I1(y) est une borne
inférieure de I1{C;). Le point y appartient & A; N7¥. Ceci contredit ’hypothese du
lemme. O
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Preuve du lemme de fibration. Soient v et p satisfaisant aux hypotheses du lemme.
Nous supposons que «y est paramétrée par R et nous allons tout d’abord construire
un champ de vecteurs X de classe C* sur Sat(v), complet et laissant le feuilletage
JF invariant.
Soit
ik %)
X, (z) = ,; Pk(x)a—xk

et soit X{ sa projection orthogonale sur 'espace tangent aux niveaux de Q.
Puisque les feuilles coupant « sont transverses aux hypersurfaces lisses H, pour
r > p, le champ X est bien défini et ne s’annule pas sur Sat(y)\O,. Soit
¢ : [0;+00[— [0;1] une application C* constante égale & 1 sur [0; p] et nulle
sur [2p;+o0]. Le champ X = (¢ 0 Q) X, + (1 — ¢ 0 Q)X est transverse a F
sur Sat(vy). Le champ X = (l/dpy()?))f( est défini sur Sat(~y), est tangent aux
hypersurfaces H, pour r > 2p et laisse F invariant. Plus précisément, notons
VW — M, W CSat(y) xR, U(z,t) = V,(t), ¥, (0) =z, le flot de X. Il vérifie
py(¥(z,t)) = py(z) +t. Montrons que :

Soit I' une feuille coupant vy, et soient deux réels r > 2p et &, > 0 tels que ¥ soit
défini sur U, = (FNO,) X [—&r;+&,]. En notant 77 = \II_(UT) N~, on a : Sat_r(T_r),
le saturé de 7, pour le feuilletage F, induit par F sur O,, est fermé dans O, et

V(U,) = Sat,.(7;) = Sat(7,) N O,.

Le champ X étant tangent a H, et laissant F invariant, si F), est une feuille de
Fr, Wi(F,) est aussi une feuille de F,. L’ensemble \I!(m) est donc saturé pour
le feuilletage F, : il contient Sat,.(7;). D’apres le lemme 2.2, I'intersection d’une
feuille de F contenue dans Sat(v) avec O, est connexe. On a ainsi Sat(7) N O, C
Sat,. (7). De plus, toute feuille de F, contenue dans Sat(y) N O, est I'intersection

de O, avec une feuille de F coupant ~. Ainsi W(U,) étant inclus dans Sat(vy) et
saturé pour F,, toute feuille de F, qui rencontre ¥(U,) coupe 7. Ceci prouve que
W(T,) C Sat(7) N O;.

Si z € Sat(7), le champ X étant tangent aux niveaux de @ sur Sat(y)\Og,, il
existe r > 0 tel que la trajectoire de = soit contenue dans O,. D’apres 'affirmation
précédente, la trajectoire de x est définie sur l'intervalle de paramétrisation de ~,
c’est-a-dire sur R. Le champ X est complet.

Puisque X laisse F invariant, la trajectoire d’un point de Sat(«y) coupe toutes
les feuilles de Sat(v). La restriction de ¥ & I’ x R, olt F' est une feuille de F
coupant v, est un C*-difféomorphisme entre F' x R et Sat(y). La projection p, est
une fibration triviale. De plus, si 7 est une courbe telle que 7 C ~, il existe deux
réels a et b tels que Sat(7) = W(F x [a;b]). Ainsi Sat(T) est fermé dans M. O

Remarque 1. On distingue trois types de séparatrices dans ’ensemble A.
1. Les séparatrices sont des points de branchement de M/F. Le feuilletage F| de
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Iexemple 1 donné dans l'introduction possede de telles séparatrices : les droites
{z=—1}et {z =1}

2. Les séparatrices ne sont pas des points de branchement mais ne possédent pas
de wvoisinage saturé C*°-difféeomorphe a un produit. Le feuilletage Fo de I'exemple
2 donné dans 'introduction posseéde une telle séparatrice : la feuille {u = 1}.

3. Les séparatrices possédent un voisinage saturé C*°-difféomorphe a un produit
mais ne possédent pas de voisinage saturé dont toutes les feuilles sont transverses
auz nweauxr H, pour r suffisamment grand. 1.’équation w = 2(1 —x4)dx+:£3dy =0
définit un feuilletage sans singularité dont g(z,y) = y —? —1 /22 est une intégrale
premiere. L’ensemble Y des points de tangence de ce feuilletage avec les spheres
de centre l'origine a pour équation 2(1 — z#)y — 2% = 0. Il en résulte que la feuille
{z = 0} est contenue dans A alors que tout voisinage saturé de cette feuille possede
une structure de produit (voir figure 3).

Figure 3

Les deux premiers types de séparatrices ont un sens intrinseque. Celles du
troisieme type dépendent du choix de la fonction tapissante Q.

Remarque 2. Soient M un ouvert semi-analytique de R” relativement compact
et w une l-forme différentielle a coefficients analytiques définie sur un voisinage
de M telle que léquation w = 0 définisse un feuilletage de Rolle Fys sur M.
En reprenant des techniques de Moussu, Roche ([Mo-Ro 1], [Mo-Ro 2], [Ro]) et
Lion [Li] on peut, sous ces hypotheses, généraliser le théoreme 1. La relative
compacité de M remplace ’algébricité et permet d’obtenir la finitude du nombre
de séparatrices. Ceci fera I'objet d'un travail ultérieur.

Par contre le théoreme 1 n’a pas de “version locale” comme le montre ’exemple
suivant. L’équation de Pfaff w = (z — 2y )dx + 2xydy = 0 définit un feuilletage F
de Rolle de R?, singulier & l'origine et possédant la fonction g(z,y) = (y? —z) /2>
pour intégrale premiere. Pour ¢ < 0, la feuille gfl(t) est adhérente a 'origine et
borde un disque tangent au disque D_1, de centre I'origine et de rayon —1/t. Les
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deux composantes connexes de g_l(t) N D_1/; sont des séparatrices du feuilletage
induit par F sur D_y ;.

4. Topologie des feuilles

D’apres le lemme 1.1, ’espace des feuilles n’admet pas d’élément maximal ou mi-
nimal. Les composantes connexes du complémentaire de II(A) étant totalement
ordonnées, certaines d’entre elles ne sont pas bornées dans M/F (i.e. ne possedent
pas de majorant ou pas de minorant dans M/F). La topologie des feuilles con-
tenues dans ces composantes se déduit de la topologie des hypersurfaces H, pour
r > rg. La fonction @ étant tapissante et non singuliere sur M\O,,, ces hyper-
surfaces sont C°°-difféomorphes & I’hypersurface H = H,.

Théoréme 2°. Si F' est un point dune composante connere mon bornée de
(M/FN\II(A), la feuille F' est C*°-difféomorphe & une composante connexe de H
ou au complémentaire d’une sous-variété compacte a bord de H.

Preuve du théoreme 2°. D’apres le théoreme 1, il suffit de prouver le résultat pour
un point F' d’une composante connexe I du complémentaire de II(A) non bornée
dans M/F. Supposons I non majorée et montrons tout d’abord que :

(%) I existe un point F' de I tel que U = NY{F e I/F > F}) soit un ouvert
de M ne rencontrant pas Oy, de bord la feuille I.

Supposons qu’il existe une suite {F,} dans I croissante non majorée telle que
pour tout entier n, I’ensemble F,, N O, soit non vide. Notons z,, un point de cet
ensemble. Puisque O,, est compact, {x, } possede une valeur d’adhérence z. La
suite {F,,} étant croissante, elle converge vers I1(x). Ceci contredit le fait qu’elle
soit non majorée. Ainsi il existe F' € I tel que U = II"Y({F" € I/F" > F}) ne
rencontre pas O,,. Cet ensemble étant saturé, son bord U l'est aussi. L’intervalle
II(U) étant disjoint de II(A), totalement ordonné et non majoré dans M/F, une
feuille de 6U est une borne inférieure de I1(U) et ainsi F' = dU.

D’apres le lemme 2.2, il existe » > 0 tel que la feuille F' soit C*°-difféomorphe
a F'NO,. 1l suffit donc de prouver le théoreme pour F'NO,. Pour cela nous allons
construire un champ de vecteurs Z sur un voisinage de U transverse & F N O, et
H, NT et dont le flot “applique” F N O, sur un ouvert de H, NT.

Les champs X, (défini au paragraphe 3) et Y = grad@ ne s’annulent pas sur
U et le champ Z = X,/ || Xo || +Y/ || Y || est bien défini sur un voisinage W
de U N M dans M. Montrons que ce champ ne s’annule pas sur W. Il ne peut
s’annuler qu’en des points ou X, et Y sont colinéaires, c’est-a-dire en des points
de 3. Soit # = Cj(tg) un point de U. D’apres (x), la courbe F-positive C; N T
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parametre I1(T) et ainsi (X, (z) | C’;(to)) = wz(C;-(to)) > 0. D’autre part, la
fonction ¢;(t) = Q o C;(t) est strictement monotone et tend vers oo lorsque ¢
tend vers +o0. Elle est strictement croissante et q;(to) =Y (z) | C’; (to)) > 0. Les
vecteurs colinéaires X, (z) et Y (z) sont donc de méme sens et Z(z) #£0. On a sur
v

w(Xo/ [ X ) >w(Y/IY DT, dQ(Y/Y]]) >[dQ(Xo/ | Xu D] -

Een résulte que w(Z) > 0 et_dQ(_Z) > 0 sur U. Le champ Z est rentrant dans
U le long de F et, I'ensemble U N O, étant compact, toute demi-orbite issue d'un
point z de F'NO, sort de UNO, et coupe transversalement H, en un unique point

h(z). L’application h ainsi définie réalise un difféomorphisme entre F' N O, et un
ouvert de H, de bord I'N H,. O

5. Feuilletages non singuliers ou définis par les niveaux d’un
polynéme

Lorsque le feuilletage F est défini par une équation non singuliere dans R™ ou
par une équation dP = 0 avec P € R[X1,..., X;,], en modifiant les constructions
précédentes, on précise le théoreme 2.

Théoréme 2. Si F est un feuilletage non singulier de R™, et F' un point de M/ F
contenu dans une composante connere non bornée du complémentaire de II(A), la
feuille F' est C*°-difféomorphe a une variété planaire.

Preuves du théoreme 2 et du corollaire 2. Dans les deux cas, avec les arguments
du paragraphe 2, on montre que pour un choix convenable de l'origine 0 de R",
Iensemble 3} des points de tangence de F avec les spheres de centre 0 est une
union disjointe finie de courbes algébriques lisses.

Reprenons les constructions précédentes avec Q(z) =| z||? :

1. Lorsque F est non singulier on a M = R" et la fonction ) est tapissante. La
preuve du théoreme dans ce cas est la méme que dans le cas général (voir [C]).

2. Lorsque F est défini par les niveaux d’un polynéme P, la fonction @ n’est
pas tapissante. Cependant, 'adhérence d’une feuille ' d’un niveau non singulier
de P ne rencontrant pas Sing(dP) et le polynome P étant une intégrale premiere
de F, on peut reprendre les constructions des paragraphes 2, 3, 4 et prouver le
corollaire 2. O

Les feuilles des feuilletages algébriques non singuliers ne sont pas toutes planaires
comme le montre le théoreme 3. Sa preuve ne permet pas de construire explicite-

ment des feuilletages possédant des feuilles avec une topologie donnée.

Preuve du théoreme 3. On note B, la boule ouverte de rayon r de centre 'origine
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et S;’_l son bord. L’application ¢ de R™ dans By définie par
&
$lx) = —rmmee = ($1(2), o ()
Vil +1

est un difféomorphisme analytique entre R™ et By. Montrons tout d’abord que :

Siw = Pydz1+ ...+ Ppdzx, est une forme algébrique sans singularité dans By telle
que tous les mondmes de Py, ..., Py, soient de degré pair, alors l’équation ¢*(w) =0
définit un feuilletage algébrique sans singularité dans R™.

Notons 2d le maximum des degrés des polynoémes P, ..., P,. On a :

Les polynoémes P, ..., P, étant constitués de monomes de degré pair < 2d, la 1-
forme (1+ | = ||2)d+’32d>*w est & coefficients polynomiaux et non singuliere dans
n

Soit, V' une hypersurface C*>° compacte de R" et p1,...,p; des points de V. On
peut supposer que V est plongée dans BoN{z; > %}, transverse a la sphere 5?71 et
que VN By est difféomorphe & V\{p1, ...,px }. Nous allons prouver l'existence d’un
polynéme P impair, sans singularité dans By tel que 'intersection d’une hypersur-
face de niveau de P avec B possede une composante connexe C*-difféomorphe a
VnBj.

Construisons d’abord sur By une application g de classe C*°, impaire, non
singuliere dans Bz, dont I'un des niveaux est V. La variété V étant compacte,
il existe une application C*, f de B dans R possédant les propriétés suivantes
. elle est non singuliere dans B% N{xy > 71[}7 elle s’annule dans Bs N {z1 < %}
et V est I'un de ses niveaux. Soit ¢ une application C* de Bg dans R, impaire,
sans singularité sur B% N {—% <z < %}, constante sur By N{xq > %} On peut
choisir ¢ pour que la fonction f + v soit non singuliere sur B% N {% <z < %}
L’application g : By — R définie par g(z) = f(z) + ¢(z) siz1 > 0 et g(z) =
—f(—x) +(z) si z1 <0 satisfait aux propriétés voulues.

Il existe une suite { P, } de polyndomes impairs qui converge vers g uniformément
sur le compact By. Sin est un entier suffisamment grand, le polynéme P = P,
est non singulier dans By et une composante connexe d’un des niveaux de Pyp, est
C>®-difféomorphe & V N By. Le feuilletage défini par Péquation w = ¢*(dP)
0 est algébrique, non singulier dans R™ et possede une feuille difféomorphe
V\{pI? )pk}

O o |

La preuve précédente ne permet pas de majorer le degré du feuilletage en
fonction de la topologie de V.
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Remarque. La construction précédente se généralise & un nombre fini d’hyper-
surfaces compactes privées chacune d’un nombre fini (non nul) de points. Ainsi la
topologie des feuilles d’un feuilletage algébrique non singulier peut étre tres variée.
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