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Infinite Coxeter groups virtually surject onto Z

Constantin Goncmlea

Abstract. We prove that any infinite Coxeter group has a subgroup of finite index which ho-

momorphically surjects onto the integers This implies the known result that infinite Coxeter
groups do not have property (T) of Kazhdan

Mathematics Subject Classification (1991). 20F55

Keywords. Coxeter group, Coxeter complex

Introduction

In this paper we prove that an infinite Coxeter group contains a finite index
subgroup that admits an epimorphisin onto Z There is a standard way of producing
an epimorphisin from the fundamental group of a manifold onto Z we consider
a two-sided, non-separating submamfold of codnnension one, and assign to each

loop the sum of its intersection numbers with this submamfold The mam idea of
our proof is to try to transpose what this situation gives at the level of the
universal cover, to the context of the Coxeter complex associated to a Coxeter group
The Coxeter complex is not very far from the simphcial analogue of a manifold,
and its walls are codimension one subcomplexes that under some conditions give
"two-sided", "non-separating" subcomplexes of codimension one in the quotient of
the Coxeter complex by a subgroup of finite index of the given Coxeter group In
order to make the presentation as clear and as simple as possible, we will alternate
geometric and algebraic points of view

The question of whether infinite Coxeter groups virtually surject onto Z was
originally posed by Pierre de la Harpe and Alain Valette in the following context
the affirmative answer would imply the known result of [1], that infinite Coxeter

groups do not have property (T) of Kazhdan More details can be found in [6]

Another application is related to the Thurston's conjecture that the fundamental

group of an asphencal three-manifold virtually surjects onto Z This note's
result proves this for subgroups of infinite Coxeter groups

I would like to thank Mike Davis for his tremendous support, Tadeusz Janusz-
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kiewicz for many valuable comments, and the referees for some extremely useful
corrections and suggestions.

While writing this note, it was brought to my attention that the same result
has been proved independently by D. Cooper, D. Long and A. Reid ([5]).

1. Preliminaries on Coxeter groups

In this section we recall some basic définitions and important facts about Coxeter

groups and their associated complexes. Most of the material can be found in the
excellent references [2], [3], or [4].

A pre-Coxeter system (W, S) is a group W generated by a set of involutions
S; m(s,t) G {1,2,3,.. .00} denotes the order of st in W for s,t G S. Note that
m(s, s) 1 and m(s,t) m(t, s) for any s,t G S.

The set of reflections of W is R {JweW wSw~^. By a word in the generating
set S we mean a finite sequence s (si,..., so). We will often be less formal and
simply say that the expression si • • • s a is a word; the element w s\ ¦ ¦ ¦ Sd of W
that it represents must be distinguished from the word s.

The length £(w) of an element w G W is the minimal d such that w s\ ¦ ¦ ¦ Sd,

with st G S for 1 < i < d.

The word (si,... s a) is called reduced if the corresponding element w s\ ¦ ¦ ¦ Sd

has length £(w) d, i.e. it cannot be represented by a shorter word. We will also

say in this situation that the given word is a reduced decomposition of w or, less

formally, that the equation w s\ ¦ ¦ ¦ Sd is a reduced decomposition of w.
We say that the pre-Coxeter system (W, S) is a Coxeter system, if W has a

presentation of the form:

W (S\(st)m(-S^ 1 for all s,t G W with m{s,t) < 00).

This condition can be also understood as a universal property, in the following
sense: given a group G and a map / : S —> G such that (/(s)/(t))m(-s'*-> 1 for all
s,t G S with m(s,t) < 00, there exists a homomorphism g : W —s- G extending /.

In what follows we will restrict ourselves to Coxeter systems (W,S) with S a
finite set.

The dihedral group Dm is the Coxeter group with the presentation:

Dm (s,t\s2 =t2 (st)m 1)

This group has order 2m and it is easy to enumerate all its elements. Since s and
t are involutions, the elements of Dm are obtained as alternating products of s's
and t's: 1, s, t, st, ts, sts, tst, with two products of each positive length. But
the relation (st)m 1 gives stst... tsts i.e. the two products of length

m factors m factors

m give the same element of Dm, which is the element of maximal length, since

pre-multiplying or post-multiplying it by either s or t will result in cancellation,
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giving one of the two elements of length m — 1. Let us also mention that Dm
is isomorphic to the reflection group on R2 generated by reflections in two lines

meeting at the angle ir/m.
A Coxeter group is irreducible if it cannot be written as a direct product of

two Coxeter groups, or equivalently, if S cannot be partitioned in two subsets Si
and S% such that m(si, s 2) 2 for any (si, s 2) G Si x S^.

We will make use of the following facts about Coxeter groups.

Proposition 1.1. Given w G W and a non-reduced decomposition w si ¦ ¦ ¦ Sd,

then there are indices i < j such that w si ¦ ¦ ¦ st ¦ ¦ ¦ s3 ¦ ¦ ¦ sj_ i.e. the length of a

word can he decreased only by deleting pairs of letters.

In this case the elements st and s3 are conjugate by the element represented
by the word between them. The above statement is usually called the Deletion
Condition. See [3], p. 37, or [4] for more details.

Proposition 1.2. Assume (W,S) is a Coxeter system, and w,v are reduced
words. Then they are representing the same element of W if and only if w can
be transformed, in v by the application of a finite sequence of operations of the

following form:
Given s,t € S with s =/= t and m(s,t) < 00, replace an alternating subword

(s, £,...) of length m m(s, t) by the alternating word (t, s,. of length m.

This proposition can be found in [3], p. 51.

The following characterization of Coxeter systems, sometimes called the Hy-
perplane Condition, will be crucial in our proof.

Proposition 1.3. Let (W, S) be a pre-Coxeter system Then (W, S) is a Coxeter
system if and only if there is a map s t-^ Ps from S to 2W such that:
1. 1 G Ps for each s G S;
2. if w ÇzW and s,t G S satisfy w G Ps and wt ^ Ps, then sw wt;
3. Ps n sPs 0 for each se S.
In this case, Ps {w G W \ £(sw) > £(w)}.

The reader can find a proof of this proposition in [4], or [2], p. 18.

The next fact is a consequence of the well-known Selberg's Lemma (see [7], p.
326, for example), whose hypotheses are satisfied by a Coxeter group.

Proposition 1.4. Any finitely generated Coxeter group W has a torsion-free
subgroup of finite index.

By taking the so-called "normal core" of such a subgroup, i.e. the intersection of
its conjugates by all elements in W, we obtain a subgroup with the same properties,



260 C. Gonciulea CMH

which in addition is normal in W.
The finite (irreducible) Coxeter groups are completely classified. A list can be

found in [2]. What we need to know about it, is that the only finite irreducible
Coxeter group with an m(s,t) greater than 5, is a dihedral group.

Now we give a short description of the Coxeter complex associated to a Coxeter
system (W, S).

Let P be the poset of all subsets of W, with inclusion reversed. The Coxeter
poset associated to (W, S) is the sub-poset of P consisting of sets of the form w(T)
for a proper (possibly empty) subset T of S.

The associated Coxeter complex T,(W, S) is defined to be the simplicial complex
associated to the Coxeter poset of (W,S). That is, T,(W,S) has simplices which
are cosets in W of the form w(T) for a proper subset T of S, with face relations
opposite to subset inclusion in W. Of course, it is not immediate that this is a

simplicial complex, but it turns out to be the case. The maximal simplices, called
chambers, are of the form w(0) {w}.

Since E Yï(W,S) is constructed as a collection of cosets w(T), there is a
natural action of W on E(VF, S), by left multiplication. The isotropy group in W
of the simplex w(T) is w{T)w~ The fixed point set of a reflection will be called
a wall. Thus, a wall is a union of codimension one simplices in E.

We will often identify the chambers of E with the elements of W, and the walls
of E with the set of reflections R [jweW wSw~^ of W.

For a reflection r G R, we denote by Sr its corresponding wall of E. If r
wsw~^, then Er wEs. We say that Er is the translate of Es by w.

The walls that have codimension one intersection with the chamber C,
corresponding to the element w G W, are precisely the walls wEs, with s G S. The
intersections are the faces of C. Two chambers C ^ D are adjacent if they share
a common face. If Er is the unique wall containing that face, then D rC. A
sequence (Co, C\, Cd) of chambers is a gallery (of length d, from Cq to Cd) if
the chambers Ct_\ and C^ are adjacent, for 1 < i < d. The sequence [r\,..., r^) of
reflections defined by Ct rtCt_\ is called the reflection sequence corresponding
to the gallery (Co, C\, Cd). A gallery crosses the wall Er if r is contained
in the corresponding sequence [r\,... ,r<f). A minimal gallery from C to D is a

gallery of minimal length. Each wall separates E in two connected components
called sides, or half-spaces. A wall Er separates chambers C and D, if they are
on different sides determined by Er, and this happens if and only if a(ny) gallery
from C to D crosses Er an odd number of times. If the gallery is minimal, this
number is one.

Two walls, associated to two distinct reflections, determine four half-spaces of
E(W, S), and if any two of them which are not determined by the same reflection

have a nonempty intersection (if we want we can call such an intersection a

quadrant), then the order of the product of the two reflections is finite.
It is clear that we can identify a word on S with a gallery in E starting at {1},

and vice-versa. The set of decompositions of an element w G W is in bijective
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correspondence with the set of galleries from {1} to {w}. If w s\ ¦ ¦ ¦ s<i, then
the gallery from {1} to {w} crosses precisely the walls £n, where rt s\ ¦ ¦ ¦ st_\ ¦

s» • (si • • • Sj.i)"1 si • • • s,_i • s, • s,_i • • • si, for 1 < i < d.

2. Separability and two-sidedness of a reflection with respect to
a subgroup

In this section (W, S) is an arbitrary Coxeter system and G a subgroup of W. For
each s G S, consider the wall in Yï(W,S) determined by s, and define the map
6s : W —> Z/2Z, by 9s(w) the number of times (mod 2) a gallery from 1 tow
crosses (^-translates of Es. Also, define W+ 6^(0), and W~ 6^(1). We will
not complicate the notations by emphasizing the dependence of 0s on the fixed
subgroup G oiW.

Remark 2.1. It is easy to see that in general 9S : W —s- Z/2Z is not a group
homomorphism, but its restriction to G is. This is a consequence of the following
lemma, also used later:

Lemma 2.2. If g G G and w G W, then 9s(gw) 9s(g) +9s(w). Equivalently, if
g G G n Wse and w G Wss then gw G Wf, for any e, 5 G {+, -}.

Proof. Just note that a gallery from 1 to w crosses the wall 7SS, for a 7 G G, if
and only if its translate by g, which is a gallery from g to gw, crosses the wall

s-

Definition 2.3. We say that s G S is G-separattng if 0S| 0 or, equivalently
G C W+.

Recall the notation Ps {w € W \ i(sw) > i(w)}.

Definition 2.4. We say that s G S is two-sided, with respect to the subgroup G of
W if Cg{s) C Ps, where Ca(s) denotes the centralizer of s in G.

In the Coxeter complex Yï(W,S) associated to the Coxeter system (W,S) we
denote by £_|- the half-space of Yï(W,S) determined by Ss which contains 1, and
by S_ the other one. The chambers in £_|- correspond to the elements in Ps, and
the chambers in S_ to those in sPs. The fact that s is two-sided with respect
to G means that all the chambers corresponding to the centralizers of s in G are
in £-1-. Notice that the centralizers of s in W come in pairs {z, zs}, and the wall
between z and zs is determined by the reflection zsz~^ s, i.e. it is exactly Es.
Hence, all centralizers of s in W line up along Es.
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Proposition 2.5. Let (W,S) be a Coxeter system, G a subgroup ofW, and
suppose that some s G S is two-sided with respect to G. Then the homomorphism
9S : G —s- Z/2Z can be lifted to a homomorphism 4>s : G —s- Z. If, in addition, s is
not G-separating, then 4>s is non-zero.

Proof. First we assign signs to the half-spaces determined by the G-translates of Ss

as follows: (?£+ is positive and <;£_ is negative, for g G G. In other words, a side
of a wall is positive if it contains (the) chambers along that wall which correspond
to elements in G. These are well-defined. Indeed, if we take two chambers along
such a wall, corresponding to the elements g and g' of G, then gT,s </£s, which
implies gsg~^ g's(g')~^, i.e. g~^g' G Cg{s) C Ps, and therefore the chambers
corresponding to g and g' are on the same side of the wall gT,s </£s.

Next, we assign a crossing number to each crossing of a (^-translate of Ss by
a gallery starting at 1. Such a crossing will be assigned +1 if the gallery crosses
from the positive side to the negative one, and —1 otherwise. Equivalently, the
crossing is assigned a +1 if 1 G W is on the positive side of that translate.

And now, for each g G G, define 4>s{g) to be the sum of the crossing numbers
associated to a gallery joining 1 and g.

Let us prove that <j>s{g) does not depend on the choice of such a gallery. First,
Proposition 1.1 tells us that if a gallery is not minimal, then it crosses at least

one wall twice, and a shorter gallery is obtained by reflecting a part of the gallery
with respect to that wall, hence eliminating two crossings of it. Whether this wall
is a G-translate of Ss or not, it is clear that the sum of the crossing numbers
remains unchanged. Therefore, it is enough to prove that two minimal galleries
representing g give the same value for (j>s(g), i.e. this value does not change when
we apply the operation described in Proposition 1.2 to a minimal gallery. Consider
the minimal galleries Q\ Artrt ¦ ¦ ¦ B and Ç% Atrtr ¦ ¦ ¦ B, with r,t G S and the
number of factors between A and B equal to m m(r, t). The subgroup generated
by {r,t\ in W is isomorphic to the dihedral group Dm. In the Coxeter complex
Yi{Dm, {r,t}), the two (minimal) galleries of length m starting at 1 and ending at
the element of maximal length wo rtrt • • • trtr ¦ ¦ ¦ are crossing the same

m factors m factors

walls, and all these walls separate 1 and wo because of minimality of the galleries
in question. This proves that Q\ and Qi cross the very same walls of T,(W, S)
(in particular the same G-translates of Ss), and with the same crossing numbers,
when defined.

It is clear that </>s is a group homomorphism, and </>s(mod 2) 0s on G. If 4>s

was zero, then 0s would be zero on G, and hence s would be G-separating. D
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3. A torsion-free normal subgroup gives separability and two-
sidedness

Lemma 3.1. IfT is a normal subgroup of the Coxeter group W then sW^~ W~
for any s G S, where the notation is thai of section 2, with respect to the subgroup F.

Proof. Indeed, if Q (Co,... ,Ca) is a gallery of length d from 1 to w, then
Q' (Co, sQ) (Co, sCo,..., sCd) is a gallery of length d+1 from 1 to sw, which
has a crossing with Ss that Q does not have. Since 7 1—> 57s is an automorphism
of F, any other F-translate of Ss crossed by Q' is of the form S7ÏS s7sSs, where
7SS is a F-translate of Ss crossed by Q. We conclude that 9s{sw) 9s{w) + 1

(mod 2), and therefore w G Ws+ if and only if sw G W~. D

Propostion 3.2. Suppose thai the Coxeter system (W,S) is such that m(s,t) is
finite for any s,t G S and T is a non-trivial, torsion-free, normal subgroup of W.
Then there is an s £ S which is not T-separating.

Proof. We will denote the quotient group W/T by W, and the canonical projection
from W onto If by mj h [w]. Since F is torsion free, s (Ë F and st ^ T for
s,t G S. It follows that [s] =/= [t] for any s,t G S, and that W is generated
by [S] := {[s] | s G S}, which is a set of involutions in W (in fact a copy of S).
(W, [S]) is a pre-Coxeter system, and since F is torsion-free and all m(s,£)'s are
finite, it has the same Coxeter data as (W, S). It cannot be a Coxeter system, since
F is not trivial. Consequently, the subsets Pu of W, defined as the images of W^~

through the canonical projection, cannot satisfy all three conditions of Proposition
1.3.

But they obviously satisfy the first condition.
We show now that they also satisfy the second one. Suppose w G W and

[s], [t] G [S] are such that w G P[s] and w [t] (Ë P[s]. Then there is an element

w G Ws+ with [w] w, and [wt] =w[t] <^ P[s] implies that wt G W~. Since {w}
and {wt} are adjacent chambers across the wall wSt, this is possible only if wSt
is a F-translate of Ss, i.e., if and only if there is a 7 G F with wtw~^ 757^.
But this implies w[t] (w)^1 [s], i.e. w[t] [s]w.

It follows that the third condition does not hold. Then we can find w G Pu l~l
isj

[s]P[s] for some s G S, i.e. w G P[s] and [s]w G P[sj. This gives some w,w' G Ws+

with [w] [sw'] w. But according to Lemma 3.1, we have sw' G W~, and since
sw' sw'w ¦ w, Lemma 2.2 implies that the element sw'w~ of F is in W~,
which in turn shows that this s is not F-separating. D

Remark 3.3. In geometric terms, under the assumptions of the statement, the
quotient S/F is a thin chamber complex, but not a Coxeter complex, and therefore
one of its walls has to be non-separating. For the terminology used here, the reader
can consult [3]. Using the ideas in Proposition 3.2 we can prove a slightly more



264 C. Gonciulea CMH

general result: if T is a normal subgroup ofW, then the quotient W/T is a Coxeter

group if and only if every s G S is Y-separating.

Proposition 3.4. Let (W,S) be a Coxeter system, F a torsion-free normal
subgroup of W, s an element of S, and Tq the subgroup F D W^~ of index 1 or 2 in F

consisting of elements 7 G F such thai the galleries joining 1 and 7 cross the walls
which are T-translates of Ss an even number of times. Then s is two-sided with
respect to Tq.

Proof. We already mentioned that the elements of C\y(s) lie along the wall £s.
We want to prove that C-p(s) l~l Ws+ C Ps, i.e., for a z G C-p(s), the element in the
pair {z,zs\ which is in Ws+ is also in Ps. For this it is enough to prove that a
minimal gallery from 1 to z crosses no F-translate of Ss other than Ss. Suppose
this does not happen, and take z G C*r(s) an(i 7 € F — Cp(s) such that a gallery
from 1 to z crosses 7ÏS. Then the intersection between any half-space determined
by Ss and any half-space determined by 7ÏS is nonempty, each such intersection
containing exactly one element of the set {1, s, z, zs}. As we pointed out at the end
of section 1, it follows from this that the order of the product of the corresponding
reflections, s and 757^, is finite. This product is 5-757^ S7s~1-7~1, and since
F is normal in W, this product is a nontrivial element of F. But this contradicts
the fact that F is torsion-free. D

4. The main result

Lemma 4.1. An infinite Coxeter group W with all m(s,t)'s finite contains a

finite index subgroup which admits a non-zero homomorphism to Z.

Proof. Consider a non-trivial, torsion-free, normal and finite index subgroup F of
W (its existence is assured by Selberg's Lemma). We can also suppose that every
s G S is two-sided with respect to F (if not, we can replace F by the normal core
of the intersection of the subgroups of F obtained by applying Proposition 3.4

to each s G S; besides clearly being normal and torsion-free, the subgroup thus
obtained has finite index in W and is non-trivial since S is finite). Proposition 3.2

tells us that there is an s G S which is not F-separating. Then the homomorphism
4>s : F —s- Z defined in Proposition 2.5 is non-zero. D

Main result. Any infinite Coxeter group virtually surjects onto Z, i.e. it contains
a subgroup of finite index which admits an epimorphism onto Z.

Proof. Let (W, S) be the infinité Coxeter group. If W is not irreducible, say
W W\ x • • • x Wk x V\ x • • • x Vi, with W\, Wk infinité Coxeter groups,
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and V\, ,Vi finite Coxeter groups, and if we know that for each te{l, ,k}
there is a finite index subgroup I\ of Wt and an epimorphisin ft Tt —s- Z, then

/l x x fk is an epimorphism of Fi x F^ (which has finite index in W)
onto Z x x Z, and the latter group obviously surjects onto Z Therefore, it is

fc factors

sufficient to consider the case when W is irreducible
If W -Doo we can take F Z to be the desired subgroup
If not, consider the Coxeter group (W, S) with

m'(s,t)= I m(s,t) ifm(s,£)<oo
1996 ifm(s,t) oo

Then we have an epimorphism / W —> W (formally we can use the universal
property of W to see this) Fet us notice that W is irreducible, and it is also
infinite (the only irreducible finite Coxeter group involving an order greater than
5 is a dihedral group But the above lemma tells us that we can find a subgroup of
finite index F' in W, and a non-zero g V —s- Z Then we can take F /~1(r/)
It is clear that F has finite index as a subgroup of W, and g o f F^Zisa
non-zero homomorphism, and consequently an epimorphism onto its image D
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