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The braid monodromy of plane algebraic curves and
hyperplane arrangements

Daniel C Cohen and Alexander I Sucm*

Abstract. To a plane algebraic curve of degree n, Moishezon associated a braid monodromy
homomorphism from a finitely generated free group to Artin's braid group Bn Using Hansen's
polynomial covering space theory, we give a new interpretation of this construction Next, we
provide an explicit description of the braid monodromy of an arrangement of complex affine
hyperplanes, by means of an associated "braided wiring diagram " The ensuing presentation
of the fundamental group of the complement is shown to be Tietze-I equivalent to the Randell-
Arvola presentation Work of Libgober then implies that the complement of a line arrangement is
homotopy equivalent to the 2-complex modeled on either of these presentations Finally, we prove
that the braid monodromy of a line arrangement determines the intersection lattice Examples
of Falk then show that the braid monodromy carries more information than the group of the
complement, thereby answering a question of Libgober

Mathematics Subject Classification (1991). Primary 14H30, 20F36, 52B30, Secondary
05B35, 32S25, 57M05

Keywords. Braid monodromy, plane curve, hyperplane arrangement, fundamental group,
polynomial cover, braid group, wiring diagram, intersection lattice

1. Introduction

1.1.

Let C be an algebraic curve m C2 In the 1930's, Zariski commissioned van Kampen
to compute the fundamental group of the complement, tti(C2 \C) The algorithm
for doing this was developed m [vK] Refinements of van Kampen's algorithm were

given by Chisim m the 50's, and Chémot, Abelson, and Chang m the 70's In the
early 80's, Moishezon [Mo] introduced the notion of braid monodromy, which he

used to recover van Kampen's presentation Finally, Libgober [LI] showed that the

*The second author was partially supported by NSF grant DMS-9504833, and an RSDF
grant from Northeastern University
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2-complex associated to the braid monodromy presentation is homotopy equivalent
to C2 \ C

Let A be an arrangement of hyperplanes in C£ In the early 80's, Randell
[Rl] found an algorithm for computing the fundamental group of the complement,
7Ti(C£ \ A), when A is the complexification of a real arrangement Salvetti [SI]
subsequently found a regular cell complex that is a deformation retract of the
complement of such an arrangement When £ 2, Falk [Fa] proved that the 2-complex
associated to the Randell presentation is homotopy equivalent to C2 \ A by showing

that it is homotopy equivalent to Salvetti's complex The braid monodromy of
a complexified real arrangement was determined by Salvetti [S2], Hironaka [Hir],
and Cordovil and Fachada [CF], [Cor] An algorithm for computing the
fundamental group of an arbitrary complex arrangement was found by Arvola [Ar] (see
also Orlik and Terao [OT], and see Dung and Ha [DH] for another method)

In this paper, we present a unified view of these two subjects, extending several
of the aforementioned results In particular, we give m 5 3 an algorithm for finding
the (pure) braid monodromy of an arbitrary arrangement A of complex lines in
C2 Furthermore, we show in Theorem 6 4 that the corresponding presentation of
tv\ (C \ A) is equivalent to the Randell-Arvola presentation We also strengthen
Falk's result, by showing that the 2-complex modeled on the Arvola presentation
is homotopy equivalent to C2 \ A

The determination of the braid monodromy of an arrangement A is facilitated

by use of a braided wiring diagram associated to A, a natural generalization
of a combinatorial notion of Goodman [Go] For a real arrangement, Cordovil
and Fachada have shown that the braid monodromy of the complexification is

determined by an associated (unbraided) wiring diagram, and have defined the
braid monodromy of an abstract wiring diagram Hironaka's technique may also
be applied in this generality The algorithm presented here generalizes both these
methods

1.2.

Before specializing to arrangements, we present a new interpretation of the process
by which the braid monodromy of a curve C is defined This follows in spirit the
approach in [LI], but uses a self-contained argument based on Hansen's theory
of polynomial covering maps, [Hl], [H2] Given a simple Weierstrass polynomial

/ X x C —s- C of degree n, we consider the space Y X x C \ {/(x, z)
0} In Theorem 2 3, we show that the projection p pr^ \y Y —s- X is a
fiber bundle map, with structure group the braid group Bn, and monodromy the
homomorphism from tti(X) to Bn induced by the coefficient map of /

This result is applied in the situation where / defines a plane curve C, and
X C \ {y\, ys} is the set of regular values of a generic linear projection
The braid monodromy of C is simply the coefficient homomorphism, a Fs —> Bn
This map depends on choices of projection, generating curves, and basepomts
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However, the braid-equivalence class of the monodromy—the double coset [a] G

Bs\ Hom(Fs,Bn)/Bn, where Bs acts on the left by the Artin representation, and
Bn acts on the right by conjugation—is uniquely determined by C

For a line arrangement A, changes in the various choices noted above give rise to
changes in the associated braided wiring diagram W These, and other, "Markov
moves" do not affect the braid monodromy In practice, the braided wiring diagram
of a given arrangement may be simplified via these moves Such simplifications,
together with use of the braid relations, make the braid monodromy presentation
of the group of a complex arrangement accessible Furthermore, braided wiring
diagrams associated to arrangements which are lattice-isotopic in the sense of
Randell [R2] are related by Markov moves A combinatorial characterization of
this fact remains to be determined Such a characterization, suggested for (un-
braided) wiring diagrams by Bjorner, Las Vergnas, Sturmfels, White, and Ziegler
in [BLSWZ], Exercise 6 12, would likely lead to the development of a Jones-type
polynomial for arrangements

The braid monodromy is also useful in defining Alexander-type invariants of
plane algebraic curves Given a curve C with braid monodromy a Fs —> Bn,
one may consider a representation 9 Bn —> GL(N,R), and compute the module

of comvanants of So« As noted by Libgober in [L3], the R-module Ag(C)
Hq(Fs, R^oa) depends only on the equismgular isotopy class of C (and on 9) When
9 is the Burau representation, Ag(C) equals the Alexander module, and thus
depends only on tti(C2 \ C) For other representations of the braid group, such as

the generalized Burau representations of [CS1], the module Ag(C) is more likely to
be a homeomorphism-type (rather than homotopy-type) invariant of the complement,

see the discussion in 1 3, and section 7 For a detailed analysis of Alexander
invariants of hyperplane arrangements, based on the techniques developed in this
paper, we refer to

1.3.

In general, the braid monodromy of a plane algebraic curve depends not only on the
number and type of singularities, but on the relative positions of the singularities
as well A famous example of Zariski [ZI], [Z2] consists of two sextics, both with
six cusps, one with all cusps on a conic, the other not Explicit braid monodromy
generators for these curves were given by Rudolph [Ru], Example 3 As shown
by Zariski, the two curves have distinct fundamental groups Further information
concerning such "Zariski couples" may be found in [A-B] An example of a different
nature is given m 7 4 There, the two sextics have the same number of double
points (9) and triple points (2), their fundamental groups are lsomorphic, but,
nevertheless, their braid monodromies are not braid-equivalent

The above example provides an affirmative answer to a question of Libgober,
who raised the possibility in [L3] that the braid monodromy of a plane algebraic
curve which is transverse to the line at infinity carries more information than the
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fundamental group of the complement The sextics m 7 4 define arrangements,
originally studied by Falk [Fa], with distinct lattices This explains the difference
in the braid monodromies In Theorem 7 2, we show that the braid-equivalence
class of the monodromy of an arrangement determines the lattice On the other
hand, as Falk demonstrated with these examples, the homotopy type of the
complement of an arrangement does not determine the lattice However, as noted by
Jiang and Yau [JY], the complements of these arrangements are not homeoinor-
phic This, and other evidence, suggests that the braid monodromy of a curve is

more closely tied to the homeomorphism type of the complement (or even to the
ambient homeomorphism type of the curve) than to the fundamental group of the
complement

In the other direction, using classical configurations of MacLane [MacL], Ryb-
mkov [Ry] constructs complex arrangements with lsomorphic lattices and distinct
fundamental groups It follows that the lattice of a complex arrangement does

not determine the braid monodromy We provide another illustration of this
phenomenon In Theorem 3 9, we show that complex conjugate algebraic curves have

equivalent braid monodromies However, we show m 7 7 that the monodromies of
a pair of conjugate arrangements associated to MacLane's configurations are not
braid-equivalent, despite the fact that these arrangements have lsomorphic lattices
and groups (and, in fact, diffeomorphic complements)

It is not known whether the lattice of a real arrangement determines the braid
monodromy of its complexification A result along these lines may be found in
[CF] There, the image in the pure braid group of the braid monodromy of a

wiring diagram W is called the braid monodromy group of W Cordovil and
Fachada show that wiring diagrams which determine identical matroids give rise to
equal braid monodromy groups This result is not as widely applicable as it may
appear In 7 5, we consider arrangements with lsomorphic (oriented) matroids
and homeomorphic complements Their monodromies are braid-equivalent, but
the associated braid monodromy groups are not conjugate subgroups of the pure
braid group

Conventions. Given elements x and y m a group G, we will write xy y~^xy
and [x,y] xyx~^y~^ Also, we will denote by Aut(G) the group of right
automorphisms of G, with multiplication a ß ß o a

Acknowledgements
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2. Polynomial covers and Sn-bundles

We begin by reviewing polynomial covering maps. These were introduced by
Hansen in [HI], and studied in detail in his book [H2], which, together with Bir-
man's book [Bi], is our basic reference for this section. We then consider bundles
whose structure group is Artin's braid group Bn, and relate them to polynomial
n-fold covers.

2.1. Polynomial covers

Let X be a path-connected space that has the homotopy type of a CW-complex.
A simple Weierstrass polynomial of degree n is a map /:IxC->C given by

with continuous coefficient maps at : X —s- C, and with no multiple roots for

any x G X. Given such /, the restriction of the first-coordinate projection map
pr^ : X x C —> X to the subspace

E E(f) {(x,z)(=XxC\f(x,z) O}

defines an n-fold cover it iTf : E —> X, the polynomial covering map associated
to /.

Since / has no multiple roots, the coefficient map a (a\,... ,an) : X —> Cn
takes values in the complement of the discriminant set, Bn Cn \ An. Over Bn,
there is a canonical n-fold polynomial covering map 7rn tt/ : E(fn) —> Bn,
determined by the Weierstrass polynomial fn(x,z) zn + Y^=\ x%zn~%¦ Clearly,
the polynomial cover ttj : E(f) —> X is the pull-back of 7rn : E(fn) —> Bn along
the coefficient map a : X —> Bn.

This can be interpreted on the level of fundamental groups as follows. The
fundamental group of the configuration space, Bn, of n unordered points in C
is the group, Bn, of braids on n strands. The map a determines the coefficient
homomorphism a a* : ir\{X) —> Bn, unique up to conjugacy. One may characterize

polynomial covers as those covers it : E —> X for which the characteristic
homomorphism to the symmetric group, \ '¦ ^liX) —? Sn, factors through the
canonical surjection rn : Bn —> Sn as \ Tn ° «•

Now assume that the simple Weierstrass polynomial / is completely solvable,
that is, factors as

î=l
with continuous roots bt : X —s- C Since the Weierstrass polynomial / is simple,

the root map b (b\,... ,bn) : X —s- C" takes values in the complement,
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pn _ cm ^ j^^ oj j.^ j-jj-ajj arrangement An {ker(wj — Wj)}i<i<j<n. Over Pn,
there is a canonical n-fold covering map, qn -KQn : E(Qn) —s- Pn, determined by
the Weierstrass polynomial Qn(w, z) (z — w\) ¦ ¦ ¦ (z — wn). Evidently, the cover

¦Kf :E^ X \s the pull-back of qn : E{Qn) -> Pn along the root map b : X -> Pn.
The fundamental group of the configuration space, Pn, of n ordered points in

C is the group, Pn kerrn, of pure braids on n strands. The map b determines
the root homomorphism ß 6* : tti(X) —> Pn, unique up to conjugacy. The
polynomial covers which are trivial covers (in the usual sense) are precisely those
for which the coefficient homomorphism factors as a in oß, where in : Pn —> Bn
is the canonical injection.

2.2. ^„-Bundles

The group Bn may be realized as the mapping class group SDÎq ^ of orientation-

preserving diffeomorphisms of the disk D permuting a collection of n marked
points. Upon identifying tti(_D2 \ {n points}) with the free group Fn, the action
of Bn on Tri yields the Arttn representation, an : Bn -^ Aut(fn). As shown by
Artin, this representation is faithful. Hence, we may—and often will—identify a
braid 9 G Bn with the corresponding braid automorphism, an{9) G Aut(fn).

Now let / : X x C —s- C be a simple Weierstrass polynomial. Let ttj : E(f) —> X
be the corresponding polynomial n-fold cover, and a : X —> Bn the coefficient map.
Consider the complement

Y Y(f)=XxC\E(f),
and let p pf : Y(f) —> X be the restriction of pr! : X x C —s- X to Y.

Theorem 2.3. The 'map p : Y —> X is a locally trivial bundle, with structure
group Bn and fiber Cn C \ {n points}. Upon identifying 7ri(Cn) with Fn, the

monodromy of this bundle may be written as an o a, where a a, : tt\(X) —> Bn
is the coefficient homomorphism.

Moreover, if f is completely solvable, the structure group reduces to Pn, and
the monodromy factors as o.n o in o ß, where ß b* : tti(X) -^ Pn is the root
homomorphism.

Proof. We first prove the theorem for the configuration spaces, and their canonical
Weierstrass polynomials. Start with X Pn, f Qn, and the canonical cover
qn ¦ E{Qn) -> Pn. Clearly, Y{Qn) Cn+1 \ E{Qn) is equal to the configuration
space Pn+l. Let pn pQn : Pn+l -+ Pn be the restriction of prj :C"xC^C".
As shown by Fadell and Neuwirth [FN], this is a bundle map, with fiber Cn, and
monodromy the restriction of the Artin representation to Pn.

Next, consider X Bn, / /„, and the canonical cover 7rn : E(fn) —>

Bn. Forgetting the order of the points defines a covering projection from the
ordered to the unordered configuration space, Kn : Pn —> Bn. In coordinates,
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K,n(w\,..., wn) [x\,... ,xn), where xt — l)%s%{w\,..., wn), and st are the
elementary symmetric functions. By Vieta's formulas, we have

Qn(w,z) fn(Kn(w),z).

Let Yn+1 Y(fn) and pn pfn : Yn+1 -> Bn. By the above formula, we see

that Kn x id : Pn x C -> Bn x C restricts to a map Rn+\ : Y{Qn) -> Y{fn), which
fits into the fiber product diagram

nn+l pn

K,

ßn

where the vertical maps are principal Sn-bundles. Since the bundle map pn :

Pn+1 —> Pn is equivariant with respect to the Sn-actions, the map on quotients,
'Pn '¦ yn+1 —s- Bn, is also a bundle map, with fiber Cn, and monodromy action the
Artin representation of Bn. This finishes the proof in the case of the canonical
Weierstrass polynomials over configuration spaces.

Now let / : X x C —s- C be an arbitrary simple Weierstrass polynomial. We
then have the following cartesian square:

X ——> Bn

In other words, p : Y —s- X is the pullback of the bundle pn : Yn+! —> _Bn along
the coefficient map a. Thus, p is a bundle map, with fiber Cn, and monodromy
representation o.n o a. When / is completely solvable, the bundle p : Y —s- X is

the pullback of pn : Pn+! —> Pn along the root map b. Since a tn o ß, the
monodromy is as claimed. D

Remark 2.4. Let us summarize the above discussion of braid bundles over
configuration spaces. From the Fadell-Neuwirth theorem, it follows that Pn is a

K(Pn, 1) space. Since the pure braid group is discrete, the classifying Pn-bundle
(in the sense of Steenrod) is the universal cover Pn —> Pn. We considered two
bundles over Pn, both associated to this one:
(i) qn : E(Qn) —s- Xn, by the trivial representation of Pn on {1,... ,n};
(ii) pn : Pn+! —s- Pn, by the (geometric) Artin representation of Pn on Cn.
Since _Bn is covered by Pn, it is a K(Bn, 1) space, and the classifying _Bn-bundle
is _Bn —s- _Bn. There were three bundles over _Bn that we mentioned, all associated
to this one:
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(iii) Kn : Xn —> Bn, by the canonical surjection rn : Bn —> Sn;
(iv) 7rn : E(fn) —> Bn, by the above, followed by the permutation representation of

Sn on {l,...,n};
(v) pn : Yn+! —> Bn, by the (geometric) Artin representation of Bn on Cn.
Finally, note that 7ri(Yn+1) is isomorphic to B\ Fn~AOn Bn, the group of braids
on n + 1 strands that fix the endpoint of the last strand, and that Yn+! is a

K{Bl, 1) space.

3. The braid monodromy of a plane algebraic curve

We are now ready to define the braid monodromy of an algebraic curve in the
complex plane. The construction, based on classical work of Zariski and van Kampen,

is due to Moishezon [Mo]. We follow the exposition of Libgober [LI], [L2],
[L3], but interpret the construction in the context established in the previous
section.

3.1. The construction

Let C be a reduced algebraic curve in C2, with defining polynomial / of degree
n. Let 7T : C2 —s- C be a linear projection, and let y {y\,..., ys} be the set of
points in C for which the fibers of it contain singular points of C, or are tangent
to C. Assume that it is generic with respect to C. That is, for each k, the line
£fc 7r~1(t/fe) contains at most one singular point vj. of C, and does not belong
to the tangent cone of C at u^, and, moreover, all tangencies are simple. Let C

denote the union of the lines £&, and let yo be a basepoint in C\3^- The definition
of the braid monodromy of C depends on two observations:

(i) The restriction of the projection map, p : C \CUC —> <C\y, is a locally trivial
bundle.

Fix the fiber Cn p~^(yo) and a basepoint j/o € Cn. The monodromy of C is,

by definition, the holonomy of this bundle, p : tti(C \ y,yo) —? Aut(7ri(Cn,j/o))-
Upon identifying tti(C\3^,j/o) with Fs, and 7ri(Cn,yo) with Fn, this can be written
as p : Fs —>¦ Aut(Fn).

(ii) The image of p is contained in the braid group Bn (viewed, as a subgroup of
Aut(fn) via the Artm embedding an).

The braid monodromy of C is the homomorphism a : F.'s —> Bn determined by
an o a p.

We shall present a self-contained proof of these two assertions, and, in the

process, identify the map a. The first assertion is well-known, and can also be
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proved by standard techniques (using blow-ups and Ehresmann's criterion—see
[Di], page 123), but we find our approach sheds some light on the underlying
topology of the situation.

3.2. Braid monodromy and polynomial covers

Let it : C2 —s- C1 be a linear projection, generic with respect to the given algebraic
curve C of degree n. We may assume (after a linear change of variables in C2

if necessary) that it pr^, the projection map onto the first coordinate. In the
chosen coordinates, the defining polynomial / of C may be written as f(x,z)
zn + Y^n=l at(x)zn~l. Since C is reduced, for each x <£ y, the equation f(x, z) 0

has n distinct roots. Thus, / is a simple Weierstrass polynomial over C\y, and

7r 7r/:C\Cn£^C\y (1)

is the associated polynomial n-fold cover.
Note that Y(f) ((C \ y) x C) \ (C \ C n £) C2 \ C U £. By Theorem 2.3,

the restriction of pr^ to Y(f),

p:C2\CUC^C\y, (2)

is a bundle map, with structure group Bn, fiber Cn, and monodromy homomor-
phism

y)^Bn. (3)

This proves assertions (i) and (ii). Furthermore, we have

Theorem 3.3. The hraid monodromy of a plane algebraic curve coincides with
the coefficient homomorphism of the associated polynomial cover.

In the case where C A is an arrangement of (affine) lines in C2, more can be
said. First, the critical set y {y\,... ,ys} consists (only) of the images under

it pr^ of the vertices of the arrangement. Furthermore, a defining polynomial
for A can be written as f(x,z) Yl"=i(z ~ ^(x))j where each £t is a linear
function in x. Thus, the associated polynomial cover is trivial, and the monodromy
representation is

An explicit formula for A will be given in section 5. For now, let us record the
following:

Theorem 3.4. The pure braid monodromy of a line arrangement coincides with
the root homomorphism of the associated (trivial) polynomial cover.
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3.5. Braid equivalence

The braid monodromy of a plane algebraic curve is not unique, but rather, depends
on the choices made in defining it. This indeterminacy was studied by Libgober
in [L2], [L3]. To make the analysis more precise, we first need a definition.

Definition 3.6. Two homomorphisms a : Fs —> Bn and a' : Fs —> Bn are equivalent

if there exist automorphisms ip G Aut(fs) and </> G Aut(fn) with 4>{Bn) C Bn
such that a'(ip(g)) 4>~^ ¦ o.{g) ¦ </>, for all g G Fs. In other words, the following
diagram commutes

Fs -^-^ Bn

i'
Fs

If, moreover, ip G Bs and </> G -Bn, the homomorphisms a and a' are braid-
equivalent.

Theorem 3.7. The braid monodromy of a plane algebraic curve C is well-defined
up to braid-equivalence.

Proof. First fix the generic projection. The identification tti(C\3^) Fs depends
on the choice of a "well-ordered" system of generators (see [Mo] or the discussion
in 4.1), and any two such choices yield monodromies which differ by a braid
automorphism of Fs, see [L2]. Furthermore, there is the choice of basepoints, and any
two such choices yield monodromies differing by a conjugation in Bn.

Finally, one must analyze the effect of a change in the choice of generic projection.

Let 7T and tt' be two such projections, with critical sets y and y', and braid
monodromies a : tti(C \ y) —> Bn and a' : tti(C \ y1) —> Bn. Libgober [L3] shows
that there is a homeomorphism h : C —s- C, isotopic to the identity, and taking
y to y1, for which the isomorphism h* : tti(C \ y) -^ tti(C \ y1) induced by the
restriction of h satisfies a1 o h* a. From the construction, we see that h can be
taken to be the identity outside a ball of large radius (containing y U y1). Thus,
once the identifications of source and target with Fs are made, h* can be written as

the composite of an inner automorphism of Fs with a braid automorphism of Fs :

h* conjfl otf). Trading the inner automorphism of Fs for an inner automorphism
of Bn, we obtain a' o t/j conja//s\ oa, completing the proof. D

Thus, we may regard the braid monodromy of C as a braid-equivalence class,
i.e., as a double coset [a] G Bs\ ]Iom(Fs,Bn)/Bn, uniquely determined by C. In
fact, it follows from [L3] that [a] depends only on the equisingular isotopy class of
the curve.
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3.8. Conjugate curves

If C is a plane curve with defining polynomial / /(x, z) of degree n, let C be the
curve defined by the polynomial / whose coefficients are the complex conjugates of
those of /. In other words, /(x, z) /(x, z). In this subsection, we relate the braid
monodromies of C and C. In general, the braid monodromies of conjugate curves
are not braid-equivalent, as shown in 7.7. Nevertheless, we have the following:

Theorem 3.9. The braid monodromies of conjugate curves are equivalent.

Proof. Let C and C be conjugate curves defined by polynomials / and / of degree
n. Choose coordinates in C2 so that tt pr^ is generic with respect to C. Then
¦k is evidently also generic with respect to C. Let y and y be the critical sets of
C and C with respect to this projection. Complex conjugation C —s- C restricts
to a map d : C\y ^ C\y. Choose a basepoint yo with Im(yo) 0. Then
d induces an isomorphism d* : tti(C \ y,yo) —? 7ri(C \ y,yo)- Identifying these

groups with Fs (x\,... ,xs), we have d* Ss, where ôs G Aut(fs) is given by
Ss(xk) (Xl • • • Xfc_l) • X^1 • (Xl • • • Xfc-l)"1.

Since the discriminant locus An is defined by a polynomial with real coefficients,
complex conjugation Cn —> Cn restricts to a map e : Bn -^ Bn. The induced map
£n e* : Bn -^ Bn is readily seen to be the automorphism defined on generators
by en(<7j) a~ As shown by Dyer and Grossman [DG], this involution generates
Out(Sn) Z2, for n > 3.

Let a and a be the coefficient maps of / and / respectively. The fact that
the defining polynomials of C and C have complex conjugate coefficients may be

expressed as a o d eoa. Passing to fundamental groups, we have ä o Ss en o a.
Checking that en conj^ (see [DG]) completes the proof. D

4. The fundamental group of a plane algebraic curve

We now give the braid monodromy presentation of the fundamental group of the
complement of a plane algebraic curve C. This presentation first appeared in the
classical work of van Kampen and Zariski [vK], [Z2], and has been much studied
since, see e.g. [Mo], [MT], [LI], [L2], [Ru], [Di].

4.1. Braid monodromy presentation

The homotopy exact sequence of the bundle p:C2\CU£^C\yof(2) reduces

to
2 \C U C) ^ 7Tl(C\ y) -+ 1.

This sequence is split exact, with action given by the braid monodromy homo-
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morphism a of (3). To extract a presentation of the middle group, order the
points of y by decreasing real part, and pick the basepoint yo in C \ 3^ with
Re(yo) > max{Re(j/fc)}. Choose loops £& : [0,1] —s- C \ y based at yo, going
up and above y\,... ,yk-i, passing around yk in the counterclockwise direction,
and coming back the same way. Setting X]~ [£&], identify tti(C \ y,yo) with
Fs {x\,...,xs). Similarly, identify 7ri(Cn,yo) with Fn {t\,...,tn). Having

done this, tti(C2 \ C U C,yo) becomes identified with the semidirect product
Fn x a Fs. The corresponding presentation is

Tri(C2 \ C U C) (ti,... tn, xx..., xs I x-1 ¦ tt ¦ xk a(xk)(tt)).

The fundamental group of the complement of the curve is the quotient of
7Ti(C2 \ C U £) by the normal closure of Fs (x\,.. .,xs). Thus, tti(C2 \C)
(ti,...,tn | tt a(xk)(tt)). This presentation can be simplified by Tietze-II
moves—eliminating redundant relations. Doing so, one obtains the braid mon-
odromy presentation

7Ti(C \C) (ti,... ,tn | t% a(xk)(ti), i=Ji,---,jmk-V, k=l,...,s). (4)

If yk corresponds to a singular point of C, then rrik denotes the multiplicity ofthat
singular point, while if yu corresponds to a (simple) tangency point, rrik 2. In
either case, the indices j\,... ,jmk-i must be chosen appropriately, see [LI] and
the discussions in 5.1 and 6.1.

Let K{C) be the 2-complex modeled on the braid monodromy presentation.
There is an obvious embedding of this complex into the complement of C. The
main result of [LI] is the following.

Theorem 4.2. (Libgober) The 2-complex K(C) is a deformation retract o/C2\C.

Remark 4.3. The group G (a) defined by presentation (4) is the quotient of
Fn by the normal subgroup generated by {-jit) ¦ t^1 | 7 G im(a), t G Fn}. In
other words, G(a) is the maximal quotient of Fn on which the representation
a : F.s —s- Bn acts trivially. If a' : Fs —> Bn is equivalent to a, then G (a) is

isomorphic to G(a'). Indeed, the equivalence condition a' o i/j conu oa can be

written as 4>(a(g)(t) • t"1) a'(¦f(g))_(<j>(t)) ¦ ^(t)"1, Vg G Fa, Vt G Fn. Thus
(j> G Aut(Fn) induces an isomorphism </> : G(a) -^ G(a').

4.4. Braid monodromy generators

We now make the presentation (4) more precise. First recall that the braid group
Bn has generators a\,... ,an_\, and relations <Tj<Tj_|_i<Tj cl^iatal^i (1 < i <
n — 1), at(Tj a3at (\i — j\ > 1), see [Bi], [H2]. The Artin representation o.n :
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Bn —> Aut(Fn) is given by:

if j =i + l,
j otherwise.

For each k 1,..., s, let 7^ G _Bmfc < _Bn be the "local monodromy" around
2/fc. Then

where ßk G Bn is the monodromy along the portion of £& from yo to just before

j/fc. One would like to express these braids in terms of the standard generators at
of Bn. This may be accomplished in two steps.

Step 1. The structure of the (isolated) singularity Vk above yu determines the
local braid 7^. This braid may be obtained from the Puiseux series expansion of
the defining polynomial f{x,z) of C. This is implicit in the work of Brieskorn and
Knörrer [BK] and Eisenbud and Neumann [EN].

Example 4.5. Consider the plane curve C : zp — xq 0. The fundamental group
of its complement was determined by Oka [Ok]. A look at Oka's computation
reveals that the braid monodromy generator is (a\ ¦ ¦ ¦aT)_\)q G Bv. For instance,
to a simple tangency corresponds a\, to a node, af, and to a cusp, af.

Example 4.6. By the above, the braid monodromy generator of a central line
arrangement A : zn — xn 0 is a full twist on n strands, A2 (a\ ¦ ¦ ¦ <rn_i)n G Bn
(see also [Hir]).

Step 2. The conjugating braids ßk depend on the relative positions of the
singularities of C. These braids may be specified as follows. Let r/k denote the portion
of the path £& from yo to just before y^. The braid ßk is identified by tracking
the components of the fiber of the polynomial cover ir irf :C\Cn£^C\)'
of (1) over rjk- Generically, these components have distinct real parts. Braiding
occurs when the real parts of two components coincide. We record this braiding
by analyzing the imaginary parts of the components, as indicated in the figure
below.

More explicitly, recall that the polynomial cover tt is embedded in the trivial
line bundle pr^ : (<C\y) x C —s- C \ y. Let y'k yk + e denote the endpoint of
the path rjk ¦ Without loss of generality, we may assume that the components of
7r~1(î/fc) (resP- 7r~1(yo)) have distinct real parts. After an isotopy of C, we may
assume further that the positions of the components ofir~^(y'k) in pr^ (y'k) C

are identical to those of 7r~1(j/o) m Pr^ (ï/o) ^- Then the image of the path rjk
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under the coefficient map a C \ y —s- Bn is a loop a(i]k) in configuration space,
and the braid ßk is the homotopy class of this loop

Figure 1 Braiding in a polynomial cover

Remark 4.7. The closed braid determined by the product, a(x\) a(xs), of the
braid monodromy generators is the link of the curve C at infinity In the works
of Moishezon and Libgober, it is usually assumed that C is in general position
relative to the line at infinity in CP In that situation, the link at infinity is the
n-component Hopf link, and thus we have a{x\) a{xs) A2 by Example 4 6

5. The braid monodromy of a complex arrangement

The fundamental group of the complement of an arrangement of complex hy-
perplanes is, by a well-known Lefschetz-type theorem of Zariski, lsomorphic to that
of a generic two-dimensional section So let A be an arrangement of n complex
lines in C2, with group G tti(C2 \ A) In this section, we provide an explicit
description of the pure braid monodromy of A

5.1. Braided wiring diagrams

Choose coordinates in C2 so that the projection n pr^ C2 —s- C is generic with
respect to A, and let f(x,z) Yl"=i(z ~ 4(^)) be a defining polynomial for A
The points yu G y are the images under tt of the vertices of A These vertices,
the points vk (yk,zk) £ C2 where zk ln(yk) llr(yk) for r > 2, are
the only singularities of A, there are no tangencies Without loss of generality,
assume that the points yk have distinct real parts As noted m 4 4, Step 1, the
local monodromy around yk depends only on vk It is completely determined
by the multiplicity of vk, and the relative positions of the lines incident on vk
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These data, and the braiding of the lines of A over the paths r]k, determine the
braid monodromy of the arrangement. All of this information may be effectively
recorded as follows.

Order the points of y as before, and choose the basepoint yo € C \ y so that
Re(yo) > Re(yi) > • • • > Re(ys). Let £ : [0,1] —s- C be a (smooth) path emanating
from yo an(i passing through y\,..., ys in order. Note that we may take the path
£ to be a horizontal line segment in a neighborhood of each y^. Call such a path
admissible. Let

W {(x, z) G £ x C | f(x, z) 0}

be the braided, wiring diagram associated to A. Note that VV depends on the
generic linear projection it and on the admissible path £. If {z £t(x)} is a line of
A, we call W H {z £t(x)} the associated wire. Since the path £ passes through
the points of y, the vertices of A are contained in W.

Over portions of the path £ between the points of y, the lines of A (resp. wires
of W) may braid. Let y'k yu + e, and y'l yu — e, for some sufficiently small e.

We may assume that, over y'k and y%, the wires of W (i.e., the components of the
fiber of the polynomial cover ttj) have distinct real parts. Arguing as in 4.4, Step
2, we associate a braid ßk,k+l to the portion of £ from y'l to y^i-

After an isotopy of A, we may also assume that the positions of the wires of
W over the points yo, y'k, and y'l are all identical. Thus a braided wiring diagram
VV may be abstractly specified by a sequence of states, vertices, and braids:

ßs,s + l Vs ßl, 2 Vi ft>,l
ns+i < ^- ns ^< ^^ n2 < ^- ni < n0,

where the states lift are permutations of {1,... ,n} beginning with the identity
permutation and recording the relative heights of the wires. The vertex set Vu

{il,..., ir} records the indices of the wires incident on the A;tn vertex vj. of A (in
terms of the order given by the initial state LTo). The braids ßk,k+l are obtained
as above. By choosing the basepoint yo sufficiently close to y\, we may assume
that the initial braid /?o,l is trivial. If such a diagram is depicted as above, the
braids ßk,k+l should be read off from left to right. Note that the this notion
generalizes that of a wiring diagram due to Goodman [Go], and that the admissible
2-graphs utilized by Arvola [Ar], [OT], may be viewed as examples of braided
wiring diagrams. Explicit examples are given in section 7.

5.2. Generators of Pn

Before proceeding, we need to review some facts about the pure braid group Pn
ker(rn : Bn —> £n). This group has generators

Ahj aj-i • • • a*+i • a1 ¦ a7+\ • • • V-1!' 1 -i < i - n'

and relations that set a generator equal to a certain conjugate of itself, see [Bi],

[Ha]. In particular, H\{Pn) lX2> is generated by the images of the generators
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AhJ. The conjugation action of Bn on Pn is given by the following formulas
(compare [DG]):

if k i-l,
if k i < j - 1,

if k j - 1 > i,

otherwise,

iîk i-l,
iîk i<j-l,
iîk=j-l>i,
if k=j,
otherwise.

(5)
We shall work mainly with a particular type of pure braids. These "twist

braids" are defined as follows. Given an increasingly ordered set / {i\,... ,ir},
let

a j —— (a \( A A *)( A A A *)•••( A • • • A 1 fßl

We extend this définition to sets which are not increasingly ordered (such as the
vertex sets V]~ in 5.1) by first ordering, then proceeding as above. The conjugation
action of an arbitrary braid ß G Bn on the twist braid Ai G Pn takes the form

(7)

where to rn(ß), and C C(I,ß) is a pure braid that may be computed recursively

from (5).

5.3. Braid monodromy

We now extract the braid monodromy of A from an associated braided wiring
diagram W. By Theorem 3.4, the image of the braid monodromy is contained
in the pure braid group Pn. We shall express the braid monodromy generators,
Afc := A(xfc), in terms of the standard generators AhJ.

The vertex set V^ {i\, ¦ ¦ ¦, ir} gives rise to a partition lift LfcUVfeUC/fe,
where Lk (resp. £/&) consists of the indices of the wires below (resp. above) the
vertex V].. Let If. {j, j + 1,..., j + r — 1} denote the local index of Vk, where

j \Lk\ + 1. The local monodromy 7^ around the point yu G y is a full twist on
Ik given by the pure braid Aih (compare 4.6). Note that Aih fj/j where

Mifc Tj+r-3) • (8)

is a permutation braid—a half twist on If.. Also notice that the monodromy along
a path from y'k to y'l above (or below) the point yu is given by /x/fc.

To specify the braid monodromy of A, it remains to identify the conjugating
braids ßf. of 4.4, Step 2. Choosing the paths rjk to coincide with £ between y" and
y'_l_l for j < k, these conjugating braids may be expressed as ß\ /3q,1 1, and
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ßk+1 ßk fc+1 M/fc ßk for A; > 1 Hence the braid monodromy generators are

given by
Afc=<fc (9)

Note that the state lift of the braided wiring diagram W is the image of the
braid ßk m the symmetric group, lift rn(ßk) Note also that the vertex set Vk
and its local index Ik are related by Vk Hk(Ik) Thus, the braid monodromy
generators may be expressed solely m terms of pure braids

< (10)

for certain Ck G Pn

5.4. Conjugate arrangements

Let A be an arrangement of n lines m C2, with associated braided wiring diagram
W corresponding to a generic projection n C2 —s- C and admissible path £ Let
A denote the conjugate arrangement (see 3 8) Clearly, the vertices of A are the
complex conjugates of those of A Thus, it is generic with respect to A, and £ is
admissible The corresponding braided diagram, W, is then obtained from W by
simply reversing the crossings of all the intermediate braids Thus, the local indices
of W are given by Ik Ik, the conjugating braids by ßk+1 en(ßk k+\) fj,Ik ßk,

and the braid monodromy generators by A^ Aj From the proof of Theorem 3 9,

we see that the braid monodromy generators of the two conjugate arrangements
are related by

5.5. Real arrangements

If A is a real arrangement m C2 (that is, A is the complexification of a line
arrangement Am m R2), then the defining polynomial f(x,z) has real coefficients
Consequently, the vertices of A all have real coordinates, and their images under
first-coordinate projection all he on the real axis m C In this instance, we may
take the path £ [0,1] —s- C to be a directed line segment along the real axis
The resulting diagram W is unbraided—all the intermediate braids ßk k^\ are
trivial In other words, the diagram is a wiring diagram m the combinatorial sense

[Go], affine if A contains parallel lines (see also [BLSWZ]) In this instance, the
description of the braid monodromy given m 5 3 specializes to the algorithm of
Hironaka [Hir], modulo some notational differences

Another description of the braid monodromy of an abstract (unbraided) wiring
diagram was provided by Cordovil and Fachada m [CF] (see also [Cor]) This
description, based on Salvetti's work [SI], [S2], may be paraphrased as follows

Recall that the vertex set Vk {i\, ,tr} gives rise to a partition LT^

Lk U Vk U Uk Let Vk {i | ii < i < ir}, and set Jk {Vk \ Vk) n Uk Let
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Bjk nAf*' where the product is over all j G Jk and e Vj with j < i,
taken m the natural order (so that Bjh is a subword of A2 A\ n, equal
to 1 if Jk 0) Then the braid monodromy generators may be expressed as
Âfc A'yk Bj^AVkBjk, where AVk is as defined m (6)

Using the Artm representation, one can show that the braids A^ and A^ are
equal The action of the braid A^ is given m formulas (12) and (13) m section 6

The same formulas hold for A^, but the computation is more involved Thus, the
two descriptions of the braid monodromy of a real arrangement (or more generally,
of an arbitrary wiring diagram) coincide

5.6. Markov moves

For an arbitrary complex arrangement A, changes m the choices made m the
construction of the braid monodromy (see 3 5) give rise to changes m the braided

wiring diagram W associated to A For instance, changing the basepomt yo maY
alter the initial braid ßo \, while changes m the generic projection may alter the
order of the vertices

We refer to these (and other) changes m a braided wiring diagram as "Markov
moves " In practice, these moves may be used to simplify a braided wiring
diagram associated to an arrangement A (and consequently the braid monodromy
generators of A as well) We now record these simplifying Markov moves and their
effects on the braid monodromy In the following, we record only the local index of
a vertex, so "vertex {j, k}" means "a vertex with local index {j, k} "

Recall that, while we depict braided wiring diagrams right to left, their intermediate
braids are read left to right

Geometric moves.
(1) Insert an arbitrary braid ßo at the beginning of the braided wiring diagram
(2) Insert an arbitrary braid ßs-\-\ at the end of the braided wiring diagram
(3) Replace vertex {%, ,j}, then vertex {k, ,/}with

(a) vertex {k, ,/}, then vertex {i, ,j}, if j < k or i > I

(b) braid (ak at+i) (ak+i a%+2) (cr;_i ffj),
then vertex {i, ,i + / — k}, then vertex {i + I — k, /},
then braid (a~\ a^1) (cr^1 a~^) (a~_}2 a~}l),iîj k

(c) braid (cr,_i ak) (a, ak+i) (o3_i cr;_i),
then vertex {j + k — I, ,j}, then vertex {k, ,j + k — I},
then braid (cr^1 a'^) (a'^ a~^2) (a~}l o~l),\îi l
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j

Figure 2. Moves 3b (left) and 3c (right)

Further moves.
(4) Reduce the intermediate braid ßk,k+l-
(5) Replace braid at, then vertex {j,..., k} with

(a) vertex {j,..., k}, then braid at, if i < j — 1 or i > k.
(b) braid a~ ¦ ¦ ¦ a^_^, then vertex {j + 1,..., k + 1}, then braid a^ ¦ ¦ ¦ a3, if

i k.
(c) braid u^^ ¦ ¦ ¦ aj then vertex {j — 1,..., k — 1}, then braid <Tj_i • • • <Jk-l,

if i j - 1.

(d) vertex {j,..., k}, then braid <tj_|_s._î_i, if j < i < A; — 1.

Figure 3. Moves 5b (left), 5c (right), and 5d (bottom)

The parity of the braids in move (3) and move (5) may be switched. For
instance, one can replace braid a~ then vertex {j,..., k}, with braid cr3 ¦ ¦ ¦ o~fc_i,

then vertex {j + 1,..., k + 1}, then braid a^ ¦ ¦ ¦ a~ if i k (move 5b).
Note that the triangle-switches and flips discussed in [BLSWZ] and [Fa] in the

context of (unbraided) wiring diagrams may be accomplished using Markov moves
of types (3), (4), and (5).

Theorem 5.7. The braid monodromy of a braided, wiring diagram is invariant
under Markov moves: If the braided wiring diagram W is obtained from the braided

wiring diagram W by a finite sequence of Markov moves of types (l)-(5) and their

inverses, then the braid monodromy homomorphisms A of W and A of W are
braid- equivalent.

Sketch of Proof. One can check, either algebraically or by drawing the appropriate
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braids, that the (only) effects on the braid monodromy of the Markov moves listed
above are as follows:

(1) Global conjugation by ßo: A /3q • A • ßo.
(2) None.
(3) Suppose the vertices in question are the A;tn and (k + l)st vertices of W

(resp. W). Then the corresponding braid monodromy generators, Afc,Afc+i an(i
Âfc,Âfc+i, satisfy:

(a) Afc Xk+1 an(i Aft_|_i Afc. Note that the permutation braids \iik and /x/fc+1

commute in this instance. Thus we can write Afc Afc • Afc+i • A^ Afc+i,
and A A o ak.

(b) Âfc Afc • Afc+i • A"1 and Afc+i Afc. Thus Â A o ak.
(c) Âfc Afc+i and Âfc+i A"^ • Afc • Afc+i. Thus Â Aocr"1.

(4) None.

(5) None.
Hence A and A are braid-equivalent. D

Recall that curves in the same connected component of an equisingular family
have braid-equivalent monodromies (see [L3] and 3.5). In particular, this is the
case for arrangements which are lattice-isotopic [R2].

Corollary 5.8. Let A and A' be lattice-isotopic arrangements in C2, with
associated braided wiring diagrams W and W". Then W" may be obtained from W via
a finite sequence of Markov moves and their inverses.

6. The group of a complex arrangement

We now turn our attention the fundamental group G of the complement of the
line arrangement A in C2. In this section, we describe the braid monodromy and
Arvola presentations of G, show that they are Tietze-I equivalent, and derive some
homotopy type consequences.

6.1. Presentations

Using the (pure) braid monodromy generators {Afc} from (9) and the procedure
described in 4.1, we obtain the braid monodromy presentation

G (t\,... ,tn | Afc(tj) tt for i £ Vk and 1 < k < s),

where Vk Vk\ max Vk.
We may also use the braided wiring diagram W to find the Arvola presentation

of G. This presentation is obtained by applying the Arvola algorithm [Ar], [OT],
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to W. Explicitly, we sweep a vertical line across the braided wiring diagram from
right to left, introducing relations and keeping track of conjugations as we pass
through the vertices Vk and the braids ßk,k+l- Note that the braids ßk,k+l do not
give rise to any relations, but do cause additional conjugations. It is convenient
to express the generators and these relations and conjugations in terms of the
inverses of the generators typically used in the Arvola algorithm. Apart from this
notational difference, our description of this method follows Falk's discussion in
[Fa] of the Randell algorithm for real arrangements (to which the Arvola algorithm
specializes).

Recall that the symbol [g\,..., gr] denotes the family of r — 1 relations

g\ ¦ gi ¦ ¦ ¦ 9m gi ¦ ¦ ¦ gm ¦ g\ gm ¦ g\ ¦ ¦ ¦ gm-i-

The Arvola presentation of the group G is given by

LJ \^1 7 • • • 7 "fi -t^l • • • -t^S /

where if Vk {i\,..., ir}, then R^ denotes the family of relations [xn [k),..., x
The word xt(k) denotes the meridian about wire i at state LT^. Let yt(k) denote
the meridian about wire i between vertex k and braid k. Then we have

xt(k) tii£Vk,
xn{k) ¦ --x^k) ¦ xt(k) ¦ {xn{k) ¦ --x^k))-1 if i il+1 G Vk.

(see below). The words xt(k) satisfy the recursion xt(l) tt, and xt(k
ßk,k+\{y%{k)) for k > 0, where ßk,k+l records the effect of the braiding ß^
the meridian yt(k) as indicated below.

(H)

+ 1)

fc+1 on

¦ v\ ¦ vi

vi-VI -y\x

Figure 4. Conjugations in Arvola's algorithm

Note that, locally, the conjugation arising from a vertex (resp. braiding) coincides
with the action of a permutation braid (resp. an elementary braid or its inverse).
To make the description of ßk,k+l explicit, we require some notation.

The state LT^ of the braided wiring diagram W is a permutation of {1,..., n},
recording the relative heights of the wires at this state. Recall the local index Ik
of the vertex set Vk of W, and the associated permutation braid \iih. Let ßik
Tn(jjik) denote the permutation induced by /x/fc, and let ßktk+l Tn(ßk,k+l)- It
is easily seen that IIfc+i ßk,k+l ¦ ßik ¦ nfc.
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Note that the sets {xt(k)} and {y,,(k)} generate the free group Fn (t\,... ,£„}.
Define 4>k,^k & Aut(Fn) by

4>k{tq) xl{k) if Uk(q) =i and il>k(tq) x,Xk) if ßIk ¦ Uk(q) i.

If Hk-\-i(q) i, then the effect of the braiding ßk,k+l on V%{k) may be expressed

as ßk,k+l(yt(k)) ßk,k+l ¦ 4>k{tq) '(l>k{ßk,k+l{tq))-

Lemma 6.2. We have tpk A*/fc • 4>k-

Proof. Compute:

M/fc [ q>\ Mh¦ ¦¦h+i-i ¦ h+i¦ (hh
Checking that this agrees with the description of the meridians yt(k) given in (11),
we have /x/fc • <f>k{tq) y%{k) ipk(tq) for all q. D

We now show that the meridians xt(k) may be expressed in terms of the
conjugating braids ß]~ from the braid monodromy constructions of 4.4 and 5.3. Recall
that these braids are defined by ß\ 1, and ßk+i ßk,k+l • A*/fc • ßk f°r k > 1.

Proposition 6.3. If wire i is at height q at state II^-i-i in the braided wiring
diagram W (that is, IIfc_|_i(q|) i), then xt(k + 1) ßk-\-l{tq).

Proof. We use induction on k, with the case k 0 trivial.
In general, assume H^ilq) i. We have

Xt(k + 1) ßk,k+l(yi(k)) ßk,k+l ¦ Hlk ¦ 4>k{tq) ßk,k+l ¦ Hlk ¦ ßk(tq) ßk+l(tq),

using the above lemma, the inductive hypothesis to identify </>& ßk, and the
identification of the braids ßk from 5.3. D

We may now state and prove the main theorem of this section.

Theorem 6.4. The braid monodromy and Arvola presentations of the group G of
the arrangement A. are Tietze-I equivalent.

Proof. Let V Vk {i\,..., ir} denote the A;tn vertex of a braided wiring diagram
VV associated to A, with local index I Ik {j, ¦ ¦ ¦, j + r — 1}. Write ß ßk

and a o.k Aj, and recall that V V\ maxV. Using Proposition 6.3, we may
express the family R^ of Arvola relations as

\ß{t3 ß{t3+r-l)].
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We will show that these r — 1 relations and the braid monodromy relations a(tt)
tt, i G V are equivalent. It is easy to see that the r — 1 Arvola relations above are
equivalent to ß(Aj(tt)) ß(tt), i G /.

Using Proposition 6.3 again, we have ß(tt) xlp(k) if i j + p — 1 G /.
Consequently, ß(tt) is some conjugate of ttp, say ß(tt) wp -tlp -w~^. A computation
shows that a(ttp) a{w~^) ¦ ß{Ai(t%)) ¦ a(wp). Therefore the braid monodromy
relation a(ttp) tlp may be expressed as ß{Ai(t%)) a{wp) ¦ tlp ¦ a{w~^). Now

it follows from the relations a(tt) tt for i G V that a(tt) tt for all i. Thus
a(wp) wp, and the braid monodromy relation above is clearly equivalent to the
corresponding Arvola relation. D

Since the braid monodromy and Arvola presentations of the group G of A are
Tietze-I equivalent, the associated 2-complexes are homotopy equivalent.
Furthermore, Libgober's theorem [LI] stated in 4.2 provides a homotopy equivalence
between the braid monodromy presentation 2-complex and the complement C2\A
Thus we obtain the following corollary.

Corollary 6.5. The complement of a complex arrangement A vn C has the

homotopy type of the 2-complex modeled, on the Arvola presentation of the group G.

Prior to our obtaining this result, Arvola informed us that he had a proof of
it. We are not cognizant of the details of that proof.

6.6. Real arrangements

If A is a real arrangement in C2, then, as noted in 5.5, the braided wiring diagram
VV is unbraided, so is a (possibly affine) wiring diagram. In this instance, Arvola's
algorithm specializes to that of Randell [Rl]. Using Theorem 6.4, we obtain:

Corollary 6.7. The braid monodromy and Randell presentations of the group G
of a real arrangement A m C2 are Tietze-I equivalent.

As above, combining this result with Libgober's theorem yields the following
corollary, which constitutes the main result of Falk [Fa].

Corollary 6.8. The complement of a real arrangement A mC has the homotopy
type of the 2-complex modeled, on the Randell presentation of the group G.

The braid monodromy and Randell presentations of G may be obtained
immediately from the description of the generators A^ A^ in terms of pure braids
provided by [CF] and described in 5.5. This is accomplished by finding the action
of the braids A^. For the sake of completeness, we find the action of A^ on the
entire free group Fn.
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Write V Vk and J Jk. If V {i\,.. .,ir}, let tv tn ¦ ¦ -t%r (set tv 1

if V 0). For i € V\V, let V<% {iu...,iq} and V>1 {iq+i,... ,ir} if
iq < i < iq-\-i- If J 0, a straightforward computation yields

[tv<,,tv>,}-tl-[tv<,,tv>,}-1 \iieV\V, (12)

y t% otherwise.

If J + 0, let
1 if i < j\ or i G J or i > ir,
tj<* if i^ J\J,
tj if max J < i <ir,

and define 7j G Aut(Fn) by r)j{tl) zJl-tl ¦ Zj%. Induction on \J\, starting from
(12), yields:

j if i G J or i ^ V".

(13)

Proposition 6.9. Let A be a real arrangement. If W is an associated wiring
diagram with vertex sets Vk and conjugating sets Jk, then the braid monodromy
and Randell "presentations of the group G(A) are given by

G (t\,... ,tn lk{tvk -ti-ty 7fc(t4) for i G Vk and 1 < k < s)

{t\, ¦ ¦ ¦ ,tn

where 7^ jjk, and R^ denotes the family of relations [7fc(£n),.. 7fc (£«,.)]•

7. Applications and examples

In this section, we demonstrate the techniques described above by means of several

explicit examples and provide some applications.

7.1. The intersection lattice

Let A {Hi,..., Hn} be an arrangement, and let L(A) be the ranked poset of
non-empty intersections of A, ordered by reverse inclusion, and with rank function
given by codimension. Two arrangements A and A' are lattice-isomorphic if there
is an order-preserving bijection it : L(A) —> L(A') (see [OT] for further details).
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Let A be an arrangement of n lines in C2 with s vertices. Choose (arbitrary)
orderings of the lines and vertices of A. Then the intersection lattice may be
encoded simply by a map V : {1,..., s} —> S(n), where S(n) denotes the set of
all subsets of {1,... n}, and V{k) Vk is the A;tn vertex set. Two arrangements
A and A' in C2 are lattice-isomorphic if, upon ordering their respective lines and

vertices, there exist permutations ire Ss and peS„ such that V^tk\ p(Vk)-

Theorem 7.2. Line arrangements with braid-equivalent monodromies are lattice-
isomorphic.

Proof. First recall that, if Aj is one of the (extended) generators of Pn specified in

(6), and ß G Bn with rn(ß) uj, then A^ A^( s, for some C G Pn, see (7). Also

note that, since the abelianization of Pn is a free abelian group on the images of
the standard generators Ah3, if a pure braid 7 can be written as 7 B~^ ¦ Af B,
for some B G Pn, then the indexing set / is uniquely determined by 7.

Now let A and A' be line arrangements with braid-equivalent monodromies a
and a'. Note that the braid monodromy construction determines orderings of the

lines and vertices of the arrangements. Write a(xk) Av^ and a'(xk) Ay),
with Ck,Ck G Pn as in (10). By assumption, a' o ip conj^ oa, with ip G Bs,
4> G Bn. Write rip(xk) zk ¦ xw/k\ ¦ zk, where tt Ts(rip). Also, set p Tn(4>). The
braid-equivalence then reads:

AC'ka.'{zk) _

Since both exponents in the above equation are pure braids, we conclude that
K(k) p(Vkï'as reciuired- D

Example 7.3. One can easily find pairs of arrangements whose groups are isomor-
phic, yet whose monodromies are not equivalent. For instance, consider arrangements

with defining polynomials Q(A) xy(x — y) and Q(A') xy(x — 1),
respectively. It is readily checked that G(A) P3 is isomorphic to G (A1) F%x F\.
Furthermore, it can be seen that C2 \ A (S3 \ 3 Hopf circles) x R+ is diffeomor-
phic to C2\A! S1 x (S*2\3 points) xR+. On the other hand, the respective pure
braid monodromies, A : F\ —> P3, A(x) ^12,3, and A' : F% -^ P3, A'(xi) A\ß,
A'(x2) -Ai,3, are obviously not equivalent. This may be explained by the fact
that there is no ambient diffeomorphism of C2 taking A to A'.

While these examples do show that the braid monodromy of a plane curve
carries more information than the fundamental group of the complement, they are
unsatisfying for several reasons. Combinatorially, L(A) is a lattice, while L(A') is

merely a poset. Geometrically, A is transverse to the line at infinity, while A' is

not. This being the case, these examples do not address Libgober's question [L3],
which was posed for plane curves that are transverse to the line at infinity in CP
We now present examples which do fit into this framework.
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7.4. Falk arrangements

Consider the arrangements of Falk [Fa] defined by

Q yz(x + y)(x — y)(x + z)(x — z) and Q' yz{x + z){x — z){y — z){x — y — z)

Taking generic sections, we get a pair of real line arrangements A and A' in C2

which are transverse to the line at infinity, and have the same numbers of double
and triple points Wiring diagrams for these line arrangements are depicted below

Figure 5 Wiring diagrams for A. (left) and A! (right)

Applying the methods described in the previous sections, we obtain the following

braid monodromy generators A {A^} and A' {A'fc}

\ SA A /i{4 5} ,{4 5}
*2 6 l A M A,

A' {Ai2 3, An 5, A2 5 A3 5 A24, A3 4, A\e, Me, ^3 6, Me, Me}
Using Proposition 6 9 and some elementary simplifications, we obtain the

following presentations for the groups G (A) and G(A')

G{A) («l, ,«6 I [ui,U2,U3], ["4,"5,"6], ["1, "6], [«2, «6], [«3, «6], [M1,M5],

[m2,«5], ["3, «5], [M1,M4], ["2, «4], [M3,"4]},

These groups are lsomorphic In fact, one can check that the map G (A1) —? G (A)
defined by v\ \-+ u\u^ u^ vg \-+ u^u^uq, vt \-+ ut if 1 ^ 1, 6 is an isomorphism
through Tietze-I moves, so the complements of A and A' are homotopy equivalent
Falk obtained analogous results for the original central 3-arrangements by working
with decones as opposed to generic sections

On the other hand, the lattices of A and A' are not lsomorphic For A', the two
triple points are incident on a line, while for A, they are not By Theorem 7 2, the
monodromies A, A' F\\ —> i?g are not braid-equivalent Moreover, the fact that
L(A) ^ L(A') implies, by results of Jiang and Yau [JY], that the complements of
A and A1 are not homeomorphic
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7.5. Falk-Sturmfels arrangements

Consider the pair of (central) plane arrangements in C3, with defining polynomials

xyz(x )(x z)(x + (7 )(-x 72/

where 7 —f ± \/5)/2 These arrangements, studied by Falk and Sturmfels
(unpublished), are real realizations of a minimal matroid, whose realization space
is disconnected (see also [BLSWZ]) They have lsomorphic lattices and hoino-

topy equivalent complements In fact, Keaty (also unpublished) has shown that
the oriented matroids of these arrangements are lsomorphic Thus, by results of
Bjorner and Ziegler [BZ], their complements are homeomorphic Checking that
H+ {z 1 — §#+ fy} and H~ {z 1 — §#+ yj/} are generic with respect to
these arrangements, we get a pair of real line arrangements, A^, in C2 by taking
sections Wiring diagrams for these line arrangements are depicted below

Figure 6 Wiring diagrams for .4+ (left) and A (right)

Applying the techniques described in the previous sections, we obtain the
following braid monodromy generators

M 4:, 3, Ml, MS9, ^246' ^2579'

^̂347, ^2 8, ^3 5, ^3 8, ^4 5 8,

l {6} l56} .{2 4 5 6}

{5 7 8} ,{4578}
4 9 > A36 9 '

,{2}\- SA /l {6} A /il56} a a .{2 4
A {A67, A\j ,^2 3, ^247' ^2 5 6, ^2 8, ^137

^4 8' ^12 9, ^368' ^3 4 5 9, ^6 9, ^7 8 9}

The monodromy homomorphisms A+,A~ F\^ -^ Bg are braid-equivalent If
/ {1,1 + 1, ,j}, write /Xjj iii, see (8) One can check that A+ o i/j

conu oA^, where ip G S15 is given by
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and <f> G Bg is given by </> (<78°~7 o~l)4o~3O~4O~3O~2o~5°~6 It follows from Remark
4 3 that the groups G(A+) and G(A~) are lsomorphic

Remark 7.6. If A Fs —> Pn is the braid monodromy of an arrangement or wiring
diagram, let F nri(A) < Pn In [CF], it is asserted that if W and W" are wiring
diagrams determining the same underlying matroid, then the corresponding braid
monodromy subgroups F and F' of Pn are equal A subsequent result for real
arrangements may be found m [Cor]

These results cannot be strengthened By construction, the wiring diagrams
W+ and W~ above determine tsomorphtc underlying matroids However, their
braid monodromy groups F+ and F~ do not coincide In fact, F+ and F~ are
not conjugate m Pg (although, as shown previously, they are conjugate m Bg)
This can be seen by using the representation 6 Pg —> GL(8,ZZ10), which is

obtained from the generalized Gassner representation 9g 2 2 °f [CS1], Section 5 8,

by restriction to a direct summand The corresponding modules of comvanants,
Ae{A^) Ho(Fi5, (ZZ10)goA±), are not lsomorphic One can show that the graded

modules associated to their /-adic completions have different Hubert series
This difference may be explained combmatonally as follows Though the (little)

oriented matroids of W+ and W~ are lsomorphic, their big oriented matroids are
not One can check that the spectra of the tope graphs (see [BSLWZ] associated
to these big oriented matroids differ

7.7. MacLane configurations

We consider complex conjugate arrangements arising from the MacLane matroid
ML8 [MacL] This matroid is minimal non-orientable m the sense that it is the
smallest matroid that is realizable over C but not over R [BLSWZ] Following
Rybmkov [Ry], we take arrangements with defining polynomials

xyz(y - x)(z - x)(z + ujy){z + lü x + ujy){z - x - uj y),

where uj — 1 ± -\/—3)/2, as complex realizations of this matroid Deconmg by
setting x 1, we obtain two affine arrangements A^ in C By construction, A+
and A~ are lattice-isomorphic Also, note that A+ and A~ are conjugate arrangements,

in particular, they have diffeomorphic complements, and thus lsomorphic
groups

Check that the projection tt(j/, z) Sy + z is generic with respect to A+
Changing coordinates accordingly, and choosing an admissible path £, we obtain
the braided wiring diagram W+ depicted below
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Figure 7 Braided wiring diagram for „4+

From the braided wiring diagram W+, we see that

h {4,5,6},
13 {1,2,3},
^"5 {4,5},
/7 {4,5,6},

?3 4 ^ ^4 {3,4,5},
/6 {6,7},
/8 {2,3,4}

^ CCT2<J5<J3<J4j

Since *4+ and A~ are conjugate, a braided wiring diagram W~ for A~ may be
obtained from W+ by switching the crossings of the intermediate braids, as noted
m 5 4 Applying the algorithm of 5 3 and carrying out some elementary simplifications

using (5), (7), and the braid relations, we get the following braid monodromy
generators

»^3 5^4 5^5 7 A A aA-4 r Ag 7A3 4-.
1' 2 5 ' 4 7j ^15 7, ^-2 3 7 J'

-457A ={^4 5 6, ^3 6, ^12 6, -^13 4, ^2 5, ^47 -^1 5 7, ^237}

The braid monodromy presentations of the groups G± G(^4.±) may then be
found using the Artin representation After some simplifications, we obtain

G+ {u\, m4,M5,«6], [us,ug], [ui,U2,ug], [mi, «3,1*4], [u^1 ,u<s],

[«4, ur], [«1, «5, «7], ["26 ' M3, «7]},

[W4 V7\ -, [vl -, V5 -, V7\ -, [V2 -, W3 -iv7\)

As mentioned above, G+ G~ An explicit isomorphism is given by

Ml

M5

"S"1, «3

Presentations for G<± were first obtained by Rybmkov [Ry], using Arvola's
algorithm By Theorem 6 4, the above presentations are Tietze-I equivalent to those
of Rybmkov This can also be seen directly For G+, an isomorphism is given
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by U\ H^ W^ «2 I—» W'JW^ Wy «3 H^ Wß «4 H^ W^ «5 l-^ W^ Uß H^ WJ^

«7 1—> w^ and similarly for G~
Since *4+ and ,A~ are conjugate, their braid monodromies are equivalent by

Theorem 3 9 But the two monodromies are not braid-equivalent For, if they
were, there would be an isomorphism </> G+ —> G~ determined by a braid
automorphism </> F7 ^ F7 (see Remark 4 3) In particular, the induced map on
homology, </>* H\{G+) —> H\{G~), would be a permutation matrix in GL(7,Z),
and this is ruled out by a result of Rybmkov [Ry], Theorem 3 1
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