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The braid monodromy of plane algebraic curves and
hyperplane arrangements

Daniel C. Cohen and Alexander I. Suciu*

Abstract. To a plane algebraic curve of degree n, Moishezon associated a braid monodromy
homomorphism from a finitely generated free group to Artin’s braid group B,. Using Hansen’s
polynomial covering space theory, we give a new interpretation of this construction. Next, we
provide an explicit description of the braid monodromy of an arrangement of complex affine
hyperplanes, by means of an associated “braided wiring diagram.” The ensuing presentation
of the fundamental group of the complement is shown to be Tietze-1 equivalent to the Randell-
Arvola presentation. Work of Libgober then implies that the complement of a line arrangement is
homotopy equivalent to the 2-complex modeled on either of these presentations. Finally, we prove
that the braid monodromy of a line arrangement determines the intersection lattice. Examples
of Falk then show that the braid monodromy carries more information than the group of the
complement, thereby answering a question of Libgober.

Mathematics Subject Classification (1991). Primary 14H30, 20F36, 52B30; Secondary
05B35, 32325, 57TMO5.

Keywords. Braid monodromy, plane curve, hyperplane arrangement, fundamental group, poly-
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1. Introduction
1.1.

Let C be an algebraic curve in C2. In the 1930’s, Zariski commissioned van Kampen
to compute the fundamental group of the complement, 1 (C2\ C). The algorithm
for doing this was developed in [vK]. Refinements of van Kampen’s algorithm were
given by Chisini in the 50’s, and Chéniot, Abelson, and Chang in the 70’s. In the
early 80’s, Moishezon [Mo] introduced the notion of braid monodromy, which he
used to recover van Kampen’s presentation. Finally, Libgober [L.1] showed that the

*The second author was partially supported by NSF. grant DMS-9504833, and an RSDF
grant from Northeastern University.
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2-complex associated to the braid monodromy presentation is homotopy equivalent
to C2\C.

Let A be an arrangement of hyperplanes in C¢. In the early 80’s, Randell
[R1] found an algorithm for computing the fundamental group of the complement,
71(Cf\ A), when A is the complexification of a real arrangement. Salvetti [S1]
subsequently found a regular cell complex that is a deformation retract of the com-
plement of such an arrangement. When ¢ = 2, Falk [Fa] proved that the 2-complex
associated to the Randell presentation is homotopy equivalent to C? \ A by show-
ing that it is homotopy equivalent to Salvetti’s complex. The braid monodromy of
a complexified real arrangement was determined by Salvetti [S2], Hironaka [Hir],
and Cordovil and Fachada [CF], [Cor]. An algorithm for computing the funda-
mental group of an arbitrary complex arrangement was found by Arvola [Ar] (see
also Orlik and Terao [OT], and see Dung and Ha [DH] for another method).

In this paper, we present a unified view of these two subjects, extending several
of the aforementioned results. In particular, we give in 5.3 an algorithm for finding
the (pure) braid monodromy of an arbitrary arrangement A of complex lines in
C2, Furthermore, we show in Theorem 6.4 that the corresponding presentation of
71(C?\ A) is equivalent to the Randell-Arvola presentation. We also strengthen
Falk’s result, by showing that the 2-complex modeled on the Arvola presentation
is homotopy equivalent to (2 \ A

The determination of the braid monodromy of an arrangement A is facilitat-
ed by use of a braided wiring diagram associated to A, a natural generalization
of a combinatorial notion of Goodman [Go|. For a real arrangement, Cordovil
and Fachada have shown that the braid monodromy of the complexification is
determined by an associated (unbraided) wiring diagram, and have defined the
braid monodromy of an abstract wiring diagram. Hironaka’s technique may also
be applied in this generality. The algorithm presented here generalizes both these
methods.

1.2,

Before specializing to arrangements, we present a new interpretation of the process
by which the braid monodromy of a curve C is defined. This follows in spirit the
approach in [L.1], but uses a self-contained argument based on Hansen’s theory
of polynomial covering maps, [H1], [H2]. Given a simple Weierstrass polynomial
f 1 X xC — C of degree n, we consider the space Y = X x C\ {f(z,z) =
0}. In Theorem 2.3, we show that the projection p = pry|y : ¥ — X is a
fiber bundle map, with structure group the braid group B,,, and monodromy the
homomorphism from 71(X) to B,, induced by the coefficient map of f.

This result is applied in the situation where f defines a plane curve C, and
X = C\ {y1,...,ys} is the set of regular values of a generic linear projection.
The braid monodromy of C is simply the coefficient homomorphism, « : Fs — B,,.
This map depends on choices of projection, generating curves, and basepoints.
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However, the braid-equivalence class of the monodromy—the double coset [a] €
Bs\ Hom(Fy, By,)/ By, where B, acts on the left by the Artin representation, and
B,, acts on the right by conjugation—is uniquely determined by C.

For a line arrangement A, changes in the various choices noted above give rise to
changes in the associated braided wiring diagram W. These, and other, “Markov
moves” do not affect the braid monodromy. In practice, the braided wiring diagram
of a given arrangement may be simplified via these moves. Such simplifications,
together with use of the braid relations, make the braid monodromy presentation
of the group of a complex arrangement accessible. Furthermore, braided wiring
diagrams associated to arrangements which are lattice-isotopic in the sense of
Randell [R2] are related by Markov moves. A combinatorial characterization of
this fact remains to be determined. Such a characterization, suggested for (un-
braided) wiring diagrams by Bjorner, Las Vergnas, Sturmfels, White, and Ziegler
in [BLSWZ], Exercise 6.12, would likely lead to the development of a Jones-type
polynomial for arrangements.

The braid monodromy is also useful in defining Alexander-type invariants of
plane algebraic curves. Given a curve C with braid monodromy « : Fs — B,,
one may consider a representation @ : B,, — GL(N, R), and compute the mod-
ule of coinvariants of @ o .. As noted by Libgober in [L3], the R-module A4y(C) =
Ho(Fs; RY, ) depends only on the equisingular isotopy class of C (and on §). When
6 is the Burau representation, A»p(C) equals the Alexander module, and thus de-
pends only on 7r1((C2 \ C). For other representations of the braid group, such as
the generalized Burau representations of [CS1], the module A4(C) is more likely to
be a homeomorphism-type (rather than homotopy-type) invariant of the comple-
ment, see the discussion in 1.3, and section 7. For a detailed analysis of Alexander
invariants of hyperplane arrangements, based on the techniques developed in this
paper, we refer to [CS2].

1.3.

In general, the braid monodromy of a plane algebraic curve depends not only on the
number and type of singularities, but on the relative positions of the singularities
as well. A famous example of Zariski [Z1], [Z2] consists of two sextics, both with
six cusps, one with all cusps on a conic, the other not. Explicit braid monodromy
generators for these curves were given by Rudolph [Ru], Example 3. As shown
by Zariski, the two curves have distinct fundamental groups. Further information
concerning such “Zariski couples” may be found in [A-B]. An example of a different
nature is given in 7.4. There, the two sextics have the same number of double
points (9) and triple points (2); their fundamental groups are isomorphic, but,
nevertheless, their braid monodromies are not braid-equivalent.

The above example provides an affirmative answer to a question of Libgober,
who raised the possibility in [L3] that the braid monodromy of a plane algebraic
curve which is transverse to the line at infinity carries more information than the
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fundamental group of the complement. The sextics in 7.4 define arrangements,
originally studied by Falk [Fa], with distinct lattices. This explains the difference
in the braid monodromies: In Theorem 7.2, we show that the braid-equivalence
class of the monodromy of an arrangement determines the lattice. On the other
hand, as Falk demonstrated with these examples, the homotopy type of the com-
plement of an arrangement does not determine the lattice. However, as noted by
Jiang and Yau [JY], the complements of these arrangements are not homeomor-
phic. This, and other evidence, suggests that the braid monodromy of a curve is
more closely tied to the homeomorphism type of the complement (or even to the
ambient homeomorphism type of the curve) than to the fundamental group of the
complement.

In the other direction, using classical configurations of MacLane [MacL], Ryb-
nikov [Ry] constructs complex arrangements with isomorphic lattices and distinct
fundamental groups. It follows that the lattice of a complex arrangement does
not determine the braid monodromy. We provide another illustration of this phe-
nomenon. In Theorem 3.9, we show that complex conjugate algebraic curves have
equivalent braid monodromies. However, we show in 7.7 that the monodromies of
a pair of conjugate arrangements associated to MacLane’s configurations are not
braid-equivalent, despite the fact that these arrangements have isomorphic lattices
and groups (and, in fact, diffeomorphic complements).

It is not known whether the lattice of a real arrangement determines the braid
monodromy of its complexification. A result along these lines may be found in
[CF]. There, the image in the pure braid group of the braid monodromy of a
wiring diagram W is called the braid monodromy group of W. Cordovil and
Fachada show that wiring diagrams which determine identical matroids give rise to
equal braid monodromy groups. This result is not as widely applicable as it may
appear. In 7.5, we consider arrangements with isomorphic (oriented) matroids
and homeomorphic complements. Their monodromies are braid-equivalent, but
the associated braid monodromy groups are not conjugate subgroups of the pure
braid group.

Conventions. Given elements z and y in a group G, we will write ¥ = yilxy

and [z,y] = zyz—ly~!. Also, we will denote by Aut(G) the group of right auto-
morphisms of G, with multiplication «- = g o a.
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2. Polynomial covers and B,-bundles

We begin by reviewing polynomial covering maps. These were introduced by
Hansen in [H1], and studied in detail in his book [H2], which, together with Bir-
man’s book [Bi], is our basic reference for this section. We then consider bundles
whose structure group is Artin’s braid group B,,, and relate them to polynomial
n-fold covers.

2.1. Polynomial covers

Let X be a path-connected space that has the homotopy type of a CW-complex.
A simple Weierstrass polynomial of degree n is a map f: X x C — C given by

flz,2)=2"+ Zai(:v)z"%,
i=1

with continuous coefficient maps a; : X — C, and with no multiple roots for
any z € X. Given such f, the restriction of the first-coordinate projection map
pri : X X C — X to the subspace

E=FE(f)={(z,2) e X xC| f(z,2) =0}

defines an n-fold cover m = 7y : E — X, the polynomial covering map associated
to f.

Since f has no multiple roots, the coefficient map a = (ay,...,a,) : X — C"
takes values in the complement of the discriminant set, B = C™ \ A,,. Over B",
there is a canonical n-fold polynomial covering map m, = 7, : E(f.) — B™,
determined by the Weierstrass polynomial f,(z,z) = 2™ + >, 4 #;2" *. Clearly,
the polynomial cover wy : E(f) — X is the pull-back of 7, : E(f,) — B™ along
the coefficient map a : X — B".

This can be interpreted on the level of fundamental groups as follows. The
fundamental group of the configuration space, B™, of n unordered points in C
is the group, B,,, of braids on n strands. The map a determines the coefficient
homomorphism o = a, : 71(X) — B,, unique up to conjugacy. One may charac-
terize polynomial covers as those covers 7 : E — X for which the characteristic
homomorphism to the symmetric group, x : m(X) — ¥, factors through the
canonical surjection 7, : B,, — ¥, as x = 7, o .

Now assume that the simple Weierstrass polynomial f is completely solvable,
that is, factors as

n

Fz,2) =[] (= = bi(2)),

=1

with continuous roots b; : X — C. Since the Weierstrass polynomial f is sim-
ple, the root map b = (by,...,by,) : X — C" takes values in the complement,
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P =C"\ A,, of the braid arrangement 4,, = {ker(w; — w;)}<icj<n. Over P7,
there is a canonical n-fold covering map, ¢, = 7, : F(Qn) — P", determined by
the Weierstrass polynomial Q,,(w,2) = (z —w1) -+ (2 — wy, ). Evidently, the cover
wy o B — X is the pull-back of ¢, : E(Q,) — P™ along the root map b: X — P".

The fundamental group of the configuration space, P™, of n ordered points in
C is the group, P, = ker 7,,, of pure braids on n strands. The map b determines
the root homomorphism 3 = b, : m(X) — P,, unique up to conjugacy. The
polynomial covers which are trivial covers (in the usual sense) are precisely those
for which the coefficient homomorphism factors as o = ¢,, 0 3, where ¢,, : P, — By,
is the canonical injection.

2.2. B,-Bundles

The group B, may be realized as the mapping class group 9 ; of orientation-

preserving diffeomorphisms of the disk DQ, permuting a collection of n marked
points. Upon identifying 71 (D? \ {n points}) with the free group F,, the action
of B,, on w1 yields the Artin representation, cy, @ By, — Aut(F,). As shown by
Artin, this representation is faithful. Hence, we may—and often will—identify a
braid 6 € B,, with the corresponding braid automorphism, a,,(0) € Aut(F,).

Now let f: X xC — C be asimple Welerstrass polynomial. Let 7y : E(f) — X
be the corresponding polynomial n-fold cover, and a : X — B" the coefficient map.
Consider the complement

Y =Y(f) =X xC\ E(f),
and let p =pyf : Y(f) — X be the restriction of pry : X xC — X to Y.

Theorem 2.3. The map p : Y — X is a locally trivial bundle, with structure
group B, and fiber C,, = C\ {n points}. Upon identifying m (C,) with F,, the
monodromy of this bundle may be written as ay, 0 o, where a = a, : 71 (X) — By
is the coefficient homomorphism.

Moreover, if f is completely solvable, the structure group reduces to P, and
the monodromy factors as auy, o 1y, © 3, where 3 = by : m(X) — P, is the root
homomorphism.

Proof. We first prove the theorem for the configuration spaces, and their canonical
Weierstrass polynomials. Start with X = P™, f = Q,, and the canonical cover
an : B(Qn) — P™. Clearly, Y(Q,) = C*t1\ E(Q,) is equal to the configuration
space P"tL. Let Pn =Dy : P+l pPn be the restriction of pry :C"xC—C™.
As shown by Fadell and Neuwirth [FN], this is a bundle map, with fiber C,,, and
monodromy the restriction of the Artin representation to P,.

Next, consider X = B™, f = f,, and the canonical cover m, : E(f,) —
B™. Forgetting the order of the points defines a covering projection from the
ordered to the unordered configuration space, x, : P* — B™. In coordinates,
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Kn(wi,. .. wy) = (21,...,7,), where z; = (—1)%s;(w1,...,w,), and s; are the
elementary symmetric functions. By Vieta’s formulas, we have

Qn(w, 2) = fn(kn(w),2).

Let Yt = V(f,) and p, = p;, : Y"1 — B". By the above formula, we see
that k, X id : P* x € — B" x C restricts to a map R,41 : Y(Qrn) — Y (fr), which
fits into the fiber product diagram

Pn+] Pr pn

J/Rn+l lﬁn

yntl PR B"

where the vertical maps are principal Y,-bundles. Since the bundle map p,, :
prtl _, png equivariant with respect to the »,-actions, the map on quotients,
pn Y B ig also a bundle map, with fiber ©,,, and monodromy action the
Artin representation of B,,. This finishes the proof in the case of the canonical
Weierstrass polynomials over configuration spaces.

Now let f : X x C — C be an arbitrary simple Weierstrass polynomial. We
then have the following cartesian square:

Yy Yn—l—l

o |m

X > pn

In other words, p : ¥ — X is the pullback of the bundle p,, : Y1 — B" along
the coefficient map a. Thus, p is a bundle map, with fiber C,,, and monodromy
representation «,, o «. When f is completely solvable, the bundle p : ¥ — X is
the pullback of p,, : P+l p7oglong the root map b. Since o = ¢, 0 3, the
monodromy is as claimed. O

Remark 2.4. Let us summarize the above discussion of braid bundles over con-
figuration spaces. From the Fadell-Neuwirth theorem, it follows that P" is a
K(P,,1) space. Since the pure braid group is discrete, the classifying P,,-bundle
(in the sense of Steenrod) is the universal cover P — Pm. We considered two
bundles over P", both associated to this one:

(1) gn : F(Qn) — X™, by the trivial representation of P, on {1,...,n};

(ii) p, : P*T1 — P™ by the (geometric) Artin representation of P, on C,,.

Since B™ is covered by P", it is a K(B,,1) space, and the classifying B,-bundle
is B" — B™. There were three bundles over B" that we mentioned, all associated
to this one:
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(iii) &y, : X™ — B™, by the canonical surjection 7, : By, — ¥y;
(iv) m, : E(fn) — B"™, by the above, followed by the permutation representation of
Ynon{l,...,n}
(v) pn: Y"1 — B by the (geometric) Artin representation of B,, on C,,.
Finally, note that (Y”+1) is isomorphic to B}L = I, Xq,, By, the group of braids
on n + 1 strands that fix the endpoint of the last strand, and that Y1 is a
K (B!, 1) space.

3. The braid monodromy of a plane algebraic curve

We are now ready to define the braid monodromy of an algebraic curve in the
complex plane. The construction, based on classical work of Zariski and van Kam-
pen, is due to Moishezon [Mo]. We follow the exposition of Libgober [L1], [L2],
[L3], but interpret the construction in the context established in the previous sec-
tion.

3.1. The construction

Let C be a reduced algebraic curve in (CQ7 with defining polynomial f of degree
n. Let m: C2 — C be a linear projection, and let Y = {y1,...,ys} be the set of
points in € for which the fibers of = contain singular points of C, or are tangent
to C. Assume that 7 is generic with respect to C. That is, for each k, the line
Ly = Wﬁl(yk) contains at most one singular point v, of C, and does not belong
to the tangent cone of C at vy, and, moreover, all tangencies are simple. Let £
denote the union of the lines Ly, and let yp be a basepoint in C\ ). The definition
of the braid monodromy of C depends on two observations:

(i) The restriction of the projection map, p : C2\CUL — C\ Y, is a locally trivial
bundle.

Fix the fiber C,, = p~(yo) and a basepoint gg € C,,. The monodromy of C is,
by definition, the holonomy of this bundle, p : 71 (C\ Y, y0) — Aut(71(Cyp,90)).
Upon identifying m (C\ Y, yo) with Fy, and 71 (C,,,go) with F,,, this can be written
as p: Fs — Aut(F,).

(ii) The image of p is contained in the braid group B, (viewed as a subgroup of
Aut(F,) via the Artin embedding cu, ).

The braid monodromy of C is the homomorphism « : Fy — B,, determined by
Qp 0 = p.

We shall present a self-contained proof of these two assertions, and, in the
process, identify the map «. The first assertion is well-known, and can also be
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proved by standard techniques (using blow-ups and Ehresmann’s criterion—see
[Di], page 123), but we find our approach sheds some light on the underlying
topology of the situation.

3.2. Braid monodromy and polynomial covers

Let 7 : €2 — C! be a linear projection, generic with respect to the given algebraic
curve C of degree n. We may assume (after a linear change of variables in C2
if necessary) that = = pry, the projection map onto the first coordinate. In the
chosen coordinates, the defining polynomial f of C may be written as f(z,2) =
2"+ 377 ai(z)2™ . Since C is reduced, for each 2 ¢ ), the equation f(z,2) =10
has n distinet roots. Thus, f is a simple Weierstrass polynomial over C\ Y, and

m=n;:C\CNL—-C\Y (1)

is the associated polynomial n-fold cover.
Note that Y (f) = (C\¥) x C)\ (C\CNL) = C2\CUL. By Theorem 2.3,
the restriction of pry to Y(f),

p:C2\CUL—C\Y, (2)

is a bundle map, with structure group B,,, fiber C,,, and monodromy homomor-
phism
a=ay:m(C\Y)— B,. (3)

This proves assertions (i) and (ii). Furthermore, we have

Theorem 3.3. The braid monodromy of a plane algebraic curve coincides with
the coefficient homomorphism of the associated polynomial cover.

In the case where C = A is an arrangement of (affine) lines in €2, more can be
said. First, the critical set Y = {y1,...,ys} consists (only) of the images under
m = pry of the vertices of the arrangement. Furthermore, a defining polynomial
for A can be written as f(z,2) = [[_(z — €(x)), where each ¢; is a linear
function in z. Thus, the associated polynomial cover is trivial, and the monodromy
representation is

A=4,:m(C\Y) — P,.

An explicit formula for A will be given in section 5. For now, let us record the
following;:

Theorem 3.4. The pure braid monodromy of a line arrangement coincides with
the root homomorphism of the associated (trivial) polynomial cover.
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3.5. Braid equivalence

The braid monodromy of a plane algebraic curve is not unique, but rather, depends
on the choices made in defining it. This indeterminacy was studied by Libgober
in [L2], [L3]. To make the analysis more precise, we first need a definition.

Definition 3.6. Two homomorphisms o : Fy, — B,, and o/ : Iy, — B,, are equiva-
lent if there exist automorphisms ¢ € Aut(F;) and ¢ € Aut(F),) with ¢(B,,) C B,
such that o/ (¢(g)) = ¢! - alg) - ¢, for all g € Fy. In other words, the following
diagram commutes

L —- B,

l¢ lconj‘75

’

F,—" . B,

If, moreover, ¢» € B, and ¢ € B,, the homomorphisms o and o' are braid-
equivalent.

Theorem 3.7. The braid monodromy of a plane algebraic curve C is well-defined
up to braid-equivalence.

Proof. First fix the generic projection. The identification m1(C\ V) = F, depends
on the choice of a “well-ordered” system of generators (see [Mo] or the discussion
in 4.1), and any two such choices yield monodromies which differ by a braid auto-
morphism of Fj, see [L.2]. Furthermore, there is the choice of basepoints, and any
two such choices yield monodromies differing by a conjugation in B,,.

Finally, one must analyze the effect of a change in the choice of generic projec-
tion. Let 7w and 7’ be two such projections, with critical sets ) and ), and braid
monodromies a : 71 (C\ V) — B,, and o : 71 (C\ ') — B,,. Libgober [L3] shows
that there is a homeomorphism h : C — C, isotopic to the identity, and taking
Y to Y/, for which the isomorphism h, : 71 (C\ V) — m1(C\ V') induced by the
restriction of h satisfies o’ o hy = «. From the construction, we see that h can be
taken to be the identity outside a ball of large radius (containing Y U )’). Thus,
once the identifications of source and target with F are made, h, can be written as
the composite of an inner automorphism of F; with a braid automorphism of Fi:
h. = conj, o¢. Trading the inner automorphism of F for an inner automorphism
of B,,, we obtain o/ o ¢ = conjyr () 0, completing the proof. O

Thus, we may regard the braid monodromy of C as a braid-equivalence class,
i.e., as a double coset [o] € Bs\ Hom(F;, B,,)/B,,, uniquely determined by C. In
fact, it follows from [L3] that [a] depends only on the equisingular isotopy class of
the curve.
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3.8. Conjugate curves

If C is a plane curve with defining polynomial f = f(z, z) of degree n, let C be the
curve defined by the polynomial f whose coefficients are the complex conjugates of
those of f. In other words, f(z,2) = f(z, z). In this subsection, we relate the braid
monodromies of C and C. In general, the braid monodromies of conjugate curves
are not braid-equivalent, as shown in 7.7. Nevertheless, we have the following:

Theorem 3.9. The braid monodromies of conjugate curves are equivalent.

Proof. Let C and C be conjugate curves defined by polynomials f and f of degree
n. Choose coordinates in C2 so that m = pry is generic with respect to C. Then
7 is evidently also generic with respect to C. Let J and ) be the critical sets of
C and C with respect to this projection. Complex conjugation C — C restricts
toamap d: C\Y — C\ ). Choose a basepoint yg with Im(yg) = 0. Then
d induces an isomorphism d, : 7 (C\ Y,y0) — 71(C\ Y,90). Identifying these
groups with Fy = (z1,...,zs), we have d, = &5, where 0, € Aut(Fy) is given by
0s(zp) = (1 1) ~x;1 (2 zp1) L

Since the discriminant locus A,, is defined by a polynomial with real coefficients,
complex conjugation C™* — C” restricts to a map e : B™ — B". The induced map
€n = €4 : B, — B, is readily seen to be the automorphism defined on generators
by en(0;) =0, 1 As shown by Dyer and Grossman [DG], this involution generates
Out(By,) = Zg, for n > 3.

Let a and @ be the coefficient maps of f and f respectively. The fact that
the defining polynomials of C and C have complex conjugate coefficients may be
expressed as aod = eoa. Passing to fundamental groups, we have aod; = €, 0 a.
Checking that ¢, = conj; (see [DG]) completes the proof. O

4. The fundamental group of a plane algebraic curve

We now give the braid monodromy presentation of the fundamental group of the
complement of a plane algebraic curve C. This presentation first appeared in the
classical work of van Kampen and Zariski [vK], [Z2], and has been much studied
since, see e.g. [Mo], [MT], [L1], [L2], [Ru], [Di].

4.1. Braid monodromy presentation

The homotopy exact sequence of the bundle p : C2\ CU L — C\ Y of (2) reduces
to

1 — m1(Cn) — m(C2\CUL) 25 1 (C\Y) — 1.

This sequence is split exact, with action given by the braid monodromy homo-
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morphism « of (3). To extract a presentation of the middle group, order the
points of J by decreasing real part, and pick the basepoint yg in C\ ) with
Re(yo) > max{Re(yx)}. Choose loops & : [0,1] — C\ Y based at yp, going
up and above y1,...,yr_1, passing around y; in the counterclockwise direction,
and coming back the same way. Setting zp = [&], identify 71 (C \ Y, yo) with
F, = {x1,...,2s). Similarly, identify 71(C,,90) with F,, = (t1,...,t,). Hav-
ing done this, 7r1((C2 \ CU L, gp) becomes identified with the semidirect product
F,, X4 Fs. The corresponding presentation is

T(CEI\CUL) = (t1,.. tn,x1. .. 25 | 2}

by = alzg)(t)).

The fundamental group of the complement of the curve is the quotient of
71(C%2\ C U L) by the normal closure of Fi = (z1,..., ;). Thus, m(C2\ ) =
{t1,...,tn | t; = a(ar)(t;)). This presentation can be simplified by Tietze-II
moves—eliminating redundant relations. Doing so, one obtains the braid mon-
odromy presentation

TU(CE\C) = (t1,. .. b |t = @) (ts), T=41, dme—1; k=1,...,8). (4)

If yy, corresponds to a singular point of C, then my, denotes the multiplicity of that
singular point, while if y; corresponds to a (simple) tangency point, my = 2. In
either case, the indices ji,...,Jm,—1 must be chosen appropriately, see [L1] and
the discussions in 5.1 and 6.1.

Let K(C) be the 2-complex modeled on the braid monodromy presentation.
There is an obvious embedding of this complex into the complement of C. The
main result of [L1] is the following.

Theorem 4.2. (Libgober) The 2-complex K(C) is a deformation retract of C2\C.

Remark 4.3. The group G(a) defined by presentation (4) is the quotient of
F,, by the normal subgroup generated by {v(t)-t~1 | v € im(a), t € F,}. In
other words, G(«) is the maximal quotient of F,, on which the representation
a : Fs — B, acts trivially. If o/ : Fs — B, is equivalent to «a, then G(«) is
isomorphic to G(a’). Indeed, the equivalence condition o/ o) = conj, oo can be
written as ¢(a(g)(t) - t~1) = o/ ((9)) (o) - ¢(t)~1, Yg € F,, ¥t € F,. Thus
# € Aut(F,) induces an isomorphism ¢ : G(a) — G(a').

4.4. Braid monodromy generators
We now make the presentation (4) more precise. First recall that the braid group

By, has generators o1,...,0,_1, and relations o;0,10; = 0;410;0:41 (1 < i <
n—1), 005 = 050, (i —j| > 1), see [Bi], [H2]. The Artin representation a, :
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B, — Aut(F,) is given by:

titi 1ty L if 5 =14,
t; otherwise.

For each k =1,...,s, let v € By, < By be the “local monodromy” around
yr. Then

alzy) = ﬁk_l’Ykﬂlw

where 3, € B,, is the monodromy along the portion of &, from yg to just before
yr. One would like to express these braids in terms of the standard generators o;
of B,,. This may be accomplished in two steps.

Step 1. The structure of the (isolated) singularity v, above yj determines the
local braid 7. This braid may be obtained from the Puiseux series expansion of
the defining polynomial f(x,z) of C. This is implicit in the work of Brieskorn and
Knérrer [BK] and Eisenbud and Neumann [EN].

Example 4.5. Consider the plane curve C : 27 — 29 = 0. The fundamental group
of its complement was determined by Oka [Ok]. A look at Oka’s computation
reveals that the braid monodromy generator is (o1 ---0,-1)? € Bp. For instance,
to a simple tangency corresponds o1, to a node, a%, and to a cusp, a:l)’.

Example 4.6. By the above, the braid monodromy generator of a central line
arrangement A : 2" —2" = 0 is a full twist on n strands, A2 = (01 0p_1)" € By,
(see also [Hir]).

Step 2. The conjugating braids 5 depend on the relative positions of the singu-
larities of C. These braids may be specified as follows. Let 7 denote the portion
of the path &, from yg to just before yx. The braid gy is identified by tracking
the components of the fiber of the polynomial cover # = 7y : C\CNL — C\ Y
of (1) over 7. Generically, these components have distinct real parts. Braiding
occurs when the real parts of two components coincide. We record this braiding
by analyzing the imaginary parts of the components, as indicated in the figure
below.

More explicitly, recall that the polynomial cover 7 is embedded in the trivial
line bundle pry : (C\ Y) x C — C\ Y. Let y, = yi + ¢ denote the endpoint of
the path 7. Without loss of generality, we may assume that the components of
W‘l(y,;) (resp. 7 '(yo)) have distinct real parts. After an isotopy of C, we may
assume further that the positions of the components of W‘l(y,/i) in prl‘l(y,’c) =C

are identical to those of 7 !(yg) in prl_l(yo) = C. Then the image of the path 7y
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under the coefficient map a : C\ Y — B" is a loop a(n;) in configuration space,
and the braid [ is the homotopy class of this loop.

Figure 1. Braiding in a polynomial cover

Remark 4.7. The closed braid determined by the product, a(z1) - - - a(xzs), of the
braid monodromy generators is the link of the curve C at infinity. In the works
of Moishezon and Libgober, it is usually assumed that C is in general position
relative to the line at infinity in CP?. In that situation, the link at infinity is the
n-component Hopf link, and thus we have a(z1) - - - a(z,) = A? by Example 4.6.

5. The braid monodromy of a complex arrangement

The fundamental group of the complement of an arrangement of complex hy-
perplanes is, by a well-known Lefschetz-type theorem of Zariski, isomorphic to that
of a generic two-dimensional section. So let 4 be an arrangement of n complex
lines in €2, with group G = 7 (C2\ A). In this section, we provide an explicit
description of the pure braid monodromy of A.

5.1. Braided wiring diagrams

Choose coordinates in C2 so that the projection m = pry : C2 - Cis generic with
respect to A, and let f(z,2) = [[I_1(z — ¢;(z)) be a defining polynomial for A.
The points yr € ) are the images under 7 of the vertices of A. These vertices,
the points vy = (yr, 2x) € C? where 2, = b (yx) = -+ = 4, (yx) for r > 2, are
the only singularities of A; there are no tangencies. Without loss of generality,
assume that the points y; have distinct real parts. As noted in 4.4, Step 1, the
local monodromy around y; depends only on wvg. It is completely determined
by the multiplicity of v;, and the relative positions of the lines incident on vy.
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These data, and the braiding of the lines of A over the paths 7y, determine the
braid monodromy of the arrangement. All of this information may be effectively
recorded as follows.

Order the points of Y as before, and choose the basepoint yg € C\ Y so that
Re(yog) > Re(y1) > -+ > Re(ys). Let £ : [0,1] — C be a (smooth) path emanating
from yg and passing through y1,...,y,s in order. Note that we may take the path
& to be a horizontal line segment in a neighborhood of each y. Call such a path
admissible. Let

W={(z,2) e {xXC| flz,z) =0}

be the braided wiring diagram associated to A. Note that VW depends on the
generic linear projection 7 and on the admissible path ¢. If {z = ¢;(z)} is a line of
A, we call WnN {z = ¢;(x)} the associated wire. Since the path £ passes through
the points of ), the vertices of A are contained in W.

Over portions of the path £ between the points of ), the lines of A (resp. wires
of W) may braid. Let y, = yi, + ¢, and y} = yi, — ¢, for some sufficiently small e.
We may assume that, over y} and y/, the wires of W (i.e., the components of the
fiber of the polynomial cover m¢) have distinct real parts. Arguing as in 4.4, Step
2, we associate a braid B r+1 to the portion of § from yi to y; 4.

After an isotopy of A, we may also assume that the positions of the wires of
W over the points yo, yj,, and y} are all identical. Thus a braided wiring diagram
W may be abstractly specified by a sequence of states, vertices, and braids:

Poeitil, W P2 Wy Bo,1
Hyy1 ———+— 1T =+ —+1Tlo — I Mo,

where the states IIj, are permutations of {1,...,n} beginning with the identity
permutation and recording the relative heights of the wires. The vertex set Vi, =
{i1,...,iy} records the indices of the wires incident on the k™ vertex vy of A (in
terms of the order given by the initial state Ilp). The braids & s41 are obtained
as above. By choosing the basepoint yg sufficiently close to y1, we may assume
that the initial braid Gy 1 is trivial. If such a diagram is depicted as above, the
braids G ;1 should be read off from left to right. Note that the this notion
generalizes that of a wiring diagram due to Goodman [Go|, and that the admissible
2-graphs utilized by Arvola [Ar], [OT], may be viewed as examples of braided
wiring diagrams. Explicit examples are given in section 7.

5.2. Generators of P,

Before proceeding, we need to review some facts about the pure braid group P,, =
ker(7, : B, — Y, ). This group has generators

2 1 ~1 .
Ai7j:aj,1~~~ai+1~ai~Ji+1~~~aj717 1<i<j<n,

and relations that set a generator equal to a certain conjugate of itself, see [Bi],
[Ha]. In particular, Hi(P,) = z(3) is generated by the images of the generators
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Aj ;. The conjugation action of B, on P, is given by the following formulas
(compare [DG]):

. . At

Ay ifk=i-1, DM k=i,
Agird wpqg o ’ T
itlg ifk=i1<j—-1, S Apry; ifk=i<j—1,

— v ; o -1
Ag=q At Hh=5-1>5 Ay =9 4% jpp—j 154

Al f k= j S itk
ij+1 7> Ajjn k=37,

Aij otherwise, A j otherwise.

(5)

We shall work mainly with a particular type of pure braids. These “twist

braids” are defined as follows. Given an increasingly ordered set I = {¢1,...,%,},
let

Ar = (Aiy i )(Aiy jig Aigig) (Aig ig Aigig Aigig) - (Aig e As 1) (6)

We extend this definition to sets which are not increasingly ordered (such as the
vertex sets Vj, in 5.1) by first ordering, then proceeding as above. The conjugation
action of an arbitrary braid g € B,, on the twist braid A; € P, takes the form

A7 = A5, (7)

where w = 7,,(3), and C = C(I, 3) is a pure braid that may be computed recur-
sively from (5).

5.3. Braid monodromy

We now extract the braid monodromy of A from an associated braided wiring
diagram W. By Theorem 3.4, the image of the braid monodromy is contained
in the pure braid group FP,. We shall express the braid monodromy generators,
Ak i= A(zg), in terms of the standard generators A; ;.

The vertex set Vi, = {é1,...,4,} gives rise to a partition Il = Ly UV, U Uy,
where Ly (resp. Uy) consists of the indices of the wires below (resp. above) the
vertex vg. Let I = {5,7 +1,...,7 +r — 1} denote the local index of Vj,, where
j = |Lk| + 1. The local monodromy ~; around the point y; € Y is a full twist on
1j, given by the pure braid Ay, (compare 4.6). Note that A;, = F‘%ﬁ where

pr, = (05 0j4r2)(05 - 054,-3) - (05 - 0541) - (05) (8)

is a permutation braid—a half twist on I. Also notice that the monodromy along
a path from y}, to y}/ above (or below) the point y;, is given by pr,.

To specify the braid monodromy of A, it remains to identify the conjugating
braids 3), of 4.4, Step 2. Choosing the paths 7, to coincide with £ between y and
y;+1 for j < k, these conjugating braids may be expressed as 31 = Gy 1 = 1, and
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Brt1 = Brkt1 - f1, - Bk for & > 1. Hence the braid monodromy generators are
given by 5
Ap = AfE. (9)

Note that the state Il of the braided wiring diagram W is the image of the
braid g in the symmetric group, 11y = 7,,(8x). Note also that the vertex set Vj
and its local index I, are related by Vi = Il;(I;). Thus, the braid monodromy
generators may be expressed solely in terms of pure braids:

Ae = AT, (10)
for certain Cy € P,.

5.4. Conjugate arrangements

Let A be an arrangement of n lines in C2, with associated braided wiring diagram
W corresponding to a generic projection 7 : C2 — C and admissible path &. Let
A denote the conjugate arrangement (see 3.8). Clearly, the vertices of A are the
complex conjugates of those of A. Thus, 7 is generic with respect to A, and € is
admissible. The corresponding braided diagram, W, is then obtained from W by
simply reversing the crossings of all the intermediate braids. Thus, the local indices
of W are given by Ij, = I, the conjugating braids by 841 = €,(Bk k+1) - 1, - B,
and the braid monodromy generators by A, = A/?: From the proof of Theorem 3.9,
we see that the braid monodromy generators of the two conjugate arrangements
are related by

M= (O,

5.5. Real arrangements

If A is a real arrangement in C2 (that is, A is the complexification of a line
arrangement Ap in R?), then the defining polynomial f(z,z) has real coefficients.
Consequently, the vertices of A all have real coordinates, and their images under
first-coordinate projection all lie on the real axis in C. In this instance, we may
take the path £ : [0,1] — C to be a directed line segment along the real axis.
The resulting diagram )V is unbraided—all the intermediate braids 3 ;41 are
trivial. In other words, the diagram is a wiring diagram in the combinatorial sense
[Go], affine if A contains parallel lines (see also [BLSWZ]). In this instance, the
description of the braid monodromy given in 5.3 specializes to the algorithm of
Hironaka [Hir], modulo some notational differences.

Another description of the braid monodromy of an abstract (unbraided) wiring
diagram was provided by Cordovil and Fachada in [CF] (see also [Cor]). This
description, based on Salvetti’s work [S1], [S2], may be paraphrased as follows.

Recall that the vertex set Vi, = {i1,...,%,} gives rise to a partition II;, =
Lk UVk U Uk Let Vk = {Z | ’il S 7 S Z'T}7 and set Jk = (Vk \ Vk) n Uk Let
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By, = [14;:, where the product is over all j € J; and ¢ € V; with j < 4,
taken in the natural order (so that By, is a subword of A2 = Al,...n, equal
to 1 if J; = 0). Then the braid monodromy generators may be expressed as
A = A‘J,z = B;:Avk Bj, , where Ay, is as defined in (6).

Using the Artin representation, one can show that the braids A, and A\ are
equal. The action of the braid A; is given in formulas (12) and (13) in section 6.
The same formulas hold for Ag, but the computation is more involved. Thus, the
two descriptions of the braid monodromy of a real arrangement (or more generally,
of an arbitrary wiring diagram) coincide.

5.6. Markov moves

For an arbitrary complex arrangement .4, changes in the choices made in the
construction of the braid monodromy (see 3.5) give rise to changes in the braided
wiring diagram W associated to .A. For instance, changing the basepoint yg may
alter the initial braid £y 1, while changes in the generic projection may alter the
order of the vertices.

We refer to these (and other) changes in a braided wiring diagram as “Markov
moves.” In practice, these moves may be used to simplify a braided wiring di-
agram associated to an arrangement A (and consequently the braid monodromy
generators of A as well). We now record these simplifying Markov moves and their
effects on the braid monodromy. In the following, we record only the local index of
a vertex, so “vertex {j,...,k}” means “a vertex with local index {j,...,k}.” Re-
call that, while we depict braided wiring diagrams right to left, their intermediate
braids are read left to right.

Geometric moves.
(1) Insert an arbitrary braid fy at the beginning of the braided wiring diagram.
(2) Insert an arbitrary braid .41 at the end of the braided wiring diagram.
(3) Replace vertex {i,...,j}, then vertex {k,...,l} with
(a) vertex {k,...,l}, then vertex {i,...,5}, if j <k ori>L
(b) braid (o) -+ 0i41) - (Op41 - 0i2) - (011 - - 05),
then vertex {i7i Lt ll_ kY, tlhen Verltex {i+ ll_ k.. e 1},
thep braid (o, 2y --077) (o " - opyy) (o g roy ), i j =k
(¢) braid (oi_1 - -0%) - (05 opy1) - (05— - o1_1),
then vertex {j + k —1{,...,7}, then vertex {k,...,5 +k — 1},
el 1 r - o % e
then braid (o, " -+ 0, 1) (0,1 054 9) (aj71 s ), ifi =1
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l J

SV ~ z

~ A P L
— ¥ : \—k

Figure 2. Moves 3b (left) and 3c (right)

Further moves.
(4) Reduce the intermediate braid 8y, j41.
(5) Replace braid o;, then vertex {j,...,k} with
(a) vertex {7,...,k}, then braid o;, ift <5 —1or 7 > k.
(b) braid aj*l . »a,;_ll, then vertex {j +1,...,k + 1}, then braid o -- -0y, if

=k
(c) braid a,;ll . ~~a;17 then vertex {j —1,...,k — 1}, then braid o;_1 --- 031,
ifi—j—1.

(d) vertex {j,...,k}, then braid oj4_; 1, if j <i <k —1.
- i\ — — k
S sk I ro
ke 'alial B J
N j _K ;

Figure 3. Moves 5b (left), 5¢ (right), and 5d (bottom)

The parity of the braids in move (3) and move (5) may be switched. For
instance, one can replace braid 0;1, then vertex {7,...,k}, with braid o ---oy_1,
then vertex {7 +1,...,k+ 1}, then braid a,;l - ~a;1 if i = k (move 5b).

Note that the triangle-switches and flips discussed in [BLSWZ] and [Fa] in the
context of (unbraided) wiring diagrams may be accomplished using Markov moves
of types (3), (4), and (5).

Theorem 5.7. The braid monodromy of a braided wiring diagram is invariant
under Markov moves: If the braided wiring diagram W is obtained from the braided
wiring diagram W by a finite sequence of Markov moves of types (1)—(5) and their
inverses, then the braid monodromy homomorphisms A of W and \ of W are
braid-equivalent.

Sketch of Proof. One can check, either algebraically or by drawing the appropriate
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braids, that the (only) effects on the braid monodromy of the Markov moves listed
above are as follows: .
(1) Global conjugation by fp: A= ﬂal A .
(2) None.
(3) Suppose the vertices in question are the k™ and (k + 1)% vertices of W
(resp. W) Then the corresponding braid monodromy generators, Ay, A;1 and
5\k73\k+17 satisfy:
(a) Xp = Ak41 and 5\k+1 = Ai.. Note that the permutation braids py, and g,
commute in this instance. Thus we can write j\k = Ap - Agpl - )\,Zl = A1,
and A = \o o).
(b) Ak = M - A1 - AL and Mg = A, Thus A= Ao oy
(€) Ak =Apy1 and Ay = Ay A Ayt Thus A= Xoo L.
(4) None.
(5) None.
Hence A and A\ are braid-equivalent. O

Recall that curves in the same connected component of an equisingular family
have braid-equivalent monodromies (see [L3] and 3.5). In particular, this is the
case for arrangements which are lattice-isotopic [R2].

Corollary 5.8. Let A and A’ be lattice-isotopic arrangements in CQ, with asso-
ciated braided wiring diagrams W and W'. Then W' may be obtained from W wvia
a finite sequence of Markov moves and their inverses.

6. The group of a complex arrangement

We now turn our attention the fundamental group G of the complement of the
line arrangement A in C2. In this section, we describe the braid monodromy and
Arvola presentations of G, show that they are Tietze-I equivalent, and derive some
homotopy type consequences.

6.1. Presentations

Using the (pure) braid monodromy generators {\;} from (9) and the procedure
described in 4.1, we obtain the braid monodromy presentation

G =(t1,...,tn | Me(t;) =1t; fori € Vi and 1 < k < s),
where V}, =V \ max Vj.

We may also use the braided wiring diagram W to find the Arvola presentation
of G. This presentation is obtained by applying the Arvola algorithm [Ar], [OT],
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to W. Explicitly, we sweep a vertical line across the braided wiring diagram from
right to left, introducing relations and keeping track of conjugations as we pass
through the vertices vy and the braids 3 ;1. Note that the braids 3 ;1 do not
give rise to any relations, but do cause additional conjugations. It is convenient
to express the generators and these relations and conjugations in terms of the
inverses of the generators typically used in the Arvola algorithm. Apart from this
notational difference, our description of this method follows Falk’s discussion in
[Fa] of the Randell algorithm for real arrangements (to which the Arvola algorithm
specializes).
Recall that the symbol [g1,. .., g,| denotes the family of » — 1 relations

g1- 92 Gm =92 Gm gL = = gm g1 Gm-1-
The Arvola presentation of the group G is given by
G: <t177tn | Rl?“‘7RS>7

where if Vi, = {41, ...,4,}, then Ry, denotes the family of relations [z;, (k), ...,z (k)].
The word z;(k) denotes the meridian about wire 7 at state Il;. Let y;(k) denote
the meridian about wire ¢ between vertex k& and braid k. Then we have

. { @i(k) if i ¢ Vi,

ayy (k)i (k) - @i(k) - (i (k) -2y (R) L if i = i1 € Vi (11)

(see below). The words z;(k) satisfy the recursion z;(1) = ¢;, and 2;(k + 1) =
Br.k+1(yi(k)) for k > 0, where B 41 records the effect of the braiding By x41 on
the meridian y; (k) as indicated below.

Y1 Ly
. -1
Y2 : Y1 Y2 Yo YL Y2 y2
: z9 \/ \/
Yr x y1-y2 - yy Ny VAN
wlas) — & o1(yi) — Ui afl(yi) — Ui

Figure 4. Conjugations in Arvola’s algorithm

Note that, locally, the conjugation arising from a vertex (resp. braiding) coincides
with the action of a permutation braid (resp. an elementary braid or its inverse).
To make the description of ﬁk k+1 explicit, we require some notation.

The state I, of the braided wiring diagram W is a permutation of {1,...,n},
recording the relative heights of the wires at this state. Recall the local index I},
of the vertex set Vj, of W, and the associated permutation braid py, . Let fj, =
Tn(pr,,) denote the permutation induced by pr,, and let By k1 = 7 (B pt1). It
is easily seen that II;41 = Bk,kﬂ pr, - .
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Note that the sets {z;(k)} and {y;(k)} generate the free group F,, = {(t1,...,1,).
Define ¢y, 5, € Aut(F,) by

i(ty) = zi(k) if g(q) =4 and  ox(ty) = z:(k) if far, - Mx(q) = 4.

If y41(g) = 4, then the effect of the braiding 3 ;41 on y;(k) may be expressed
as B k+1(i(k)) = Brr+1 - Yr(ty) = Yru(Brr+1(ty))-

Lemma 6.2. We have ¢, = py, - %

Proof. Compute:

di(tq) if ¢ & I,

HrPr(ty) = { Ty .
5 ( q) ¢k(tj"'tj+lfl ~tj+l . (tj“'tj+l,1) 1) lfq:]+T— 1 —l E]k.

Checking that this agrees with the description of the meridians y;(k) given in (11),
we have g, - $r(tq) = yi(k) = ¢r(tq) for all q. O

We now show that the meridians z;(k) may be expressed in terms of the con-
jugating braids 5 from the braid monodromy constructions of 4.4 and 5.3. Recall
that these braids are defined by 81 =1, and By41 = By ry1 - pr, - B for k> 1.

Proposition 6.3. If wire i is at height q at state Il 1 in the braided wiring
diagram W (that is, Iy 1(q) = 1), then x;(k+ 1) = Bry1(tq).

Proof. We use induction on k, with the case k = 0 trivial.
In general, assume Il;1(g) = 4. We have

zi(k+1) = B 1Wi(k)) = Brrrt - i - du(te) = Brptt - iy - Brlte) = Bra1(ty),

using the above lemma, the inductive hypothesis to identify ¢ = Ok, and the
identification of the braids &y from 5.3. O

We may now state and prove the main theorem of this section.

Theorem 6.4. The braid monodromy and Arvola presentations of the group G of
the arrangement A are Tietze-I equivalent.

Proof. Let V = Vi = {i1,...,%,} denote the k™" vertex of a braided wiring diagram
W associated to A, with local index I = I}, = {j,...,j +r —1}. Write g = Sy
and o = o = A?, and recall that V =V \ max V. Using Proposition 6.3, we may
express the family Ry of Arvola relations as

[ﬁ(tj)7 SRR 7ﬁ(tj+r71)]~
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We will show that these r —1 relations and the braid monodromy relations a(t;) =
t;, 1 € V are equivalent. It is easy to see that the r —1 Arvola relations above are
equivalent to B(A;(t;)) = B(t:), 1 € I.

Using Proposition 6.3 again, we have 8(t;) = x; (k) if i =j+p—1€ 1. Con-
sequently, 3(t;) is some conjugate of ¢;,, say B(t;) = wp - t;, - w;l. A computation
shows that a(t;,) = a(w;l) - B(Ar(t;)) - a(wp). Therefore the braid monodromy
relation a(t;)) = t;, may be expressed as G(A;(t;)) = alwy) - t;, - a(wzjl). Now
it follows from the relations a(t;) = ¢; for ¢ € V that a(t;) = ¢; for all ¢. Thus
a(wp) = wp, and the braid monodromy relation above is clearly equivalent to the

corresponding Arvola relation. O

Since the braid monodromy and Arvola presentations of the group G of A are
Tietze-1 equivalent, the associated 2-complexes are homotopy equivalent. Fur-
thermore, Libgober’s theorem [L1] stated in 4.2 provides a homotopy equivalence
between the braid monodromy presentation 2-complex and the complement (CQ\A
Thus we obtain the following corollary.

Corollary 6.5. The complement of a complex arrangement A in C2 has the ho-
motopy type of the 2-complex modeled on the Arvola presentation of the group G.

Prior to our obtaining this result, Arvola informed us that he had a proof of
it. We are not cognizant of the details of that proof.

6.6. Real arrangements

If A is a real arrangement in C2, then, as noted in 5.5, the braided wiring diagram
W is unbraided, so is a (possibly affine) wiring diagram. In this instance, Arvola’s
algorithm specializes to that of Randell [R1]. Using Theorem 6.4, we obtain:

Corollary 6.7. The braid monodromy and Randell presentations of the group G
of a real arrangement A in C2 are Tietze-I equivalent.

As above, combining this result with Libgober’s theorem yields the following
corollary, which constitutes the main result of Falk [Fa].

Corollary 6.8. The complement of a real arrangement A in C?2 has the homotopy
type of the 2-compler modeled on the Randell presentation of the group G.

The braid monodromy and Randell presentations of G may be obtained imme-
diately from the description of the generators Ap = A‘J,i in terms of pure braids
provided by [CF] and described in 5.5. This is accomplished by finding the action
of the braids ;\k. For the sake of completeness, we find the action of :\k on the
entire free group F,,.
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Write V.=V, and J = J. If V = {Lit, ik, let bty =1, -+t (set ty =1
fV=20). Forie V\V,let V¢ = {i1,...,4,} and V> = {ig41,... 4} if
g < i <igq1. If J =0, a straightforward computation yields

By b + B ifieV,
Av(ti) = [tv<z’,tv>z’] - [tv<i,tv>z']_1 ifieV \ V, (12)
t; otherwise.

If J#0, let
1 ift<gjroriteJori>i,,
2= ty<i ifiEj\J,
tr if maxJ < ¢ <4,

and define vy € Aut(F},) by vs(t;) = 2yt
(12), yields:

. z;il. Induction on |J|, starting from

23,3 ity bt - 2 ifieV,
A\{(tz) - Z;:ll . ’)’J([tv<z'7tv>z'] 7 [tv<i7tv>¢]7l) C25i if7 € f/\ (V U J)7
t; ificJorig¢V.

(13)

Proposition 6.9. Let A be a real arrangement. If W is an associated wiring
diagram with vertex sets Vi and conjugating sets Jy, then the braid monodromy
and Randell presentations of the group G(A) are given by
G =(t1,. .. tn | Wty - ti - t3) = W(ts) for i € Vi and 1 <k < s)
- <t17"'7tn | R17"'7RS>7

where v, =71, and Ry denotes the family of relations [y, (t:, ), ..., v, )].

7. Applications and examples

In this section, we demonstrate the techniques described above by means of several
explicit examples and provide some applications.

7.1. The intersection lattice

Let A = {Hy,...,Hy,} be an arrangement, and let L(.A) be the ranked poset of
non-empty intersections of A, ordered by reverse inclusion, and with rank function
given by codimension. Two arrangements A and A’ are lattice-isomorphic if there
is an order-preserving bijection 7 : L(A) — L(A’) (see [OT] for further details).
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Let A be an arrangement of 7 lines in C2 with s vertices. Choose (arbitrary)
orderings of the lines and vertices of A. Then the intersection lattice may be
encoded simply by a map V : {1,...,s5} — S(n), where S(n) denotes the set of
all subsets of {1,...,n}, and V(k) = V}, is the k™M vertex set. Two arrangements
Aand A in C2 are lattice-isomorphic if, upon ordering their respective lines and
vertices, there exist permutations = € ¥ and p € >, such that V;(k) = p(Vi).

Theorem 7.2. Line arrangements with braid-equivalent monodromies are lattice-
isomorphic.

Proof. First recall that, if A; is one of the (extended) generators of P, specified in
(6), and 8 € B,, with 7,,(8) = w, then A? = AS(I), for some C € P, see (7). Also
note that, since the abelianization of P, is a free abelian group on the images of
the standard generators A, ;, if a pure braid  can be written as v = B-1 ‘Afcl -B,
for some B € P, then the indexing set I is uniquely determined by ~.

Now let A and A’ be line arrangements with braid-equivalent monodromies «
and . Note that the braid monodromy construction determines orderings of tl}e

lines and vertices of the arrangements. Write a(xy) = Ag: and o (zy) = Ag}if,
with Cy,C} € P, as in (10). By assumption, o’ o ¢ = conj, oc, with ¢ € By,
¢ € By, Write () = z,;l “T(k) * 2k, Where m = 75(¢)). Also, set p = 7,(¢). The
braid-equivalence then reads:
cpal (= BrCY
Avfoc)( Ma Aol
Since both exponents in the above equation are pure braids, we conclude that
V;(k) = p(V%), as required. O

Example 7.3. One can easily find pairs of arrangements whose groups are isomor-
phic, yet whose monodromies are not equivalent. For instance, consider arrange-
ments with defining polynomials Q(A) = zy(z —y) and Q(A') = zy(z — 1), re-
spectively. Tt is readily checked that G(A) = Ps is isomorphic to G(A’") = Fa X FY.
Furthermore, it can be seen that C2\ A = (S3\ 3 Hopf circles) x R* is diffeomor-
phic to C2\ A’ = 51 x (52\3 points) x RT. On the other hand, the respective pure
braid monodromies, A : Fi — P, AM(z) = A1 23, and X : Fy — P3, X(z1) = Ay 2,
N(za) = Ay 3, are obviously not equivalent. This may be explained by the fact
that there is no ambient diffeomorphism of C2 taking A to A’

While these examples do show that the braid monodromy of a plane curve
carries more information than the fundamental group of the complement, they are
unsatisfying for several reasons. Combinatorially, L(.A) is a lattice, while L(A’) is
merely a poset. Geometrically, A is transverse to the line at infinity, while A’ is
not. This being the case, these examples do not address Libgober’s question [L3],
which was posed for plane curves that are transverse to the line at infinity in CP?.
We now present examples which do fit into this framework.
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7.4. Falk arrangements

Consider the arrangements of Falk [Fa] defined by
Q=yz(zt+y)(z—y)(z+z)(@—2) and Q =yz(z+z)(z—2)(y—2)(z—y—2).

Taking generic sections, we get a pair of real line arrangements A and A’ in C2
which are transverse to the line at infinity, and have the same numbers of double
and triple points. Wiring diagrams for these line arrangements are depicted below.

¢
X h VT

3

Ny

Figure 5. Wiring diagrams for A (left) and A’ (right)

=N W Ot

Applying the methods describegl in the previoﬂus sections, we obtain the follow-
ing braid monodromy generators A = {\;} and X' = {\}}:

N 45} {45} {45 {4} {4} {4

A={A123, A455, Aié :, A;é 5, Aéé L Ai5}7 Aéys}, A§,75}7 A4, A24, Aza},
v 4 1

XN ={A123, A1, A§7§,}7 A;;? Aga, Az4, A, Ao, Ase, Asp, Ase}

Using Proposition 6.9 and some elementary simplifications, we obtain the fol-
lowing presentations for the groups G(.A) and G(A'):

G(A) = (uy,...,ug | [ur,ua,usl, [ua, us, ugl, [u1, uel, [u, us), [us,ue], [u1,us],
[u2, us], [ug, us), [u1,ua], [ug, uql, [ug,ual),

G(A) = (v1,...,v5 | [v1,v2,v3], [v1,v4,v5], [v2, 5], [vs, 5], [v2,v4], [V3, V4],
[v1, 6], [v2, ve], [v3, v6], [va, v6], [v5, v}

These groups are isomorphic. In fact, one can check that the map G(A') — G(A)
defined by vq +— u1u51u117 vg — uqusug, v; — u; if ¢ # 1,6 is an isomorphism
through Tietze-I moves, so the complements of A and A" are homotopy equivalent.
Falk obtained analogous results for the original central 3-arrangements by working
with decones as opposed to generic sections.

On the other hand, the lattices of A and A’ are not isomorphic: For A’, the two
triple points are incident on a line, while for A, they are not. By Theorem 7.2, the
monodromies A\, X' : Fj1 — Bg are not braid-equivalent. Moreover, the fact that
L(A) % L(A") implies, by results of Jiang and Yau [JY], that the complements of
A and A’ are not homeomorphic.
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7.5. Falk-Sturmfels arrangements

Consider the pair of (central) plane arrangements in C3, with defining polynomials

Qf = zyz(z+y+2)@+w) [y +2)(@+ (v + Dy + 2)(~z +v2) (@ + vy +7%2),

where v = (=14 1/5)/2. These arrangements, studied by Falk and Sturmfels
(unpublished), are real realizations of a minimal matroid, whose realization space
is disconnected (see also [BLSWZ]). They have isomorphic lattices and homo-
topy equivalent complements. In fact, Keaty (also unpublished) has shown that
the oriented matroids of these arrangements are isomorphic. Thus, by results of
Bjorner and Ziegler [BZ], their complements are homeomorphic. Checking that
Ht={z=1- %:ch %y} and H- ={z=1- %er %y} are generic with respect to
these arrangements, we get a pair of real line arrangements, A¥, in C? by taking
sections. Wiring diagrams for these line arrangements are depicted below.

\ X V. X

7 7

6 6

5 5

4 4

A A ’ ’
A Ao A ;

Figure 6. Wiring diagrams for A1 (left) and A~ (right)

Applying the techniques described in the previous sections, we obtain the fol-
lowing braid monodromy generators:

. 5 8 578 {4,578
M= {4123, A14, A1s6, AT, Aigo, A§,4}76, A;g,},zg, Aig ), Aé,&g L

5
A§,74},77 Agsg, Az, Asg, Asss, Asrs),

o 5 5:B 2,4,5,6 2.5 2

X~ ={4e7, ALD , Ags, AT, Asss, Avs, ATSHYY, AT, Al

5 45
Aig}7 Aq2.9, Aée}g}y A3459, A69, A789}.

The monodromy homomorphisms AT, A~ : Fi5 — By are braid-equivalent. If

I = {i,i+1,...,7}, write u;; = ur, see (8). One can check that At o) =
conj, oA~ , where i € By is given by

4
= (0102 o14) O6M3,606010011012013147,10010M411,150405060901016,995011
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and ¢ € By is given by ¢ = (ogo7 - ‘01)4030403020506~ It follows from Remark
4.3 that the groups G(AT) and G(A™) are isomorphic.

Remark 7.6. If A : F; — P, is the braid monodromy of an arrangement or wiring
diagram, let I' = im(A\) < P,. In [CF], it is asserted that if W and W’ are wiring
diagrams determining the same underlying matroid, then the corresponding braid
monodromy subgroups I' and IV of P, are equal. A subsequent result for real
arrangements may be found in [Cor].

These results cannot be strengthened. By construction, the wiring diagrams
Wt and W~ above determine isomorphic underlying matroids. However, their
braid monodromy groups '™ and I'™ do not coincide. In fact, I'" and I'~ are
not conjugate in Py (although, as shown previously, they are conjugate in Bg).
This can be seen by using the representation 6 : Py — GL(&ZZIO), which is
obtained from the generalized Gassner representation %7272 of [CS1], Section 5.8,
by restriction to a direct summand. The corresponding modules of coinvariants,
Ag(A*) = Ho(Fys; (ZZIO)EOH), are not isomorphic. One can show that the grad-
ed modules associated to their I-adic completions have different Hilbert series.

This difference may be explained combinatorially as follows. Though the (little)
oriented matroids of W1 and YW~ are isomorphic, their big oriented matroids are
not. One can check that the spectra of the tope graphs (see [BSLWZ]) associated
to these big oriented matroids differ.

7.7. MacLane configurations

We consider complex conjugate arrangements arising from the MacLane matroid
MLg [MacL]. This matroid is minimal non-orientable in the sense that it is the
smallest matroid that is realizable over C but not over R [BLSWZ]. Following
Rybnikov [Ry]|, we take arrangements with defining polynomials

QF = aya(y — 2)(2 — 2)(2 + wy) (2 + Wz + wy)(z — z — w?y),

where w = (=1 £ /=3)/2, as complex realizations of this matroid. Deconing by
setting z = 1, we obtain two affine arrangements A* in 2. By construction, At
and A~ are lattice-isomorphic. Also, note that A1 and A~ are conjugate arrange-
ments; in particular, they have diffeomorphic complements, and thus isomorphic
groups.

Check that the projection 7(y,z) = 3y + z is generic with respect to AT,
Changing coordinates accordingly, and choosing an admissible path &, we obtain
the braided wiring diagram W7 depicted below.
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=

Figure 7. Braided wiring diagram for A7

N Wk Oty

From the braided wiring diagram W™, we see that

L= {47576}, ﬁLQ =1, Iy = {374}7 ﬂ273 =1,
I3={1,2,3}, B34 =o0405", Is = {3,4,5}, Pas =05 09050304,
Is = {47 5}’ ﬁ576 = 051030;1’ Is = {67 7}7 ﬂ677 - 0517

Ir = {47576}7 ﬂ7,8 =1, Iy = {27374}

Since A1 and A~ are conjugate, a braided wiring diagram W~ for A~ may be
obtained from W7 by switching the crossings of the intermediate braids, as noted
in 5.4. Applying the algorithm of 5.3 and carrying out some elementary simplifica-
tions using (5), (7), and the braid relations, we get the following braid monodromy
generators:

= Az 5A45A57 Ay 7 A5 7A34
M ={As56, Ase, A126, A134, Ay , Agr, Aisr, Agsy 1,

Ve As,7 As7
AT ={A456, As6, A126, A134, A2s, Ay’ Ais7, Ay3n)

The braid monodromy presentations of the groups G* = G(Ai) may then be
found using the Artin representation. After some simplifications, we obtain:

GV = (u,...,ur | [ug, us, ug), [us, ue), [u1,ug, ugl, [u1, u3, ual, [ug?, us),
[ua, wr), [u1, us, ur), [ug?, us, url),

G~ =(v1,...,v7 | [v4,v5,v6], [v3, V6], [v1, V2, V6], [V1,v3,v4], [U2, V5],
[vg®,v7], [v1,v5,v7), [U2, 5%, v7]).

As mentioned above, Gt =2 G~. An explicit isomorphism is given by

-1 -1 1,1 -1 -1
up —vgvy vy, ug — (vev3) 1112 vgU3, U Vg, ug vy,

UK V4V Uy, UG Vg, w7 — U5U;1vgl.

Presentations for G* were first obtained by Rybnikov [Ry], using Arvola’s algo-
rithm. By Theorem 6.4, the above presentations are Tietze-1 equivalent to those
of Rybnikov. This can also be seen directly: For GT, an isomorphism is given
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by w1 — w;l, uy w7w;1w7717 ug — wgl7 Ug +— w§17 up — w§17 ug — wf17
ug wgl, and similarly for G~.

Since A1 and A~ are conjugate, their braid monodromies are equivalent by
Theorem 3.9. But the two monodromies are not braid-equivalent. For, if they
were, there would be an isomorphism ¢ : Gt — G~ determined by a braid au-
tomorphism ¢ : Fy — Fy (see Remark 4.3). In particular, the induced map on
homology, ¢, : H{(GT) — H{(G™), would be a permutation matrix in GL(7,Z),
and this is ruled out by a result of Rybnikov [Ry]|, Theorem 3.1.
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