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The optimal constant in Wente's L°° estimate

Peter Topping

Abstract. We explore some geometric aspects of compensation compactness associated to Ja-
cobian determinants We provide the optimal constant in Wente's inequality - the original
motivation of this work - and go on to give various extensions to geometric situations In fact
we improve Wente's inequality somewhat, making it more appropriate for applications in which
optimal results are required This is demonstrated when we prove an optimal inequality for
immersed surfaces of constant mean curvature in R contolhng their diameter in terms of their
area and curvature

Mathematics Subject Classification (1991). 35J60
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1. Introduction

Given a map u G H1(R2,r'2) it is clear that det(Vw) G L^R^R) However,
over the past thirty years it has become clear that such quantities det(Vw) posess
further 'regularity' properties The earliest observations of this form seem to be
due to Wente [10] whilst more modern work [5] has established that det(Vw) lies

m the Hardy space TL^ C L1

Experience has shown that the quantity det(Vw) arises in, or can be extracted
from, a large number of partial differential equations from geometry and physics
At the heart of many of these situations has been the problem

-Ap det(Vw) in Q,

<p 0 on dfl

Moreover, it has been the crucial step in many situations to control <p in L°° In
particular this provides control of Vcp in L2 and the continuity of ip via simple
arguments Whilst Acp G L1 is not sufficient to control ip in L°°, the slightly
stronger statement Acp G ü} is indeed enough More modern applications of these

improved regularity phenomena have called for optimal constants in the estimates
A large number of references may be found in the forthcoming book of Frédéric
Hélem [9]
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Prior to this work it was known (see [11], [1] and [3]) that in the case that
Q D, the 2-disc (and consequently for any simply connected domain Q by the
conformai invariance of the problem) we have the estimate

for solutions of (1). Examples of Baraket in [1] show that the constant ^ is the
best we can hope for in such an estimate (whatever the domain Û). For general
Q, Bethuel and Ghidaglia [2] (see also [4]) established that

(2)

In this work we prove such an estimate for general Q, but with an optimal constant.

Theorem 1. Suppose Q is a hounded domain in R with regular boundary, and

u € H (Q,R
the estimate

rem 1. Suppose Q is a hounded domain in R with
u € H (Q,R Then if <p is the unique solution in Wq' (Q,R) to (1), we have

(3)

We refer to (3) as 'Wente's inequality' It is clear from our proof that there is

equality in (3) only when u is constant (on connected components of Q).
Theorem 1 follows from a more general inequality in which equality is much

easier to obtain. To state this, we must define the quantity

du

ox

du

dy

We note that both 2uj(u)dz and ^uj(u)dz (where z x + iy) are often referred to
as the 'Hopf differential,' the latter being the (2,0) part of the pullback under u of
the metric tensor on R A priori we have the pointwise estimate |w(u)| ^ ^|Vm|
and so defining the global quantities

E(u) \j \Vu\\ Q(u)= [ \u(u)\
n

(so E is the usual Dirichlet energy) we have the inequality

@{u) < E{u).

We remark that Q{u) measures, in some sense, the extent to which u is not con-
formal.

Our generalisation of Wente's inequality is then as follows.
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Theorem 2. Suppose Q is a hounded domain in R with regular boundary, and

u € H (Q,R Then if <p is the unique solution in Wq' (Q,R) to (1), we have
the estimate

~(fi)<^:(£M + 0M)- (4)

The a priori inequality

ensures that Theorem 2 indeed generalises Theorem 1.

We remark that equality in (4) is attained for a wide variety of maps u (in
contrast to (3)). For example, when Q D and u id we find that det(Vw) 1,

(p -\{x2 + y2 — 1), E(u) 7T and O(m) 0, and hence that both sides in (4)

are equal to |.
In section 4 we will discuss generalisations of Theorem 2 to the case that Q is a

more general surface. This generalisation is then applied to the study of immersed
surfaces of constant mean curvature in section 5. The extent to which the target
R of the map u may be generalised to other surfaces is considered in section 6.

2. The isoperimetric inequality

Central to our proof will be an isoperimetric inequality. The simplest such
inequality relates the area A(Q) of a domain Q C R to the length L(dQ) of its
boundary, and is very well known.

Lemma 1. Given a domain Q C R with regular boundary, we have the estimate

L(dQ)2.

We offer a new proof, inspired by work of Frédéric Hélein [8], which we believe
to be shorter than any previously known proof. We use, in order of appearance,
simple integration, Cauchy's theory (plus the fact that dz Adz 2dx A dy when
z x + iy), Fubini's Theorem, Stokes' Theorem, and simple estimation. We will
denote the path corresponding to dfl, and keeping Q on the left, by 7.

Proof.

dzAdz= [ \ [ *****] du,
J[J \

[ \[] [ \ [
n L/7 w-z\ J7[Jn z-w

— W 1 o
dz \dw < L2. D
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Note that m future we will use dfl to represent both the boundary of Q and
the corresponding path traversed keeping Q on the left

In fact, we shall require a functional form of the lsopernnetric inequality Given
a regular domain S C M and u G C°°(S,R we may define

A{Y,,u) / det(Vw), £(<9X,m)= / |Vmt|,
JE JdT,

the area of m(S) and the length of m(<9£) counted with algebraic and geometric
multiplicity respectively Here t denotes a unit length vector tangent to the path
on which we are integrating

Lemma 2. For any regular domain S C R and u € C°°(S,R we have the

inequality

Of course, when u is the identity map, we recover the simplest form of the
lsoperimetric inequality

Proof Let us see m as a map from S C C to C Then

det(Vw) \uz\ — \uz\ (uuz)z — (uuz)z,

and so

«4(E, u) I [(uuz)z — (uuz)z] —dz A dz — / uuzdz -\- uuzdz — / udu

Writing 7 m o 9S and reinterpreting du as a form on the target C, we have

1 fA(S,u) — / udu
^ J-y

Let us take any simply connected regular domain A in the target C which encloses

Then

..„, 1 f 1 f dt; \ 1 /" /" w,,A(T,,u) — / u [-— / du — / dvdu
2iJ1 \2tti JdAV-uJ 4tt J1 JdA u - v

1 f f uv/ / dvdu,
u — v

where the last equality holds because 7 cannot wind around v G <9A and so

f 1

/ du 0
J7u-v

Simple estimation now gives us

The lemma follows upon shrinking A around m(<9S) D
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3. The proof of Theorem 2

Let us consider the Green function G Ga related to Q as in Theorem 2, and
a G Q - in other words the solution G Q —s- R to

-AG 6a in fi,
G 0 onöü U

Recall that
G(z) =-^ log |z-a|+ &(*), (6)

where /i ha G C°°(Q,R) is harmonic, and hence that G is smooth away from a
The maximum principle tells us that G is positive on Q

Let <S C Q denote the set of critical points of G Clearly 5 is a set of isolated

points, as it also represents the zero set of the holomorphic function Gz In
particular S is countable which suffices for our purposes, though as we shall now
argue, the critical points of G are isolated in Q and therefore S is a finite set of
points If this were not the case, we could pick an accumulation point x G dfl of
critical points of G Then by straightening out the boundary dfl via a conformai
reparameterisation of Q and reflecting G across the boundary locally, the extension

of G would have an accumulation point at x which is impossible as Gz is now
holomorphic on a neighbourhood of x

We make the further definitions TZ+ (0, oo)\G(S) and Q' {x G Q | G(x) G

TZ+} Q\G-1(G(S')) Moreover, we label the level sets of G by V(7) G"1^)
and define W(i) G"1((7, oo]), so that dW(^) V(7) Note that the level sets
of G were also considered in Bethuel and Ghidaglia's proof of (2) By a simple
Implicit Function Theorem argument, for any 7, T/(7) is locally a smooth curve
away from the set <S, and hence for 7 G 72-|-, T/(7) is a union of smooth closed

paths A further consequence is that Q and Q' differ only by a set of measure zero
We will need to appeal several times to a coarea formula Taking integration to

be with respect to Lebesgue measure on R (or an appropriate induced measure)
when not stated exphcity, we give the following specialisation of [6, Theorem
3 2 12]

Proposition 1. Let S C R be a regular domain Then for any g G L1(E,R)
and s G C°°(S,R) with Vs ^ 0 (so that s^1(7) is a smooth curve for every 7) we
have

From the properties of the Green function G discussed above, and in particular
the smallness of the set <S of critical points, we can effectively ignore the critical
points of G by removing small balls around them - putting g //|VG|, s G
and Ti W{rj) for some r\ ^ 0, we have the following corollary
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Corollary 1. Let G : Q —> R be the Green function as defined, in (5). Then for
any r\ > 0 and f £ L (S,R) we have

w(v)
/ f

|VG|
dr/.

Finally we prepare an a priori estimate on the directional energy density of a

map.

Lemma 3. For u £ M/1'2(Q,R2) and r £ S1 ^ R2, we have the pomtwise
estimate

\Vu. cv(u)\.

Proof. Defining tq (cos 9, sin 9), a calculation reveals that

|VW.re|2
du

cos2 9 +
du

dy
sin

du
dx

du du
—,—ox dy

du
dy~

du du
dx1 dy

at which point the lemma follows via the Cauchy-Schwarz inequality.

(7)

(8)

D

The more geometrically inclined reader may wish to carry through the following
proof of Theorem 2 with the ordinary metric on Q\S scaled by a conformai factor
of 1/|VG|2. This removes the factors of |VG| in the calculations, and does not
alter the value of ||Vm||

Proof of Theorem 2. Let us assume that u £ C°°(Q,R2) n ff^^R2). For general
u we may reduce to this case by taking a smooth approximating sequence {un}
with un —> u in iJ1(Q,R and analysing the limiting behaviour of the solutions
to (1).

Our objective is to control |y(a)|. We begin with Green's representation

ip(a) I det(Vu)G,
Jn

to which we apply the coarea formula Corollary 1 with / det(Vw)G and r\ 0

to get
det(Vw)G\

o \Jv(7) |VG|
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A second application of the coarea formula with / det(Vw) and r\ 7 gives us

which we may differentiate to find that

dA(W(j),u) f det(Vu)
dl hin) |VG|

Combining these two threads we obtain

[°° dA(W(j),u)
O d-f

We would like to integrate by parts, though we must first prove that the boundary
term at infinity is negligible - in other words that A(W(^/),u)^/ —> 0 as 7 —> 00
To see this, we first observe that for x G Br(a),

det(Vu)(x) det(Vw)(a) + o(l),

as r —s- 0, and then, by virtue of (6), that

W(>y) C B,(7)(a), where »7(7) e-M-

Combining, we find that

and so

\A(W(-r),w)|7 < »7(7)1 det(Vu)(a)| + o(l) o(f),

as 7 —s- 00
We can now integrate by parts as planned, to get

A(W(<y),u)d<y (9)
0

Applying Lemma 2 (ignoring the irrelevant case 7 <£ 72-+) we find that

y),W)2d7 (10)

We proceed by using the definition of £ to estimate

|VG
|VG|
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However, denoting outwards normal differentiation by J^, we observe that

323

|VG| - / -t-= (-AG) f,
v(7) Jdw(-y) ^ Jvk(7)

which together with Lemma 3 leads to

v(7) |VG

Returning to (fO) a final application of the coarea formula Corollary f with /^2 + |w(u)| and r/ 0 delivers the concluding estimate

v(-r) |VG|

h{E{u)+e(M)) • D

For historical reasons, we give an equivalent of Theorem f with u expressed in
coordinates (a, b), and with coordinates (x,y) on the domain.

Corollary 2. Suppose Q is a bounded domain in R with regular boundary, and

a, b € H (Q,R). Then if <p is the unique solution in Wq' (Q,R) to

—A.ip axby — aybx

(p 0

in

on

then we have the estimate

Proof. For A > 0 let us define û (Xa,jb). Observing that det(Vw) det(Vû)
we may use Theorem f to estimate

The corollary follows by setting

A2 I|V6||L2

||Va||L2
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in the case that both ||Va||L2 ^ 0 and ||V6||L2 ^ 0, or by taking an appropriate
limit if not. D

Finally, let us note that although Theorem 1 gives us an estimate for
via the calculation

the constant y -g^ is not optimal (though it may be improved using Theorem 2).

The optimal constant in this case is given in the following result of Ge [7].

Theorem 3. With Q, u and <p as in Theorem 1, we have the inequality

4. Generalisations of the domain

Although we have only considered the case in which Q is a domain in 1 we
remark that the proof carries through in exactly the same way if Q is a compact
Riemannian surface with boundary. Note now that the equation

-A^ det(Vw) in Q (11)

is to be satisfied with respect to local isothermal coordinates, and that this is a well
defined notion owing to the conformai invariance of (11). Moreover the quantities
E and © do not depend on the local isothermal coordinates with which they are
calculated.

We may also extend to the case that Q is a compact Riemannian surface without
boundary. Without boundary conditions, a solution of (11) is now only unique up
to a constant, and so what we wish to control is the oscillation of tp

osc((p) ess sup \(p(x) - (p(y)\.
C

Although the statement of the following result appears to require a Riemannian
metric on Q, we observe that all the quantities and notions involved are dependent
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only on its conformai structure, and we therefore allow Q to be merely a Riemann
surface.

Theorem 4. Suppose Q is a compact Riemann surface and u G iJ1(Q,R Then

if ip is a solution in VF1'1(Q,R) to

-Acp det(Vw) in Q,

we have the estimate

osc(^) < i- (E(u) + e(u)). (12)

Proof. As in the proof of Theorem 2 we need only consider the case that u is

smooth. Let x G Q be a point at which <p attains its minimum value, which we

may assume to be zero. Fixing some e > 0, let us then choose a small ball Bcf!
around x such that <p\b ^ e.

We will compare (p with the unique solution v of

-Av 0 in Q\B,
v (p on dB,

which satisfies v ^ e throughout Q\B. Indeed applying the above-mentioned
extension of Theorem 2 on the domain Q\B to (p — v, we see that

and hence that
0<^<£+-3-(£(m) + 6(m)).

Since e was an arbitrary positive number, the proof is complete. D

5. Immersed surfaces of constant mean curvature

With the extensions of our results discussed in the previous chapter, we can ob-
tain restrictions of immersed surfaces of constant mean curvature in R This
application was inspired by Wente's use of his original inequality.

Theorem 5. Let Q be a compact orientable surface and suppose X : Q —s- R
describes an immersed surface of constant mean curvature H. Hence turning Q

into a Riemann surface with the conformai structure which makes X conformai,
the equation

-AX 2H^ x ^ (13)
ox ay
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is satisfied where x -\- iy is a local complex coordinate on Q. Then we have the

inequality

Area{X{ü))H
Diameter(X(Q)) (14)

This inequality is optimal in the sense that equality holds when X is the
inclusion S in which case both sides are equal to 2.

Proof. Let us write X (X\X2,X3) and u (X\X2). As X is conformai, we
see that

dX
~dx~

dX
dy

'

dX3 2

dx

dX dX
dx ' dy

dX3 2

dy dx dy r
and hence that

In particular,

3i2

0(u) E(X3).

Now let us take the third component of the equation (13)

(15)

Applying Theorem 4 and using (15) we see that

osc(X3) < 2H±- (E(u) + 0(u)) ^- (e{u) + E(X

H Area(X(Q))g

where the final equality uses again the conformality of X. Without loss of gen-
erality, the direction of the third component in R is the direction of maximum
oscillation, and so the proof is complete. D
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6. Generalisations of the target

It is clear from the proof given in section 3 that the reason for the compensation
phenomena discussed in this paper is the existence of an lsopernnetric inequality
on the target R of the map u We would therefore expect to be able to generalise
the target providing we preserve this property

Let us consider the case that the target of m is a compact Riemanman surface
without boundary TV, and let us denote its volume form by A The problem we
would now like to solve is

A)dAdy u*(A) in Q,

(p 0 on dfl

Let us assume that Q D How we progress depends on the genus of J\f
If the genus of J\f is at least 1, then an lsoperimetric inequality holds, and our

results extend Indeed, we may lift the map u to the universal cover of TV, which
is either R or D with an appropriately periodic metric, and apply our results as
before Of course we can expect a worse constant in the inequalities than we had
for the flat metric on the target R

However, if Af is S*2, no suitable lsoperimetric inequality holds and the results
fail as stated A counterexample is the map u D —> S*2 R U {oo} (using
stereographic projection) given by u(x) Xx for A > 0 We find that E(u)
Area(u(D)) < Area(S^) 4tt (note that u is conformai) for any A > 0 but that
as A —> oo the value of <p(0) tends to infinity This may be seen by calculation,
but is most easily seen using the representation (9) in the proof of Theorem 2

In contrast, if J\f is the round 2-sphere and E(u) < 4tt then the lsoperimetric
inequality on the sphere L ^ A{Air — A) gives us the inequality

and our results extend with the constant ^ in Theorems 1 and 2 replaced by
1

4tt-E(u)
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