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Sur les feuilletages algébriques de Rolle

Frédéric Chazal

Résumé. L'objet de ce travail est l'étude des feuilletages algébriques de Rolle dans Rn On
montre que leur restriction au complémentaire d'un nombre fini de feuilles possède une structure
de produit On precise aussi la topologie de certaines de leurs feuilles
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Introduction

Soit lu P\dx\ + + Pndxn une 1-forme intégrable (to A div 0) définie sur
Rn où P\, ,Pn sont des éléments de l'anneau des polynômes à n indéterminées
R[Xi, ,Xn] et soient Sing(w) {x G Rn/Pi(x) Pn(x) 0} son lieu
singulier La restriction à M Rn\Sing(w) de l'équation de Pfaff lu 0 définit
un feuilletage algébrique T de codimension un transversalement orienté par lu sur
M Le couple T_ (J7, Sing(w)) est le feuilletage singulier défini par lu 0

Nous dirons que T (ou .F) est un feuilletage de Rolle si toute courbe transverse
à T coupe au plus une fois chaque feuille de T Cette hypothèse est clairement
vérifiée si lu est exacte Elle l'est aussi lorsque codim(Sing(w)) > 3 d'après un
argument classique de Haefliger puisque M est alors simplement connexe ([Hae
1], [Mo-Ro 2]) Dans toute la suite de ce travail T_ (J7,Smg(w)) désigne un
feuilletage algébrique de Rolle On déduit deux propriétés de l'hypothèse de Rolle
D'une part, les feuilles F de T sont des hypersurfaces orientables et fermées de

M D'autre part, si t —> j(t) est une courbe transverse à J7, elle coupe chaque
feuille de Sat(7), le saturé de 7 pour J7, en un unique point Ainsi l'application
p7 de Sat(7) dans 7 définie par p7(x) 7 n Fx, où Fx est la feuille passant par
x, est bien définie De plus la paramétrisation t —> j(t) est un plongement d'un
intervalle de R dans M et nous noterons également p7 l'application 7^ op7

Ces deux propriétés sont de nature différente La première porte sur la topologie

des feuilles La seconde établit une bijection entre une courbe transverse au
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feuilletage et l'ensemble des feuilles que cette courbe rencontre. Elle permet, en

particulier, de munir l'espace des feuilles d'une structure de variété topologique
de dimension un possédant des points des branchement. Le but de cet article
est d'utiliser de telles propriétés pour étudier la structure de T. Par exemple,
la considération de l'espace des feuilles et d'une relation d'ordre parmi les points
de branchement permet de donner une classification complète des feuilletages non
singuliers de R2 ([Ka], [Hae-Re]). Lorsque ceux-ci sont algébriques, le nombre de

points de branchement dans leur espace des feuilles est fini ([Mu], [S-S]). En dimension

plus grande tout se complique. L'espace des feuilles ne permet pas de décrire
les feuilletages algébriques de Rolle. Il existe des feuilletages algébriques non
singuliers de R3 dont l'espace des feuilles est homéomorphe à R et qui possèdent deux
feuilles non homéomorphes (voir l'exemple 2). Cependant la structure des
feuilletages algébriques de Rolle reste relativement simple comme le montre le théorème
suivant.

Théorème 1. Un feuilletage algébrique de Rolle T possède un nombre fini de

feuilles F\, ...,Fp telles que : chaque composante connexe V de M\(F\ U U Fp)
est le saturé d'une courbe 7 de classe C°° et la projection p7 : sat(7) V —> 7
est une C°°-fibration triviale.

Ainsi les feuilles F\,...,Fp "séparent" M en composantes sur lesquelles T
possède une structure de produit. Nous dirons que ce sont des séparatrices pour T.
Les deux exemples suivants illustrent le théorème précédent et mettent en évidence
deux types de séparatrices : les unes caractérisées par la structure transverse à

J7, les autres par la structure "tangente" à J7, c'est-à-dire par les variations de la
topologie des feuilles.

Exemple 1. Soit T\ le feuilletage sans singularité de R2 défini par l'équation de

Pfaff
uj\ xdx + (1 - x2)dy 0.

La fonction g(x,y) y — ^ln | 1 — x2 | est une intégrale première de T\ (voir la
figure 1).
Les feuilles F\ {x — 1} et F% {x 1} satisfont au théorème 1. Ce sont
deux points de ramification dans l'espace des feuilles.

Exemple 2. Soit Ti le feuilletage sans singularité de R3 obtenu par "rotation
autour de l'axe Oy" du feuilletage précédent (voir la figure 2). Il est défini par
l'équation de Pfaff

uj<2 udu + (1 — u )dy 0, avec u x + z

Au voisinage de la feuille F {u 1} la topologie des feuilles change. Certaines
feuilles sont homéomorphes à des cylindres et d'autres à des plans. La courbe 7
de la figure 2 est transverse à T2 et coupe toutes les feuilles. L'espace des feuilles
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Figure 2

est homéomorphe à R. La structure transverse à T_\ ne suffit pas à caractériser la
feuille F.

Le résultat suivant, bien connu dans le cadre algébrique complexe ([B], [Ha-Le]),
est un corollaire immédiat du théorème précédent. On le déduit aussi de résultats
classiques de géométrie algébrique réelle ([B-R] 2.7 p.98, [B-C-R] 9.3 p.195).

Corollaire 1. Si P est un polynôme, il existe un sous-ensemble fini {Ai,..., Xp}
de R tel que la restriction de P à K.n\P~ ({Ai,..., Xp}) soit une C°°-fibration
localement triviale.

La preuve de l'existence des séparatrices pour T est assez "constructive". On
en déduit que la topologie de certaines feuilles de T est liée à la géométrie de son
lieu singulier.
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Théorème 2. Si T est non singulier, il existe des composantes connexes du

complémentaire des séparatrices F\,...,Fp qui contiennent des feuilles C°° -difféomorphes
à des variétés planaires, i.e. difféomorphes à l'intérieur de sous-variétés compactes
à bord deW1-1.

De la preuve du théorème 2 on déduit le corollaire suivant.

Corollaire 2. Si P est un polynôme, il existe des réels A et \i tels que pour toute
valeur s de P contenue dans R\[A,/z], chaque composante connexe de P~ (s) est

C°°-difféomorphe à Sn ou à une variété planaire.

Il est alors naturel de se poser la question suivante : sous quelles conditions les

feuilles d'un feuilletage algébrique de Rolle non singulier sont-elles planaires? La
question est encore ouverte lorsqu'on impose à la forme lu d'être non singulière et
exacte. En particulier, je ne connais pas d'application polynomiale de R3 dans R
sans singularité dont une composante connexe d'un des niveaux soit une surface
de genre non nul. Par contre la réponse à cette question est négative dans le cas

général comme le montre le résultat suivant qui illustre la richesse possible de la
topologie des feuilles.

Théorème 3. Si V est une hypersurface C°° compacte sans bord de R" et

p\, ...,Pk, k > 1, des points de V, il existe un feuilletage algébrique de R" sans
singularité possédant une feuille C°°-difféomorphe à V\{p\, ...,pi~}.

Cet article est divisé en 5 parties. La première est consacrée à l'étude d'une
relation d'ordre sur l'espace des feuilles qui permet de construire les séparatrices
de T. Cette construction, donnée dans la partie 2, est le point essentiel de cet
article. La preuve du théorème 1 est donnée dans la partie 3. La quatrième partie
est consacrée à l'étude de la topologie des feuilles. Dans la dernière partie on
étudie les feuilletages non singuliers et on prouve les théorèmes 2 et 3.

L'auteur remercie Christian Bonatti, Jean-Marie Lion et Robert Moussu de

l'avoir encouragé dans ce travail.

1. Structure d'ordre sur l'espace des feuilles

L'espace des feuilles de T est l'espace quotient MjT de M par la relation d'équivalence

associée à T. On note II : M —> MjT la projection sur l'espace des feuilles
muni de sa topologie quotient. Si F est une feuille de J7, la notation F désigne
à la fois l'hypersurface de M correspondant à cette feuille et le point H(F). Un
point F de MjT est un point de branchement s'il existe un point F distinct de

F tel que tout voisinage de F rencontre tout voisinage de F et on dit que F et
F sont non séparés. Il est connu que l'espace MjT est une variété topologique
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de dimension un possédant éventuellement des points de branchement ([Hae 2]).
Une courbe dans M de classe C°° paramétrée, 7 : t —> j(t) est dite T-positive

si u)1n\(^/ (t)) > 0 pour tout t. L'espace des feuilles est muni de la relation de

Novikov [N] : un point F est dit inférieur à un point F et on note F < F
s'il existe une courbe .F-positive rencontrant les feuilles F et F en j(t) et j(t
respectivement avec t <t

Lemme 1.1. La relation < est une relation d'ordre partiel sur MjT. Tout point
de MjT possède des points qui lui sont inférieurs et supérieurs.

Ce lemme est une conséquence de l'assertion classique suivante.

Assertion. Soient 71 : [0,1] —> M et 72 : [0,1] —> M deux courbes T-
positives, telles que 71 (1) et 72(0) appartiennent à la même feuille. Pour tout
£ €]0, tj[, il existe une courbe IF-positive 7 telle que j(t) 71 (2£) sit < 1/2 — e et

7(t) 72(2t - 1) si t > 1/2 + e.

Preuve du lemme 1.1. Soient F, F et F trois points de MjT tels que F < F
et F < F En appliquant l'assertion précédente à deux courbes jF-positives
joignant F h F et F h F on obtient une courbe jF-positive joignant F h F et

on a F < F Si F et F sont deux points distincts tels que F < F et F < F
il existe, d'après l'assertion précédente, une courbe jF-positive coupant deux fois
la feuille F. Le feuilletage T étant de Rolle, on a F F La relation < est bien
une relation d'ordre. Si F est une feuille, il existe une courbe jF-positive coupant
F. Ainsi il existe des points supérieurs et des points inférieurs à F. D

Notons que deux points non séparés ne sont pas comparables pour <. Ainsi,
cette relation n'est pas, en général un ordre total. D'autre part cet ordre possède
une signification géométrique : si 7 est une courbe jF-positive, sa paramétrisation
définit un ordre total sur 7 et la restriction de II à 7 est un homéomorphisme
de 7 sur 11(7) respectant l'ordre. On dit que la courbe 7 paramètre l'ensemble
11(7). Réciproquement le lemme suivant montre que tout intervalle de MjT est

paramétré par une courbe transverse à T.

Lemme 1.2. Tout sous-ensemble ouvert I de M/J- homéomorphe à un intervalle

est totalement ordonné. Plus précisément, il existe une courbe T-positive
paramétrant I.

Preuve. Soient F et F deux points de /. Le segment d'extrémités F et F est

recouvert par une union finie d'ouverts 11(7^), i 1, ...,p où les jt sont des courbes

jF-positives. En appliquant l'assertion on construit une courbe jF-positive joignant
les feuilles F et F'.

Soient (Fn) et (Gn) deux suites de points de / telles que (Fn) soit strictement
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croissante, non majorée dans / et (Gn) soit strictement décroissante, non minorée
dans /. On construit une suite (~/n) de courbes jF-positives telle que pour tout
entier n, 7„ joigne les feuilles Fn et Gn et 7„ Ç 7n-|_i. La réunion 7 des courbes

7„ est une courbe C°° transverse à T telle que 11(7) /. D

2. Fonctions tapissantes et séparatrices

L'étude de l'ensemble des points de tangence de T aux niveaux d'une fonction
tapissante bien choisie permet de définir et de caractériser les séparatrices du
théorème 1.

2.1. Fonction tapissante

Une fonction définie sur M à valeurs dans R+ est dite tapissante au sens de Thom
si elle est propre et possède seulement un nombre fini de valeurs critiques. C'est
le cas des applications Q£ : M —> R+ définies par Q£(x) exp((x\ + ei)2 + +
{xn + enf){P{x))-1 avec P P2 + + P2. En effet pour e G Rn fixé, Q£ est

propre, et son lieu singulier étant algébrique, elle n'a qu'un nombre fini de valeurs

critiques.

Lemme 2.1. Il existe un sous-ensemble semi-algébrique S de Rn de dimension
strictement inférieure à n tel que pour e G Rn\S> les trois propriétés suivantes
soient vérifées :

1) l'ensemble Se des points de tangence de T avec les niveaux de Q£ est une union
finie de courbes algébriques lisses disjointes,
n) l'ensemble Te des points de tangence de T o S£ est une union finie de points
et de courbes lisses compactes dans des feuilles de J-',

ni) toute feuille F coupe Se et le nombre de composantes connexes de Se Pi F
est majoré par un entier ko dépendant seulement des entiers n et d où d est le

maximum des degrés des polynômes P\,...,Pn.

Preuve. L'ensemble Ê {(x,e) G M x Rn/u; A dQ£ 0} est un sous-ensemble

algébrique de M x Rn. Notons 9 la projection de Ê sur Rn définie par 6(x, e) e

et S l'ensemble de ses valeurs critiques. Pour e G Rn, l'ensemble 6~^{e) Se

est l'ensemble des points de tangence de T aux niveaux de Qe. Aussi il suffit
de prouver que l'ensemble algébrique Ë est lisse et de codimension n — 1. En
effet, d'après le théorème de Bertini-Sard, S est un ensemble semi-algébrique de
dimension inférieure ou égale à n — 1 et pour toute valeur régulière e de 6, 6~^{e)
est lisse et de dimension un. L'ensemble Ë est défini par les n(n — l)/2 équations

Ektl(x,e) Pk(x)At(x,e) - Pt(x)Ak(x,e) 0, 0 < k < l < n



Vol. 72 (1997) Sur les feuilletages algébriques de Rolle 417

où Aj est le polynôme 2{x0 + £0)P{x) — dP/dxo{x) pour j G {1, ...,n}. Localement,

seules n — 1 de ces équations sont indépendantes. En effet si Uk (M x
R")^"1!«) on a t/fc nS F-l{0) avec Ffc (E1>fc,..., £fc_i,fc, £M+1,..., EM).
La différentielle de l'application i^ est de rang n — f en tout point de Uk et
ainsi F^ (0) est une sous-variété lisse de Uk de codimension n — 1. Les ouverts

U\,...,Un recouvrant M x Rn, l'ensemble Ë est une sous-variété algébrique lisse
de codimension n — 1 de M x Rn.

Choisissons une valeur régulière e de 9. L'ensemble Te des points où Se est

tangent aux niveaux de QF est un sous-ensemble algébrique de £e. Il possède

un nombre fini de composantes connexes. Chacune d'elles est un point ou une
composante connexe de Se contenue dans l'intersection d'une feuille de T et d'un
niveau de Q£. L'ensemble Se étant lisse, ses composantes connexes contenues dans
des niveaux de la fonction Q£ sont des courbes lisses compactes.

Soit F est une feuille de T. F étant fermée dans M, la restriction de Qe à F est

propre et atteint son minimum en un point de £e. Les composantes connexes de

Se\Te sont des courbes transverses à T et F coupe au plus une fois chacune d'elles.
Le nombre de composantes connexes de FnSe est borné par la somme des nombres
de composantes connexes de Se\Te et T£. Le degré des équations définissant Se
et T£ ne dépendant que des entiers n et d, il existe un entier ko ko(n,d) qui
majore ce nombre. D

II est naturel de se demander si on peut choisir e tel que l'ensemble Te soit un
ensemble fini de points. En remplaçant l'exposant —f dans l'expression de QF par
un exposant — /x, \i > 0, on peut raffiner la preuve précédente et prouver que pour
un choix convenable de e et /x, l'ensemble Te T£jM est fini.

Dans toute la suite, e est un point fixé de Rn\S> et on pose Q Qe, S Se,
T T£. On note Or l'ouvert {x G M/Q{x) < r} de bord Hr {x G M/Q{x)
r}. La théorie de Morse permet de montrer que la topologie d'une feuille F du
feuilletage T est déterminée par les singularités de la restriction de Q à F. Plus
précisément, on a le résultat suivant qui sera utilisé plusieurs fois dans la suite.

Lemme 2.2. Si F est une feuille de T et p un réel positif tel que F soit transverse
à Hr pour tout r > p, alors F est C°°-difféomorphe à F D Op. Pour chaque feuille
F, un tel réel p existe.

Preuve. D'après le lemme précédent, S n F étant compact, il existe un réel p > 0

tel que S n F soit contenu dans l'ouvert Op. Le lemme est un résultat classique
de la théorie de Morse ([E], [Mi 2]) : "si g est une application C°°, propre, d'une
variété V à valeurs dans R+, sans singularité dans g~^(\p; +oo[), alors V est C°°-

difféomorphe à V n <7~1([0; r[) pour r > p", avec g Q\p. D
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2.2. Séparatrices

Les propriétés de S et T établies dans le lemme 2.1 permettent de définir et de

caractériser les feuilles F\, ...,Fp du théorème 1. L'ensemble T étant inclus dans un
nombre fini de niveaux de la fonction Q et le nombre de valeurs critiques de Q étant
fini, il existe ro > 0 tel que S\Oro soit une union finie de courbes lisses disjointes
Ci,...,Ci transverses aux hypersurfaces lisses Hr pour tout r > ro. Dans toute la
suite ce nombre réel ro est fixé. Les courbes Ci,..., Ci sont transverses à T et nous
les paramétrons positivement. Si la fonction Q oC,(i) est croissante, A^ désigne la
réunion des feuilles se projetant sur les éléments minimaux éventuels de l'ensemble
des majorants de H(Ct). De tels éléments sont appelés bornes superteures de H(Ct).
L'ensemble A^ se caractérise aussi topologiquement. On a

A, f] sat(Ct\On)
n>r0

et en utilisant la terminologie des dynamiciens, on dit que A^ est l'ensemble iv-
limite de Ct Si la fonction QoCt(t) est décroissante, on définit de même A^ comme
l'ensemble des feuilles se projetant sur les éléments maximaux de l'ensemble des
minorants de n(Cj) (bornes inférieures de H(Ct)). Il possède la même caractérisation
topologique que précédemment et est appelé ensemble a-hmite de Ct. On note A
la réunion des ensembles a ou w-limite At. Une feuille contenue dans A est appelée
une séparatrice de T relativement à la fonction tapissante Q.

Lemme 2.3. L'ensemble II(A) est fini.

Preuve. D'après le lemme 2.1, toute union infinie de feuilles contient deux feuilles

coupant la même composante connexe de £\T. Les composantes connexes de £\T
étant transverses à T, toute union infinie de feuilles contient deux feuilles dont
les images par II sont comparables dans M)T. Deux points de II(Aj), bornes
supérieures (ou inférieures) d'un même ensemble, sont non comparables pour la
relation d'ordre <. L'ensemble II(Aj) est donc fini. D

L'algébricité des ensembles S et T va permettre de majorer explicitement le

cardinal de l'ensemble LT(A). D'après Milnor [Mi 1] et Thom [T] on sait que
: si V est un ensemble algébrique dans Rn d'équations gi gp 0 où

gi, ...,gp sont des polynômes de degré < d, la somme des nombres de Betti de V
est majorée par d(2d — l)n Appliquons ce résultat à S et T. Les équations
définissant S étant de degré < 2d + 1, le nombre de composantes connexes de
S est majoré par k-% (2d + l)(4d + l)"^1. Les équations définissant T étant
de degré < (2n — l)d, le nombre de composantes connexes de T est majoré par
fcr (2n — l)d(2(2n — l)d+ l)"^1. Puisque S est une union disjointe de courbes
lisses, le nombre de composantes connexes de E\T est majoré par k^ + kr- L'entier
^0 ^E + 2&t majore le nombre de composantes connexes de l'intersection d'une
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feuille avec S. Pour tout i G {1,...,/}, t)II(Aj) est majoré par la somme des

nombres de composantes connexes de £\T et de T, c'est à dire par ko. L'entier /

étant majoré par 2%; on a finalement jjII(A) < 2k^(k^ + 2

3. Preuve du théorème 1

Dans la suite Rn est muni de la structure euclidienne usuelle et on note | le

produit scalaire euclidien. Nous allons tout d'abord montrer que le théorème est

une conséquence des deux lemmes suivants.

Lemme-clé. Soit 7 une courbe C°° transverse à T dont l'adhérence est compacte
et ne rencontre pas A. Il existe p > ro tel que toute feuille F incluse dans Sat (7)
soit transverse aux hypersurfaces Hr pour r > p.

Lemme de fibration. Soient 7 une courbe T-positive et p un réel supérieur à

7*0 tels que 7 soit contenue dans Op et les feuilles de Sat(^) soient transverses aux
hypersurfaces Hr pour r > p. La projection p7 : Sat(7) —> 7 est une C°° -fibration
triviale. De plus, Sat(~) est fermé dans M pour toute courbe t telle que t C 7.

Preuve du théorème 1. Soient V une composante connexe de M\K et F une
feuille contenue dans V. Appliquons le lemme de fibration à une courbe compacte

t coupant F et satisfaisant aux hypothèses du lemme-clé. L'ensemble Sat(r) est

un voisinage de F, saturé, fermé dans M et C°°-difféomorphe à F x t. Ainsi
F n'est pas un point de branchement. L'ensemble H(V) est un ouvert connexe
sans point de branchement. L'espace des feuilles étant une variété topologique de
dimension un, H(V) est homéomorphe à un intervalle. D'après le lemme 1.2 il
existe une courbe jF-positive 7 paramétrant H(V) et d'après le lemme de fibration
la projection p7 de Sat(7) V sur 7 est une C°°-fibration triviale. D

Preuve du lemme-clé. Il suffit de montrer qu'il existe p > 0 tel que S n Sat(7)
soit inclus dans Op. Supposons que ce ne soit pas le cas. Il existe une suite {xn}
de points de S n Sat(7) telle que la suite {Q(xn)} soit croissante et non majorée.
Puisque S\Oro est une union finie de courbes, on peut supposer que les xn
appartiennent à une même courbe Ct. Pour tout entier n, notons yn l'intersection de

7 et de la feuille passant par xn. La courbe 7 étant compacte et {Q(xn)} étant
croissante, la suite {yn} converge vers un point y de 7. Le sous-ensemble H(Ct)
de MjT est totalement ordonné et Q(xn) tend en croissant vers l'infini lorsque n
tend vers l'infini. Il en résulte que si Q o Ct{t) est une fonction croissante de t, la
suite {n(xn)} est croissante et non majorée. Ainsi H(y) est une borne supérieure
de n(Cj). De même si Q oC,(t) est une fonction décroissante, H(y) est une borne
inférieure de H(Ct). Le point y appartient h At(~)~. Ceci contredit l'hypothèse du
lemme. D
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Preuve du lemme de fibratton. Soient 7 et p satisfaisant aux hypothèses du lemme.
Nous supposons que 7 est paramétrée par R et nous allons tout d'abord construire
un champ de vecteurs X de classe C°° sur Sat(7), complet et laissant le feuilletage
T invariant.
Soit

Éï dxk

et soit X\ sa projection orthogonale sur l'espace tangent aux niveaux de Q.
Puisque les feuilles coupant 7 sont transverses aux hypersurfaces lisses Hr pour
r > p, le champ X\ est bien défini et ne s'annule pas sur Sat(^/)\Op. Soit
</> : [0;+oo[—> [0; 1] une application C°° constante égale à 1 sur [0; p] et nulle
sur [2/o;+oo[. Le champ X {<f> o Q)XCÜ + (1 — </> o Q)X\ est transverse à T
sur Sat(7). Le champ X (l/dp7(X))X est défini sur Sat(7), est tangent aux
hypersurfaces Hr pour r > 2p et laisse T invariant. Plus précisément, notons

* : W —> M, W Ç Sat(7) x R, *(x,t) *x(t), *x(0) x, le flot de X. Il vérifie
t)) =p7(x) + t. Montrons que :

Soit F une feuille coupant 7, et soient deux réels r > 2p et er > 0 tels que ty soit
défini sur Ur (F C\Or) X [—er;+er]. En notant ~. ^{UT)C\^(, on a : Satr(7v),
le saturé de t> pour le feuilletage J-r induit par T sur Or, est fermé dans Or et

*(Ï77) Satr(?>) Sat(?v) r\TTr.

Le champ X étant tangent à Hr et laissant T invariant, si Fr est une feuille de

J-'r, ^t(Fr) est aussi une feuille de Tr. L'ensemble ^(Ur) est donc saturé pour
le feuilletage Tr : il contient Satr(î>). D'après le lemme 2.2, l'intersection d'une
feuille de T contenue dans Sat(7) avec Or est connexe. On a ainsi Sat(7>) C\Or Ç

Satr(î>). De plus, toute feuille de Tr contenue dans Sat(7) C\Or est l'intersection
de Or avec une feuille de T coupant 7. Ainsi ^(Ur) étant inclus dans Sat(7) et
saturé pour J7>, toute feuille de Tr qui rencontre ^(Ur) coupe ï>. Ceci prouve que

Si x G Sat(7), le champ X étant tangent aux niveaux de Q sur S&t(j)\O2p, il
existe r > 0 tel que la trajectoire de x soit contenue dans Or. D'après l'affirmation
précédente, la trajectoire de x est définie sur l'intervalle de paramétrisation de 7,
c'est-à-dire sur R. Le champ X est complet.

Puisque X laisse T invariant, la trajectoire d'un point de Sat(7) coupe toutes
les feuilles de Sat(7). La restriction de ^ à F x R, où F est une feuille de T
coupant 7, est un C°°-difféomorphisme entre F x R et Sat(7). La projection p7 est

une fibration triviale. De plus, si t est une courbe telle que t C 7, il existe deux
réels a et b tels que Sat(r) ^(F x [a; b]). Ainsi Sat(r) est fermé dans M. D

Remarque 1. On distingue trois types de séparatrices dans l'ensemble A.
1. Les séparatrices sont des points de branchement de MjT. Le feuilletage T\ de
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l'exemple 1 donné dans l'introduction possède de telles séparatrices : les droites
{x -1} et {x 1}.
2. Les séparatrices ne sont pas des points de branchement mais ne possèdent pas
de voisinage saturé C°°-difféomorphe à un produit. Le feuilletage T<i de l'exemple
2 donné dans l'introduction possède une telle séparatrice : la feuille {u 1}.
3. Les séparatrices possèdent un voisinage saturé C°°-difféomorphe à un produit
mais ne possèdent pas de voisinage saturé dont toutes les feuilles sont transverses
aux niveaux Hr pour r suffisamment grand. L'équation u> 2(1 — x )dx-\-x dy 0

définit un feuilletage sans singularité dont g(x, y) y — x2 — 1/x2 est une intégrale
première. L'ensemble S des points de tangence de ce feuilletage avec les sphères
de centre l'origine a pour équation 2(1 — x4)y — x4 0. Il en résulte que la feuille
{x 0} est contenue dans A alors que tout voisinage saturé de cette feuille possède
une structure de produit (voir figure 3).

Vv

\ \\ \ \ / // /

Figure 3

Les deux premiers types de séparatrices ont un sens intrinsèque. Celles du
troisième type dépendent du choix de la fonction tapissante Q.

Remarque 2. Soient M un ouvert semi-analytique de Rn relativement compact
et lu une 1-forme différentielle à coefficients analytiques définie sur un voisinage
de M telle que l'équation lu 0 définisse un feuilletage de Rolle Tm sur M.
En reprenant des techniques de Moussu, Roche ([Mo-Ro 1], [Mo-Ro 2], [Ro]) et
Lion [Li] on peut, sous ces hypothèses, généraliser le théorème 1. La relative
compacité de M remplace l'algébricité et permet d'obtenir la finitude du nombre
de séparatrices. Ceci fera l'objet d'un travail ultérieur.

Par contre le théorème 1 n'a pas de "version locale" comme le montre l'exemple
suivant. L'équation de Pfaff uj (x — 2y^)dx + 2xydy 0 définit un feuilletage T
de Rolle de R2, singulier à l'origine et possédant la fonction g(x, y) (y2 — x)/x?
pour intégrale première. Pour t < 0, la feuille g~^{t) est adhérente à l'origine et
borde un disque tangent au disque D_\/t de centre l'origine et de rayon —1/t. Les
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deux composantes connexes de g~^{t) C\D_\/t sont des séparatrices du feuilletage
induit par T sur D_\/t.

4. Topologie des feuilles

D'après le lemme 1.1, l'espace des feuilles n'admet pas d'élément maximal ou
minimal. Les composantes connexes du complémentaire de II(A) étant totalement
ordonnées, certaines d'entre elles ne sont pas bornées dans MjT (i.e. ne possèdent

pas de majorant ou pas de minorant dans M/J7). La topologie des feuilles
contenues dans ces composantes se déduit de la topologie des hypersurfaces Hr pour
r > ro. La fonction Q étant tapissante et non singulière sur M\Oro, ces hyper-
surfaces sont C°°-difféomorphes à l'hypersurface H Hro.

Théorème 2'. Si F est un point d'une composante connexe non bornée de

(M/J-)\H(A), la feuille F est C°°-difféomorphe à une composante connexe de H
ou au complémentaire d'une sous-variété compacte à bord de H.

Preuve du théorème 2'. D'après le théorème 1, il suffit de prouver le résultat pour
un point F d'une composante connexe / du complémentaire de II(A) non bornée
dans MjT. Supposons / non majorée et montrons tout d'abord que :

(*) II existe un point F de I tel que U II"1 ({F' G I/F' > F}) soit un ouvert
de M ne rencontrant pas Oro de bord la feuille F.

Supposons qu'il existe une suite {Fn} dans / croissante non majorée telle que
pour tout entier n, l'ensemble Fn n Oro soit non vide. Notons xn un point de cet
ensemble. Puisque Oro est compact, {xn} possède une valeur d'adhérence x. La
suite {Fn} étant croissante, elle converge vers II(x). Ceci contredit le fait qu'elle
soit non majorée. Ainsi il existe F G / tel que U II"1 ({F G I/F > F}) ne
rencontre pas Oro. Cet ensemble étant saturé, son bord SU l'est aussi. L'intervalle
II([/) étant disjoint de II(A), totalement ordonné et non majoré dans M/J7, une
feuille de SU est une borne inférieure de H(U) et ainsi F SU.

D'après le lemme 2.2, il existe r > 0 tel que la feuille F soit C°°-difféomorphe
àFnOr. Il suffit donc de prouver le théorème pour FC\Or. Pour cela nous allons
construire un champ de vecteurs Z sur un voisinage de U transverse à F n Or et

Hr n U et dont le flot "applique" F C\Or sur un ouvert de Hr n U.
Les champs Xu (défini au paragraphe 3) et Y gradQ ne s'annulent pas sur

U et le champ Z Xu/ \\ Xu || +Y/ \\ Y \\ est bien défini sur un voisinage W
de U n M dans M. Montrons que ce champ ne s'annule pas sur W. Il ne peut
s'annuler qu'en des points où Xu et Y sont colinéaires, c'est-à-dire en des points
de S. Soit x C3(to) un point de U. D'après (*), la courbe jF-positive C3 C\U
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paramètre H(U) et ainsi (Xu(x) | C (to)) ^(C (to)) > 0. D'autre part, la
fonction qt(t) Q o C0{t) est strictement monotone et tend vers +oo lorsque t
tend vers +oo. Elle est strictement croissante et qo{to) (Y(x) | C3(to)) > 0. Les
vecteurs colinéaires Xu(x) et Y(x) sont donc de même sens et Z(x) =/= 0. On a sur
V :

^(XW/||XW||)>KY/||Y||)|, dQ{Y/\\Y\\)>\dQ{Xu/\\Xu\\)\.

Il en résulte que to{Z) > 0 et dQ(Z) > 0 sur U. Le champ Z est rentrant dans
U le long de F et, l'ensemble U C\Or étant compact, toute demi-orbite issue d'un
point x de FC\Or sort de UC\Or et coupe transversalement Hr en un unique point
h(x). L'application h ainsi définie réalise un difféomorphisme entre F C\Or et un
ouvert de Hr de bord FC\Hr. D

5. Feuilletages non singuliers ou définis par les niveaux d'un
polynôme

Lorsque le feuilletage T est défini par une équation non singulière dans Rn ou

par une équation dP 0 avec P G K[Xi, ...,Xn], en modifiant les constructions
précédentes, on précise le théorème 2'.

Théorème 2. Si IF est un feuilletage non singulier de W1, et F un point de MjT
contenu dans une composante connexe non bornée du complémentaire de II(A), la

feuille F est C°°-difféomorphe à une variété planaire.

Preuves du théorème 2 et du corollaire 2. Dans les deux cas, avec les arguments
du paragraphe 2, on montre que pour un choix convenable de l'origine 0 de Rn,
l'ensemble S des points de tangence de T avec les sphères de centre 0 est une
union disjointe finie de courbes algébriques lisses.

Reprenons les constructions précédentes avec Q(x) =||x||2 :

1. Lorsque T est non singulier on a M W1 et la fonction Q est tapissante. La
preuve du théorème dans ce cas est la même que dans le cas général (voir [C]).
2. Lorsque T est défini par les niveaux d'un polynôme P, la fonction Q n'est

pas tapissante. Cependant, l'adhérence d'une feuille F d'un niveau non singulier
de P ne rencontrant pas Sing(dP) et le polynôme P étant une intégrale première
de J7, on peut reprendre les constructions des paragraphes 2, 3, 4 et prouver le

corollaire 2. D

Les feuilles des feuilletages algébriques non singuliers ne sont pas toutes planaires
comme le montre le théorème 3. Sa preuve ne permet pas de construire explicitement

des feuilletages possédant des feuilles avec une topologie donnée.

Preuve du théorème 3. On note Br la boule ouverte de rayon r de centre l'origine
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et S*"^1 son bord. L'application </> de Rn dans B\ définie par

NI +1

est un difféomorphisme analytique entre Rn et B\. Montrons tout d'abord que :

Si lu P\dx\ + + Pndxn est une forme algébrique sans singularité dans B\ telle

que tous les monômes deP\,...,Pn soient de degré pair, alors l'équation 4>*(lj) 0

définit un feuilletage algébrique sans singularité dans R™.

Notons 2d le maximum des degrés des polynômes P\,...,Pn. On a :

Les polynômes P\,...,Pn étant constitués de monômes de degré pair < 2d, la 1-

forme (1+ || x \\^)d+^(jfu! est à coefficients polynomiaux et non singulière dans

Soit V une hypersurface C°° compacte de Rn et p\, ...,pk des points de V. On
peut supposer que V est plongée dans B<2C\{x\ > ^}, transverse à la sphère S™~ et

que VC\B\ est difféomorphe à V\{p\, ...,pk}. Nous allons prouver l'existence d'un
polynôme P impair, sans singularité dans B\ tel que l'intersection d'une hypersurface

de niveau de P avec B\ possède une composante connexe C°°-diffeomorphe à

V C\BX.
Construisons d'abord sur B<i une application g de classe C°°, impaire, non

singulière dans B3, dont l'un des niveaux est V. La variété V étant compacte,
il existe une application C°°, / de B% dans R possédant les propriétés suivantes
: elle est non singulière dans B3 n {x\ > |}, elle s'annule dans B2 l~l {x\ < g}
et V est l'un de ses niveaux. Soit ip une application C°° de B<i dans R, impaire,
sans singularité sur B-s n { — g < x\ < g}, constante sur Bi n \x\ > ^}. On peut

choisir ip pour que la fonction / + ip soit non singulière sur B3 C\ {% < x\ < ^}.
L'application g : B% —> R définie par g(x) f(x) + ip(x) si x\ > 0 et g(x)
—f(—x) + ip(x) si xi < 0 satisfait aux propriétés voulues.

Il existe une suite {Pn} de polynômes impairs qui converge vers g uniformément
sur le compact B\. Si n est un entier suffisamment grand, le polynôme P Pn
est non singulier dans B\ et une composante connexe d'un des niveaux de P\b1 est

C°°-diffeomorphe à V C\ B\. Le feuilletage défini par l'équation lu <f>*{dP)
0 est algébrique, non singulier dans R" et possède une feuille difféomorphe à

V\{P1,...,Pk}. D

La preuve précédente ne permet pas de majorer le degré du feuilletage en
fonction de la topologie de V.
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Remarque. La construction précédente se généralise à un nombre fini d'hyper-
surfaces compactes privées chacune d'un nombre fini (non nul) de points Ainsi la

topologie des feuilles d'un feuilletage algébrique non singulier peut être très variée
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