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Tilings and finite energy retractions of locally symmetric
spaces

Leslie Saper

Abstract. Let T\X be the Borel—Serre compactifîcation of an arithmetic quotient T\X of a

symmetric space of noncompact type We construct natural tilings F\X TJp F\Xp (depending
on a parameter b) which generalize the Arthur—Langlands partition of T\X This is applied to
yield a natural piecewise analytic deformation retraction of T\X onto a compact submamfold
with corners F\Xo C T\X In fact, we prove that F\Xo is a realization (under a natural
piecewise analytic diffeomorphism) of T\X inside the interior T\X For application to the theory
of harmonic maps and geometric rigidity, we prove this retraction and diffeomorphism have finite
energy except for a few low rank examples We also use tilings to give an explicit description of
a cofinal family of neighborhoods of a face of F\X, and study the dépendance of tilings on the
parameter b and the degeneration of tilings

Mathematics Subject Classification (1991). Primary 22E40, 53C35 (Secondary 58E20)

Keywords. Borel—Serre compactifîcation, corners, locally symmetric space, tiling, finite energy
retraction, harmonic map

0. Introduction

Let X G/K be a symmetric space of noncompact type and let F C G be a
discrete arithmetic group of isoinetries Suppose that T\X is noncompact In order
to introduce the mam subject of this paper, tilings of locally symmetric spaces,
we first consider the following problem find an explicit deformation retract r'
T\X —> F\Xo C T\X which has compact image Equivalently, find a F-equivanant
retract r X —> Xq where Xq Ç X is F- invariant and compact modulo F

One approach is given by Raghunathan [40] (see also Harder [27]), who
constructs a smooth function h T\X —s- R with compact sublevel sets and with no

This research was supported in part by NSF Grants DMS-8957216 and DMS-9100383, a

grant from The Duke Endowment, and an Alfred P Sloan Research Fellowship During the
final revision, the author enjoyed the hospitality of the Katholischen Universität Eichstatt as the
Hermann-Minkowski Gastprofessur sponsored by the Maximihan-Bickhoff-Stiftung



168 Leslie Saper CMH

critical points outside a compact subset. A retraction is then obtained by flowing
backwards along the gradient field of h. Moreover, one can use h to compactify
T\X by attaching a smooth boundary corresponding to h oo. But for many
applications this is insufficient since h and the retract are neither very explicit nor
canonical.

To explain our approach, we recall the construction of the more natural com-
pactification of Borel and Serre [12] in which T\X is realized as the interior of a
real analytic manifold with corners T\X. To every parabolic Q-subgroup P Ç G
there is associated a free geodesic action of a torus Ap (R>0)r on X and a

subgroup °P C P whose orbits (called canonical cross-sections) are orthogonal
to the geodesic action. Thus there is a canonical decomposition X Ap x e(P)
(depending only a choice of basepoint) where e(P) is a homogeneous space for °P.
Now the construction of X proceeds in three steps:

(1) Enlarge AP to ~ÄP (R>0 U {oo})r—a model "corner".
(2) Use Ap and the above decomposition to induce a partial bordification as¬

sociated to P, namely, X AP x e(P) ÇÏPx e(P) X(P).
(3) For P Ç R, there is a natural inclusion X(R) Ç X(P) as an open submani-

fold with corners; let X be the union of the bonifications X(P) associated
to all P.

In other words, X has been formed from X by (for each P) going to {oo}r under
the geodesic action of Ap and there attaching a copy of e(P) as a codimension r
boundary face.

Thus the corners of X are a reflection of geometric structure that exists in the
interior, and we want a retract that extends to X and preserves this structure.
In particular, Xq should also be a manifold with corners whose boundary faces

dpXo lie in canonical cross-sections {bp} x e(P). Here lies much of the difficulty
of our problem: a tubular neighborhood of e(P) in X would easily allow one to
move e(P) into the interior. But the natural tubular neighborhood (a, oo]r x e(P)
of e(P) in X(P) does not in general extend to a tubular neighborhood of e(P) in
X. This is because in general the canonical functions on X Ap x e(P) induced
by the coordinates on Ap (given by roots) do not agree with those for a smaller
parabolic.

Nonetheless such retractions exist. Their existence is equivalent to the existence
of certain decompositions X YipXp which we will call tilings and which will
be our primary object of study. These tilings are characterized by certain simple
properties and behave naturally under automorphisms of G. In this paper we will
first define the concept of a tiling axiomatically and prove that tilings exist; then
we will deduce the existence of the retractions.

The simplest example of a tiling is where X is the upper half plane and F

SL(2,Z). Here Xp is an open horocyclic neighborhood of the rational boundary
point which the maximal parabolic P fixes; these are all F-translates of each other.
The set Xq Xq is the complement of all these open horoballs; see Figure 1. The
situation in the general Q-rank 1 case is not very different.
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Figure 1

The tiling for the upper half plane, T SL(2, Z)

In higher rank, however, the geometry of the tilings is more interesting, the
Q-rank 2 case is represented in Figure 2 The intersection of Xp with each Ap
fiber is an open acute cone defined by the roots of P—the strictly dominant cone,
the retraction maps Xp onto dF'Xq by collapsing these cones On the other hand,
the intersection of Xq with each Ap fiber is not contained in the negative of the
dominant cone, but rather the negative of the closed obtuse cone corresponding
to the dual basis (the codommant cone) This situation is forced upon us by the
requirements we have placed on r and illustrates the beginning of the difficulties
mentioned above

If one restricts to the interior X and requires that the faces of Xq he near
infinity, the existence of such tilings is not new They occur in the theory of
the trace formula and were constructed by Arthur [1] in the adelic case following

Langlands [31], a construction within the axiomatic framework considered by
Langlands (which includes the case of arithmetic groups) was given by Osborne
and Warner [39]

In this paper we begin (after some background material m §1) with an
axiomatic definition of tilings in §2 and deduce some basic properties The actual
construction proceeds in three steps, occurmg in §§3-5 respectively, which mirror
those in the construction of X

(1) Construct a model tiling of Ap, Y1rdp(Ap)r This is an extension of
Langlands's geometric partition of Ap

(2) Shift this tiling of Ap by a parameter bp G Ap and use the decomposition
X(P) Äp x e(P) to induce a tiling X(P) Urdp x(p)r Urdp bP

(Ap)r x e(P) We call this the tiling associated, to P
(3) Intersect the tilings associated to all parabohcs, that is, define Xr

C\pcrX(P)r If the parameters bp are sufficiently large and suitably
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(p Qing3)

X

Figure 2

The tiling in the Q-rank 2 case1

(The tiles been separated slightly to indicate the boundaries

F-mvariant and compatible, this will be a F-mvanant tiling of X
Tilings have many applications other than for the trace formula—some requiring

the extension to X and some concerned with Xq collapsing into the interior
Here are a few examples we will consider in this paper

Finite energy retractions
We have already indicated that a tiling may be used to construct a deformation
retraction of T\X with compact image, this is done in §6 The explicit nature
of this map enables us to determine in §7 precisely when it has finite energy for
irreducible T\X the retraction has finite energy except in a few low rank cases,
in fact, if we simply require a weaker condition of almost finite energy, the only
exception is when G SL(2, R) Thus any map of T\X to a Riemanman manifold
N may be deformed to one that factors through the compact set F\Xo and thus
has finite energy (aside from the above exceptions)

As Borel has indicated, this result has important applications in the harmonic

map approach to geometric rigidity The motivation is that when T\X is compact
and N has nonpositive curvature, a map T\X —> N may be deformed to a harmonic

map Then results proved by Corlette [17] (for real rank one) and independently
by Mok, Sm, Yeung [38] and Jost and Yau [29] (for higher rank) show that in
most cases such harmonic maps are actually totally geodesic embeddmgs The
obstruction to carrying out such an argument when T\X is noncompact has been

This depiction of a 2 dimensional slice accurately illustrates the corner angles within X of
the tiles (The metric and hence the angles are not defined on X \ X The picture does not
represent the analytic structure correctly, however, in particular, the lower boundary of Xq^
does not, if naturally extended, meet e(Q2) and e(Q$) as one might think For other depictions,
see Figures 3 and 4
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the existence of a finite energy map which could then be deformed into a harmonic

map In real rank one, Corlette uses the well-known structure of the cusps [19] to
show a finite energy retraction exists, our work handles the general case (Indeed,
a recent preprint of Jost and Li [28] shows that even our condition of almost finite
energy is sufficient for the construction of a harmonic map

In the compact case, the above results together with the analogous nonar-
chimedean version due to Gromov and Schoen [25] yield a new proof of Marguhs's
theorem on arithmeticity of lattices, m the real rank one case it extends Marguhs's
work Unfortunately, the present paper cannot be used for this purpose since we

already assume F is arithmetic and rely on the reduction theory for arithmetic
groups [9] On the other hand, since by Marguhs's theorem [35] the only nonanth-
metic irreducible lattices occur m groups of real rank 1 and the cusps of such V\X
are understood by [19], our results hold true for arbitrary lattices See also [37]
and [30] for other work on the application of harmonic maps to geometric rigidity,
as well as [7], [8], [16], and [18] where results on geometric rigidity are obtained
by other means

Diffeomorphisms
Another application of tilings (and our initial motivation) is to construct a canonical

piecewise analytic diffeomorphisin T\X —> F\Xo, this is done in §6 along with
the retraction Thus F\Xo is actually a natural realization of the Borel-Serre com-
pactification within F\X This diffeomorphisin is the first step in our approach to
the conjecture of Rapoport [41] and Goresky and MacPherson [21] on the
intersection cohomology of the reductive Borel-Serre compactification, which we will
discuss elsewhere

Neighborhoods
The difficulty of finding natural neighborhoods of the closed boundary faces e(P)
of F\X was mentioned previously We will see in §8 that tilings can be applied
to yield an explicit cofinal family of (FnP)-invariant neighborhoods of e(P) with
piecewise analytic boundaries In the hermitian symmetric case these reduce to
the "adapted cores" of [43, §4] which played a crucial role in Saper and Stern's
proof of Zucker's conjecture

Collapsing T\X
A particular tiling is determined by specifying how far the maximal faces of Xq he

from the maximal faces of X, this is measured by a parameter b {bo)Q, where
bq G Aq and Q runs over maximal parabolic Q-subgroups (Of course for the
tiling to be F-invariant, b must satisfy an appropriate F-mvanance condition As
the bq tend to oo, the tiling degenerates by having F\Xo expand to fill up the
entire space However, it is also of interest to study degenerations of tilings in the
opposite sense, when the boundary faces of F\Xo collapse inward In Figure 1,

this means that the horocycles expand until they touch as pictured in Serre [45]
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As a start toward such a study, we consider in §9 the space of all parameters b
for which tilings exist For such a parameter (with b not necessarily large) it is not
clear that the tiling is obtained as in step (3) of the construction above Fortunately
this step is not used when working with tilings (at least not in the applications
above), instead one uses the existence of the tiling and the property that in certain
cylindrical sets, the tiling agrees with a tiling associated to a parabolic (as in
step (2)) We will show that this property holds for all tilings We also give a
criterion for a parameter to admit a tiling, from this we find that the space of
such parameters is open and invariant under the action of the dominant cone in a
maximal Q-spht torus

Further degeneration is also conceivable, in which the boundary faces of F\Xo
do not merely touch, but begin to flatten out against each other until F\Xo col-

lapes onto a lower dimensional subspace We do not consider this in the current
paper, but it is reasonable to speculate that such a process would yield retractions

generalizing those in the work of Ash [2] (the "well-rounded retract", special
cases of which were constructed previously by Mendoza [36] and Soulé [46]) and
MacPherson and McConnell [34] Such retractions have applications to the coho-

mology of arithmetic groups and the theory of exact fundamental domains In this
connection, we note the recent paper of Ash and McConnell [3] in which the
deformation retraction onto the well-rounded retract is extended to the Borel-Serre
compactification

The present paper is set in the context of symmetric spaces and semisiinple
groups However all the results generalize without difficulty to the case of
homogeneous spaces of type S — Q [12, §2 3], we leave this to the reader

We finally note that other interesting decompositions of X are possible The
constructions of Harder [27, §12] may be used to construct a partition of X which
is different from the tilings considered here This has been carried out by Grayson
[22], [23], who uses an approach to reduction theory via semistability (see [5] and
finds an explicit and canonical partition and retraction Grayson was also motivated

by [26] and Stuhler [47], [48] Also the recent paper of Leuzmger [33] constructs
an exhaustion of X by regions analogous to our Xo by geometric means 2

My indebtedness to the published work of many mathematicians is already
apparent from the above I would like to express my deep thanks to Armand
Borel for his interest and encouragement of this work I would also like to thank
Shmg-Tung Yau who first asked me whether finite energy retractions with compact
image exist, and conjectured that they did for rank > 2 Also conversations with
Bill Casselman, Pat Eberlem, David Morrison, Jürgen Rohlfs, Rick Schoen, and
Joachim Schwermer were very helpful Mark Goresky made several suggestions

In [33] the regions are denoted X(s), where s is a sufficiently large real parameter They
correspond here to the central tiles Xo for a family of tilings whose parameters are t b, where
b is fixed and t belongs to a strictly dominant 1-parameter subgroup of a maximal Q-spht torus
(See §6 where such regions are denoted Xo t
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for revisions to a very early version of this paper [42] which were greatly appreciated.

Finally I would like to thank Mark McConnell and especially the referee for
extremely valuable suggestions regarding the exposition and organization.

1. Background

In order to set notation, we briefly recall without proofs some standard facts
regarding algebraic groups over Q, the geodesic action, and the Borel-Serre com-
pactification.

Algebraic groups
Let G be the identity component of the real points of a semisimple algebraic group
defined over Q and let F C Gq be an arithmetic subgroup. Lie algebras will be
denoted by the corresponding lower case gothic letter, e.g., q. We denote by V
the set of parabolic Q-subgroups of G (including G itself) and by V\ the set of
maximal proper parabolic Q-subgroups. By a parabolic (resp. maximal parabolic)
we always mean an element of V (resp. V\). We will reserve the letter Q to
denote a maximal parabolic. If R, S G V, we denote by R V S the smallest
parabolic containing R U S.

For a parabolic P, let Np be the unipotent radical of P and let Ap be the
identity component of the maximal Q-split torus in the center of P/Np. The
parabolic rank of P (denoted P-rankP) is dim Ap. Conjugation by g G Gq allows
us to canonically identify Ap and A9p [12, §4.2]. (We denote conjugation as

gp pg-1 gpg-ly for example.) Let °P C P be the subgroup {p G P \

\px\ 1 for all x € MorQ(P,GLi) } as in [12, §1.1]; °P contains NP as well as any
compact or arithmetic subgroup of P [12, §1.2]. We write Tp F n P C °P.

Let Ap denote the simple "roots" of the adjoint action of (a lift of) Ap on

np; we view elements of Ap both as characters of Ap and as elements of op. Let

Ap {ßa}aeAP be the dual basis of op relative to a Weyl group invariant inner
product. For a parabolic RD P, the group Ar may be canonically identified with
a subgroup of Ap [12, §3.11]; let Ap Ç Ap denote those roots restricting to 1 on
AR. The set Ap is called the type of R {relative to P). Then AR P|aeAR Kera
and we define Ap Ç\ ^^R Ker/37. This yields an orthogonal decomposition

Ap=ARxA^; (1.1)

we denote the corresponding decomposition of a G Ap by ciRaR, and similarly for
elements of Op or op. For Q a maximal parabolic it is convenient to denote by ßq
the unique element of Aq. Thus we have Ar {/3q}qd.r, while if P Ç R, the

dual basis to Ap of Op is Ap {/ÎqIqd^q^a-
We omit the subscript P in all these notations when P is minimal, and similarly

we omit the superscript when it is G. Sometimes (particularly in §3) we use the
type of R as a subscript or superscript, instead of R itself.
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Let (S, A) be any pair (.Ap,Ap). We call a G S dominant [with respect to

A) if aa > 1 for all a G A; a is codominant (with respect to A) if a13" > 1 for
all a G A. If these inequalities are strict for all a, we say a is strictly dominant
(resp. strictly codominant). The strictly dominant cone is denoted S(l) and in
general for b G S, set S(b) b ¦ S(l). We will also transfer this terminology to 5 or
(by using the inner product) to 5*. The dominant functionals in 5* form a convex
cone generated by A, while the codominant functionals form the dual convex cone
generated by A.

Geodesic action
Let X G/K be a Riemannian symmetric space of noncompact type, where
K C G is a maximal compact subgroup stabilizing a fixed basepoint x G X. P
acts transitively on X, so z G X may be expressed as z px with p G P. The
geodesic action of Ap [12, §3.2] is defined by

aoz=paxx (aeAp,zeX),

where ax G ApjX is the unique lift of a G Ap to P stable under the Cartan
involution associated to x [12, §§1.6, 1.8]. The geodesic action commutes with the
usual action of P [12, §3.2], and for P Ç R G V, the geodesic action of Ar is the
restriction of the geodesic action of Ap [12, §3.11].

Let Ap x °P act on X by the product of the geodesic action and the usual
action for °P. Then there is an analytic isomorphism

(ap,qp):X^ApXe(P) (1.2)

of (Ap x °P)-homogeneous spaces [12, §3.8], where e(P) Ap\X is the quotient
under the geodesic action. We normalize (1.2) such that ap(x) 1, where x is our
fixed basepoint. In other words, X is a trivial principal Ap-bundle with canonical
cross-sections given by orbits of °P. We will often treat (1.2) as an identification
with the parabolic being clear from the context.

Borel-Serre compactification
The bonification X may now be defined by a three step procedure:

(1) The roots Ap induce an isomorphism AP ^ (R>0)Ap byan (aa)aeAP-
Thus we may naturally embed Ap into a semigroup Ap (R>0 U {oo}) p

[12, §4.4]; the inverses of the root coordinates on Ap yield a real analytic
structure.

(2) A partial bordiflcation X(P) (the corner associated to P) is obtained as

X(P) Ap XapX, or equivalently by extending (1.2) to (ap, qp) : X(P) ^
~Ap x e(P) [12, §5.1]. We identify e(P) with {oo}Ap x e(P).

(3) For parabolics P Ç I?, there is a natural inclusion of X(R) into X(P) as

an open subset [12, §5.3]. One defines X IJpe-p X(P) to have the unique
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structure of analytic manifold with corners so that each X(P) is an open
submanifold with corners [12, §7.1]. Note that X may be decomposed as

]lPeVe{P), where e{G) X.
The action of Gq on X extends to X [12, §7.6]. F acts properly on X and T\X

is compact [12, §9.3]; we denote the quotient map it : X —> T\X.
We denote topological closure by cl(-), however in the case of cl(e(P)) Ç X, one

writes e(P) to emphasize that this space may also be constructed analogously to X
by letting P take the role of G [12, §7.3(i)]. (One must work in the wider context
of homogeneous spaces of type S — Q [12, §2.3].) The association P i—> e(P) is an
inclusion preserving, Gij-equivariant bijection between V and the closed boundary
faces of X [12, §7.4].

2. Tilings of X

In this section we define the concept of tilings and prove some of their basic

properties. A construction of tilings will be given in §§3-5.

Definition 2.1. A tiling of X is a cover X WPe-pXp by disjoint sets (called
tiles), having the following properties:

(i) The central tile Xq Xq is a closed, codimension 0 submanifold with
corners contained in X. Its closed boundary faces {dpX§\ may be indexed
by P G V so that P i—> dpXo is an inclusion preserving bijection.

(ii) Each boundary face dp'Xq lies in a canonical cross-section {bp} x e(P).
(iii) Each tile Xp is obtained from dp'Xq by flowing out under the geodesic

action of the cone AP{\), that is, XP AP{l)odpXq.

The tiling is called T-invariant if 7 • Xp X-,p for all 7 G F and P G V.

Remark. We similarly define the concept of a tiling of e(P), X(P), Ap, etc. In
the first case, we restrict the indexing set to parabolics contained in P; in the
latter two cases, we restrict the indexing set to parabolics containing P.

The following basic properties of a tiling are analogues of properties of the
decomposition X Upe-pe(P) of [12].

Proposition 2.2. A tiling X YipeV ^P satisfies the following properties:

(i) Each tile Xp is a codimension 0 submanifold with corners.
(ii) The closures of any two tiles are either disjoint or intersect in a common

closed boundary face. More precisely, for P, P' G V,

VT \n VT \ f c\(Äpwp,(l))odPr'p'Xo ifPnP'eV,
ci(Ap) nci(Ap/) <

(/) otherwise.
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If the tiling is Y-invariant, then furthermore:

(iii) F\Xo is compact.
(iv) For all P G V, the natural projection TP\cl(XP) ~ÄP(1) oTP\dpX0 ->

7r(cl(Xp)) is a homeomorphism.

Proof. Part (i) follows easily from the définitions. For (ii) note that by
Definition 2.1 (iii), Xp Ap(l) odpXo, and thus after taking closure, c\(Xp)
cl(Äp(l))odpX0. However cl(ÄP(l)) T]fiDpÄfi(l). Furthermore, dpX0 Ç

8rXq for R D P by Définition 2.1 (i). Thus we may compute

clCXp) IJ ^fl(l)oöpX0 Ç ]J *fl- (2-1)
RDP RDP

Hence for P, P' G V,

c\(Xp)C\c\(Xp,)= JJ {ÄR{l)odpXQ)n{ÄR{l)odp'Xo)
RDPUP'

JJ ÄR(i)o(dpx0ndp'Xo).
RDPUP'

By Définition 2.1 (i), this last expression is empty unless POP' G V, in which case

it is equal to

JJ ÄR(l)odPnP'x0 =c\(ÄPvp,(l))odPnp"x0.
RDPUP'

This finishes the proof of (ii).
Now assume the tiling is F-invariant. Since F\Xo is a closed subset of the

compact space F\X, (iii) is clear. Finally for (iv), let x, y G cl(Xp) and say
Tx y for 7 G F. Then cl(XP) n cl(X-yP) cl(XP) n 7 • cl(XP) + 0. By (ii),
PnW G P which implies P W and thus 7 G FP. D

Definition 2.6. The parameter of a tiling is the collection b (&q)qg-p1 from
Définition 2.1. The space of all parameters is denoted B Y\qeV ^Q ~ (K>0)^1 •

ReniEtrk. (1) Note that we only include bq in b for Q maximal since the canonical
cross-section {bp} x e(P) is determined as the intersection of the canonical cross-
sections {bq} x e(Q) for Q D P. Also note that our assignment of parameters to
a tiling depends on our fixed basepoint.

(2) When dealing with families of tilings, it will be helpful to use the action of
the maximal torus A on B given by t ¦ (&q)qg-p1 {tq ¦ bq)qe-p1.

A tiling is uniquely determined by its parameter b G B (for later use, we in
fact prove a more general result):
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Proposition 2.4. Let b € B be a parameter and M Ç X an open subset. There is
at most one decomposition M YÏreV Mr for which Mr Ç X(R) is c1(j4^(1))-
mvariant and satisfies

Mr (ÄR(bR) X qR(MR)) H M. (2.2)

Proof. Clearly MP n e(R) 0 unless P Ç R, in which case it equals qR{MP)
Thus M n e(i?) IJpe-p Mp n e(i?) Upcfi Qr(Mp), and consequently

\ U ?s(Ip). (2.3)
PCR

Equations (2.2) and (2.3) determine Mr directly for R minimal, and by recursion
on parabolic rank in general. D

Corollary 2.5. At most one tiling of X exists for a given parameter b € B.

Proof. Apply the proposition with M X and Mr Xr; the required hypotheses
follow from Définition 2.1(ii)(iii). D

We now consider the naturality of tilings and their parameters under
automorphisms of G and in particular, how F-invariance of a tiling is reflected in its
parameter. Let </> : G —s- G be an automorphism defined over Q. Then </> acts on
X, viewed as the space of maximal compact subgroups of G. Define an action of
</> on B by

where we set
c{4>,P) a0

(We have to be careful since </> may move the fixed basepoint x.) When </> is the
inner automorphism induced by an element g G Gq, we simply write g ¦ b and

Proposition 2.6. </> induces an automorphism of B. If {Xr}re-p is a

(resp. T-mvariant tiling) with parameter b, then {j^ ' ^-r\4>{R)eV %s a t%l%n9 (resp.

4>(T)-invariant tiling) with parameter </> • b.

Proof. The action of </> transforms a canonical cross-section {a} x e(P) to a canonical

cross-section {c(</>,P)(f>(a)} x e{<f>{P)). Now use the définition and Corollary

2.5. D

Corollary 2.7. A tiling is T-invanant if and only if its parameter b satisfies

b-Q c{1,Q)-bQ (2.4)
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for all 7 € F and Q G V\.

Let Br C B be the subspace of parameters satisfying (2.4); we call these the
Y -invariant parameters. Such a parameter is determined by a choice of bq for
each F-conjugacy class of maximal parabolic subgroups:

Proposition 2.8. Let 1Z\(Y) be a set of representatives of T-conjugacy classes

of maximal parabolics. The natural 'map Br —s- IIqëK (r) ^Q — (R>0)Kl(-r-1 is a

bisection.

Proof. The map is clearly injective; we need to show it is surjective. Consider

{bq)QeTi1rpy For Q G T^-ltT) and 7' running over a set of representatives of

F/Fq, set 6yQ c(7',Q) • bQ. Note that if 7 G F is such that 7Q 7'Q, then

7'~S € FQ Ç °g. Thus c(7, Q) c(7', Q) and so b-lQ c(7, Q) ¦ bQ as well. D

3. Construction of tilings, I: Tilings of AP

In this section and the following two we will demonstrate that tilings ofX with
parameter b exist, provided b is sufficiently large and F-invariant. Our construction
has three parts, mirroring the three steps in the construction of the Borel-Serre
bordiflcation X. In this first part we begin by recalling the tiling of Ap (or
equivalency Op) due to Langlands, and show it extends to an analytic tiling of Ap
(Corollary 3.8); it is necessary and actually simpler to work in a more general
context.

Let (V, A) be a pair consisting of a finite dimensional real vector space with
inner product (•, •) and a basis A for the dual inner product space V*. We assume
that

(a,a')<0 (a^a'eA). (3.1)

For example, (0, A) satisfies (3.1) since A is the basis of the Q-root system of G.
More generally, we may consider (op, Ap) for parabolics P Ç R:

Lemma 3.1 ([13, IV, 6.4)]. For I Ç A the pairs (Vj, A/) (f|ae/ Kera, {7/}^/)
and (V^A1) (f|7^j Ker/37,/) satisfy the hypothesis (3.1) of this section. The

respective dual bases are A/ {ß-y}-y^i and A1 {ßa}aei-

Note that we are applying to V the notation introduced in (1.1) and following,
except that instead of using parabolics as subscripts and superscripts, we use
subsets of A (the type). Thus we have an orthogonal decomposition

V VI(BVI (3.2)
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for any /ÇA.
We will often use the following facts regarding dominance and codominance

and their behavior under this decomposition:

Lemma 3.2. The dominant cone is contained, within the codommant cone. The

various ßa's are mutually acute (or orthogonal). If X G V* is (strictly) dominant
(resp. codommant) with respect to A, then A/ G Vf is (strictly) dominant (resp.
codommant) with respect to A/. If \ is (strictly) dominant with respect to A, then
X1 G V1* is (strictly) dominant with respect to A1.

Proof. The first assertion is [13, IV, §6.2] and the second follows from the first.
The rest is obvious except for the (strict) dominance assertion for A/, which follows
from [13, IV, §6.5(2)] (and the following remark). D

Remark 3.3. (i) It is not the case that X &V* codommant implies that X1 G V1*
is codominant with respect to A1. In fact, if 7 ^ /, then 7J — ^Zae/ caßa, where

ca — (7, a) > 0. Thus 7J is antidominant with respect to A1.
(ii) By the lemma, the notion of dominance or codominance for a functional

in Vf Ç V* is the same with respect to A/ or with respect to A. Likewise, a
functional in V1* is codominant with respect to A1 if and only if it is codominant
with respect to A. Thus in these cases, we shall not mention the basis.

Define

(V)A {veV\ ßa(v) < 0 for all ßa G A};

the closed boundary faces of (V)A are

dT(V)A (V)A n V1 { v G V1 I ßi(v) < 0 for all ßTa G A1}

for / Ç A. Consider the set obtained by flowing out orthogonally from d1(V)A
via the cone V/(0):

(V)I VI(0) + dI(V)A. (3.3)

In other words,

(V)T { v G V I 7/(v) > 0 for all 7/ G A/, and ßTa(v) < 0 for all ßa G A1 }.
(3.4)

At one extreme, (V)ß is the open strictly dominant cone, while at the other,

(V)A is the negative of the closed codominant cone. In general, by one of
Langlands's "geometric lemmas", the various (V)/'s are disjoint and fill up V (see

Figure 3 for an example):

Lemma 3.4 ([32, Lemma 4.4], [13, IV, §6.11)]. V Uica(V)i-
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ßo

a ßo

(a) A and A for B2

Figure 3

The tiling for the root system £>2

(The Piles are separated slightly to
indicate the boundaries

It is clear that this is a tiling of V in the sense of Definition 2.1 (appropriately
modified).

Lemma 3.5. For K Ç A the tiling for (VK, AK) m given by (VK)iK {V)iC\VK
for Ik Ç Ak- Here I D K and Ik «« its projection (excluding 0) into Ak-

For K Ç A the tiling for (VK,AK) is given by {VK)r (V)f for I Ç AK.
Here (V)f is the image of {V)i under the orthogonal projection onto VK.

Proof. For / D K, the decomposition (3.2) of Vk associated to Ik Ç Ak is Vk
Vi ® (V1 n VK)- The lemma for VK follows by intersecting this with (3.3). Now
the decomposition of VK associated to / Ç AK is VK (Vj n VK) 0 V1. Again
the lemma follows from this and (3.3); it is only necessary to check that v \-+ vK
takes V7(0) onto (V/ n VK){Q) { vK G V/ n VK \ ~fi(vK) > 0 for all 7/ G Af }.
To check this, observe that ^ji(vK) 71 (u) for 7/ G Af, so the image of V/(0) lies
in (Vf n VK)(0). Conversely, to show any vK G (Vj D VK)(0) is in the image, we
need to find v vk + vK G V/(0); in other words, we need ji(vk) + Ji(vK) > 0

for all 7/ G A/ \ Af. Such a vk G Vk can be found since A/ \ Af restricts to a
basis of VK. D

We now extend this tiling of V to one of a bordiflcation V. There is an isomorphism

V RA via the linear coordinates v h^ (a(v))aeA. Define V (RU{oo})A
to be the semigroup obtained by allowing these coordinates independently to attain
00. V is given an analytic structure by means of the coordinates v 1-^ {e~a(v>)ae/±.

(With this définition, the diffeomorphism exp : Op —> Ap extends to an analytic
diffeomorphism exp : ïïp -^ Ap.) For I Ç A, define V1 similarly with respect to
the basis A/ of Vf. Clearly there is an analytic embedding of semigroups V1 Ç V,
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Figure 4.

V YI_tc\(Y)l f°r ^ne root system £>2 (*« analytic coordinates adjusted to be conformai at the

origin)

although the product decomposition (3.2) does not extend to V. It does however
extend to a certain subset V(I):

Lemma 3.6. There is an analytic decomposition

V{I) {v G V | a{v) < oo for all a G /} F/ 0 V1.

Proof. The main issue is to show that the projection v \-^ vj extends analytically to
the set in question; in other words, we need to show that v \-+ e n^v> for 7/ G A/
is analytic on this set. Now note that for any codominant A J2caa G V*, there
is a continuous map e~x : V —> R. The function e~x is analytic at v if a(v) < 00

for all a with ca > 0 and nonintegral. Thus by Remark 3.3(i), e^71 e^7e7 for

7 ^ / is analytic where needed. D

We can thus define (F)/ Ç V{I) by

{ v G F I 7/(w) > 0 for all 7/ G A/, and /3^(w) < 0 for all ßTa G A1}
(3.5)

similarly to (3.3) and (3.4); see Figure 4 for an example drawn using analytic
coordinates.

Proposition 3.7. V Y1ica(^)i ts an o-nalytic tiling.
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Proof. For K Ç A, let e(K) {v G V | a(w) oo for a g K, and a(w) <
oo for a G K}. To show that the sets {V)i are disjoint and exhaust V it suffices
to show that e{K) IT/cA(V)i n e(K) for a11 ^ Ç A. But e{K) ^ VK under

the projection v i-s- vK, while (V)i D e(K) C V(I) D e(K) is empty unless / Ç K,
in which case it projects to {V)f. Now apply Lemma 3.5. It is clear that the
conditions of Definition 2.f are satisfied and the fact that {V)i is an analytic
submanifold follows from (3.5) and Lemma 3.6. D

In the case (V,A) (op, Ap) we apply the analytic isomorphism exp : ïïp —>

Ap to obtain:

Corollary 3.8. Ap YIrdp(Ap)r «« an analytic tiling, where (Ap)r
exp((op)AR).

4. Construction of tilings, II: Tilings associated to a parabolic P

Let b G B be a parameter. In this second part of the construction we transfer the
tiling of Ap to a tiling of X(P) with parameter b. This is done by shifting the
tiling by bp and then using the decomposition X(P) Ap x e(P).

Thus for R G V with RDPwe define

X(P)R bp-(ÄP)Rxe(P);

when R G, we simply write X(P)0 for X{P)G. Let

It is useful to describe these sets directly by inequalities. The last part of
equation (3.5) translates to

x(P)r {^ X(P) | ap(zyR > b7pR for all 7fi G AR and

aP{z)ßQ < bßß for all ß* G Â£ }. (4.1)

Since apQ Oq for P Ç Q and the same holds true for the parameters, we

may rephrase this in terms of the distance functions (o!q )qeVi to the maximal
boundary faces. In particular we have:

X(P)0 { z G X | aQ(zfQ < bßQQ for all Q G Pi with QDP}, (4.2)

<9fiX(P)0 {ze X(P)0 | aQ(z)^ bßQQ for all Q G Pi with Q3fi}. (4.3)
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Proposition 4.1. X(P) YÏrdp X{P)r is an analytic tiling ofX(P) depending
analytically on the parameter b

Definition. {X(P)r}r^p is called the tiling associated to P

Proof This follows from Corollary 3 8 For Definition 2 1 (n), one notes that

dRX(P)0 dRX(R)onX(P)o Ç dRX(R)0 {bR} x e{R)

(use (4 2) and (4 3) for the first equality) For Definition 2 l(m) one must recall
that the left action of Ar on Ap corresponds under X{P) Ap x e(P) with the
geodesic action of Ar on X{P) D

5. Construction of tilings, III: Tilings of X by refinement

In this final part of the construction we show that for sufficiently large F-mvanant
parameters b the intersection of the tilings associated to all parabolics P G V
yields a tiling of X Thus for this section (and only for this section) we set

XR= p| X(P)r (5 1)

PÇR

and
dRX0 H dRX(P)0 (5 2)

PÇR

(as usual we write Xq for Ig) In particular, Xq is defined by the inequalities
aq{z)PQ < bq for all maximal parabolics Q The plan is to use an estimate from
reduction theory to show that within each element of certain open covers, (5 1)

agrees with the tiling associated with some P provided b is large

Definition 5.1 (compare with [10, §5 3]3). A cylindrical set (relative to a

parabolic P) is a set of the form

WP Ap(sp) x Op,

where sp G Ap and Op Ç e(P) is an open, Fp-mvanant and ./Vp-invariant subset
such that Tp\Op is relatively compact Similarly the subset Wp Ç X defined

In [10] Op is itself relatively compact and not Fp-invanant A cylindrical set here is thus the
union of the Fp-translates of a cylindrical set in [10] This is more convenient for our purposes,
note however that our definition depends on the choice of arithmetic subgroup F
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using Ap will be called cylindrical. An open cover W {Wp}pe-p of X consisting
of cylindrical sets is called a cylindrical cover. The cover is said to be T-invariant
if 7 • Wp Wip for 7 G F.

Remark. It follows from reduction theory [9, §13.1] that F-invariant cylindrical
covers exist. For example, one may take Wp to be empty except for P minimal,
where it would be Y p times a large Siegel set.

The estimate is simplest to state using the normalized functions

âp(z) ap(z)/bp.

Proposition 5.2. Let W {Wp}pe-p be a T-mvariant cylindrical cover. If
b G BT is sufficiently large, then for all P G V and for all Q G V\ with Q 2 P,

aq{z)ßQ < âP(z)xQ-p (z G WP),

where \q^p G txp is dominant (depending only on the type of Q and P) and

ßq — \qtp is nonzero and codommant.

Proof. Fet a be the unique element of A \ A^ and define \q,p (ßq — ea)p,
where e will be determined. For e > 0 small, the functional ßq — ea is dominant,
and thus by Femma 3.2 so is \q,p. In addition,

if a G Ap,

cap if a ^ Ap,

which is nonzero and by Femma 3.2 is codominant.
To prove the estimate, note that by the proof of Proposition 2.6 the normalized

functions satisfy the transformation law

âgp(gz) (c(g,P)bp/bgp)âp(z) (5.3)

for g G Gq; in particular, by the F-invariance of b (see (2.4)),

â-rp^fz) âp(z) (7 G F). (5.4)

Thus it suffices to fix P belonging to a finite set of representatives of F-conjugacy
classes; choose a minimal parabolic for which P is standard. The maximal parabol-
ics Q 2 P may be enumerated as Qq7, where Qq is standard, g G Gq ranges over
a finite set, and 7 G F is restricted such that 37 (Ë Qo in the case that Qq D P.
Then âQ(zfQ C ¦ âQo(gjz)^ by (5.3) and (5.4), where C > 0 depends only
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on g, Qo, and b A result of reduction theory [43, Lemma 4 9]4 shows that this is

bounded by C a,P{z)ßc>^ma with m > 0 (if Qo D P, use the last equation of the
ßo—iTta a (e—m

aja j, af <proof) But since aP G Ap(sp/bp), we have a

provided we choose e < m
To see that the constant C may be chosen less than one, note that if b is

replaced by t b, then C scales as t~^Q~XQ p> This can be made arbitrarily small
provided t is sufficiently dominant D

Corollary 5.3. Let W {Wp}pe-p he a T-invariant cylindrical cover Ifb G Br
is sufficiently large, then for all P, P' G V and for all Q G V\ with Q 2 P,

âQ(zf<J <âp,(z)xQri" (zeWpDWp,), (5 5)

where Xq p p' G äp, is dominant and ßq — \q p pi is nonzero and codommant

Proof Write Xq p Yl cqißqi, where cqi > 0 Then Proposition 5 2 yields

the estimate

Q'DP

Now apply Proposition 5 2 again to estimate in Wpi those factors on the right-hand
side for which Q' 2 P' This yields (5 5), where

Xq p p' 2_j cQ'Pq'+
Q'-JP Q'-JP
Q'DP' Q'~IP'

Now Xq p pi G api is clearly dominant and furthermore

/?Q - Xq p pi (Xq p ~ Xq p pi) + (ßQ - Xq P)

is nonzero and codommant Q'Z-P' D

We will also need one simple lemma which will be useful later For a cylindrical
set Wp Ap(sp) x Op, write bp ~ Wp if bp G Ap(sp)

Lemma 5.4. Let Wp be a cylindrical set such that bp ~ Wp Then for R D P,

AR(i) o(dRX(P)0nWP) X(P)RnWP X(P)R n (IRoFP)

The result in [43] was stated for G the group of automorphisms of a self-adjoint homogeneous
cone, aside from the notation the result and proof apply to the general case The proof uses
results on functions of type (P x) from [9 §14] and is similar to arguments in [6 §§7 5—7 8]
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Proof. It is clear from the definitions that each of these sets is contained in the
next. So let z G X{P)R n (AroWp) and write z aoy with a G Ar(1) and

y G <9fiX(P)0; we need to show y G W P. Since Ar Ç Ap, we have qp(y) qp(z) G

Op. If a G A£ (and therefore is trivial on ~ÄR), then aP{y)a aP{z)a > sp. If
7 G Ap \ Ap, then 7fi is antidominant with respect to Ap (by Remark 3.3(i))
and so (since y G dRX(P)0) aP(yy^_> b"'p On the other hand, aP(yyR bpR.

Thus aP{y)~< >bp>sp since bP ~ FP. D

We can now show that (5.1) agrees in WP with the tiling associated to P
provided b is large.

Proposition 5.5. Let W {WP}PeV be a T-invariant cylindrical cover of X.
If b G B is sufficiently large, then for all P', R G P,

forP%R,

Remark. In the case that X is the semisimple part of a self-adjoint homogeneous

cone, the case R G of (ii) is essentially [43, Proposition 4.4].

Proof. Clearly assertion (i) can be arranged making b larger if necessary. Case

R G of (ii) is equivalent (by (4.2)) to the inequalities aQ(z)ß» < 1 for Q D P
implying in WP the inequalities àq(zYQ < 1 for all Q 2 P- This implication
follows by Proposition 5.2. In view of (4.3), we see that Proposition 5.2 implies
(iii) by the same argument. (In the case P % R, use the fact that there exists a

Q G V\ with Q D R and Q 2 P, together with the strict inequality.) Furthermore,
the intersection of X{P)R ~Är{1) o dRX(P)0 over all P Ç R yields (iv).

We now consider (ii) where R =/= G. If P Ç Ry (iii) and (iv) together with
Lemma 5.4 show that X(P)R n WP Ç Xr Pi Wp, and hence we have equality. If
on the other hand P % R, first note that the case P' Ç R already treated together
with Lemma 5.4 imply IfinFP« X(P')R n (îfiofF) D ~XR n (IÄoFP-).
But {Wp'jp'Cfi covers e{R), and thus {AroWp>}p>cr covers XR. Thus it
follows that XR Ç {jP,CRWP> and so it suffices to show that XRC\WPC\W P> =0
for all P' Ç R. The application of Corollary 5.3 to Q G V\ with Q D R and Q 2 P
yields that_ap?~AQ'p'p' < lonWP nWP,. We claim though that âp?~AQ>p>p' > 1

on XrP\WP/ X(P')RP\WP/, which will finish the proof. To see the claim, note
that Lemma 3.2 implies that (ßq — \qjPjP')r ~^qPP' is antidominant with
respect to Ap, and that (ßq — \qjPjP')r is (nonzero) codominant. The claim
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then follows from (4.1). D

Let us formalize this interrelationship between a tiling and a cylindrical cover.

Definition 5.6. If W {Wp}pe-p is a cylindrical cover, a tiling {XRJRe-p with
parameter b is said to be W-adapted (or adapted to W) if for all P, R G P,

(i) bp ~ Wp, and

With this terminology we summarize what we have done in the

Theorem 5.7. Let W {W^pj-pe'p &e a T-invariant cylindrical cover of X. If
b G Br «s sufficiently large, there exists a unique analytic family of W-adapted,
analytic tilings of X with parameters t ¦ b, t G c1(j4(1)).

Proof. Apply Propositions 4.1 and 5.5; uniqueness follows from Corollary 2.5. D

We have stated our final result this way since, in working with these tilings,
it will be easier to use W-adaptedness rather than the original construction (5.1).
In fact, all F-invariant tilings in the sense of Définition 2.1 (not necessarily
constructed as in (5.1)) are adapted to some F-invariant cylindrical cover W. This
will be proved in the beginning of §9, where we also study the space of parameters
b for which a tiling exists. Thus the following sections actually apply to all tilings.
Of course, if one simply wishes to work with the tilings we have constructed above

(for b large), this remark and §9 may be safely ignored.
There remains however the interesting

Question 5.8. Can every tiling (with parameter b not necessarily large) be
expressed as in (5.1)? More particularly, is the central tile of any tiling defined by
the inequalities aq{z)^Q < bq for all maximal parabolics Q?

6. Retractions and diffeomorphisms

We now consider retractions onto central tiles. Given a tiling of X, the desired
retraction projects Xp -Ap(l) o3pXq back along the j4p(l)-orbits onto dpXq
(see Figure 5). By varying the parameter, one may obtain a family of retractions
converging to the identity. We also construct a diffeomorphism X —> Xq for use
in a later paper (see Figure 6).

Theorem 6.1. For b G BT fixed and for all t G c\(A(l)), let {XPit}Per be a
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Figure 5.

The retraction of V (the image is shaded)

tiling of X with parameter t ¦ b.

(1) For all t G c\(A(l)), there exists a unique T-equwariant piecewise-analytic
retraction rt : X —s- X^t satisfying rt(Ap(l) oy) y for y G dpX^t and

PeV.
(2) For all t G A(l), there exists a unique T-equwariant piecewise-analytic dif-

feomorphism st '¦ X —> Xq t such that for all P G V:
(i) st preserves the Ap(l)-orbits mXp\.

(ii) The family of diffeomorphisms induced on the Ap(l)-orbits in Xp\ is
constant with respect to the canonical cross-sections.

(iii) In terms of the coordinates a \-^ (a"a)aEAP, each coordinate function of
the diffeomorphism induced on -Ap(l) is the exponential of a polynomial
having degree at most 1 in each variable.

Both rt and st depend piecewise-analytically on t. As t tends to infinity under
the action of a strictly dominant 1-parameter subgroup, rt and st converge to the

identity; as t tends to 1, st converges to r\.

The construction can be broken into the same three steps as our construction
of tilings. First we define models on (V,A) (op, Ap) for the retraction and
diffeomorphism. Let V U/ca(^)^ ^e the tiling constructed in §3. The model

for the desired retraction is the piecewise-analytic map p : V —> (V}/± defined by

vIedI(V)A iîve(V)!. (6.1)

In {V)i Vi(0) + d1 (V
Figure 5.

this is the projection map onto the second factor; see



Vol 72 (1997) Tilings and finite energy retractions 189

Figure 6

The diffeomorphism aw y V > w-\-lTLt({V)^) (The shading design in each tile (V)j suggests
the corresponding fibers of p

For the model of the diffeomorphism, a more complicated construction is

required

Lemma 6.2. Let w G V(0) There exists a unique piecewise-analytic diffeomorphism

aw V —s- w + (V)/± with the following properties

(l) For v =yi + v1 €_(F)/, aw(v) cr„,(v/) + v1

(n) In cl((Vr}0) cl(V(0)), aw is given by a polynomial in the variables xa
e-a(v) j-Q, g ^ wt^ degree at most I in each variable

For K Ç A, i/ie restriction of aw to Vk %s the corresponding diffeomorphism
associated to (Vkt^k) andwpc

Proof By (l), it suffices to define an analytic diffeomorphism aw on cl(V(0)) such
that aw preserves the closed boundary faces cl(V/(0)), / C A The required
polynomial is given by

/ÇA
n (6 2)

The uniqueness of the coefficient of flae-ff Xa follows by induction on \K\ and |A|
The final assertion of the lemma follows from uniqueness and Lemma 3 5 D

Remark. The reason a polynomial of total degree greater than f is required in
(6 2) is that whereas cl(V(0)) is a "parallelpiped" relative to the analytic
coordinates (xo) (see Figure 4), the image (w + (^)a) ^1 CKV(®)) relative to linear
coordinates is not in general (see Figure 6)

We denote the induced maps on Ap also by p and at, where w
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The second step is to shift and transfer these models to X(P) Ap x e(P)
Let {X(P)Rt}R^,p be the tiling associated to P with parameter t b Define

V-w X V\ X (P'] bv

r[P\a,y)=(tpbpp{{tpbP)-1a),y),

[P) X(P)^X(P)Otby

P} 1

st (a,y) (bpvt(bp~ a),y)

Finally in the third step we define rt X —> Xq t and st X -^ Xq t by

st{z) siR) (z) (zeXRl)

Proof of Theorem 6 1 Let W {Wp}pe-p be a F-mvanant cylindrical cover
to which our tilings are adapted for all t (For the family of tilings constructed

in Theorem 5 7, such a cover was part of the construction, in general we
will prove such a cover exists later in Theorem 9 6 For any P G V we claim

p) p) —that rt r\ and st st in the open set Wp To see this, first note
that by adaptedness, any z G Wp must belong to X(P)Rt for some R D P

Then we compute rt(z) r\R\z) (tRbR,qR(z)) (under X AR x e(R)),
whereas r{tP)(z) {tPbp{(tpbp)-lap{z))R,qP{z)) (tRbRaP(z)R,qP(z)) (under

X Ap x e(P)) These two expressions are equal since °Rx j4pO°Px
The claim for the diffeomorphisin follows similarly by using the last assertion of
Lemma 6 2

p) p)
By the claim we are reduced to proving the theorem for the maps rt and s\

These maps are clearly piecewise-analytic and have analytic dependence on t It
p)

is also easy to see they have the determining properties, for sj: ; use Lemma 6 2

Now assume that t is tending to infinity under the action of a strictly dominant
subgroup and consider z G e(R) C X(P) for some R D P By Lemma 3 2, tp
is tending to infinity under the action of a strictly dominant (and hence strictly
codommant) 1-parameter subgroup in Ap, so eventually ap{z)^Q < (tpbp)13® for
all ß$ G Âf Thus by (4 1), z G X(P)R t n e(R) for t sufficiently large, in which

case rt(P)(z) {tRbRaP{z)R,qP{z)) Again by Lemma 3 2, tRbR -> {oo}Ar
p) p)

aR(z), and thus r) (z) -^ z The limiting behavior for s\ is proved similarly
D
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7. Finite energy

Let $+ denote the positive Q-roots of G and let S 1/2 ^Ae<&+ ^ with each root
counted with multiplicity.

Definition 7.1. A piecewise-smooth map / : M —s- N between Riemannian
manifolds (which may have finite quotient singularities) is said to have finite energy
if

E(!)= I \dfz\2dV(z)<œ,
Jm

where the energy density £(f)(z) \dfz\2 is the norm squared of the differential
dfz '¦ TZM —> Tf/Z\N. Define / to have almost finite energy if for all e > 0,

-edM(-z'Z0Uv(z) <oo,
IM

where zq g M is any fixed basepoint.

Remark 7.2. Say M N T\X and let {XP}PeV be a tiling of X; it is not
difficult to see that / has almost finite energy if and only if for all e > 0,

\dfz 2a{z)-eSdV{z) < oo,
lr\x

where a(z)s represents the function equal to ap(z)s in Xp (and 1 in Xo).

Theorem 7.3. Let r : X —s- Xq be the T-invariant retraction onto the central
tile of a tiling as in Theorem 6.1, and let r' be the induced, retraction on T\X.
Assume G is almost <Q-simple and that T\X is noncompact. Then r' has almost
finite energy if and only if Gc =/= SL(2,C). Furthermore, r' has finite energy if and

only ifGc is not equal to SL(2,C)7 SL(2,C) x SL(2, C), SL(3,C)7 or a Q-split form
o/SO(5,C). The same assertions hold for the diffeomorphisms of Theorem 6.1.

Remark. In terms of G, the infinite energy cases are where G is locally isomor-
phic to SL(2,R), SL(2,C), a non-Q-split form of SL(2,R) x SL(2,R) (the Hilbert
modular surface case), SL(3,R), SU(2,1), or a Q-split form of SO(3,2). In all
these cases except for SL(2,R), r' has almost finite energy.

If G is not almost Q-simple, we may, by replacing F with a subgroup of finite
index, assume that r' : T\X —> T\X decomposes into a product with factors
corresponding to the almost Q-simple factors of G. Clearly this map has (almost)
finite energy if and only if it does on each factor; thus we have the corollary:

Corollary 7.4. r' has (almost) finite energy if and only if none of the almost
^-simple factors of G which are <Q)-isotropic have complexifications on the above
lists.
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Proof of Theorem 7 3 We consider r', the situation for the diffeomorphisin is
similar Let PeP By Theorem 6 1, the restriction of r to Xp Ap{bp) x e(P)
corresponds to the retraction of the first factor onto {bp} By Borel's formula [10,

§4 3] for the metric on X Ap x e(P), the energy density is thus5

where g ^ h means that C~^h < g < Ch for some constant C > 0 On the other
hand, the volume form corresponds [10, §4 4] to

Thus the energy in ir(Xp) (which is homeomorphic to Ap(bp) x F>\e(P) by
Proposition 2 2(iv)) is

E(r'l(Xp)) ~ max / a^-s)aWAp(a) max

This is finite for all P (in other words, r' has finite energy) if and only if

for all A G $+, (A - ö, ßa) < 0 for all a G A (7 1)

By Remark 7 2, r' has almost finite energy if and only if the weaker condition

for all A G $+, (A - ö, ßa) < 0 for all a G A (7 2)

is satisfied
To determine when these conditions are not met, first assume the complexifi-

cation Gc is almost simple and Q-rankG C-rankG Then (7 1) and (7 2) are
assertions about the C-root system $c of Gc The highest root and S are enumerated

for all simple root systems in [15, Planche I-IX] (S is denoted there as p), it
follows easily that the only simple root systems failing (7 1) are A\, A%, and B%,

and the only one failing (7 2) is A\
Now say Q-rankG < C-rankG (still assuming Gc is almost simple) Then by

restriction, (7 1) is certainly implied by the corresponding assertion for $c If this
fails (that is, for C-root systems A\, A%, or B%) then the only possibility is that
Q-rankG 1 and C-rankG 2 (Since T\X is noncompact, Q-rankG > 0 Let
Ac {a, a'} be the simple C-roots (with a' the shorter root in the case B%) and
denote the restriction from C-roots to Q-roots by an overbar We will use the

5 Since for us G acts on the left a in the formula in [10] should as usual be replaced by a — l
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classification theory [49, Table II] to determine the restriction. In the case A%, the

Q-index must be 2A^\, for which ä ä'. Thus $+ {a, 2a} and ö 2ä, so (7.1)
fails though (7.2) is satisfied for the non-Q-split forms of SL(3,C). In the case B%,

the Q-index must be -82,1, for which a' 0. Thus $+ {a} and ô 3/2ä, so

(7.1) is satisfied for the non-Q-split forms of SO(5,C).
Finally, say Gc is not almost simple. In this case, G is obtained (up to isogeny)

by the restriction of scalars R^/qG1 where G' is defined over a finite extension
k of Q and G'c is almost simple. The Q-root system of G is identical with the
fc-root system of G", except that the multiplicities, and hence S, are multiplied by
[k : Q] > 1. Thus if (7.2) is satisfied for G", (7.1) will be satisfied for G (since
(S,ßa) > 0). The previous argument shows that (7.2) for G' will fail only if G'c
has type A\. In this case, ö [k : Q](a/2) where a is the unique simple Q-root,
so (7.1) fails only if [k : Q] 2 (and then (7.2) is satisfied). This is the case
Gc SL(2,C) xSL(2,C). D

8. Neighborhoods of boundary faces

Another application of tilings is to give an explicit description of a cofinal system
of F-invariant neighborhoods of each closed boundary face e(R) of X. Namely, let
{Xp}pe-p be a F-invariant tiling of X with parameter b, and for all R G V, define

ÜR ]J Xp.
PCR

Theorem 8.1.

(i) Ur is an open F'r--invariant neighborhood ofe(R), stable under the geodesic
action of Ar(1).

(ii) There is a piecewise-analytic diffeomorphism (àR,qRJ : Ur —s- Ar^r) X

e(R), where or is determined by the equations

(6fi1ïïfi(z))a {b-plap{z))a for z e Up, PÇR, andaeAP\ A£.

This diffeomorphism is Ar(1) X FR-equwariant.
(iii) The natural projection Tr\Ur —s- tt(Ur) is a homeomorphism.
(iv) Let URyt be the neighborhoods corresponding to the family of tilings with

parameters t ¦ h, t € c1(j4(1)). As t tends to infinity under the action
of a dominant 1-parameter subgroup such that ta —> 00 for all a ^ AR,
the open set Urj shrinks and runs over a cofinal system of F'R-invanant
neighborhoods ofe(R).
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Remark. (1) Except in X r, the function or in (u) is not in general constant on
the orbits of °R Thus the diffeomorphism (äR,qii) is not °R-equrvanant and the
induced sections of qr Ur —s- e(R) are not canonical cross-sections of qr

(2) Previously Zucker [52] constructed neighborhoods of the boundary faces of
T\X which correspond to smoothed versions of our tt(Ur)

Example. Assume X is hermitian symmetric (that is, a bounded symmetric
domain) and (for simplicity) G is almost Q-simple For Q a maximal parabolic,
there is a decomposition X F x C x Nq, where F is a hermitian symmetric
space of lower rank, C is a self-adjomt homogeneous cone, and Nq is the umpotent
radical of Q The geodesic action of Aq corresponds to the dilation on C, thus
e(Q) F x (Aq\C) x Nq Now restrict attention to B C F, a small ball neighborhood

of some y & F which is "away from the ends" (that is, in the central tile of the
induced tiling) Then it is not difficult to see that VqC\{BxCxNq) BxCqxNq,
where Cq is the "adapted core" constructed in [43, §4] Hence by [4, III, §6 11]

we obtain a cofinal family of neighborhoods in the "Satake topology" after taking
quotient by F This illustrates Zucker's result [51] that the Baily-Borel-Satake
compactification F\X* may be realized as a topological quotient of T\X Note
too, that the explicit nature of the normal vector to the boundary of these
neighborhoods (see (u) above) was used in a crucial way in [43, §§4 1, 9 7]

Proof of Theorem 8 1 Fet Y(R) be the open neighborhood \JPCrX(P) of e(R)

in X The projection map qr X(R) —s- e(R) extends to qr Y(R) —> e(R), and
we wish to construct a triviahzation of this bundle (The canonical triviahzation
X(R) Ar x e(R) will not do, since it does not in general extend to any X(P)
for P C R

A triviahzation of çr on X(P) for each P Ç R is constructed in [12, §5 4(7)]
Namely decompose [12, §4 3]

Ap [K I Vs*- I X (K. j * Ar X Ap r, [o i)

this clearly extends6 to Ap Ar x Ap r Fet aR (z) denote the projection of
ap(z) G Ap to Ar with respect to this decomposition Then

(4f\to) X(P)=A~RXe(R)(P) (8 2)

is the triviahzation, where e(R)(P) IJpcscfie(^')
To obtain a piecewise-analytic triviahzation on all of Y(R), we piece together

the above trivializations using a tiling lift the tiling {Xp D e(R)}pcR of e(R) to

Note that in general Ap r ^= Ap and that (1 1) does not in general extend to a decomposition
[52 (1 3)]
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the tiling {qïi (Xp)}pcR oîY(R) and define or by the equations

b^ZR(z) bP-^iz) for z G q^ÇXp), P Ç R,

p)where bR ' is the projection of bp to the first factor of (8 1)—this agrees with the
definition in (n) It is easy to check that Zr is piecewise-analytic and F^-invariant
Then {a,R,qR) Y{R) -^ Ar x e(R) is the desired triviahzation

In order now to prove (l) and (u), we simply note that

and thus that Ur { z G Y(R) \ aR{z) G AR(bR) } For (m), consider 7 G F such
that 7 Ur Pi Ur =/= 0 Then by F-mvanance of the tiling, there exists P Ç R such
that W Ç R, or P Ç R n Ä7 Thus we must have R R~<, that is, 7 G Ffi

For (iv), we first single out a lemma which is of independent interest

Lemma 8.2. Let t2 G c\{A{t{)) ThenX~St2 Ç Upcs^ti

Proof of the lemma Fix 2 G Xs t2 As £ passes from t% to £1, the first factor of
Xs t — As(tsbs) x qs(Xs t) is nondecreasmg, so the only way z can fail to belong
to Xs t is because of the second factor, it follows from Proposition 2 2(n) in this
case that z G Xpt for some PCS and some t and one can use induction on
P-rankS* D

Now let t tend to infinity as in (iv) By the lemma, the sets c\{URt) are

nonmcreasmg The lemma also implies that z G p|t Ur t must belong to some

Xpt for all t sufficiently large, where P Ç R is fixed, and thus ap{z) G Ap{tpbp)
Therefore (6p1aP(z))a > tp ta(tpya -> 00 for all a g AR (note that (tpya
is bounded from below by Remark 3 3(i)), and so z G e(R) Thus tt(c\(Ur t)) is a

decreasing family of compact sets with intersection ir(e(R)) and therefore (compare
[12, §10 2]) any open neighborhood of 7r(e(i?)) must contain one of them D

9. The space of regular parameters

As indicated in the introduction, it is also of interest to study tilings whose
parameters are not necessarily large In this final section we make a first step in this
direction Define a parameter b G B to be regular if a tiling exists with parameter
b, and denote the subset of regular parameters by Breg, by Proposition 2 6 this set

is preserved under automorphisms of G defined over Q Theorem 5 7 demonstrated

that the set of regular F-mvanant tilings B^eg is nonempty by constructing an
analytic tiling for large F-mvanant parameters We will now show in Theorem 9 6

that ßJgK is an open subset of Br and is cl(.A(l))-invariant We also find that
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any F-invariant tiling is analytic and that any cl(.A(l))-family of such tilings is

W-adapted for some F-invariant cylindrical cover W. For large parameters this
was part of Theorem 5.7 and was the our main tool in using tilings. Along the

way we will give a criterion for when a parameter is regular, which may be of use
in studying degenerations of tilings.

Proposition 9.1. Fix b G Br and let a subset X R Ç X be given for each R G V.
Then {1h}hej) is a tiling of X with parameter b if and only if there exists a

T-invariant cylindrical cover W {Wp}peT> of X such that for all P, R G V,
(i) bp ~ Wp, and

W [0 forP%R.

Before beginning the proof we single out a simple lemma which will be useful
later as well.

Lemma 9.2. Let Kp be the closure of a cylindrical set relative to P. The
cylindrical sets Wp D Kp are cofinal among Tp-mvariant neighborhoods of Kp.

Proof. Project to TP\X(P) ÄP x FP\e(P). The set ~KP (resp. WP) projects
to a product of compact (resp. relatively compact) sets with the Fp\e(P) factor
having full unipotent fibers. (Recall that TP\e(P) is flbered by (TP n NP)\NP
over a locally symmetric space for a Levi Q-subgroup for °P.) The result follows. D

Proof of Proposition 9.1. First we assume (i) and (ii) hold and demonstrate that
(XR}Rer is a tiling. By Proposition 2.2(ii), dRX{P)Q X{P)QC\c\{X{P)R). So

for R G V define dRX0 Xon cl(Xfl). Then it follows from (ii) that

(9.1)

Now (ii), (9.1) and Femma 5.4 imply that X~R C\WP ~Är{1) o(9RI0nfP) for
P Ç R, which yields _ _XR=ÄR(l)odRX0 (9.2)

(since by (ii) and (9.1) every point in XR or dRXo belongs to Wp for some P Ç R).
The conditions of Définition 2.1 clearly follow from (ii), (9.1), and (9.2).

Now assume that {XR}Re-p is a tiling (F-invariant since b is). We will construct
the desired F-invariant cylindrical cover W {Wp}pev by a modification of the
inductive argument in [52, (3.6)]. Namely, totally order the F-conjugacy classes

of parabolics [P] such that P-rankP < P-rankP' implies that [P] < [P'\. Then
given a F-conjugacy class [P], assume Wp> has been constructed for P' in all
higher F-conjugacy classes. Set
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Kp cl(Ap(bp))x(e(P)\ y qP(Wp>)
V p'cp

and define Wp Ap(sp) x Op to be a product neighborhood of Kp. If the
previously constructed collection {W/P'}[p']>[p] is F-invariant, we see that Kip
7 • Kp, and thus we can assume Wjp 7 • Wp. We will prove below the claim
that Kp lies in the complement of {JR^P c\(Xr). Then since this latter set is Tp-

invariant, Wp (or even c\(Wp)) may likewise be chosen to be in its complement by
Lemma 9.2. If we continue in this fashion, we will have constructed W satisfying
(i) and the second line of (ii). For the first line of (ii) one needs to check that
the decompositions {XRP\Wp}R^p and {X (P) RP\Wp}R^p of Wp agree, which
follows from Proposition 2.4.

It remains to prove the claim. Note that the Wp> satisfy by induction

IJ WP, D U cl(Xp,). (9.3)
P'CP P'CP

It follows that Kp Ç cl(Xp), which is disjoint from c\(Xr) by Proposition 2.2(ii)
unless R D P G V. But in this case the intersection is contained in c\(XRnp).
Since R 2 P, R<~)P C P and so this is contained in Up'cp Wp,. But such points
have been removed from Kp by definition. D

We can now characterize via cylindrical covers those parameters b G Br for
which a tiling exists. Recall that given b we defined normalized functions âp
ap/bp.

Proposition 9.3. A tiling of X with parameter h G ßr exists if and only if there
exists a Y -invariant cylindrical cover W {Wp}peV of X such that for all P,
P' eV,

(i) bp ~ WP, and

(ii)' âp(Wp nfp,)pvp' lies m the central tile of Appyp'.

In this case, the tiling will be W'-adapted,.

Proof. If a tiling {XR}Rep exists with parameter b G Br, Proposition 9.1 implies
there exists a F-invariant distinguished cover W for which it is W-adapted. In
particular,

xR= (J x(P)RnWP. (9.4)
PÇR

Conversely, given a F-invariant cylindrical cover W satisfying (i), we may use (9.4)
to define XR. Then Proposition 9.1 shows that this is a tiling if (ii) is satisfied.
Thus it suffices to show that (ii) is equivalent to (ii)' given that XR is defined as

in (9.4).
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Now (ii) is easily seen to be equivalent (given (9.4)) to

forP,Pcß,
for P Ç R, P!£R. '

We claim this is equivalent to

WPnWp,ç ]J X{P)R for P,P' e V. (9.6)
RDPVP'

For it is clear that the second line of (9.5) is equivalent to (9.6). Now (9.6)
implies that {X(P)R n Wp n Wp>}rdpvp> is a decomposition of Wp l~l Wp>
satisfying the conditions of Proposition 2.4. Since the same holds true with P and
P' interchanged, these two tilings must agree by that proposition; in other words,
the first line of (9.5) holds. This proves the claim.

Now assume (9.6) holds. The left-hand side is j4pvp'(l)-invariant and therefore
contains its projection to e(P V P'). But only the R P' V P' factor on the right-
hand side intersects e(PVP'). Thus qpvp>(WPnWp>) lies in e(PVP')nX(P)pVP>.
The application of âp now yields (ii)'. (Note that we use the identification of
âp(e(P V P')) with Ap^t" as in the proof of Proposition 3.7.)

On the other hand, (ii)' and Lemma 3.5 imply that âP{WP n WP>)PVP> Ç
(Äp)pvp> dpwp'{AP)o. We find then that

âP(WPnWP,)çA-pvP,-dpwp'(AP)oç U (Äp)R,
RDPVP'

where we use Lemma 3.5 again for the last inclusion. This implies (9.6) since
WPnWP> is °P-invariant. D

To prove our final theorem, we will need the above cylindrical covers to have

as few nonempty intersections as possible.

Definition 9.4 (compare with [52, (3.6)]7). A cylindrical cover W of X is said
to be distinguished if

WP n WP, 0 for P % P' and P 2 P'¦ (9.7)

A F-invariant cylindrical cover W is F-distinguished if

WP n WP, 0 for P ^ P' and P ^ P'. (9.8)

Our notion of Y-distinguished corresponds, after taking quotient by F, to what is called
distinguished in [52]. Our notion of distinguished, on the other hand, appears to be new.
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(We write P =4 P' to mean that 7P Ç P' for some 7 G F.)

Remark. A F-invariant distinguished cover is clearly F-distinguished. On the
other hand, it is not difficult to show that a F-distinguished cover W is
distinguished if and only if

II( IJ WP) TR for all ReV, (9.9)
PÇR

where

U(K) {76 F \-yKC\K ^0}. (9.10)

In [27, Theorem 1.3.2] and [52, (3.6)], F-distinguished covers are constructed
such that n(VFfl) Tr for R gP; a priori this is weaker than (9.9). By using the
existence of F-invariant tilings, however, we can show that distinguished covers
exist:

Proposition 9.5. The T-invariant cylindrical covers in Propositions 9.1 and 9.3

may be chosen to be distinguished.

Proof. Note that in the inductive construction of Wp for Proposition 9.1, we
arranged that Kp Ç cl(Xp) and that for [P'\ > [P], cl(Wp>) lies in the complement
of [_}R7,p, cl(Xfl). Thus Kp is in the complement of

U c\{Wp,).

Since this set is Fp-invariant, the neighborhood Wp may likewise be chosen in
its complement by Lemma 9.2. This establishes (9.7) in the case [P1] > [P]. For
the case [P'\ [P], we need to choose WP such that WP nW-lP 0 for 7 ^ TP,
that is, such that H(WP) Ç TP. However ~KPr\~K-,p Ç cl(Xp) n cl(X-yp) 0 by
Proposition 2.2(ii),_so H(KP) Ç TP. Now (compare [12, §10.3]) let C Ç ~KP be

compact such that Kp Y p ¦ C and let U be a relatively compact neighborhood
of C. Since F acts properly on X [12, §9.3], the sets II(C) Ç H(U) are finite
[14, III, §4.5]. By shrinking U if necessary, we can assume that II(C) H(U). Thus
if we choose WP so that ~K P Ç WP CTP-U, we have H(WP) Ç TP ¦ U(U) ¦ TP
Tp ¦ n(C) • Tp Ç Tp as desired. D

Theorem 9.6. The subset B\.e„ Ç B of regular F-invariant parameters is open
and c\[A(\))-invariant. For any b € B^p, there exists a F-invariant distinguished

cover W and a neighborhood U of b for which the tilings of X with parameters
t ¦ b', t € c1(j4(1)) and b' € U, are all V\^-adapted. All tilings of X are analytic
and depend analytically on b.
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Proof By Propositions 9 3 and 9 5, a parameter b G Br belongs to B^eg if and

only if there exists a F-mvanant distinguished cover W satisfying (l) and (n)', and
m this case the tiling is W-adapted Since the number of F-conjugacy classes of
parabolics is finite, condition (l) is clearly an open condition Clearly we may
shrink W and replace (u)' by

(u)" âp(c\(WP) Dc\(Wp,))pvp' lies in the interior of the central tile of A£vp'

The left-hand set of (n)" is compact (since ßa for a G ApVP is bounded from above

on the central tile and from below on âp(c\(Wp))pvp and depends continuously
on b We would like to conclude that requiring (n)" for all P, P' G V is an open
condition on b, but unfortunately the number of F-conjugacy classes of pairs of
parabolics (and hence independent conditions m (u)") is not necessarily finite

However it does suffice by F-mvanance to restrict P to belong to a finite set
of representatives of F-conjugacy classes Then if P' Ç P we may assume by an
application of an element of Tp that P' belongs to a finite set of representatives
of Fp-conjugacy classes of parabolics m P If on the other hand P' % P, we may
by the disjomtness property (9 7) of a distinguished cover restrict P' to the finite
set of parabolics containing P Thus we obtain an open condition Consequently
(u)" remains valid for b' m a small neighborhood of b, and so b' G ßJeg

If one replaces b by t b for t G c1(j4(1)), the function âpVP from (u)" becomes

multiplied by (t^')"1 This value belongs to the central tile of Apvp' by Lemma

3 2, so condition (n)" remains valid Clearly (l) remains true, and consequently
ßJeg is cl(j4(l))-mvanant

The final statements are a consequence of adaptedness and the analyticity of
the tiling asssociated to each parabolic (Proposition 4 1) D
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