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On the rigidity of discrete isometry groups of negatively
curved spaces

Sa'ar Hersonsky and Frédéric Paulin

Abstract. We prove an ergodic rigidity theorem for discrete isometry groups of CAT(—1) spaces
We give explicit examples of divergence isometry groups with infinite covolume in the case of trees,
piecewise hyperbolic 2-polyhedra, hyperbolic Bruhat-Tits buildings and rank one symmetric
spaces We prove that two negatively curved Riemanman metrics, with conical singularities of
angles at least 2tt, on a closed surface, with boundary map absolutely continuous with respect
to the Patterson-Sullivan measures, are isometric For that, we generalize J -P Otal's result to
prove that a negatively curved Riemanman metric, with conical singularities of angles at least
2?r, on a closed surface, is determined, up to isometry, by its marked length spectrum

Mathematics Subject Classification (1991). 57S30, 53C45, 20H10, 51M10, 51E24

Keywords. Negative curvature, divergence group, Patterson—Sullivan measure, marked length
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Introduction

Mostow's global rigidity theorem [Mos] asserts that two closed locally symmetric
manifolds having isomorphic fundamental group are isometric, except for real

hyperbolic surfaces In the case of real hyperbolic (l e of constant curvature —1)

manifolds (of dimension n > 3), where both manifolds are covered by the
hyperbolic n-space Hg, the first step is to construct an equivanant boundary map
(f> S"^1 —> S"^1 and to prove that <j> is sufficiently regular (here quasi-conformal)
In particular, under the hypothesis on the dimension, the boundary map is
absolutely continuous with respect to the Lebesgue measure Then by using dynamical-
ergodic properties of the action of the groups at infinity, Mostow proved that the

map is conformai, î e belongs to the Mobms group, hence is the extension of an
equivanant isometry

Mostow's rigidity theorem has been extended by [Pra] to the noncompact finite
volume case In his seminal work (see [Sull,Sul2]) on the ergodic theory at infinity
of discrete isometry groups of Hg, D Sullivan [Sul2] extended Mostow's rigidity
result to real hyperbolic n-mamfolds whose volume grows slower than the volume
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of Hg. P. Tukia [Tuk] further extended it to the quotients by divergence groups
of isometries of Hg (see the définition below).

The first goal of this paper is to generalize Mostow's result to divergence groups
of isometries of CAT( —1) metric spaces X (see [Grol, GH] for a definition). These

spaces include simply connected Riemannian manifolds with sectional curvature
< — 1 (for instance negatively curved symmetric spaces), simplicial trees and some
simply connected piecewise hyperbolic polyhedra (see section 2). They can be

compactified by adding a boundary (or space at infinity) dX (see section 1).
Recall that (see for instance [Boul,Bou2]) if F is a discrete group of isometries

of X, then its Potncaré series is, with s G R and x G X,

P{s,x) J2e-sd(-x'~<x\

This series converges if s > ô and diverges if s < ô, for some ô (independent of
x) called the critical exponent of F. At s ô, the Poincaré series may converge
or diverge. In the latter case, if ô is finite and non zero, the group F is called a

divergence group.
Let F be a divergence group. Consider the measure Y^ er e^sd^xr/x'D7X, where

Dy is the Dirac mass at the point y G X, normalized to be a probability measure.
It converges weakly as s —s- 5+ to a measure (j,x, whose support is the limit set
of F, contained in dX. This measure is called the Patterson-Sullivan measure
(see [Patl,Sull] in the real hyperbolic case, and [Boul,Bou2,BuMo] in the case of
CAT(-l) spaces).

One may associate to four distinct points on the space at infinity of X, a non-
negative number called the crossratio (see [Ota2] in the negatively curved manifold
case, [Paul] for general Gromov hyperbolic spaces, and section 1). In the case of
X Hg, it is the absolute value of the classical complex crossratio. A map is

called Mb'bius if it preserves the crossratios. Our first main result is:

Theorem A. Let X\^X^ he locally compact complete CAT(-l) metric spaces.
Let T\ and T2 be discrete groups of isometries of X\, X2, having the same critical
exponent. Suppose that T2 is a divergence group. Let <f> : dX\ —> dX% he a Borel
map, equwariant for some morphism T\ —s- Ty, which is non-singular with respect
to the Patterson-Sullivan measures.

Then <j> is Mb'bius on the limit set ofT\.

Note that the hypothesis on the critical exponents is necessary in order to
prevent X% being X\ with a scaled metric. Specializing X\ and using work of
M. Bourdon [Bou3,Bou4], we obtain:

Corollary B. Under the above hypotheses, assume moreover that one of the
following situations holds:
1. X\ is a rank one symmetric space, of curvature normalized to have maximum

— 1, and the limit set ofT\ equals dX\.
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2. X\ is a Bruhat-Tits building modeled on a discrete reflection group o/HjJ (see

section 2), and the limit set ofT\ equals dX\.
Then <j> is the extension of an isometric embedding of X\ into X%.

In the case when Xi,X% are both locally finite trees, these results are due to
M. Coornaert [Coo2]. While we were writing this paper, we received a preprint of
C. Yue [Yue], which proves in the case X\, X% are both rank one symmetric spaces a

stronger theorem than Theorem A: let Fi and F2 be discrete groups of isometries
of X\,X%, with F2 a divergence group; let </> : dX\ —> c)X<i be a Borel map,
equivariant for some morphism Fi —> Y<i, which is non-singular with respect to the
Patterson-Sullivan measures; then </> is the extension of an equivariant isometric
embedding of X\ into X%. Because of the special geometry on the boundary,
C. Yue does not need to require a priori that the critical exponents are equal. But
as our examples show (see section 2), trees and rank one symmetric spaces are not
the only applications.

Recall that in a locally compact CAT( — 1) space M, the map which associates
to a free homotopy class of loops, the length of the unique closed geodesic contained
in it, is called the marked length spectrum of M. The second goal of this paper is

to prove the following result.

Theorem C. Let Si, S^ be two closed connected surfaces, having negatively curved
Riemannian metrics with finitely many conical singularities of angle at least 'In.
Let <f> : Si —> S*2 be an homeomorphism. The following assertions are equivalent:
1. the boundary map is absolutely continuous with respect to the Patterson-Sulli¬

van measures, and Si, S% have the same volume entropy
2. the boundary map is Mobius,
3. Si, Si have marked length spectrum in one-to-one correspondance via <f>,

4- Si and S*2 are isometric, by an isometry homotopic to </>.

In the non-singular case, the equivalence between (1) and (4) is due to T. Ku-
usalo [Kuu] in constant curvature, and the equivalence between (3) and (4) is due

to J.-P. Otal [Otal]. See also [Lai] for partial results.
The paper is organized as follows. In section 1, we review well known material

on CAT( — 1) spaces, their boundaries, crossratios, Patterson-Sullivan measures
and divergence groups. In section 2, we give new examples of divergence groups
for the complex hyperbolic plane, for simplicial homogeneous trees, for piecewise
hyperbolic polygonal 2-complexes with uncountable automorphism groups, and
for hyperbolic Bruhat-Tits buildings. In section 3, we prove Theorem A, following
Sullivan's method, and Corollary B.

Finally, in section 4, we give the proof of Theorem C. One of the main new
ingredients is the new notion of Mb'bius (geodesic) currents at infinity for CAT( — 1)
surfaces (see subsection 4.1). We refer to [Bonl,Bon2] for definitions of geodesic
currents on the boundary of CAT(—1) spaces. We then have to prove "measur-
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able" extensions of J.-P. Otal's arguments [Otal], in particular concerning the
Liouville current. We conclude as in [Otal]. Note that Theorem C also holds for
other singular negatively curved Riemannian metrics with geodesic flow having
singularities on a measure 0 subset, in a sense we will not make precise.

In the appendix, we introduce on the boundary minus a point, a natural metric,
analogous to the euclidean metric in the real hyperbolic case, or to the Cygan
metric for others rank one symmetric spaces. From this, we derive some relations
between crossratios and the marked length spectrum. We prove that the Möbius
maps fixing the point are homotheties for these metrics.

1. Review of CAT(-l) spaces

For the content of this section, only recalled here to make the reading of the paper
easier, the reader is refered to [GH] and [Boul,Bou2,BuMo].

Let X be a CAT( — 1) space which is proper (i.e. with compact closed balls).
This is equivalent to requiring X to be complete and locally compact.

Define an equivalence relation on the set of geodesic rays in X: two geodesic

rays are asymptotic if their Hausdorff distance is finite. The set of equivalence
classes is called the boundary of X and will be denoted by dX. In fact, if r, r' are
two asymptotic rays, then the distance from r(t) to (the image of) r' goes to zero
as t goes to infinity.

Note that between any two points in X U dX there exists a unique geodesic.
There is a natural topology on XUdX, which turns it into a compact metrizable

space, in which X is open and dense. The idea is that two geodesic rays are close

if they are at distance less than a given constant for a long time. In particular,
any isometry extends continuously to a homeomorphism of X U dX, denoted by
the same letter.

The isometries g of X are classified into three types, elliptic, parabolic, hyperbolic.

The translation length of g is £(g) infxex d(x,gx). If g is an hyperbolic
isometry of X, then g is an homeomorphism of dX with a North-South dynamics:
g has exactly two fixed point g_, g^ in dX such that for any neighborhood £/_, U+
of respectively g_,g+, there exists a positive power of g mapping the complement
of U- into [/I).. The translation axis is the geodesic between <;_ and g+, and is

precisely the set of points x such that d{x,gx) £(g).
Let x, y € X, and a € dX. The horosphencal distance (or Buseman function)

between x and y with respect to a is defined by

Ba[x,y) lim «x,r(t)) - d(y,r(t))) (1)
t—>oo

The limit exists and does not depend on the choice of a geodesic ray r ending at
a. The Buseman functions satisfy the following cocycle relation
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The horosphere centered at a G dX, passing through x G X, is the set of y G X
such that Ba{x, y) 0. A geodesic having a as one endpoint, cuts each horosphere
centered at a in one and only one point. An isometry 7 maps horospheres centered
at a to horospheres centered at 7a.

Let a, b G dX and let x £ X. Define the Gromov product of a, b with respect
to x by:

(a,b)x lim - (d(aî;x) + d(x, bt) - d(al, bt)) (2)
at—>a,bt—yb 2

The limit exists and does not depend on the choice of sequences of points at, bt in
X tending to a,b. As in [Kail], (a,b)x ^ (Ba(x,p) + Bb(x,p>)) for any point p
on the geodesic between a and b.

For x G X and a, b G <9X, we define the visual distance between a and b viewed
from x as

e-<a,6>* if a ^ 6

(3)
0 otherwise

The family {dx}xex is a conformai family of metrics, i.e. it satisfies the following
properties (see [Boul,Bou2]).
1. ([Boul, Theorem 2.5.1]) For every x G X, dx is a distance on <9X, and for any

isometry g of X, we have dgx(ga,gb) dx(a,b),
2. ([Boul, Corollary 2.6.3]) For x,y G X, the metrics dx,dy are in the same

conformai class, that is more precisely, for a ^ b:

dy(a,b) i(Bjx,v)+Bh(x,y)) (4]
dx(a,b)

• ^ '

In particular, for any isometry g of X and for any x G X, g acts conformally
on (dX, dx). The conformai factor at a point a G <9X is (the limit does exist):

lim e
b^a dx(b,a)

and will be denoted by jxg(a).
Therefore, we immediately obtain the following mean value formula, showing

the exact amount by which the visual metric is distorted by an isometry. Let g be

an isometry of X and a, b G dX, then

dx(ga, gbf jxg(a)jxg(b)dx(a, bf. (5)

In [Paul,Bou3], generalizing work of [Ota2], the crossratio of four distinct
points a, b, c, d on the boundary of X is defined by

[a,b,c,d]= lim -(d(al,ct)-d(cl,bl)+d(bl,dl.)-d(dl,al)) (6)
at—>a,bt—>6,cz—>c,dz—>d Z
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Figure 1. Crossratio of four points on the boundary

The limit exists and does not depend on the choice of sequences a%,bt,ct,d% in
X tending to a, b, c, d respectively. Note that any isometry of X preserves the
crossratio.

The following formula holds (and is in particular indépendant of x in X):

(7)e[a,b,c,d] dx(a,c)dx(b,d)
dx(b,c)dx(a,d)

This implies that the crossratios have the following symmetries:

[a,b,c,d] [c,d,a,b], [a,b,c,d] -[b,a,c,d], [a,b,c,d] -[a,b,d,c\.

Definition 1.1. Let Xi,X^ be CAT(-l) spaces. Let A be a subset of dX\. An
mjective map f : A —s- dX% is called, Mb'bius if it preserves the crossratios of
quadruples of distinct points of A.

Let F be a discrete subgroup of isometries of X. The limit set of F is the subset
of dX of accumulation points of any orbit of F in X.

Generalizing Patterson's construction for Fuchsian groups [Patl] and Sullivan's
[Sull,Sul2] for discrete subgroups of isometries of the real hyperbolic n-space, there
exists a remarkable family of measures on dX associated to F, see [Bou2,BuMo].

A conformai density of dimension ö G R+ for F is a family {i~ix}xex of pairwise
absolutely continuous mesures, whose support is the limit set of F, satisfying the
following properties.
• g*l^x Hgx for all g in F and x £ X,
• For all a e dX, x,y e X,

dfj.x

dfj,y
(«) (8)

The measure \ix is called the Patterson-Sullivan measure measure on dX viewed
from x. If g is an isometry, then g*\ix jx(g~^)(a)sfj,x.

Let S S(T) be the critical exponent of the Poincaré series of F (as defined
in the introduction). If ô ^ 0,oo, then such a conformai density exists, whether
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the Poincaré series diverges or not. See the above references, as well as [Cool]
for a quasi-extension to word hyperbolic groups. Note that under a scaling of the
metric, if d is replaced by Xd with A > 0, then the critical exponent S becomes jS,
but the Patterson-Sullivan measure at any point x is unchanged.

If X admits an action by a discrete cocompact group of isometries, then any
discrete group of isometries (whose limit set contains at least 3 points) has a critical
exponent different from 0, oo.

The diagonal action of F on dX x dX — A has an invariant measure v, called
the Bowen-Marguhs measure (see [Boul,Bou2,Kail,Kai2] and [BuMo, section 6]),
analogous to Sullivan's construction in the real hyperbolic case:

dv{a,b)= l{ Tu ¦ (9)

This measure does not depend on x by (8) and (4), and in particular is invariant
by the diagonal action of F.

2. Examples of non geometrically finite divergence groups

Classical examples of divergence groups F of CAT( —1) spaces are (see for instance
[Boul,Bou2]) the discrete groups of isometries that are convex cocompact, i.e. such
that the quotient of the convex hull of the limit set by the group is compact. This
is in particular the case if F is cocompact.

In this section, we give examples of divergence groups that are not convex
cocompact, for rank one symmetric spaces, locally finite trees, negatively curved
polygonal 2-complexes and hyperbolic Bruhat-Tits buildings.

2.1. Negatively curved symmetric spaces

The criteria we are using is the following one :

Theorem 2.1. Let F be a discrete torsion-free group of isometries of a negatively
curved symmetric space X. The following conditions are equivalent:
1. the Brownian motion on M X/T is recurrent
2. M has no (finite) Green function
3. F is a divergence group and the critical exponent of F is the volume entropy of

X
hx lim sup — log Vol Bx(x, k)

where Bx{x,k) is the ball of radius k and center any x in X.

Proof. Let Gm(x,u) be the Green function of M and pt(x,y) be the heat kernel
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on M. By definition,
r+oo
/ pt(x,y)dt/
O

is the expected probability for the Brownian motion starting at x to end at y.
Thus the equivalence between (1) and (2) is clear.

To prove the equivalence of (2) and (3), recall that, by invariance under isome-

tries, for a rank one symmetric space X, the Green function Gx{x, y) of X depends
only on the distance between x and y. Apply the Green formula

-/(*)= G(x,y)Af(y)dv(y)+ f ^-(x,y)f{y)ds{y)
Jn Jon dv

where / is the constant function 1 and Q is the ball of center x and radius R. So

if Gx(x,y) (f>(d(x,y)), one has

rv"'- Vol Sx (x,RY

Hence one gets the following inequality, with h hx '¦

Ae-hd(X,y) < Gx(Xjy) < Be-hd(x,y)

for some positive constants A,B, and for d(x,y) > 1 (see also [Led]). Now, the
Green function GM(x,y) of M is obviously

GM(x,y)

So the result follows from the well known fact that the critical exponent of a
discrete subgroup of isometries of X is at most h. D

Corollary 2.2. Let T be a discrete cocompact group of isometries of a rank one
symmetric space X, and let T\ be the kernel of a morphism of T onto H. Then
T\ is a divergence group with critical exponent hx if and only if H is virtually
0,Z,Z2.

Note that by a very long argument, M. Rees ([Ree]) proved a special case of
this corollary, that if Fi is a normal subgroup of a discrete cocompact group F of
isometries of Hg, such that F/Fi Z" where v < 2, then Fi is of divergence type.
Particular cases were also proven in [LySu, Theorem 4] and [Gui].

Proof. The Riemannian manifold M\ X/T\ has bounded geometry, i.e. its
curvature is bounded from below and its injectivity radius is positive (this follows
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from the fact that Fi is a subgroup of a cocompact group, hence cannot have

arbitrarily short geodesies). It is proved in [Kan] that M\ has a recurrent Brownian
motion if and only if the simple random walk on any (1,3)-net in M\ is recurrent.
An (1, 3)-net in M is any graph whose set of vertices is a maximal subset of M
whose points are pairwise at distance at least 1, and with a vertex between two
vertices at distance at most 3. But since F is cocompact, it is quasi-isometric to
X, hence M\ is quasi-isometric to F/Fi, that is to H. Note that by [Kan], the
simple random walks on two locally finite graphs (with uniformely bounded
degrees) that are quasi-isometric are simultaneously recurrent or non recurrent. (See
also [VSC, Theorem X.3.1 page 142] stating that the Brownian motion on M\ is

transient if and only if the covering group F/Fi is transient). The result follows
then from A. Varopoulos' result [VSC, Theorem, page 86], which asserts that the
simple random walk on a finitely generated group is recurrent if and only if the

group is virtually 0,Z,Z2 (the "if" part is a easy exercice). D

Now we may proceed with the examples.

Real hyperbolic space

Let M be a smooth connected closed 3-manifold fibering over the circle. That
is M is obtained by taking a smooth closed connected surface S of genus g > 2,

taking its product by the interval [0,1] and gluing the two boundary components
S x {0} and S x {1} by a diffeomorphism </>. Note that one has an exact sequence
1 —> tt\S —> -k\M —s- Z —> 0, the last map been induced by the fibration M —s- S1

obtained by pinching the S x {t}.
W. Thurston proved (see [Ota3]) that for a large class of such </>'s (precisely

when </> is homotopic to a pseudo-Anosov map), the manifold M carries a real
hyperbolic metric.

Consider the Riemannian covering M —s- M defined by the morphism tt\M —s-

Z. In particular tt\M is isomorphic to tt\S, hence is finitely generated. D.
Sullivan [Sul6] proved that M carries no positive super-harmonic functions but the
constants. In particular M has no finite Green function. It follows from Theorem
2.1. that tv\M is a divergence group (for the real hyperbolic 3-space). Note that
these groups are finitely generated Kleinian groups with infinité volume.

Let Fn be the free group on n generators. Let 1Z be the space of representations
of Fn in PSL2(C). Let T> C 1Z be the subset of faithful representations with discrete
and convex cocompact images. Let 3D T> — T> be the frontier of the open set T>

(whose elements are still discrete and faithful representations). Then (see [CuSh]
for n 2, and [ACCS] for any n), there exists a dense G^-subset of dV which
consists of geometrically infinité divergence groups (on n generators).

There are lots of infinitely generated Fuchsian groups that are divergence
groups : consider at,bt,c% > 0 for i G Z; let Pt (resp. Q%) be the hyperbolic
pair of pants with geodesic boundary of lengths at,bt,ct (resp. a^i, bt, c,,). Glue



358 S. Hersonsky and F. Paulin CMH

Pt and Qt along their matching sides of lengths bt,ct, to get a surface Rt with
two boundaries of lengths at,at^\. Then form the following "ladder" by gluing
consecutively the Rt's for ieZ.

Figure 2. An hyperbolic ladder

Then if the at are bounded (or even not growing too fast as i —> ±00), then the
same proof by D. Sullivan shows that the Fuchsian group given by this hyperbolic
ladder is a divergence one.

Complex hyperbolic 2-dimensional space

Consider F. Hirzerbruch's example Y\ [Hir, page 134], which is a closed complex
hyperbolic surface. It admits [Ish, §6, Example 5] a group G of order 125 acting
freely on it, with quotient Y\/G of Euler caracteristic 15, and with H^(Y\/G, Z)
infinité. Note that Y\jG is a closed complex hyperbolic surface of smallest Euler
caracteristic that we know that has a non trivial first cohomology group. (See

[HP])
Let tv\(Y\/G) —s- Z be any epimorphism. Note that tv\(Y\/G) is a discrete

cocompact isometry group of the complex hyperbolic plane H^. Then by Corollary
2.2, the kernel Fi of this morphism is a divergence group. We remark that Fi has

infinité volume and might be not finitely generated.

Question: Is there a closed complex hyperbolic manifold fibering over the
circle, or with fundamental group mapping onto Z with finitely generated kernel
(This can be theorically detected by the Bieri-Neumann-Strebel invariant [BNS]).

2.2. Simplicial trees

For the trees case, the statement analogous to Theorem 2.1 has been obtained
by M. Coornaert and A. Papadopoulos, with an analogous proof. We give the
following special case of their result:
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Theorem 2.3. Let T be a subgroup of the free group of rank n, acting freely and
discretely on the regular tree T^n of degree 'In Then the simple random walk on the

graph T^n/T is recurrent if and only ifT is a divergence group of critical exponent
log(2n - 1)

Let G be the graph in Figure 3, which is the real line with a vertex at each

integer point and a loop at each vertex Its universal cover is T4, the homogeneous
simplicial tree of degree 4

Figure 3 A graph with two ends

Let us denote by F2 (a, b), the free group on two generators It is well known
that T4 is lsomorphic to the Cayley graph of F2 for the generating set {a, 6} It is

clear that the graph G is lsomorphic to the quotient of T4 by the subgroup Y% of
F2 generated by {amba m / m £ Z}

Note that the recurrence of the simple random walk is invariant by quasi-
îsometry (for uniformly locally finite graphs) [Kan] Since G is quasi-isometric to
Z, the simple random walk on G is recurrent Hence by Theorem 2 3, Ti is a

divergence subgroup of Aut(T4) Since Ti is acting freely on T4, it has infinite
covolume (in the sense of [BaKu]) and it is not finitely generated

In Figure 4, we consider the quotient of T4 by the group Fn generated by
amba m for m G N

Figure 4 A graph with one geometrically infinite end

Denote by C(ApN) the convex-hull of the limit set of Fn It is easy to see that
the random walk on C(ArN)/rjv is recurrent (as above, it is quasi-isometric to N)

Lemma 2.4. Let X be a proper hyperbolic metric space (in the sense of Gromov
[Grol,GH]), and let G be a discrete subgroup of isometries of X Let X' be a
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G-invariant quasiconvex suhspace (m the sense of Gromov [Grol]). Then G is
a divergence group of isometries of X if and only if it is a divergence group of
isometries of X'.

Proof. For x in X, let x' in X' be a closest point to x. Then there exists a
constant A > 0 (depending only on the constants of hyperbolicity of X and of
quasiconvexity of X' in X) such that

2dx{x,x') + dx,(x'rfx') -A< dx(xrfx) < 2dx{x,x') + dx,(x'rfx') + A.

In particular, the Poincaré series of X at (s, x) converges if and only if the Poincaré
series of X' at (s,x') converges. D

By applying the above result to X T and X' C(ApN), we get that Fn is a

divergence group of isometries of T4. As above, Fn is infinitely generated and has

infinité covolume.
Note that a well known result asserts that a discrete subgroup of automorphisms

of a locally finite tree is convex-cocompact if and only if it is finitely generated.

2.3. Negatively curved polygonal 2-complexes

The main feature of the rank one symmetric spaces is that they have lots of symmetries,

i.e. of isometries. The following family of polygonal complexes, whose study
has been initiated by M. Gromov [Gro2], see also [Hag,Benl,BaBr], is interesting
precisely because (some of) these complexes have lots of symmetries.

Recall that a Coxeter matrix M over a set / is a symmetric matrix (m%J)t^ei
with entries in NU {00} such that for all i, j, mM 1 and m,h3 > 2 for i =/= j. The
Coxeter group determined by M is the group W with generators st for i G J and
relations (stSj)m^ 1 for i,j G / with mtJ =/= 00.

Fet L be a simphcial graph, i.e. a finite connected graph without vertices of
degree 1 or 2 and without loops or double edges. Fet k be an even integer. Fet
M M(k,L) be the Coxeter matrix over the set of vertices of L, defined as

follows. For i =/= j, rn%J -| if there exists an edge between the vertices i and j,
and m,j 00 otherwise. Fet W W(k, L) be the associated Coxeter group.

We define a cellular 2-complex S Y,(k,L) (see [Hag,Benl,BaBr]), satisfying
the following properties. The 2-cells are regular polygons with k sides. Each link
of vertex in S is isomorphic (as graph) to L. The group W acts by automorphisms
on E.

Fet X be the cone over the barycentric subdivision V of L, with cone point
denoted by xq Note that X is a finite simplicial 2-complex. Fet Xt be the star in L'
of the vertex i of L, that we view as a subcomplex of X. Consider £' the quotient
of W x X by the equivalence relation generated by (w,x) ~ (wst,x) for every
i 1 • • • n and x £ Xt. Note that W acts on the left on £', by g ¦ (w, x) (gw,x)
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automorphism
of 2 not in W

Link type L
Polygonal
complex 2

Figure 5. A CAT(—1) space with an uncountable automorphism group

Then using the relations (sls3)^ 1, it is easy to see that £' is the barycen-
tric subdivision of a locally finite polygonal 2-complex S satisfying the required
properties.

Note that X is simply connected, the XtJs are connected and for every subset
S' of vertices of L, if Pises'' ^s 1S non-emPty, then the special subgroup Wgi of W
generated by S1 is finite. It then follows from a result of [Davl] that S is simply
connected, with W acting properly discontinuously on S with quotient precisely
X. In particular, W acts transitively on the vertices of £.

Assume k is bigger than 8. Identify each A;-gon of S with a regular hyperbolic
polygon with k sides (in Hg) with angles ^p. This is possible since such a polygon
exists for all angles a with 0 < a < ^j^-tt and k > 8. Since every simple closed

loop in L has at least 3 vertices, it follows from [Grol, 4.2.D] that S is locally
CAT( — 1). Since S is simply connected, it follows from [Grol, page 119] that S is

a proper CAT( — 1) space.
The following properties of S may be found between the lines in [Benl,Ben2].

F. Haglund gave us a complete proof of the last assertion (see [Hag]). It is morally

the same proof that the one proving that a regular tree has an uncountable
automorphism group.

Proposition 2.5. The following properties hold.
1. If no edge of L separates, then <9£ is arcwise connected and locally arcwise

connected.
2. If between the endpomts of any edge e of L, there are at least two edge paths,

meeting only at their endpomts and not containing e, then <9£ has no local
cut point (i.e. no point x such that for some neigborhood U, U — {x\ is not
connected).
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3. If L has a vertex îq and an automorphism, different from the identity, pomtwise
fixing the star ofio, then the automorphism group of S is uncountable. D

Note that our example in Figure 5 does satisfy all three hypotheses. Here

are two more graphs also satisfying these three hypotheses. The right one is the
Petersen graph P and the left one is the complete bipartite graph K(3, 3) on 3 + 3

vertices.

K(3,3)

Figure 6. Flexible links

As F. Haglund told us (see [Hag]), if L is the complete graph on n vertices, then
the automorphism group of S is countable (if an automorphism is the identity on
the star of one vertex, then it is the identity, by a combinatorial analog of the
analytic extension).

In particular, the examples of Figures 5, 6 give a <9S which is a metrizable compact

topological space, of (topological) dimension one, arcwise connected, locally
arcwise connected and without local cut point. Hence <9S is topologically a Sier-

pinski or Menger curve. In fact, this is the "generic" situation for the boundary
of a hyperbolic group, see [Cha].

The Coxeter group W is a hyperbolic group in the sense of Gromov, since it
acts cocompactly on the CAT( — 1) space £.

If L satisfies property (1) of Proposition 2.5, then W does not decompose as a

non trivial amalgamated product or an HNN extension over a finite group
(otherwise its boundary would not be connected, the converse being true by Stallings
theorem on ends of groups, see [GH, page 134]). If L satisfies property (2) of
Proposition 2.5, then dW has no local cut point. Hence (see for instance [Bow]),
W does not split as a non trivial amalgamated product or an HNN extension over
a virtually cyclic group. In particular, Out (VF) is finite (see for instance [Pau2]).

Note that W has no non trivial morphism to Z, since it is generated by
torsion elements. (In particular, this also proves that W is not an HNN extension).
But there often exist finite index (torsion free) subgroups of W having morphisms
onto Z.
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Lemma 2.6. For L K(3,3) and k > 8 even, or for L which is not the complete
graph, and k > 8 a multiple of A, the word hyperbolic Coxeter group W(k,L) has

non zero virtual first Beth number.

Proof. In the first case, the group W admits the following presentation:

{aua^azMMMliï &? (atb3)k/2 1).

Consider the epimorphism tt from W onto the triangle group with presentation
(a\,(i2,as/a2 (a^a^'2 1), obtained by adding the relations at bt.

Now this triangle group has a finite index subgroup G which is the fundamental
group of a connected closed orientable surface of genus at least 1. Take F
7r~1(G), which has finite index in W. Then by composing the restriction of it to
F with an epimorphism G —s- Z, the result follows. (Except that W(k, L) is no
longer word hyperbolic, this also work for k 6, as pointed out by the referee.)

For the second case, consider vertices i,j in L which are not joined by an edge.
Consider the epimorphism it from W to the free product of two order two groups
Z/2Z * Z/2Z with generators al,a:), obtained by mapping every generator of W
except al,a:) to the identity. Since A; is a multiple of 4, and i,j are not joined by
an edge, the relations (a^aj)fc'2 are mapped to relations that are consequences of
a? \,a? 1, and tt is indeed well defined.

l y
Now the group Z/2Z * Z/2Z contains an infinite cyclic subgroup Z with index

2, and the result follows as above. D

Note that in the second case, the kernel of the morphism it is the normal closure
of the special subgroup of W generated by all generators of W except at,a3, which
is unfortunately in general not finitely generated.

2.4. Hyperbolic Bruhat-Tits buildings

The CAT(-l) complex Y>{k,L) of the previous subsection for L K(3,3), with
2-cells the regular hyperbolic A;-gon with angles ^, has the following striking
properties:

• it is the unique simply connected polygonal 2-complex whose 2-cells are A;-gons
and links of vertices isomorphic to K(3,3) ([Swi] Theorem 0.6 (1));

• its group of automorphisms is an uncountable locally compact group, by Proposition

2.5 (and Theorem 0.6 (1) of [Swi]);
• Any Möbius map from the boundary of S to any locally compact CAT( — 1)

space is the extension of an isometric embedding (see [Bou4], who also computes
the conformai dimension (in Pansu's sense) of <9£);

• it is an hyperbolic Bruhat-Tits building whose type is the (infinite) Coxeter

group generated by the hyperbolic reflections on the sides of a regular hyperbolic

A;-gon with angles ^ (in the sense we define below).
We recall some facts from [Ron] Chapters 1,2,3 (see also [Dav2]).
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A chamber system over a set / is a set C together with a family of partitions
of C indexed by /. The elements of C are called chambers. Two chambers are
i-adjacent if they belong to the same subset in the partition corresponding to i.

Let C, D be chamber systems over /. A morphism f : G —s- D is a map such

/(c),/(c;) are i-adjacent that for all i-adjacent chambers c,c' G G. We denote by
Aut(C) the group of automorphisms of a chamber system G.

Examples. (1) Let G be a group, B a subgroup, {Pl)l^i a family of subgroups
containing B. Define the chamber system C C{G, B, (Pt)t£i) by C G/B and
the chambers gB,g'B are i-adjacent if they have the same image in G/Pt.

The group G is naturally a chamber transitive group of automorphisms of C.
The kernel of the action of G on C is f] eGgBg~^.

(2) Let M be a Coxeter matrix over a set /, and W the associated Coxeter

group. For J C /, let Wj be the subgroup of W generated by {sj}j^j. Let W
be the chamber system C(W, {1}, (Wu\)tej;) over /, called the Coxeter system of

type M. Thus, the set of chambers is W, and two chambers w,w' are i-adjacent
if and only if «/ w or w w'sz.

Let M be a Coxeter matrix over a set /. A (Bruhat-Tits) building of type M is

(see [Ron, page 34]) a chamber system G over /, endowed with a maximal family
of subsystems (called apartments), isomorphic to the Coxeter system of type M,
such that
1. any two chambers lies in a common apartment,
2. given two apartments A, A' containing a common chamber c and chamber or

panel y, there is an isomorphism of G fixing x, y and sending A to A'.
Let C, D be buildings of type M. A morphism f : C —s- D is a morphism of

the underlying chamber systems.

Example (3). (Meier-Davis) Let L be a simplicial graph with vertex set /. Let
k 4. Consider the (right angled) Coxeter matrix M M{k, L) defined in the
previous subsection. Let {Pl)l<^i be a family of groups indexed by /. Let G be
the graph product of groups of {Pl)l<^i1 that is the group generated by P% for i G /,
with relations [gt,gj] 1 for all g% G Pt,gj G P3 and mtj 2 (i.e. there is an edge
between i, j).

Then by [Dav2, Theorem 5.1], C C{G, {1}, (Pt)tei) is a building of type M.
Let G be a chamber system over /. A gallery is a finite sequence of chambers

(cq, c\, • • • On) such that Cj is adjacent but not equal to Cj_i for j 1 • • • n. Let /*
be the free monoid on /. The gallery has type t i\ ¦ ¦ ¦ in G /* if Cj is i^-adjacent
to Cj_i. The rank of C is the cardinal of /.

Let J C /. A chamber system over / is J-connected, if any two chambers c, d
can be joined by a gallery of type t i\- ¦ -in with i, G J. The J-connected
components of G are called the J-residues of C.

Let G be a building of type M. A subset J is called spherical if VFj is finite.
Let Sf be the set of spherical subsets of /, partially ordered by the inclusion.
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Recall that the derived complex of a partially ordered set P is the set of finite
chains in P, partially ordered by inclusion. It is an abstract simplicial complex,
with vertex set P. Its geometric realization is called the geometric realization of
P.

The geometric realization of G (see [Dav2, §9]), denoted by \C\, is the geometric
realization of the set of all J-residues in C with J G S$, partially ordered by
inclusion.

The following theorem is one of the main source of CAT( — 1) spaces with big
automorphism groups.

Theorem 2.7. (Moussong-Davis [Mou] [Dav2, Remark 11.10]) Let M be a Cox-
eter matrix over I, with I finite. Assume that for every subset J of I, neither of
the following occurs:
1. Wj is of affine type (see [Ron, Chapter 9]) with Card(J) > 3

2. J J\U J-2 and Wj is the direct product ofWjx X Wj2 with Wjx, Wj2 infinite.
Let C be a building of type M. Then \C\ admits a (piecewise hyperbolic)

CAT(-l) metric such thai Aut(C) acts by isometries.

The CAT( — 1) space \C\ as in this theorem will be called a hyperbolic (Bruhat-
Tits) building. Typical examples are those for W a discrete group of isometries
of Hg, generated by the reflections on the faces of a compact convex polyhedra in
Hg (with diedral angles of the form ir/k, with k G N, k > 2). Even if, as shown by
E. Vinberg [Vin], these exist only in dimension less than 29, this class of CAT(—1)
spaces is highly interesting.

Let X be a hyperbolic building of the form \C\ with C C(G,B,(Pt)teI).
Then G acts faithfully if and only if f]g^c 9^9~^ {!}• The space X is locally
compact if and only if B has finite index in P% for each i. If X is locally compact, G
is a discrete group of isometries of X if and only if B is finite. Since G is chamber
transitive, it is cocompact.

Example (4). (J. Meier [Mei]) Let L be the circuit of length k. Let (Pt)t=i...k
be k copies of the cyclic group Z/3Z. Let G be the associated graph product
of groups. Consider the hyperbolic building C C{G,{l},{Pl)l=i...ji) of type
the Coxeter group generated by reflections on the sides of a regular hyperbolic
A;-gons of angles ^. Then M. Bourdon [Bou4] remarked that G is isometric to
Yï(k,K(3,3)). This follows from an easy computation of the links of vertices, by
the uniqueness property of £(&, K(3, 3)).

If X is a locally finite hyperbolic building, we can define a Laplacian operator
and Brownian motion on S, by saying that the Laplace operator inside a chamber
is precisely the Riemannian one, and that a Brownian path hitting a panel (i.e. a
codimension one face) has equiprobability to keep on moving in one of the adjacent
cells. (The probability of hitting the codimension 2 skeleton is 0.) See for instance
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[BrKi] in the case of polygonal 2-complexes.
Say that a building C is 2-point transitive if its (possibly type rotating)

automorphism group acts transitively on the pair of chambers having same combinatorial

distance. So the following analog of Theorems 2.1 and 2.3 holds.

Proposition 2.8. Let X be a 2-pomt transitive locally compact hyperbolic building.

Let T be a discrete group of isometnes ofX. Then the following are equivalent:
1. the Brownian motion on M X/T is recurrent
2. M has no (finite) Green function
3. F is a divergence group and the critical exponent of F is the volume entropy of

X

hx lim sup — log Vol 5j(i, k)

where Bx{x,k) is the ball of radius k and center any x in X. D

By this proposition, example (4), Lemma 2.6, and the same arguments as in
the proof of Corollary 2.5, one has a precise example:

Corollary 2.9. For L K(3,3) and k > 8 even, there exists an epimorphism
from a finite index subgroup of W(k,L) onto 7L, whose kernel F is a divergence

group of isometnes of the locally compact hyperbolic building Y,(k,L). D

Note that the convex hull in T,(k, L) of the limit set of F (which is the whole
boundary) has infinité covolume, hence F is far from being convex-cocompact.

We state here a result that will be useful in the next section.

Lemmma 2.10. Let X be a building with Coxeter group W. Let x € X be an
interior point of a chamber. For any two apartments A, B containing x, there exists
a sequence of apartments (An)n£f>j with Aq A, such thatAnP\An^i contains an
half-apartment containing x in its interior, and such that (An) converges to B for
the topology of uniform convergence on compact subsets.

Proof. We may assume A =/= B. Let Aq A. The closure of the interior of
Aq Pi B is a convex union of chambers (see [Ron, Theorem 3.8, p. 33]). Let a
be a chamber of B, meeting Aq in exactly a codimension one face Ft. Let H be
the half-apartment of Aq containing Aq Pi B, whose wall contains Ft (see [Ron,

p. 13-14] for the définitions).
Then HUa is clearly WMsometric (see [Ron, p. 31]) to a subset E of \W\. The

WMsometry E —> H U a C X extends to a WMsometry |VF| —> X. Its image is

by maximality an apartment A\. Note that Aq D A\ contains an half-apartment
containing x in its interior. Also note that A\ n B contains at least one more
chamber than Aq D B.
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Since an apartment is a locally finite union of chambers, the construction of
{An} (possibly stationary) is clear by induction. By choosing suitably the ct's, we

may assume that An n B contains a ball of center x and radius tending to oo as

n —> oo. Hence the result follows. D

3. Ergodic rigidity of CAT(—1) discrete groups of isometries

This section is devoted to the proofs of Theorem A and Corollary B.
We fix the notations. Let X\,X2 be proper CAT( — 1) spaces, and respectively:

• Fi,r2 discrete subgroups of isometries of X\,X2,
• xi,X2 base points in Xi,X<2,
• <5i, <?2 the critical exponents of Fi, F^, assumed to be neither 0 nor oo,
• [•, -, -, -]i, [•, -, -, -]2 the crossratios on dX\, dX%,
• MliM2 the Patterson-Sullivan measures on dXi,dX<2, viewed from x\,x^
• v\, V2 the Bowen-Margulis measures on dX\ x dX\ — A, dX% x dX% — A.

A map <f> : dX\ —> dX% is almost everywhere Möhius if

\4>a, <f>b, <f>c, 4>d]2 [a,b,c,d\i

holds for distinct a, b, c, d in dX\^ outside a set of measure 0 for \i\. Note that if
4> is absolutely continuous for the Patterson-Sullivan measures, then cf>a, cj>b, cf>c, cj>d

are distinct for almost every a, 6, c, d. The following generalizes [Sul4, Theorem 5]

to our settings, and its proof follows closely Sullivan's approach.

Proposition 3.1. Suppose that <j> : dX\ —s- dX% is a Borel map such that </> X <j>

preserves the Bowen-Margulis measures up to a constant. If 5\ Ö2, then <f>

coincides, almost everywhere for the Patterson-Sullivan measure, with a Möhius

map on the limit set ofT\.

Proo/.Note that by disintegration, </> is absolutely continuous for the Patterson-
Sullivan measures. (In the application, this will be an hypothesis.)

Let us remark that if m,m' are measures on a Borel space B, that are in the
same class, and if / : B —s- C is a Borel map, then /*m, /*m' are in the same class

and fër(/(6)) J^wfor almost everyb in B-

For i/i-almost every (a, b) in dX\ x dX\ — A, with t > 0 some constant, we
have by hypothesis:

_
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Therefore, for z/i-almost every (a,b), we have

dXl(a,b)2Sl d4>*m ~ d4>*m ~^=t—1 (<M)
d

Since the right handside of this equation is a separable function in a, b, an easy
computation using (7), shows that

$2[«Mi 4^14ci 4>d]2 <^l[ai ^j cj d]\

for a,b,c,d in <9Xi4 outside a set of measure 0 for /x| If Ji (52, then the
crossratios are almost everywhere preserved

Now, if a map is Mobms on a subset of dX\, then it is uniformly continuous on
this subset, for instance because it is an homothety for the distances constructed
in the Appendix, see Corollary A 3 Since the support of the Patterson-Sullivan
measure \i\ is the limit set of Fi, the map </>, being uniformely continuous on a
dense subset, can be continuously extended to a map on the whole limit set The
extension is clearly Mobms, by continuity of the crossratio in its four variables D

Proof of Theorem A It was showed in [BuMo, section 6] that the divergence of
the Pomcaré series of F 2 implies that the diagonal action of F 2 with respect to the
measure v<i is ergodic (Their proof closely follows the one for the real hyperbolic
case, given by D Sullivan [Sull,Sul2]

Recall that push-forwards of measures preserves the nonsmgulanty Since </> is

absolutely continuous for the Patterson-Sullivan measures, then </> x </> is absolutely
continuous for the Bowen-Marguhs measures

By equivanance of </>, the measurable function

d(4>x ~4>)*v\

is invariant by the diagonal action of F2 on dX% x dX% Using the ergodicity of
F2, we deduce that (</> x 4>)*i>\ ti/% for some positive constant t

We end the proof by applying Proposition 3 1 D

Let us now specialize our CAT( — 1) space X\

Proof of Corollary B We have to prove that in the special situations of the corollary,
a Mobms embedding of dX\ in c)X<i is the extension of an isometric embedding of
Xi in X2

(1) Asumme X\ is a rank one symmetric space Hg, H™, HJ|, Hj~,a, normalized
so that its maximal curvature is precisely —1 The result follows precisely from
M Bourdon's result [Bou3], that a Mobms embedding of dX\ is the extension of
an isometric embedding (See [Yue] if X% is also a rank one symmetric space)
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(2) Let 4> dXi —> dÄ2 be a Mobius embedding, with X<2 a CAT(-l) space
and X\ a (locally compact) hyperbolic Bruhat-Tits building modeled on a discrete
cocompact reflection group W of Hg Let us construct an isometric map </> X\ —>

X<i whose extension to the boundary is </> By density, it is sufficient to construct
</> on the union of the interiors of chambers

Let x be an interior point of a chamber Let A be an apartment containing x
Since A is isometric to Hg (of constant curvature —1), the Mobius embedding

4>\dA from dA into c)X<i extends to an isometric embedding </>^ A —s- X2 (see

[Bou3, Théorème 0 1]) Recall that the map </>^ is defined as follows Let x £ A,
let <7,</ be (any) geodesies in A meeting in {x}, with endpomts a,b and a', 6'

respectively Then the geodesies with endpomts </>(a),</>(&) and 4>(a'),(f>(b') meet

in one and only one point, 4>a{x)
We claim that </>^(x) does not depend on A Indeed, let B be another apartment

containing x Let A« be a sequence of apartments as in Lemma 2 10 Since An n
An^i contains an open half-apartment containing x, the point x is the intersection
of a pair of geodesies lying in both An and An^\ Hence </>^n (x) </^4n+1 (x)
Since (.An) converges to B for the uniform convergence on compact subsets, we
have that (dAn) converges to dB for the Hausdorff distance on 8X\ (endowed
with any visual metric) By continuity of </>, we have 4>a{x) 4>b{x)

Hence we get a well defined map </> X\ —s- X2 Since any two points of X\
belong to an apartment, and since the restriction of </> to any apartment is an
isometry, the map </> is an isometry This proves the result D

Here is another example where the above proof (part (2)) applies Let X be

a connected compact hyperbolic surface with one boudary component which is

totally geodesic Take n > 2 copies of A, and glue them isoinetrically along their
boundary Denote by X\ the resulting space Then with this X\, the conclusion
of Theorem A can also be strengthened as above

Here is an example of two CAT( — 1) spaces X\,X<i with a Mobius homeoinor-
phism </> 8X\ —> 8X2, which is not the extension of an isometry, where X\ is a
tree (with no terminal vertex)

Let X\ be the regular tree of degree 4 Let e g]0,^] Let V€{x) be the e-

neighborhood of a vertex x of X\, which has four terminal vertices Let Te be
the regular (real) hyperbolic tetrahedra with edge length 2e Note that one has

a continuous map Te —> Ve(x) which is an isometry on each edge of Te Remove
all e-neighborhoods of vertices in X\, and glue, for each vertex x of X\, a copy of
Te, by identifying a vertex of T€ to the point of X\ — p| (0) V€{x) corresponding

to a terminal vertex of Ve(x) The resulting space X% (uniquely defined up to
isometry) is CAT( — 1) One has a map X% —> X\ which pinches each copy of Te

to V€{x) by the above map This map induces an homeomorphism c)X<i —> dX\
whose inverse we denote by </> It is easy to see that </> is Mobius But there is no
isometric embedding of X\ into X<i

In the case where Fi,!^ are cocompact, we can obtain more information
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Corollary 3.2. Assume that Fi,F2 are cocompact, and let p : T\ —> T2 be an
isomorphism.
1. There exists a p-equivariant homeomorphism <j> : dX\ —s- dX% (called, the boundary

map).
2. If 4> is non-singular with respect to the Patterson-Sullivan measures, and the

critical exponents ô\,Ô2 are equal, then </> is Mobius (everywhere).

Proof. The existence of </> follows from the fact that Fi, F2 are word hyperbolic in
the sense of Gromov. Their limit sets can be identified with their boundaries as

hyperbolic groups. Since p is a quasi-isometry with respect to the word metric, it
can be extended uniquely to an homeomorphism from the limit set of Fi to the
limit set of F2 (see for instance [GH]).

The result now follows easily, since the limit sets are the whole boundaries in
this case. D

4. Marked length spectrum rigidity for negatively curved surfaces
with singularities

A negatively curved cone surface is a surface M endowed with a negatively curved,

cone metric, i.e. a smooth negatively curved Riemannian metric on M — P, where
P is a discrete subset of points of M, such that the completion of M — P is M,
and such that the (obviously defined) cone angle at each singularity is > 2tt.

For example, branched covers of closed negatively curved Riemannian surfaces
are negatively curved cone surfaces (with angle 2irn at each branch point of index
n).

Note that the assumption on the cone angles implies that the completed
distance on M is locally CAT(-l), hence that the universal cover of X is CAT(-l).
Also note that dX is homeomorphic to a circle, with X U dX homeomorphic to
the closed 2-disc.

Let M be a compact locally CAT(-l) space. Let C C{ti\M) be the set of non
trivial conjugacy classes in tv\M (i.e. the set of non trivial free homotopy classes of
closed loops in M). It is well known and easy to prove that any closed loop, which
is not freely homotopic to a point, is freely homotopic to a unique closed geodesic.
The map from C to R+ which associates to a non trivial conjugacy class (7}, the
length of the unique corresponding closed geodesic c7, is called the marked length
spectrum.

This section is devoted to the proof of our second main result Theorem C,
asserting the equivalence between four assertions (l)-(4).

Note that (1) implies (2) has been proved in Theorem A. Clearly (4) implies
(1), (2), (3). Hence we will only have to prove in what follows that (2) and (3) are
equivalent (subsection 4.1) and that (2) and (3) imply (4) (subsection 4.4). Note
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that if there are no singularities, (3) implies (4) is due to J -P Otal [Otal]
We will first give the main tools needed there These are three measures,

the brand new Mobms measure (subsection 4 f the suitable modification of the
Liouville measure (subsection 4 2), which are both geodesic currents in the sense of
F Bonahon, and the suitable modification of the Lebesgue measure on the (almost
everywhere) unit tangent bundle (subsection 4 3)

4.1. The Möbius current of a CAT(-l) surface

Let M be a connected compact locally CAT( — 1) space, X the universal cover of
M, F its covering group, so that M X/T

We are first going to recall the definition of a geodesic current, developped by
K Sigmund, D Sullivan and F Bonahon [Bonf ,Bon2,Bon3], to which we refer for
basic properties and historical remarks

Let G{X) be the space of unpointed unonented geodesies of X endowed with
the topology of the Hausdorff distance on compacts set of X (l e two geodesies
are close if their intersection with some big compact subset of X are close for the
Hausdorff distance) The group F naturally acts on G{X)

Notation. If / is a geodesic segment of X, we will denote by G {I) the compact
subset of geodesies of G(X) meeting /

Let d2X dX x dX - A, where A is the diagonal Then d2X is a locally

compact space, endowed with the diagonal action of the group F, and with
the action of Z/2Z permuting the factors, commuting with the previous action
Note that G{X) is F-equivanantly homeomorphic to (and will be identified with)
<92X/(Z/2Z)

Definition 4.1. A geodesic current for M is a positive regular Borel measure on
G(X) that is invariant under the action of F

Note that the topological space G(X), endowed with the action of F, depends
only on the group F Hence so does the space of geodesic currents for M Indeed,
the boundary of X is F-equivanantly homeomorphic to the boundary of the word
hyperbolic group F, endowed with any fixed set of generators

Since M is compact, any 7 G F is an hyperbolic isometry of X Hence 7 has

a translation axis Ay, on which 7 acts by a translation of length ^(7) Let / be a
fundamental domain in Ay for the action of 7 Let (7} be the conjugacy class of
7 m F Let /ibea geodesic current

Definition 4.2. The intersection number of /x and (7} is

The fact that this intersection number is well defined (does not depend on the
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element of the conjugacy class (7} nor on the fundamental arc /) follows from the
invariance of /x under F.

It may also be shown (see [Boni, Chapter 4]) that the intersection numbers
depend only on the fundamental group F, and not on the locally CAT( — 1) metric
on M.

In what follows, we assume that the boundary of X is a circle. (Note that by
the theorems of D. Gabai [Gab], A. Casson-D. Jungreiss [CJ], this is essentially
the same as assuming that M is a surface, but we will not use that.)

Recall the following fundamental result of J.-P. Otal (stated only for negatively
curved closed surfaces, but the proof extends easily to our situation).

Theorem 4.3. (J.-P. Otal [Otal] Théorème 2) A geodesic current on M is car-
acterized by its intersection numbers with all conjugacy classes in F. D

Let us now define the Möbius current. Let /, J C dX be two non-empty
intervals with disjoint closures, and with set of endpoints respectively {a, 6}, {c, d}.
Define

/x(Jx J) \[a,b,c,d}\

where [a, 6, c, d] is the crossratio of the four points, if these are distinct, and jj(I x
J) 0 if / or J is reduced to a singleton. By the symmetries of the crossratios
(see section 1), this depends indeed only on /, J.

Theorem 4.4. The map \i uniquely extends to a a-finite, regular Borel measure
on d^X. This 'measure is invariant under the involution on d^X, hence induces a

a-finite, regular Borel measure on G(X), denoted, by l^Mob- Furthermore, l^Mob ts

a geodesic current, and will be called the Möbius current of M.

Proof. A product / x J, with /, J C dX non-empty intervals with disjoint closures,
will be called a rectangle. Let *4o be the algebra of subsets of d^X generated by
the rectangles. Let us first check that \i extends to *4o, an(i is finitely additive on
*4o. Let Ix J be a rectangle, with set of endpoints of/, J respectively {a, 6}, {c, d}.
Assume that J is the disjoint union of two intervals J~,J+ whose closure meet
in {e}. Upon applying equation (6) or (7), a simple cancellation argument shows

that [a, 6, c, e] + [a, 6, e, d] [a, 6, c, d\. Furthermore, [a, 6, c, e], [a, 6, e, d], [a, 6, c, d]

have the same sign. By induction, this proves the finite additivity of \i on *4o.
We are going to use Carathéodory's construction to extend \i. Let us define a

map 11* : V(d2X) -> [0,+oo] by

tel

where (R^^i ranges over finite or countable coverings of A by open rectangles.
It is easy to check that jj* is an outer measure, i.e. that jj*{%) 0, that jj*{A) <
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H*{B) if A C B, and that ft*(\JieI At) < J2iei M*(A) f°r any finite or countable
index set /. A subset A of d X is /x*-measurable if

/x*(£) >/i*(En4)+ jj*{E n Ac)

for every subset E of <92X, where Ac is the complement of A. Recall that the set

A of ^-measurable subsets of <92X is a a-algebra, on which /x* is a a-additive
positive measure (see for instance [Coh, Theorem 1.3.4]). Let us now prove that
the Borel a-algebra of <92X is contained in A, and that /x* coincides with /x on
each rectangle. This will prove the result, the invariance by the involution and the
isometries being obvious. We start with a "continuity lemma":

Lemma 4.5. For every m > 0 ararf small enough e > 0, there exists r/ > 0 s

i/iai if I,J are disjoint intervals in dX, with endpomts a, 6 ararf c,d respectively,
such that dx(a,b) < r\, and dx(a,c),dx(a,d) > m, then /x(7 X J) < e.

Proof. By the triangle inequality and equation (7),

dx(b,d) dx(b,c) dx(b,a) + dx(a,d) dx(b,a)-dx(a,c)v ^lo§ < loS £ log L[a, b, c, d] log ^lo§ FTT < loS nlog A ,rdx[a,d) dx[a,c) dx[a,d) dx[a,c)

and similarly for a lower bound. Hence [a,b,c,d] O(dx(a,b)) as dx(a,b) tends
to 0, where O depends only on a positive lower bound on dx(a, c), dx(a, d). D

Endow the subspace <92X C dX x dX with the supremum metric. In
particular, the (open) e-neighborhood of a rectangle is an open rectangle, and the
e-neighborhood of the boundary of An is in the algebra *4o (at least for e small
enough). The above lemma easily implies that for every rectangle A, the /x-mass
of the e-neighborhood of dA tends to 0 as e goes to 0.

Claim 1. Every Borel subset of <92X is ^-measurable.

Since the open rectangles generate the Borel a-algebra, one only needs to check
that every open rectangle A is ^-measurable. Let E C <92X. If (j,*(E) oo,
there is nothing to check, hence we may assume that n*{E) < +oo. For e > 0,
let (Rt)t£i be a finite or countable covering of E by open rectangles, such that
Xnel A*(-^î) < M*(£0 + e. The intersections A n Rt are open rectangles that cover
Ed A, hence

v*(EnA)<

For S > 0, let Aß be the union of Ac and V$(dA) (the open S-neighborhood of the
boundary of A). It follows by the finite additivity of /x on Aq and Lemma 4.5,
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that if ôt is small enough, then Rt n A^, which is in *4o, can be written as the

union of finitely many open rectangles R^, say j G Jt, such that XljeJ A*(-^i) —

n Ac) + 2^TT' Since the open rectangles (it^Xj cover E n Ac, one has

- IA + e-

hJ 1-

Hence by the above two equations and finite additivity

Letting e go to 0, this proves Claim f.

Claim 2. jj* and \i coincide on the rectangles.

Let A be a closed rectangle. Since V${A) is an open rectangle for S > 0 small
enough, and since it contains A, and since its /x-mass tends to the one of A, one
has n*{A) < n{A). Conversely, for every e > 0, let {Rl)l<^i be a finite or countable
covering of A by open rectangles, such that Xnel A*(-^) < M*(J4) + e- Since A is

compact, we can extract a finite covering (Rj)j^j. By finite (sub-)additivity, one
has

jeJ jeJ tel

Since this holds for every e > 0, Claim 2 follows. This ends the proof of 4.4. D

Let us give a non-trivial example of a Borel subset of G{X) whose Möbius
current is 0. As pointed out by the referee, it follows from the easily proven fact
that the support of the Möbius current is the Borel subset of endpoint sets of non
singular geodesies.

Lemma 4.6. Let x G X U dX. Let Q{x) be the set of geodesies in G(X) passing
through x. Then

0.

Proof. If x G X, this follows from the fact that, for every distinct a,b,c,d G dX,
if the four geodesies, respectively between a, b, between a,d, between b,c and
between 6, d, intersect in a common point u, then by its définition in equation (6),
the crossratio [a, 6, c, d] is 0.

If x G dX, this follows from the fact that the crossratio [a,b,c,d] defined on
quadruples of distinct points of dX can be continuously extended to quadruples
(a, a, c, d) with a, c, d distinct by

[a,a,c,d]=0. D
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The following proposition, using arguments of [Ota2], gives an important
connection between the marked length spectrum and the Mobms current This
connection is essential in what follows

Proposition 4.7.For any 7 G F we have

Proof Let 7_, 7+ be the repulsive and attractive fixed points of 7 Let a be any
point in dX — {7-, 7+} Let / [x,7x] be an interval on the translation axis Aj
of 7 of length ^(

fa

Figure 7 Intersection numbers of the Mobms current

Denote by [7 7+] the unique interval in dX with endpoints 7 7+ not containing a For

any integers n m [jna jma] denotes the subarc of dX between jna jma not meeting [7 7^]
(see Figure 7) For every subsets J K in XUdX let Q(J K) denote the set of geodesies in G(X)
passing through both J K

The following lemma relates the Mobms current of G (I) (a Borel subset defined internally
to the Mobms current of a Borel subset of G(X) defined purely in terms of the boundary

Lemma 4 8 Let ß be a geodesic current giving measure 0 to the Borel sets of geodesies passing
through a given point of X U dX Then

KG (I)) KG ([a 7«] [7 7+]))

Proof Since any geodesic passing through I has to have one endpoint at a unique fundamental
domain for the action of 7 on the upper halfcircle (see Figure 7) we have

KG (I)) J2 KG(hna 7"+1a[ [x jx]))
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Since any geodesic with one endpoint in [a, 7a] and the other in [7-, 7+] must pass
through a unique fundamental domain for the action of 7 on A~f, we also have that

nez

By invariance and Lemma 4.6, the n-th terms in the last two equations are equal.
This ends the proof of Lemma 4.8. D

To finish the proof of the proposition, we combine the définition of the
intersection number, Lemma 4.8, the symmetries of the crossratios and Corollary A.2
(for the last equality in the following sequence of equalities), to obtain

ob, (7)) VMob{G{I)) MMofe(ö([a,7«], [7-,7+]))

I [«,7a, 7- ,7+] I |[7->7+>a>7«]|
a

We end this subsection by proving the implications (2) => (3) and (3) => (2) of
Theorem B, inspired by [Otal,Ota2].

Proposition 4.9. Let Xi,X% be CAT(-l) spaces. Let Fi,F2 two discrete
subgroups of isometnes of X\,X^ respectively, all of whose elements except the identity

are hyperbolic isometnes. Let p : T\ —> T2 be an isomorphism and f : dX\ —>

be an equwariant homeomorphism.

If f is Möbius, then Xi/Ti^X^/T^ have the same marked length spectrum.

Proof. Let 7 G Fi. Since / is an equivariant homeomorphism, it maps the attractive

and repelling fixed points of 7 to the attractive and repelling fixed points of
Since / preserves the cross-ratio, by applying Corollary A.2, we have

[7_,7+,a,7a] [/(7_

Proposition 4.10. Let M\, M% be compact, connected, locally CAT(-l) spaces,
with an isomorphism between their fundamental group. Assume that the boundaries
of their universal covers X\,X% are circles. IfMi, M% have the same marked length
spectrum, then the boundary map is Mb'bius.

Proof. If Mi,Mi have the same marked length spectrum, then by Corollary 3.2,

Proposition 4.7 and Theorem 4.3, the boundary maps sends the Möbius current
of Mi precisely to the Möbius current of M%. By the définition of the Möbius
current, this implies that the boundary map is Möbius. D
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4.2. The Liouville current for negatively curved cone surfaces

The aim of this subsection is to modify the definition of the Liouville current for
closed negatively curved surfaces to allow cone singularities.

Let X be a simply connected negatively curved cone surface, and Gq{X) C

G{X) the subset of nonsingular geodesies. Let k be an oriented geodesic segment
in X with length £(k) > 0, parametrized by arclength. Consider the set Go(k)
consisting of all the nonsingular geodesies that meet k transversally (not in the
endpoints of A;). We define a set of coordinates on Go{k). For any geodesic / in
Go(k), let t be the distance from the origin on k to the unique intersection point
with k. Let 9 be the angle of rotation between k and the geodesic /. Therefore
Qo{k) can be identified with a subset of [0, £(k)} x [0, tt] by *fc : / h^ (t, 9). Letting
k vary over all geodesic segments in X, we get an open cover of Gq{X). Consider
on [0,^(ä;)] x [0,7r] the following measure

dX -sin9d9dt.

Note that for any x G XUdX, the measure for dX of the image in [0,^(A;)] x [0,tt] of
the set of geodesies in Go(k) passing through x is zero: the map /, which associates
to t the unique 9 such that the associated geodesic / goes through x, is Lipschitz
where defined, hence its graph has A-measure zero.

Also note that for this measure, the image of ^ has full measure in [0,^(A;)] x
[0, tt]. There are only finitely many singularities on k. For any non singular x G k,
there are only countably many angles 9 such that the geodesic / intersecting k at
x with angle 9 is singular.

Since ^ is injective, the pull-back measure da^ of dX on Go(k) by ^ is well
defined.

Proposition 4.11. The local measures {a^} on Go(k) match up to define a global
measure on Gq(X). Extending tt, by giving measure 0 to the set G(X) — Gq(X)
of singular geodesic, yields a a-finite regular Borel measure on G(X).

Proof. Let k and k! be two geodesic segments in X. We want to prove that a^ a^i
on Go{k)C\Go{k'). Since the measure of the set of geodesies passing through a point
is 0 for both measures, by a (countable) cutting process, we only have to prove
the claim when there are no singularities in the disc having boundary made of
k,k' and geodesic arcs connecting their endpoints. Then the proof for negatively
curved Riemannian manifolds without singular points holds [San]. D

If X covers a closed negatively curved cone surface S, the measure defined
above on G(X) is clearly invariant by the covering group, hence will be called the
Liouville current of S, and will be denoted by /-iLtcra- (We will also denote by /-ilzou
the measure on d^X defined similarly.) Note that the following fact immediately
holds by integration:
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Proposition 4.12. For any geodesic segment k in X we have

^Lum(G(k)) i*Lum(Go(k)) £(k). a

The following proposition relates the Möbius and the Liouville currents.

Theorem 4.13. Let S be a closed negatively curved cone surface, then

Proof. By Propositions 4.7 and 4.12, both currents have the same intersection
numbers. So the result follows from Theorem 4.3. D

The main application of the above proposition is that we now know that the
Möbius measure of the set of geodesies passing through any geodesic segment of X
equals the length of the segment. This will be essential to show that the boundary
map, if Möbius, is an extension of an isometry.

4.3. The Lebesgue measure for the geodesic flow on a negatively curved
cone surface

Let S be a negatively curved cone surface, P its set of singularities. Let T^-(S) be
the Borel set of tangent vectors v G T^-(S — P) such that no geodesic directed by
v is singular. Note that the geodesic flow </>* is well defined on T^-(S). (As usual,
</>*(u) is the tangent vector to the unique geodesic defined by v at the unique point
at distance t from the base point of v.)

Even if S — P is non complete, we have on T^-(S — P) well defined measure,
the Lebesgue measure, invariant by the geodesic flow where defined. In canonical
local charts on the unit tangent bundle, it is the product of the volume form of
the manifold by the Lebesgue measure on the unit sphere. See for instance [KH,
page 205], where this measure is called the Liouville measure. To avoid confusion
with the Liouville current, we prefer to call it the Lebesgue measure. We will
denote the restriction of the Lebesgue measure to T^-(S) by /x^, and still call it
the Lebesgue measure. This measure is invariant by the geodesic flow </>*.

Since there are only countably many directions of singular geodesies at a given
point, the subset T^-(S) has full Lebesgue measure in T^-(S — P).

There is a continuous action of S on T (S), v —> 6 ¦ v, which is defined for a

given v except on a countable subset of S1, hence whose domain has full measure
in T^-(S) x S1 for the product of the Lebesgue measures.

Let X be the universal cover of S, which is a negatively curved cone surface

(with singularities at the lifts of P). Any v in T1(X) defines a unique geodesic
in X, which will be denoted by lv. One has a well defined map f\ : T1(X) —>

2
— A, which associates to each v the points at infinity of lv. It is clear that
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/l is measurable and the fibers of f\ are the geodesies in X Note that, unlike
the nonsmgular case, f\ is not continuous Fixing a base point in X, one get a
measurable bijection / T1(X) —> (<92X — A) x R, whose first component is f\,
the second being the signed distance from the projection of the base point to the

origin of v

Lemma 4.14. The pushforward of the Lebesgue measure by f satisfies

where s denotes the arclength along geodesies

Proof On the set corresponding to singular geodesies, both measures have measure
0 Outside it, the usual proof for negatively curved manifolds applies D

4.4. Negatively curved surfaces with same marked length spectrum

The aim of this final part is to prove that (2)+(3) implies (4) in Theorem C
We will follow closely J -P Otal's proof in [Otal], emphasizing mainly the points
where the proofs are different

Let S be a closed connected surface Let m,m' be two negatively curved cone
metrics on S, having the same marked length spectrum We will add the subscript
m,m' to tell which metric we are considering For instance, Xm,Xmi will be the
universal covers of S with the metrics lifted from m,m' The hypotheses (2)+(3)
imply that we have an equivanant homeomorphism <j> dXm —> dXmi such that
4> x 4> preserves the Mobms currents

b'

Figure 8 Angle correspondance
For almost every (v,6) in Tl{Xm) x [0,tt], we will define an angle 9'{v,9) e

[0, tt] For 6 0,7T, set 6 (v, 9) 0, tt respectively
Assume that 9 ^ 0, tt and that 9 v is a non singular direction (Note that the

set of (v, 9) such that 9 v is a singular direction has measure 0 in T1(Xm) x [0, ir]
Let 1'v,Iqv be the geodesies in Xmi whose endpomts are the images by </> of the
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endpoints of lv and lg.v (see Figure 8). The endpoints in dXm of the geodesies lv
and lg.v are intertwined. Since </> is an homeomorphism, so are the endpoints of l'v

and l'gv. So these two geodesies have to intersect.

Lemma 4.15. Under the above hypotheses, the geodesies l'v and l'dv are non
singular, hence meet in one and only one point.

Proof. Assume by absurd that l'v is singular. Let x! be a point on l'v with cone
angle > 2tt. Let b', d! be the endpoints of l'v. There exist closed intervals U', V' in
dXmi, containing b', d!, with non empty interiors, with U' n V' 0, such that for

any a" G U' and c" G V', the geodesic between a",c" goes through x'. Hence the
crossratio [a", b', c", d'] vanishes for all a" G U' - {b'} and c" G V - {d1}.

Since (f>~^ is Möbius, this contradicts the fact that lv is nonsingular. D

We will denote by 6'(v, 9) the angle (in ]0,tt[) between the geodesies l'v and l'dv
at the unique intersection point given by the previous lemma.

By equivariance, 9' induces a map defined a set of full measure of T^(S) x [0, ir]
for the product of the Lebesgue measures, with values in [0,tt], which is clearly
measurable. (A priori, this map is not continuous, contrary to the nonsingular
case of J.-P. Otal. Indeed, the map, which associates to a unit tangent vector the
endpoints of the geodesic it defines, is no longer continuous.)

Let us denote by V(Tr^(S')) the total volume for the Lebesgue measure d/j,^
on Ti(S).

Consider the following average of the angles 6'(v, 9)

Proposition 4.16, Proposition 4.17 and Lemma 4.18 are easy modifications of
J.-P. Otal's results in [Otal, Proposition 6,7 and Lemma 8]. We only emphasize
the differences with the non singular case. For instance, the lack of continuity
forces us to use "measurable" arguments.

Proposition 4.16. The following properties hold for © :
1. © : [0,tt] —> [O,tt] is increasing,
2. 0 commutes with the symmetry with respect to ^ :

we, q\-k-9) TT-o\e),

3. 0 is super-additive:

V0i,02 such that9i+92 G [O,tt], we have @'(0i + 02) > ©'(0i) + ©'(02).

Proof.The map 0 is measurable and satisfies 0 (0) 0,0 (tt) tt. It is positive

on ]0,tt[ as an average of a positive measurable function. In particular, the
assertion 1) follows from the assertion 3). The rest of the proof follows from [Otal,
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Prop. 6] where no continuity is needed. The main points used here are the almost
everywhere invariance of the metric by rotation and the singular Gauss-Bonnet
formula, which does hold for negatively curved cone surfaces. D

We introduce further notations before the next proposition. Let F be a real
valued measurable convex function defined on the interval [O,tt]. According to the
Jensen inequality (cf. [Ru, page 63]), we have that for every 9 G [0,tt]:

F(e (0)) <
* f F(e (v, e)) dMLe6.

Moreover, if F is strictly convex, equality holds in the above integral if and only
if the function v —> 9 (v,6) is constant. We note that since 9 is a bounded
measurable function, we can integrate the second term in the above integral with
respect to the measure sin9 d6 on the interval [0,tt]. Applying Fubini we obtain:

\ r F(0\v,0))sm0dß\
o

Set F' (v) Jq F{0' (v, 9)) sin 9 dB. Thus, the second term in the above integral
is the average of the measurable function F on T^S).

Proposition 4.17. [Otal, Proposition 7] For any convex function F as above we
have

F(e'(6))sm6d9 < f F(6)sm6d9.
o Jo

Proof. Let 7 G iriS, and A~f C Xm, A1^ C Xm> be the translation axes, parametrized
by arclength, oriented from the repulsive fixed point to the attractive one. As
before (see in particular Lemma 4.15), the boundary map </> induces a measurable

bijection between the subset of j47x]0,tt[ of nonsingular geodesies meeting
transversaly Aj in a point, to the corresponding subset of AyX]0,7r[. This map
(t,6) \-+ {t',0') is equivariant under 7. It sends the measure sm6d6dt to the
measure sin 6' dO'dt', since the boundary map preserves the Liouville currents.

Note that the currents supported on the set of endpoints of all translation axes
are dense (see [Bon3, Theorem 7]).

The proof now follows as in [Otal, p. 159-160]. D

Lemma 4.18. Let Y be a measurable increasing function on [0,tt], Suppose that
1. T is super-additive and commutes with the symmetry with respect to ^.
2. For any convex function F defined on [0,tt], we have

71

F(T(0)) sin 9d,9 < [* F{9) sin 9 d,9.
o Jo

The T is the identity.
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Proof. Since © is measurable and increasing, we can follow the same arguments as

[Otal, Lemma 8]. D

We are now ready to end the proof of Theorem C.

Proof of (2)+(3) implies (4) in Theorem C. The function © as defined above satisfies

all the hypotheses of Lemma 4.18. Therefore we have 0 Id. In particular, it
is additive. Using the analysis of the equality case in the proof of Proposition 4.16

(3), we conclude that the image of three nonsingular geodesies intersecting at the
same point in the domain surface is three geodesies intersecting in one and only
one point.

Let <f> : Xm —> Xmi be the map sending the intersection point of two non
singular geodesic in Xm to the unique intersection point of the geodesies in Xm>
between the images by <j> of the endpoints of the geodesies in Xm. By the above

discussion, this map is well defined and equivariant.
Let p,q G {S, m) and let cf>(p), cf>(q) be their images in {S,m'). By Theorem

4.13 and Proposition 4.12, we have

dm(p, q) VMob(Gm(lP, <?]))

since <j> is an homeomorphism, the image by </> x </> of Gm([p, q\) is öTO' ([</>(p), </>(</)])•

Since <j> preserves the Möbius currents, we have

dm{p,q) dm>{4>{p),4>{q)).

Since </> is an isometry outside the singularities it must be an isometry everywhere.
This ends the proof of Theorem C. D

Remark. We note that this proof also holds for some other singular negatively
curved metrics (which are "almost everywhere" Riemannian, in some precise sense
to be defined).

Appendix. New metrics on the punctured boundary

Assume first that X is the real hyperbolic n-space. Let a G dX, and consider
the upper half space model where a is at infinity. One has on dX — {a}, which
is now R"""1, a metric, the Euclidian metric. This metric is invariant, up to
homotheties only, by the isometries of X fixing a. That is, the upper half space
model is canonically defined by a choice of point at infinity a and by a choice of
an horosphere centered at a.

Let now X be any proper CAT( — 1) space. In this appendix, we will define a
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family of metrics {da y} on dX — {a}, for a G dX and TL an horosphere centered
at a, such that an isometry of X fixing a acts by homotheties of this metric This
makes more precise the construction of [GH] section 8 for general hyperbolic spaces
(in Gromov's sense)

Figure 9 Euclid Cygan metric on the boundary

For 6, c in dX — {a}, define

da n(b, c) ^jim^ e-|(2*-d(fe* c*))

where t i—> bt,ct are the geodesies in X (parametrized by arclength) respectively
from a to b and from a to c, such that bo, co are on TL This limit exists by a

Cauchy argument because inside some small enough neighborhood of b (resp c),
the geodesic between bt, ct lies arbitrarily close to the geodesic between a, b (resp
a,c) Let r [0,+oo[^ X be a geodesic ray whose point at infinity is a (so that
r(t) tends to a as t —> +oo), and with r(0) belonging to TL Then it is easy to
prove that

da n(b, c) 1™ e~tdr{t) (b, c)

Now da -yi is clearly a distance For instance, the triangle inequality follows
from the one for the visual distances and the previous formula

It is also easy to check that on dX — {a}, the distance da ji induces the usual
topology, and that the conformai structure defined by da ji is the same as the one
defined by any dx for x G X

da

where ha^ is the intersection point of the horosphere TL with the geodesic between
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a and some point d in dX. So that the following limit does exist:

lim^f\ec^b dx{b,c)

For any isometry g of X, one clearly has

In particular, the distance dayi is unchanged by all isometries preserving a and
TL.

Before proving other properties of these metrics, let us make the following
définition.

Let TL, TL' be two horospheres centered at the same point a. For any geodesic £

with endpoint a, let x, y be the intersection points of I with TL and TL' respectively.
By the cocycle relation, Ba{x,y) does not depend on the geodesic £, and will be
denoted by a(H,H'). Note that a(H,H') -a(H',H) and \a(TL,TL')\ d(x,y)
for the above x,y. If an isometry g fixes a, define

Note that there is no incompatibility in the notations, since j-ftg(a) jxg{o) for

any x in TL.

Now, if an isometry g fixes a, then

da,H(9b, gc) jng(a) da,H(b^c) ¦ (10)

The following formula generalizes the value of the crossratio of four points on
the sphere S2 C U {00} when one point is 00.

Lemma A.I. For any distinct four points a,b,c,d on the boundary, and any
horosphere TL centered, at a, one has

ela,b,c,d]
da

d

Proof. This formula is easily obtained by letting x tends to a in Equation (7). D

Using the symmetries of the crossratios, one easily gets other formulas. Note
that the right handside is thus indépendant of TL.

Corollary A.2. Lei 7 be an hyperbolic isometry ofX, with 7—,7+ respectively the
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repulsive and attractive fixed point in dX Let a by any point in dX — {7_,7_|_}
Then

[7_,7+,a,7a] ^

Proof Since 7_,7_|_ are fixed by 7, according to Lemma A 1 and equation (10),
one has

Since g— is repulsive, any horoshere H is mapped by 7 to an horosphere 7W whose
horoball contains TL m its interior If x is the intersection point of the translation
axis of 7 with Ti, then j-Hg(g-)~1 edi\x"lx) The result follows D

Corollary A.3. Let X\,X<2 he CAT(-l) spaces, and A C dX\ If a map f
A —s- dX^ is Mobius, then it is an homothety for the above metrics, in the sense
that df(a)>H,(f(b),f(c)) K,H,H'da,H(b'c)

Proof If / preserves the crossratios, by Lemma A 1, one has

df{a)tH,(f(b),f(c)) df{a)tH,(f(b),f(d))

for all 6, c, d and since the right handside is indépendant of c, by symmetry of the
distance, the result follows D
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