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Tilings and finite energy retractions of locally symmetric
spaces

Leslie Saper

Abstract. Let I'\X be the Borel-Serre compactification of an arithmetic quotient '\ X of a
symmetric space of noncompact type. We construct natural tilings F\Y = HP F\Yp (depending
on a parameter b) which generalize the Arthur-Langlands partition of I'\X. This is applied to
vield a natural piecewise analytic deformation retraction of F\Y onto a compact submanifold
with corners I'\Xy C I'\X. In fact, we prove that I'\Xy is a realization (under a natural
piecewise analytic diffeomorphism) of F\Y inside the interior '\ X. For application to the theory
of harmonic maps and geometric rigidity, we prove this retraction and diffeomorphism have finite
energy except for a few low rank examples. We also use tilings to give an explicit description of
a cofinal family of neighborhoods of a face of F\Y, and study the dependance of tilings on the
parameter b and the degeneration of tilings.

Mathematics Subject Classification (1991). Primary 22E40, 53C35 (Secondary 58E20).

Keywords. Borel-Serre compactification, corners, locally symmetric space, tiling, finite energy
retraction, harmonic map.

0. Introduction

Let X = G/K be a symmetric space of noncompact type and let I' C G be a
discrete arithmetic group of isometries. Suppose that I'\ X is noncompact. In order
to introduce the main subject of this paper, tilings of locally symmetric spaces,
we first consider the following problem: find an explicit deformation retract r’ :
MX — I'\ Xy € '\ X which has compact image. Equivalently, find a I'-equivariant
retract r : X — Xg where Xg C X is ['-invariant and compact modulo T'.

One approach is given by Raghunathan [40] (see also Harder [27]), who con-
structs a smooth function h : '\ X — R with compact sublevel sets and with no

This research was supported in part by NSF Grants DMS-8957216 and DMS-9100383, a
grant from The Duke Endowment, and an Alfred P. Sloan Research Fellowship. During the
final revision, the author enjoyed the hospitality of the Katholischen Universitat Eichstatt as the
Hermann-Minkowski Gastprofessur sponsored by the Maximilian-Bickhoff-Stiftung.
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critical points outside a compact subset. A retraction is then obtained by flowing
backwards along the gradient field of h. Moreover, one can use h to compactify
I\ X by attaching a smooth boundary corresponding to h = co. But for many
applications this is insufficient since h and the retract are neither very explicit nor
canonical.

To explain our approach, we recall the construction of the more natural com-
pactification of Borel and Serre [12] in which T'\ X is realized as the interior of a
real analytic manifold with corners T\X. To every parabolic Q-subgroup P C G
there is associated a free geodesic action of a torus Ap = (R*9)" on X and a
subgroup P C P whose orbits (called canonical cross-sections) are orthogonal
to the geodesic action. Thus there is a canonical decomposition X =2 Ap X e(P)
(depending only a choice of basepoint) where e(P) is a homogeneous space for °P.
Now the construction of X proceeds in three steps:

(1) Enlarge Ap to Ap = (R>Y U {oo})"—a model “corner”.

(2) Use Ap and the above decomposition to induce a partial bordification as-
sociated to P, namely, X = Ap x ¢(P) C Ap x e(P) = X(P).

(3) For P C R, there is a natural inclusion X (R) C X(P) as an open submani-
fold with corners; let X be the union of the bordifications X (P) associated
to all P.

In other words, X has been formed from X by (for each P) going to {oo}” under
the geodesic action of Ap and there attaching a copy of e(P) as a codimension r
boundary face.

Thus the corners of X are a reflection of geometric structure that exists in the
interior, and we want a retract that extends to X and preserves this structure.
In particular, Xg should also be a manifold with corners whose boundary faces
AF Xy lie in canonical cross-sections {bp} x e(P). Here lies much of the difficulty
of our problem: a tubular neighborhood of e(P) in X would easily allow one to
move e(P) into the interior. But the natural tubular neighborhood (a, co]” x e(P)
of e(P) in X (P) does not in general extend to a tubular neighborhood of e(P) in
X. This is because in general the canonical functions on X = Ap x ¢(P) induced
by the coordinates on Ap (given by roots) do not agree with those for a smaller
parabolic.

Nonetheless such retractions exist. Their existence is equivalent to the existence
of certain decompositions X = 11 PY p which we will call tilings and which will
be our primary object of study. These tilings are characterized by certain simple
properties and behave naturally under automorphisms of G. In this paper we will
first define the concept of a tiling axiomatically and prove that tilings exist; then
we will deduce the existence of the retractions.

The simplest example of a tiling is where X is the upper half plane and I' =
SL(2,Z). Here X p is an open horocyclic neighborhood of the rational boundary
point which the maximal parabolic P fixes; these are all I’-translates of each other.
The set X ¢ = X is the complement of all these open horoballs; see Figure 1. The
situation in the general Q-rank 1 case is not very different.
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Figure 1.
The tiling for the upper half plane, I' = SL(2, Z)

In higher rank, however, the geometry of the tilings is more interesting; the
Q-rank 2 case is represented in Figure 2. The intersection of X p with each Ap
fiber is an open acute cone defined by the roots of P—the strictly dominant cone;
the retraction maps X p onto 8F Xg by collapsing these cones. On the other hand,
the intersection of Xg with each Ap fiber is not contained in the negative of the
dominant cone, but rather the negative of the closed obtuse cone corresponding
to the dual basis (the codominant cone). This situation is forced upon us by the
requirements we have placed on r and illustrates the beginning of the difficulties
mentioned above.

If one restricts to the interior X and requires that the faces of X lie near
infinity, the existence of such tilings is not new. They occur in the theory of
the trace formula and were constructed by Arthur [1] in the adelic case follow-
ing Langlands [31]; a construction within the axiomatic framework considered by
Langlands (which includes the case of arithmetic groups) was given by Osborne
and Warner [39].

In this paper we begin (after some background material in §1) with an ax-
iomatic definition of tilings in §2 and deduce some basic properties. The actual
construction proceeds in three steps, occuring in §§3-5 respectively, which mirror
those in the construction of X:

(1) Construct a model tiling of Ap, [[5~p(Ap)r. This is an extension of
Langlands’s geometric partition of Ap.

(2) Shift this tiling of Ap by a parameter bp € Ap and use the decomposition
)i(P) = Ap x e(P) to induce a tiling X(P) = [[p~p X(P)p = [{popbp-
(Ap)r x e(P). We call this the tiling associated to P.

(3) Intersect the tilings associated to all parabolics, that is, define Xp =
Npcpr X(P)p- If the parameters bp are sufficiently large and suitably
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Figure 2.
The tiling in the Q-rank 2 case®
(The tiles been separated slightly to indicate the boundaries.)

[-invariant and compatible, this will be a T-invariant tiling of X.

Tilings have many applications other than for the trace formula—some requir-
ing the extension to X and some concerned with Xg collapsing into the interior.
Here are a few examples we will consider in this paper.

Finite energy retractions

We have already indicated that a tiling may be used to construct a deformation
retraction of I'\ X with compact image; this is done in §6. The explicit nature
of this map enables us to determine in §7 precisely when it has finite energy: for
irreducible T\ X the retraction has finite energy except in a few low rank cases;
in fact, if we simply require a weaker condition of almost finite energy, the only
exception is when G = SL(2,R). Thus any map of I'\ X to a Riemannian manifold
N may be deformed to one that factors through the compact set I'\ Xy and thus
has finite energy (aside from the above exceptions).

As Borel has indicated, this result has important applications in the harmonic
map approach to geometric rigidity. The motivation is that when I'\ X is compact
and N has nonpositive curvature, a map '\ X — N may be deformed to a harmonic
map. Then results proved by Corlette [17] (for real rank one) and independently
by Mok, Siu, Yeung [38] and Jost and Yau [29] (for higher rank) show that in
most cases such harmonic maps are actually totally geodesic embeddings. The
obstruction to carrying out such an argument when I'\ X is noncompact has been

1This depiction of a 2 dimensional slice accurately illustrates the corner angles within X of
the tiles. (The metric and hence the angles are not defined on X \ X.) The picture does not
represent the analytic structure correctly, however; in particular, the lower boundary of YQl
does not, if naturally extended, meet e(Q2) and e(Q3) as one might think. For other depictions,
see Figures 3 and 4.



Vol. 72 (1997) Tilings and finite energy retractions 171

the existence of a finite energy map which could then be deformed into a harmonic
map. In real rank one, Corlette uses the well-known structure of the cusps [19] to
show a finite energy retraction exists; our work handles the general case. (Indeed,
a recent preprint of Jost and Li [28] shows that even our condition of almost finite
energy is sufficient for the construction of a harmonic map.)

In the compact case, the above results together with the analogous nonar-
chimedean version due to Gromov and Schoen [25] yield a new proof of Margulis’s
theorem on arithmeticity of lattices; in the real rank one case it extends Margulis’s
work. Unfortunately, the present paper cannot be used for this purpose since we
already assume [ is arithmetic and rely on the reduction theory for arithmetic
groups [9]. On the other hand, since by Margulis’s theorem [35] the only nonarith-
metic irreducible lattices occur in groups of real rank 1 and the cusps of such I'\ X
are understood by [19], our results hold true for arbitrary lattices. See also [37]
and [30] for other work on the application of harmonic maps to geometric rigidity,
as well as [7], [8], [16], and [18] where results on geometric rigidity are obtained
by other means.

Diffeomorphisms

Another application of tilings (and our initial motivation) is to construct a canon-
ical piecewise analytic diffeomorphism F\Y — I\ X¢; this is done in §6 along with
the retraction. Thus I"\ Xg is actually a natural realization of the Borel-Serre com-
pactification within '\ X. This diffecomorphism is the first step in our approach to
the conjecture of Rapoport [41] and Goresky and MacPherson [21] on the inter-
section cohomology of the reductive Borel-Serre compactification, which we will
discuss elsewhere.

Neighborhoods _
The difficulty of finding natural neighborhoods of the closed boundary faces e(P)
of T\X was mentioned previously. We will see in §8 that tilings can be applied
to yield an explicit cofinal family of (I' N P)-invariant neighborhoods of e(P) with
piecewise analytic boundaries. In the hermitian symmetric case these reduce to
the “adapted cores” of [43, §4] which played a crucial role in Saper and Stern’s

proof of Zucker’s conjecture.

Collapsing T\X

A particular tiling is determined by specifying how far the maximal faces of Xg lie
from the maximal faces of X; this is measured by a parameter b = (bg)q, where
by € Ap and @ runs over maximal parabolic @-subgroups. (Of course for the
tiling to be I'-invariant, b must satisfy an appropriate I'-invariance condition.) As
the bg tend to oo, the tiling degenerates by having I\ Xo expand to fill up the
entire space. However, it is also of interest to study degenerations of tilings in the
opposite sense, when the boundary faces of I'\ X collapse inward. In Figure 1,
this means that the horocycles expand until they touch as pictured in Serre [45].
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As a start toward such a study, we consider in §9 the space of all parameters b
for which tilings exist. For such a parameter (with b not necessarily large) it is not
clear that the tiling is obtained as in step (3) of the construction above. Fortunately
this step is not used when working with tilings (at least not in the applications
above); instead one uses the existence of the tiling and the property that in certain
cylindrical sets, the tiling agrees with a tiling associated to a parabolic (as in
step (2)). We will show that this property holds for all tilings. We also give a
criterion for a parameter to admit a tiling; from this we find that the space of
such parameters is open and invariant under the action of the dominant cone in a
maximal Q-split torus.

Further degeneration is also conceivable, in which the boundary faces of I'\ X
do not merely touch, but begin to flatten out against each other until I'\ X¢ col-
lapes onto a lower dimensional subspace. We do not consider this in the current
paper, but it is reasonable to speculate that such a process would yield retrac-
tions generalizing those in the work of Ash [2] (the “well-rounded retract”, special
cases of which were constructed previously by Mendoza [36] and Soulé [46]) and
MacPherson and McConnell [34]. Such retractions have applications to the coho-
mology of arithmetic groups and the theory of exact fundamental domains. In this
connection, we note the recent paper of Ash and McConnell [3] in which the de-
formation retraction onto the well-rounded retract is extended to the Borel-Serre
compactification.

The present paper is set in the context of symmetric spaces and semisimple
groups. However all the results generalize without difficulty to the case of homo-
geneous spaces of type S — Q [12, §2.3]; we leave this to the reader.

We finally note that other interesting decompositions of X are possible. The
constructions of Harder [27, §1.2] may be used to construct a partition of X which
is different from the tilings considered here. This has been carried out by Grayson
[22], [23], who uses an approach to reduction theory via semistability (see [5]) and
finds an explicit and canonical partition and retraction. Grayson was also motivat-
ed by [26] and Stuhler [47], [48]. Also the recent paper of Leuzinger [33] constructs
an exhaustion of X by regions analogous to our X by geometric means.?

My indebtedness to the published work of many mathematicians is already
apparent from the above. I would like to express my deep thanks to Armand
Borel for his interest and encouragement of this work. I would also like to thank
Shing-Tung Yau who first asked me whether finite energy retractions with compact
image exist, and conjectured that they did for rank > 2. Also conversations with
Bill Casselman, Pat Eberlein, David Morrison, Jiirgen Rohlfs, Rick Schoen, and
Joachim Schwermer were very helpful. Mark Goresky made several suggestions

2 1 [33] the regions are denoted X (s), where s is a sufficiently large real parameter. They
correspond here to the central tiles Xg for a family of tilings whose parameters are ¢ - b, where
b is fixed and ¢ belongs to a strictly dominant 1-parameter subgroup of a maximal Q-split torus.
(See §6 where such regions are denoted Xo;.)
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for revisions to a very early version of this paper [42] which were greatly appreci-
ated. Finally I would like to thank Mark McConnell and especially the referee for
extremely valuable suggestions regarding the exposition and organization.

1. Background

In order to set notation, we briefly recall without proofs some standard facts
regarding algebraic groups over Q, the geodesic action, and the Borel-Serre com-
pactification.

Algebraic groups

Let GG be the identity component of the real points of a semisimple algebraic group
defined over Q and let I' C Gg be an arithmetic subgroup. Lie algebras will be
denoted by the corresponding lower case gothic letter, e.g., g. We denote by P
the set of parabolic Q-subgroups of G (including G itself) and by P; the set of
maximal proper parabolic Q-subgroups. By a parabolic (resp. mazimal parabolic)
we always mean an element of P (resp. Pp). We will reserve the letter Q to
denote a maximal parabolic. If R, S € P, we denote by RV S the smallest
parabolic containing RU S.

For a parabolic P, let Np be the unipotent radical of P and let Ap be the
identity component of the maximal Q-split torus in the center of P/Np. The
parabolic rank of P (denoted P-rank P) is dim Ap. Conjugation by g € Gg allows
us to canonically identify Ap and Aqp [12, §4.2]. (We denote conjugation as
9gp — pst — gPg~1, for example.) Let 9P C P be the subgroup {p € P |
[pX| = 1 for all x € Morg(P,GL1) } as in [12, §1.1]; °P contains Np as well as any
compact or arithmetic subgroup of P [12, §1.2]. We write 'p =T'N P C op.

Let Ap denote the simple “roots” of the adjoint action of (a lift of) Ap on
np; we view elements of Ap both as characters of Ap and as elements of a},. Let
ﬁp = {Ba}uca, be the dual basis of a}, relative to a Weyl group invariant inner
product. For a parabolic R O P, the group Ar may be canonically identified with
a subgroup of Ap [12, §3.11]; let AE C Ap denote those roots restricting to 1 on
Ap. The set A is called the type of R (relative to P). Then Ap = maeAg Ker o

and we define Ag =N L EAR Ker 3,. This yields an orthogonal decomposition

AP g14R><14}1§; (11)

we denote the corresponding decomposition of a € Ap by ara®, and similarly for
elements of ap or a}p. For ¢ a maximal parabolic it is convenient to denote by Bqg
the unique element of KQ. Thus we have Ap = {Ba}oor, while if P C R, the
dual basis to AE of aB” is &ﬁ = {ﬁg}QQRQZR‘

We omit the subscript P in all these notations when P is minimal, and similarly
we omit the superscript when it is G. Sometimes (particularly in §3) we use the
type of R as a subscript or superscript, instead of R itself.
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Let (S,A) be any pair (AR, AE). We call a € S dominant (with respect to
A) if a® > 1 for all & € A; a is codominant (with respect to A) if a’> > 1 for
all & € A. If these inequalities are strict for all «, we say a is strictly dominant
(resp. strictly codominant). The strictly dominant cone is denoted S(1) and in
general for b € S, set S(b) = b-5(1). We will also transfer this terminology to s or
(by using the inner product) to s*. The dominant functionals in s* form a convex
cone generated by & while the codominant functionals form the dual convex cone
generated by A.

Geodesic action

Let X = G/K be a Riemannian symmetric space of noncompact type, where
K C @ is a maximal compact subgroup stabilizing a fixed basepoint z € X. P
acts transitively on X, so z € X may be expressed as z = pz with p € P. The
geodesic action of Ap [12, §3.2] is defined by

a0z = pa,T (a € Ap, z € X),

where a, € Ap, is the unique lift of a € Ap to P stable under the Cartan
involution associated to z [12, §§1.6, 1.8]. The geodesic action commutes with the
usual action of P [12, §3.2], and for P C R € P, the geodesic action of Ag is the
restriction of the geodesic action of Ap [12, §3.11].

Let Ap x 9P act on X by the product of the geodesic action and the usual
action for 9P. Then there is an analytic isomorphism

(ap,qp) IX:APXG(P) (1.2)

of (Ap x OP)-homogeneous spaces [12, §3.8], where e(P) = Ap\X is the quotient
under the geodesic action. We normalize (1.2) such that ap(z) = 1, where z is our
fixed basepoint. In other words, X is a trivial principal A p-bundle with canonical
cross-sections given by orbits of °P. We will often treat (1.2) as an identification
with the parabolic being clear from the context.

Borel-Serre compactification
The bordification X may now be defined by a three step procedure:
(1) The roots Ap induce an isomorphism Ap = (R*O)A% by a = (a®)4en ,-
Thus we may naturally embed Ap into a semigroup Ap = (R>0 U {oo})2?
[12, §4.4]; the inverses of the root coordinates on Ap yield a real analytic
structure.
(2) A partial bordification X (P) (the corner associated to P) is obtained as
X(P)=Apxa,X, or equivalently by extending (1.2) to (ap, gp) : X(P) =
Ap x e(P) [12, §5.1]. We identify e(P) with {co}2P x e(P).
(3) For parabolics P C R, there is a natural inclusion of X(R) into X(P) as
an open subset [12, §5.3]. One defines X = (Jp.p X (P) to have the unique
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structure of analytic manifold with corners so that each X(P) is an open
submanifold with corners [12, §7.1]. Note that X may be decomposed as
[ pep e(P), where e(G) = X.

The action of Gg on X extends to X [12, §7.6]. T acts properly on X and I'\X
is compact [12, §9.3]; we denote the quotient map 7 : X — '\ X.

We denote topological closure by cl(-), however in the case of cl(e(P)) C X, one
writes ¢(P) to emphasize that this space may also be constructed analogously to X
by letting P take the role of G [12, §7.3(i)]. (One must work in the wider context
of homogeneous spaces of type S — Q [12, §2.3].) The association P +— e(P) is an
inclusion preserving, Gg-equivariant bijection between P and the closed boundary
faces of X [12, §7.4].

2. Tilings of X

In this section we define the concept of tilings and prove some of their basic
properties. A construction of tilings will be given in §§3-5.

Definition 2.1. A tiling of X is a cover X = HPE«PYP by disjoint sets (called
tiles), having the following properties:

(i) The central tile Xg = X¢ is a closed, codimension 0 submanifold with
corners contained in X. Its closed boundary faces {97 Xy} may be indexed
by P € P so that P — 0¥ Xq is an inclusion preserving bijection.

(ii) Each boundary face ¥ X lies in a canonical cross-section {bp} x e(P).

(iii) Each tile X p is obtained from 0¥ Xy by flowing out under the geodesic
action of the cone Zp(l), that is, X p = Zp(l) 00" Xy.

The tiling is called I'-invariant if v- X p = X+p for ally € ' and P € P.

Remark. We similarly define the concept of a tiling of e(P), X(P), Ap, etc. In
the first case, we restrict the indexing set to parabolics contained in P; in the
latter two cases, we restrict the indexing set to parabolics containing P.

The following basic properties of a tiling are analogues of properties of the
decomposition X =[] pop e(P) of [12].

Proposition 2.2. A tiling X = Hpep X p satisfies the following properties:

(i) Fach tile X p is a codimension 0 submanifold with corners.
(it) The closures of any two tiles are either disjoint or intersect in a common
closed boundary face. More precisely, for P, P' € P,
=3 PP’ . /
A p) (el(X ) = { A(@pyp(1))0dF"F' Xy  fPAP eP,

1] otherwise.
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If the tiling is I'-invariant, then furthermore:
(iii) M\ Xo 4s compact. . _
(iv) For all P € P, the natural projection I'p\ cl(X p) = Ap(1) olp\8" Xy —
w(cl(X p)) is a homeomorphism.

Proof. Part (i) follows easily from the definitions. For (ii) note that by Defi-
nition 2.1(iii), Xp = Ap(1)0d¥ Xy, and thus after taking closure, cl(X p) =
cl(Ap(1))0d” Xg. However cl(Ap(1)) = [[pop Ar(1). Furthermore, 0¥ Xy C
9% Xg for R D P by Definition 2.1(i). Thus we may compute

d(Xp) =[] Ar(1)00"Xo C [ X (2.1)
ROP ROP
Hence for P, P' € P,

AXp)neXp) = [[ (@Ar(1)od"Xo)N (Ar(1)0d"” Xo)
RDOPUP’
= JI Ar)o(d”x0na" Xo).

RDPUP’

By Definition 2.1(i), this last expression is empty unless P NP’ € P, in which case
it is equal to

[T Ar)od™ " Xo =cl@pyp (1)) 00" Xp.

RDPUP’

This finishes the proof of (ii).

Now assume the tiling is I-invariant. Since I'\ Xq is a closed subset of the
compact space I'\X, (iii) is clear. Finally for (iv), let «, y € cl(Xp) and say
yx =y for v € I'. Then cl(Xp) Nel(X~p) = cl(Xp) Ny - cl(Xp) # 0. By (ii),
P NP e P which implies P = 7P and thus v € I'p. O

Definition 2.6. The parameter of a tiling is the collection b = (bg)gep, from
Definition 2.1. The space of all parameters is denoted B = [[cp, Ag = (R>0)P1,

Remark. (1) Note that we only include bg in b for @ mazimal since the canonical
cross-section {bp} x e(P) is determined as the intersection of the canonical cross-
sections {bg} X e(Q) for @ D P. Also note that our assignment of parameters to
a tiling depends on our fixed basepoint.

(2) When dealing with families of tilings, it will be helpful to use the action of
the maximal torus A on B given by t - (bg)gep, = (tg - bg)oep; -

A tiling is uniquely determined by its parameter b € B (for later use, we in
fact prove a more general result):
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Proposition 2.4. Letb € B be a parameter and M C Y_an open subset. There is
at most one decomposition M = [[zep Mg for which M € X(R) is cl(Ar(1))-
invariant and satisfies

MR = (ZR(Z)R) X LZR(MR)) N M. (22)

Proof. Clearly MpNe(R) = ( unless P C R, in which case it equals qr(Mp).
Thus M Ne(R) =[{pep MpNe(R) = [pcr qr(M p), and consequently

qr(Mp) = (M ne(R)\ | ar(Mp). (2.3)

PCR

Equations (2.2) and (2.3) determine M g directly for R minimal, and by recursion
on parabolic rank in general. O

Corollary 2.5. At most one tiling of X exists for a given parameter b € B.

Proof. Apply the proposition with M = X and M g = X g; the required hypotheses
follow from Definition 2.1(ii)(iii). O

We now consider the naturality of tilings and their parameters under auto-
morphisms of G and in particular, how I-invariance of a tiling is reflected in its
parameter. Let ¢ : G — G be an automorphism defined over Q. Then ¢ acts on
X, viewed as the space of maximal compact subgroups of G. Define an action of
¢ on B by

& (bQ)QeP1 = (C(¢7Q)¢(bQ))¢(Q)EP17
where we set

c(¢p, P) = a¢(P)(¢ - ).

(We have to be careful since ¢ may move the fixed basepoint z.) When ¢ is the
inner automorphism induced by an element g € G, we simply write g - b and

c(g, P).

Proposition 2.6. ¢ induces an automorphism of B. If {XRYrep is a tiling
(resp. I'-invariant tiling) with parameter b, then {¢- X r}y(p)ep is a tiling (resp.
o(I)-invariant tiling) with parameter ¢ - b.

Proof. The action of ¢ transforms a canonical cross-section {a} x e(P) to a canon-

ical cross-section {c(¢, P)¢p(a)} X e(¢p(P)). Now use the definition and Corol-
lary 2.5. O

Corollary 2.7. A tiling is I'-invariant if and only if its parameter b satisfies

big = (7, Q) - bg (2.4)
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forally €T and Q € P1.

Let B C B be the subspace of parameters satisfying (2.4); we call these the
I'-invariant parameters. Such a parameter is determined by a choice of by for
each I'-conjugacy class of maximal parabolic subgroups:

Proposition 2.8. Let Ri(I') be a set of representatives of I'-conjugacy classes
of mazimal parabolics. The natural map BY — HQeRl(F) Ag = R>OR1I) s 4
bijection.

Proof. The map is clearly injective; we need to show it is surjective. Consider
(b@)ger, (). For @ € Ry(I') and ~' running over a set of representatives of

I'/Tq, set byg = c(v,Q) - bg. Note that if v € I' is such that "Q = 7Q, then
7’417 e€To C%. Thus ¢(v,Q) = c¢(+/,Q) and 50 brg = c(v,Q) - bg as well. O

3. Construction of tilings, I: Tilings of 4p

In this section and the following two we will demonstrate that tilings of X with pa-

rameter b exist, provided b is sufficiently large and I'-invariant. Our construction
has three parts, mirroring the three steps in the construction of the Borel-Serre
bordification X. In this first part we begin by recalling the tiling of Ap (or equiv-
alently ap) due to Langlands, and show it extends to an analytic tiling of Ap
(Corollary 3.8); it is necessary and actually simpler to work in a more general
context.

Let (V,A) be a pair consisting of a finite dimensional real vector space with
inner product (-, -) and a basis A for the dual inner product space V*. We assume
that

(a, /) <0 (a#£a € A). (3.1)

For example, (a, A) satisfies (3.1) since A is the basis of the Q-root system of G.
More generally, we may consider (a% Aﬁ) for parabolics P C R:
Lemma 3.1 ([13,1V, 6.4)]. ForI C A the pairs (Vi,Ar) = (Naer Ker o, {71 }yer)
and (VI ATy = (ﬂwﬁ Ker 8y,1) satisfy the hypothesis (3.1) of this section. The
respective dual bases are Aj = {By}vgr and AT = {B1} e,

Note that we are applying to V' the notation introduced in (1.1) and following,

except that instead of using parabolics as subscripts and superscripts, we use
subsets of A (the type). Thus we have an orthogonal decomposition

V=vieVv! (3.2)
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for any I C A.
We will often use the following facts regarding dominance and codominance
and their behavior under this decomposition:

Lemma 3.2. The dominant cone is contained within the codominant cone. The
various By ’s are mutually acute (or orthogonal). If X € V* is (strictly) dominant
(resp. codominant) with respect to A, then A\r € Vi is (strictly) dominant (resp.
codominant) with respect to Ar. If A is (strictly) dominant with respect to A, then
M e VI* is (strictly) dominant with respect to AT,

Proof. The first assertion is [13, IV, §6.2] and the second follows from the first.
The rest is obvious except for the (strict) dominance assertion for Ay, which follows
from [13, IV, §6.5(2)] (and the following remark). O

Remark 3.3. (i) It is not the case that A € V* codominant implies that AT € VI*
is codominant with respect to Al. In fact, if v ¢ I, then v/ = —>"__, ¢, 3L, where
co = —(v,@) > 0. Thus 4" is antidominant with respect to A’.

(ii) By the lemma, the notion of dominance or codominance for a functional
in Vj € V* is the same with respect to A; or with respect to A. Likewise, a
functional in VI* is codominant with respect to A’ if and only if it is codominant
with respect to A. Thus in these cases, we shall not mention the basis.

acl

Define
(VIA ={veV|fa(v) <Oforall B, e A};

the closed boundary faces of (V)a are
AMNWVia=(VianV ={veV!|plw)<0forall gl e AT}

for I C A. Consider the set obtained by flowing out orthogonally from &7 (V)A
via the cone V(0):

VY =Vi(0) + 3 (V)a. (3.3)

In other words,

(Vyr={veV|y(v)>0forall vy € Ar, and BL(v) <0 for all 5, € Al }.
(34)
At one extreme, (V) is the open strictly dominant cone, while at the oth-
er, (V) is the negative of the closed codominant cone. In general, by one of
Langlands’s “geometric lemmas”, the various (V') ’s are disjoint and fill up V' (see
Figure 3 for an example):

Lemma 3.4 ([32, Lemma 4.4, [13, IV, §6.11)]. V = [[;ca(V)1-
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V) a0y
(a) A and A for Bs o) V= H[gA<V)I

(The tiles are separated slightly to
indicate the boundaries.)
Figure 3.
The tiling for the root system Bg

It is clear that this is a tiling of V' in the sense of Definition 2.1 (appropriately
modified).

Lemma 3.5. For K C A the tiling for (Vic, Ak) is given by Vi) = (VIiNVi
for Ix C Ak. Here I 2 K and I is its projection (excluding 0) into Ak .

For K C A the tiling for (VX AK) is given by (VE) = (V)E for I C AK.
Here (VYK is the image of (V) under the orthogonal projection onto V.

Proof. For I 2 K, the decomposition (3.2) of Vi associated to Ix C Ak is Vi =
Vi@ (VINVk). The lemma for Vi follows by intersecting this with (3.3). Now
the decomposition of VX associated to I C AX is VKX = (VinVE)o VI, Again
the lemma follows from this and (3.3); it is only necessary to check that v — v
takes V;(0) onto (Vi NVE)(0) = {vK € VinVE | 41 (v%) > 0 for all 4y € AK Y.
To check this, observe that v7(v%) = ~v7(v) for vr € AK| so the image of V7(0) lies
in (V; N VE)(0). Conversely, to show any v € (V; N VE)(0) is in the image, we
need to find v = v + v € V;(0); in other words, we need vr(vk) + v (v) > 0
for all vy € A\ Af(. Such a vk € Vi can be found since Ay \ Af( restricts to a
basis of V};. O

We now extend this tiling of V to one of a bordification V. There is an isomor-
phism V 22 R? via the linear coordinates v — (a(v))aca. Define V22 (RU{oco})®
to be the semigroup obtained by allowing these coordinates independently to attain
00. V is given an analytic structure by means of the coordinates v — (e‘a(”))QEA.
(With this definition, the diffecomorphism exp : ap — Ap extends to an analytic
diffeomorphism exp : p — Ap.) For I C A, define V; similarly with respect to
the basis Ay of V}*. Clearly there is an analytic embedding of semigroups ViCV,
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V) fa,ary

Figure 4.
V= HICA<V)1 for the root system Bg (in analytic coordinates adjusted to be conformal at the

origin)

although the product decomposition (3.2) does not extend to V. It does however
extend to a certain subset V (I):

Lemma 3.6. There is an analytic decomposition

ViD={veV]aw) <o foralac I} =V;aV

Proof. The main issue is to show that the projection v — v extends analytically to
the set in question; in other words, we need to show that v — e 1) for vr € Ar
is analytic on this set. Now note that for any codominant A = 3 c,a € V*, there
is a continuous map ¢ : V — R. The function ¢~ is analytic at v if a(v) < oo
for all & with ¢, > 0 and nonintegral. Thus by Remark 3.3(i), e "1 = ee? for
~ ¢ I is analytic where needed. O

We can thus define (V); C V(I) by

yr=Vi0)+ 0" (Via

={veV |yi(v) >0 for all v; € Az, and BL(v) <0 for all gL € AT}
(3.5)
similarly to (3.3) and (3.4); see Figure 4 for an example drawn using analytic
coordinates.

Proposition 3.7. V = HI§A<V>I is an analytic tiling.
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Proof. For K C A, let e(K) = {v € V | a(v) = cofor a ¢ K, and a(v) <

oo for a € K }. To show that the sets (V)1 are disjoint and exhaust V it suffices
to show that e(K) = [[;c (V)1 Ne(K) for all K C A. But ¢(K) = VE under

the projection v — v while (V);Ne(K) C V(I)Ne(K) is empty unless I C K,

in which case it projects to (V)X. Now apply Lemma 3.5. It is clear that the

conditions of Definition 2.1 are satisfied and the fact that (V); is an analytic
submanifold follows from (3.5) and Lemma 3.6. O

_ In the case (V,A) = (ap, Ap) we apply the analytic isomorphism exp : ap —
Ap to obtain:

Corollary 3.8. 4p = L[RQP<ZP>R is an analytic tiling, where (Ap)g
exp({(ap)ar)-

4. Construction of tilings, II: Tilings associated to a parabolic P
Let b € B be a parameter. In this second part of the construction we transfer the
tiling of Ap to a tiling of X (P) with parameter b. This is done by shifting the

tiling by bp and then using the decomposition X (P) = Ap x e(P).
Thus for R € P with R 2 P we define

X(P)g =bp - (Ap)r X e(P);
when R = G, we simply write X (P) for X(P),. Let
ORX(P)y =bp - 0% (Ap)o x e(P).

It is useful to describe these sets directly by inequalities. The last part of
equation (3.5) translates to

X(P)p={z€ X(P)]|ap(z)"® > b} for all yp € Ag and

R A
ap(2)’8 < b2 for all 65 € AR}, (4.1)

Since agQ — agQ for P C @Q and the same holds true for the parameters, we

may rephrase this in terms of the distance functions (agQ)erl to the maximal
boundary faces. In particular we have:

X(P)y={z€ X |ag(z)’® <V forall Qe Py withQ 2 P},  (4.2)
ORX(P)y = {2 € X(P)y | ag(2)?® = b2 for all Q € Py with Q 2 R}. (4.3)
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Proposition 4.1. X(P) =[[g~p X(P)g is an analytic tiling of X (P) depending
analytically on the parameter b.

Definition. {X(P),}rop is called the tiling associated to P.
Proof. This follows from Corollary 3.8. For Definition 2.1(ii), one notes that
IFX(P)y=0"X(R)gN X (P)y C 0RX(R)y = {br} x e(R)

(use (4.2) and (4.3) for the first equality). For Definition 2.1(iii ) one must recall

that the left action of A on Ap corresponds under X (P) = Ap x e(P) with the
geodesic action of Ag on X (P). O

5. Construction of tilings, ITI: Tilings of X by refinement

In this final part of the construction we show that for sufficiently large I'-invariant
parameters b the_ intersection of the tilings associated to all parabolics P € P
yields a tiling of X. Thus for this section (and only for this section) we set

- N XP)n (5.1)

PCR

and
" Xo= [ 9"X(P)g (5.2)
PCR
(as usual we write Xo for X¢). In particular, X is defined by the inequalities

aQ(z)f@Q < ng for all maximal parabolics Q. The plan is to use an estimate from
reduction theory to show that within each element of certain open covers, (5.1)
agrees with the tiling associated with some P provided b is large.

Definition 5.1 (compare with [10, §5.3]%). A cylindrical set (relative to a
parabolic P) is a set of the form

Wp EAP(SP) X Op,

where sp € Ap and Op C ¢(P) is an open, I"p-invariant and Np_—invariﬂlt subset
such that I'p\Op is relatively compact. Similarly the subset Wp C X defined

3In [10] Op is itself relatively compact and not I' p-invariant. A cylindrical set here is thus the
union of the I' p-translates of a cylindrical set in [10]. This is more convenient for our purposes;
note however that our definition depends on the choice of arithmetic subgroup I'.
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using A p will be called eylindrical. An open cover W = {Wp}pep of X consisting
of cylindrical sets is called a cylindrical cover. The cover is said to be I'-invariant
ify-Wp=W,p foryel.

Remark. It follows from reduction theory [9, §13.1] that I'-invariant cylindrical
covers exist. For example, one may take Wp to be empty except for P minimal,
where it would be I'p times a large Siegel set.

The estimate is simplest to state using the normalized functions

&p(z) = ap(z)/bp.

Proposition 5.2. Let W = {Wp}pep be a I'-invariant cylindrical cover. If
b e BY is sufficiently large, then for all P € P and for all Q € Py with Q 2P,

ag(x)%° <ap(zp@r (2 Wp),

where Ag.p € ap is dominant (depending only on the type of Q and P) and
Bq — Aq,p is nonzero and codominant.

Proof. Let o be the unique element of A\ A% and define A\ p = (85 — ea)p,
where e will be determined. For € > 0 small, the functional 8 — e« is dominant,
and thus by Lemma 3.2 so is Ag p. In addition,

5 5 ﬂg if « € AP,
—Apg = .
= £ eap if o ¢ AP,
which is nonzero and by Lemma 3.2 is codominant.
To prove the estimate, note that by the proof of Proposition 2.6 the normalized
functions satisfy the transformation law

asp(gz) = (c(g, P)bp/bsp)ap(2) (5.3)

for g € Gg; in particular, by the I-invariance of b (see (2.4)),
awp(yz) =ap(z)  (yeD). (5.4)
Thus it suffices to fix P belonging to a finite set of representatives of I'-conjugacy
classes; choose a minimal parabolic for which P is standard. The maximal parabol-
ics @ 2 P may be enumerated as ng, where Q) is standard, g € G ranges over

a finite set, and v € I is restricted such that gy € Qg in the case that Qg 2 P.
Then ag(z)?2 = C - agy(gv2)P2 by (5.3) and (5.4), where C' > 0 depends only
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on g, Qo, and b. A result of reduction theory [43, Lemma 4.9]4 shows that this is
bounded by C - éap(2)P2~" with m > 0 (if Qo D P, use the last equation of the
proof). But since ap € Ap(sp/bp), we have &Iﬁfrma = &Eﬁfm)apa?ﬁ’p < C.&;Q’P
provided we choose € < m.

To see that the constant C' may be chosen less than one, note that if b is
replaced by ¢ - b, then C scales as t~(Fa=22.P)  This can be made arbitrarily small

provided t is sufficiently dominant. O

Corollary 5.3. Let W = {Wp}pep be a T-invariant cylindrical cover. Ifb € BY
is sufficiently large, then for all P, P' € P and for all Q € Py with Q 2 P,

ag(2)P <ap(z)’erP (2 e WpNWp), (5.5)
where A\g, p,pr € adp, is dominant and Bg — Ag,p pr is nonzero and codominant.

Proof. Write A\g p = > c¢g/fq, where ¢ > 0. Then Proposition 5.2 yields
PCQEPy
the estimate

ag(2)’ < [ a2y (2 €Wp).
@oP

Now apply Proposition 5.2 again to estimate in Wps those factors on the right-hand
side for which @’ 2 P’. This yields (5.5), where

Ag.pp = ) cqBayt Y cogp
Q2P Q2P
Q2P Q'zP

Now Mg, p,pr € 6}, is clearly dominant and furthermore
Ba —Aq.ppr = (Aq.p —Ag,pp) + (Bg — Ag,p)
> cqr(Bar = Agpr) + (B — Ag,p)

Q'OP
. . ’ 7
is nonzero and codominant. @ 2F O

\ﬁe will _also need one simple lemma_ which wﬂlge useful later. For a cylindrical
set Wp = AP(SP) X Op, write bp ~Wp if bp € AP(SP).

Lemma 5.4. Let Wp be a cylindrical set such that bp ~ Wp. Then for RO P,

Ar(1)o(0RX(P)yNWp) = X(P),NWp=X(P)zN(AroWp).

4 The result in [43] was stated for G the group of automorphisms of a self-adjoint homogeneous
cone; aside from the notation, the result and proof apply to the general case. The proof uses
results on functions of type (P, x) from [9, §14] and is similar to arguments in [6, §§7.5-7.8].
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Proof. 1t is clear from the definitions that each of these sets is contained in the
next. Solet z € X(P)z N (AroWp) and write z = aoy with a € Ag(1) and
y € 0 X (P)y; we need toshowy € Wp. Since Ar C Ap, we have gp(y) = qp(2) €
Op. If « € A (and therefore is trivial on Ag), then ap(y)® = ap(2)* > s%. If
v € Ap\ AR, then v¥ is antidominant with respect to AR (by Remark 3.3(i))
and so (since y € 9FX(P),) ap(y)” > b}éR. On the other hand, ap(y)7® = b},
Thus ap(y)” > b}, > s}, since bp ~ W p. O

We can now show that (5.1) agrees in Wp with the tiling associated to P
provided b is large.

Proposition 5.5. Let W = {Wp}Ypep be a D-invariant cylindrical cover of X.
If b e BY is sufficiently large, then for all P, R € P,

(i) bp ~Wp,

X(P)pNnWp for PC R,

U for PZ R,
IRX(P)ynWp for PCR,
0 for PZ R,
(iv) Xp = Agr(1)00%Xy.

(ll) YR ﬂWp =

(iii) OFXgNWp = {

Remark. In the case that X is the semisimple part of a self-adjoint homogeneous
cone, the case R = G of (ii) is essentially [43, Proposition 4.4].

Proof. Clearly assertion (i) can be arranged making b larger if necessary. Case
R = G of (ii) is equivalent (by (4.2)) to the inequalities ag(z)%@ <1 for @ 2 P
implying in Wp the inequalities ag(z)°? < 1 for all @ 2 P. This implication
follows by Proposition 5.2. In view of (4.3), we see that Proposition 5.2 implies
(iii) by the same argument. (In the case P Z R, use the fact that there exists a
Q € Py with@Q 2 R and Q 2 P, together with the strict inequality.) Furthermore,
the intersection of X(P), = Ag(1) 0 9% X (P), over all P C R yields (iv).

We now consider (ii) where R # G. If P C R, (iii) and (iv) together with
Lemma 5.4 show that X (P)p, NWp C XrNW p, and hence we have equality. If
on the other hand P Z R, first note that the case P’ C R already treated together
with Lemma 5.4 1mply YR QWP/ = X(P’)R n (ZR OWP/) :_) YR n (ZR OWP/).
But {Wp }pcr covers e(R), and thus {ApoW p/}p/cr covers Xpr. Thus it
follows that X g C UP/CRWP/ and so it suffices to show that X gNW pNW pr =
for all P’ C R. The application of Corollary 5.3 to Q € Py with Q@ D Rand Q 2 P
yields that &f;}?_AQ’P’P/ < 1on WpnW p,. We claim though that &i,?_AQ’P‘P' >1
on XgNWpr = X(P’)RﬁWpr7 which will finish the proof. To see the claim, note
that Lemma 3.2 implies that (85 — Ag,pp/ ) = _)‘S,P,P’ is antidominant with
respect to AR,  and that (3g — Ag,p,p/)r is (nonzero) codominant. The claim
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then follows from (4.1). O
Let us formalize this interrelationship between a tiling and a cylindrical cover.

Definition 5.6. If W = {Wp} pcp is a cylindrical cover, a tiling {X g} pep with
parameter b is said to be W-adapted (or adapted to W) if for all P, R € P,
(1) bp NWP, and
S — X(P)pnW for PCR
(i) XaWp—{ XPOWrfor PER,
0 for PZ R.

With this terminology we summarize what we have done in the

Theorem 5.7. Let W = {W p}ypep be a D-invariant cylindrical cover of X. If
b e B is sufficiently large, there exists a unique analytic family of W-adapted
analytic tilings of X with parameterst-b, t € cl(A(1)).

Proof. Apply Propositions 4.1 and 5.5; uniqueness follows from Corollary 2.5. O

We have stated our final result this way since, in working with these tilings,
it will be easier to use W-adaptedness rather than the original construction (5.1).
In fact, all T-invariant tilings in the sense of Definition 2.1 (not necessarily con-
structed as in (5.1)) are adapted to some [-invariant cylindrical cover W. This
will be proved in the beginning of §9, where we also study the space of parameters
b for which a tiling exists. Thus the following sections actually apply to all tilings.
Of course, if one simply wishes to work with the tilings we have constructed above
(for b large), this remark and §9 may be safely ignored.

There remains however the interesting

Question 5.8. Can every tiling (with parameter b not necessarily large) be ex-
pressed as in (5.1)7 More particularly, is the central tile of any tiling defined by

the inequalities ag(z)?@ < ng for all maximal parabolics Q7

6. Retractions and diffeomorphisms

We now consider retractions onto central tiles. Given a tiling of X, the desired
retraction projects X p = Ap(1) 0 0¥ Xy back along the Ap(1)-orbits onto 87Xy
(see Figure 5). By varying the parameter, one may obtain a family of retractions
converging to the identity. We also construct a diffeomorphism X — Xg for use
in a later paper (see Figure 6).

Theorem 6.1. For b € B fized and for all t € cl(A(1)), let {X pi}pep be a
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plviV = (Vs

Figure 5.
The retraction of V' (the image is shaded)

tiling of X with parameter t-b.

(1) For allt € cl(A(1)), there exists a unique I'-equivariant piecewise-analytic

retraction v, : X — Xo satisfying r(Ap(1)oy) =y fory € 8 Xo, and
PeP.

(2) For allt € A(1), there exists a unique I'-equivariant piecewise-analytic dif-
feomorphism s, : X — Xo, such that for all P € P:
(i) s preserves the Ap(1)-orbits in X p.

(ii) The family of diffeomorphisms induced on the Ap(1)-orbits in 71371 is
constant with respect to the canonical cross-sections.

(i) In terms of the coordinates a — (a™%)peAp, €ach coordinate function of
the diffeomorphism induced on Ap(1) is the exponential of a polynomial
having degree at most 1 in each variable.

Both ry and s; depend piecewise-analytically on t. As t tends to infinity under
the action of a strictly dominant 1-parameter subgroup, ri and s; converge to the
identity; as t tends to 1, s; converges to rq.

The construction can be broken into the same three steps as our construction
of tilings. First we define models on (V,A) = (@p,Ap) for the retraction and
diffeomorphism. Let V' = [[;c A (V)1 be the tiling constructed in §3. The model

for the desired retraction is the piecewise-analytic map p:V — (V) A defined by
p(v) =vl € (VYA if ve (V)r. (6.1)

In Vy; =V ;(0) 4+ 8 (V) A this is the projection map onto the second factor; see
Figure 5.
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Figure 6.

The diffeomorphism oy, |y : V = w+Int((V)A). (The shading design in each tile (V) suggests
the corresponding fibers of p.)

For the model of the diffeomorphism, a more complicated construction is re-
quired:

Lemma 6.2. Let w € V(0). There ezists a unique piecewise-analytic diffeomor-
phism oy 1 V 5w+ (VYA with the following properties:

(i) Forv=uvy +of € V)i, ouw(v) = ow(vr) + ol
(ii) In cl({V)p) = cl(V(0)), 0w is given by a polynomial in the variables x, =
e W) (o € A) with degree at most 1 in each variable.

For K C A, the restriction of oy to Vi is the corresponding diffeomorphism
associated to (V i, Ax) and wi.

Proof. By (i), it suffices to define an analytic diffeomorphism o, on ¢cl(V'(0)) such
that o, preserves the closed boundary faces cl(V1(0)), I C A. The required
polynomial is given by

v Z( 11 (1_%)1"[%)@01. (6.2)

ICA “aeANI acl

The uniqueness of the coefficient of [, _ , zo follows by induction on |K| and [A].
The final assertion of the lemma follows from uniqueness and Lemma 3.5. |

Remark. The reason a polynomial of total degree greater than 1 is required in

(6.2) is that whereas cl(V/(0)) is a “parallelpiped” relative to the analytic coor-

dinates (zo) (see Figure 4), the image (w + (V)a) Ncl(V(0)) relative to linear
coordinates is not in general (see Figure 6).

We denote the induced maps on Ap also by p and o, where w = logtp.
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The second step is to shift and transfer these models to X (P) = Ap x e(P).
Let {X(P)g }rop be the tiling associated to P with parameter ¢ - b. Define

i) L X(P) — X(P)gy, by

ri™ (@, y) = (tebe pl( (trbp) ~La),y),
and st : X(P) — X (P)g, by

59 (a,y) = (bpou(bpa), y).

Finally in the third step we define r, : X — Xo,; and s, : X - Xo,: by

r(2) =) (2 € Xry),

s2)=sPG)  (zeXn1).

Proof of Theorem 6.1. Let W = {Wplpep be a I-invariant cylindrical cover
to which our tilings are adapted for all t. (For the family of tilings construct-
ed in Theorem 5.7, such a cover was part of the construction; in general we
will prove such a cover exists later in Theorem 9.6.) For any P € P we claim

that r, = rt(P) and s, = SEP)_iH the open set Wp. To see this, first note
that by adaptedness, any z € Wp must belong to X(P) R, for some R O P.

Then we compute r,(z) = r§R>(z) = (trbr,qr(2)) (under X = Ap x e(R)),

whereas 77 (2) = (tpbp((tpbp)tap(2))R, qp(2)) = (trbrap(2)R,qp(z)) (un-

der X = Ap x e(P)). These two expressions are equal since "Rz = AR o%Pz.
The claim for the diffeomorphism follows similarly by using the last assertion of
Lemma 6.2.

By the claim we are reduced to proving the theorem for the maps rgp) and SEP).
These maps are clearly piecewise-analytic and have analytic dependence on ¢. It
is also easy to see they have the determining properties; for sEP) use Lemma 6.2.

Now assume that ¢ is tending to infinity under the action of a strictly dominant
subgroup and consider z € ¢(R) C X(P) for some R D P. By Lemma 3.2, t&
is tending to infinity under the action of a strictly dominant (and hence strictly
codominant) 1-parameter subgroup in AE, so eventually ap(z)ﬁéc < (tpbp)ﬂg for
all 65” € ﬁ%. Thus by (4.1), z € X(P)g, Ne(R) for ¢ sufficiently large, in which

case rt(P)(z) = (trbrap(2)®,qp(2)). Again by Lemma 3.2, tpbgr — {co}Ar =

agr(z), and thus rt(P> (2) — z. The limiting behavior for 8£P> is proved similarly.

O
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7. Finite energy

Let &1 denote the positive Q-roots of G and let 6 = 1/2 > xed+ A with each root
counted with multiplicity.

Definition 7.1. A piecewise-smooth map f : M — N between Riemannian man-
ifolds (which may have finite quotient singularities) is said to have finite energy
if

B(f) = /M Jdf. 24V (2) < oo,

where the energy density E(f)(z) = |df.|? is the norm squared of the differential
df, . T,M — Tf(z)N. Define f to have almost finite energy if for all € > 0,

/ |df.|2e—c?(=20) gV (2) < o0,
M
where zg € M is any fixed basepoint.

Remark 7.2. Say M = N = I'\X and let {Xp}pep be a tiling of X; it is not
difficult to see that f has almost finite energy if and only if for all ¢ > 0,

/ df. 2a(z)"dV (2) < oo,
X
where a(z)? represents the function equal to ap(2)° in Xp (and 1 in Xp).

Theorem 7.3. Letr : X — Xg be the I'-invariant retraction onto the central
tile of a tiling as in Theorem 6.1, and let v be the induced retraction on T\X.
Assume G is almost Q-simple and that T\X is noncompact. Then r' has almost
finite energy if and only if Ge # SL(2,C). Furthermore, v' has finite energy if and
only if Gc is not equal to SL(2,C), SL(2,C) x SL(2,C), SL(3,C), or a Q-split form
of SO(5,C). The same assertions hold for the diffeomorphisms of Theorem 6.1.

Remark. In terms of GG, the infinite energy cases are where G is locally isomor-
phic to SL(2,R), SL(2,C), a non-Q-split form of SL(2,R) x SL(2,R) (the Hilbert
modular surface case), SL(3,R), SU(2,1), or a Q-split form of SO(3,2). In all
these cases except for SL(2,R), r’ has almost finite energy.

If @ is not almost Q-simple, we may, by replacing I' with a subgroup of finite
index, assume that 7’ : T\X — T\ X decomposes into a product with factors
corresponding to the almost Q-simple factors of G. Clearly this map has (almost)
finite energy if and only if it does on each factor; thus we have the corollary:

Corollary 7.4. ' has (almost) finite energy if and only if none of the almost
Q-simple factors of G which are Q-isotropic have complexifications on the above
lists.



192 Leslie Saper CMH

Proof of Theorem 7.3. We consider r’; the situation for the diffeomorphism is
similar. Let P € P. By Theorem 6.1, the restriction of r to Xp = Ap(bp) X e(P)
corresponds to the retraction of the first factor onto {bp}. By Borel’s formula [10,
§4.3] for the metric on X 22 Ap x ¢(P), the energy density is thus®

22

E(r|xp)(2) ~ MY ap(z)™,

where g ~ h means that C—1h < g < Ch for some constant C' > 0. On the other
hand, the volume form corresponds [10, §4.4] to
da%
dVx ~ap(z) P N\ =L AdV,p.
ap
ag AP

Thus the energy in 7w(Xp) (which is homeomorphic to Ap(bp) x I'p\e(P) by
Proposition 2.2(iv)) is

/ N 2(2=9) _ * 204()\——5,[3a)da_a
E(r'ln(xp)) ~ max /A e dVap(a) = max agp /1 @ o

This is finite for all P (in other words, ' has finite energy) if and only if
for all A\ € ®T, (A —6,8,) <0 for all @ € A. (7.1)
By Remark 7.2, v has almost finite energy if and only if the weaker condition
for all A € @, (A = 4,3,) <0 for all @ € A. (7.2)

is satisfied.

To determine when these conditions are not met, first assume the complexifi-
cation Gg is almost simple and Q-rank G = C-rank G. Then (7.1) and (7.2) are
assertions about the C-root system ®¢ of G¢. The highest root and § are enumer-
ated for all simple root systems in [15, Planche 1-1X] (¢ is denoted there as p); it
follows easily that the only simple root systems failing (7.1) are A1, A9, and Bay,
and the only one failing (7.2) is Aj.

Now say Q-rank G < C-rank G (still assuming G¢ is almost simple). Then by
restriction, (7.1) is certainly implied by the corresponding assertion for ®¢. If this
fails (that is, for C-root systems A1, A9, or By) then the only possibility is that
Q-rank G = 1 and C-rank G = 2. (Since I'\ X is noncompact, Q-rank G > 0.) Let
A¢ = {a, o’} be the simple C-roots (with o’ the shorter root in the case Bs) and
denote the restriction from C-roots to Q-roots by an overbar. We will use the

5 Since for us G acts on the left, @ in the formula in [10] should as usual be replaced by a 1.
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classification theory [49, Table II] to determine the restriction. In the case Ag, the
@-index must be QAgg, for which @ = @'. Thus ®* = {@,2a} and 6§ = 2a, so (7.1)
fails though (7.2) is satisfied for the non-Q-split forms of SL(3,C). In the case Bs,
the Q-index must be By 1, for which @ = 0. Thus ®+ = {&@} and ¢ = 3/2@, so
(7.1) is satisfied for the non-Q-split forms of SO(5, C).

Finally, say G¢ is not almost simple. In this case, G is obtained (up to isogeny)
by the restriction of scalars Ry G’, where G is defined over a finite extension
k of Q and Gf is almost simple. The Q-root system of G is identical with the
k-root system of G’, except that the multiplicities, and hence §, are multiplied by
[k : Q] > 1. Thus if (7.2) is satisfied for G’, (7.1) will be satisfied for G (since
(6,85) > 0). The previous argument shows that (7.2) for G’ will fail only if G
has type Aj. In this case, 6 = [k : Q](a/2) where « is the unique simple Q-root,
o (7.1) fails only if [k : @] = 2 (and then (7.2) is satisfied). This is the case
Ge = SL(2,C) x SL(2,C). O

8. Neighborhoods of boundary faces

Another application of tilings is to give an explicit description of a  cofinal system
of I'-invariant neighborhoods of each closed boundary face e(R) of X. Namely, let
{X p}pecp be a-invariant tiling of X with parameter b, and for all R € P, define

Tn= [ X

Theorem 8.1.
(i) Ug is an open I'g-invariant neighborhood of e(R), stable under the geodesic
action of Ag(1). . _
(ii) There is a piecewise-analytic diffeomorphism (ar,qr) : Ur = Agr(bg) X
e(R), where ag is determined by the equations

(bp'ar(2))® = (bpap(2))®  forz€Xp, PC R, and o€ Ap\ AR

This diffeomorphism is Ar(1) x I'g-equivariant.

(iii) The natural projection TR\Up — 7(UR) is a homeomorphism.

(iv) Let URt be the neighborhoods corresponding to the family of tilings with
parameters t - b, t € cl(A(1)). As t tends to infinity under the action
of a dominant 1-parameter subgroup such that t* — oo for all o & AFR,
the open set URJ shrinks and runs over a cofinal system of I'g-invariant

neighborhoods of e(R).
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Remark. (1) Except in X g, the function @g in (ii) is not in general constant on
the orbits of YR. Thus the diffeomorphism (ag, qgr) is not OR—equivariant and the
induced sections of g : Ur — e(R) are not canonical cross-sections of ¢g.

(2) Previously Zucker [52] constructed neighborhoods of the boundary faces of
'\ X which correspond to smoothed versions of our 7(U g).

Example. Assume X is hermitian symmetric (that is, a bounded symmetric do-
main) and (for simplicity) G is almost Q-simple. For @ a maximal parabolic,
there is a decomposition X = F' x C' X Ng, where I is a hermitian symmetric
space of lower rank, C' is a self-adjoint homogeneous cone, and Ng is the unipotent
radical of Q. The geodesic action of Ay corresponds to the dilation on C, thus
e(Q) = Fx (Ag\C) x Ng. Now restrict attention to B C F', a small ball neighbor-
hood of some y € F which is “away from the ends” (that is, in the central tile of the
induced tiling). Then it is not difficult to see that UgN(BxCx Ng) = BxCyx N,
where Cp is the “adapted core” constructed in [43, §4]. Hence by [4, III, §6.11]
we obtain a cofinal family of neighborhoods in the “Satake topology” after taking
quotient by I'. This illustrates Zucker’s result [51] that the Baily—Borel-Satake
compactification '\ X* may be realized as a topological quotient of I\ X. Note
too, that the explicit nature of the normal vector to the boundary of these neigh-
borhoods (see (ii) above) was used in a crucial way in [43, §§4.1, 9.7].

Proof of Theorem 8.1. Let Y(R) be the open neighborhood |Jpc n X (P) of ¢(R)
in X. The projection map qr : X(R) — e(R) extends to qr : Y(R) — ¢(R), and
we wish to construct a trivialization of this bundle. (The canonical trivialization
X(R) = Ag x e(R) will not do, since it does not in general extend to any X (P)
for PC R.)

A trivialization of ggr on X (P) for each P C R is constructed in [12, §5.4(7)].
Namely decompose [12, §4.3]

Ap = (R>0)AP = (R>O)AP\AT o (R>0)AE = Ap x Apg; (8.1)

(P)

this clear_ly ex‘cglds6 to Ap = AR x ZP’R. Let ay, ’(z) denote the projection of
ap(z) € Ap to Ar with respect to this decomposition. Then

(%, qr) : X(P) =g x e(R)(P) (8.2)
is the trivialization, where e(R)(P) = [[pc gc g €(5)-

To obtain a piecewise-analytic trivialization on all o_f Y (R), we piece together
the above trivializations using a tiling: lift the tiling {X p Ne(R)} pcr of e(R) to

6 Note that in general Ap g # Ag and that (1.1) does not in general extend to a decomposition
of Ap [52, (1.3)].
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the tiling {q}gl(yp)}pgg of Y(R) and define ag by the equations

bEIER(z) = bg>’1ag>(z) for z € q§1(7p)7 PCR,
where bgf) is the projection of bp to the first factor of (8.1)—this agrees with the
definition in (ii). It is easy to check that ag is piecewise-analytic and I'g-invariant.

Then (ar,qr) : Y(R) = Ag x e(R) is the desired trivialization.
In order now to prove (i) and (ii), we simply note that

713 = ZR(l) O(ZP,R(U o aPX()),

and thus that Up = {2 € Y(R) | @r(z) € Ar(bg) }. For (iii), consider v € I" such
that ~ - UrNnUg # 0. Then by I'-invariance of the tiling, there exists P C R such
that "P C R, or P C RN R”. Thus we must have R = R7, that is, v € I'g.

For (iv), we first single out a lemma which is of independent interest:

Lemma 8.2. Let ts € cl(A(t1)). Then Xg4, C UPQS7P¢1'

Proof of the lemma. Fix z € 737@. As t passes from to to t1, the first factor of
X = Ag(tsbs) x gs(Xs:) is nondecreasing, so the only way z can fail to belong
to X g, is because of the second factor; it follows from Proposition 2.2(ii) in this
case that 2z € Ygt for some P C S and some ¢ and one can use induction on
P-rank S. O

Now let ¢ tend to infinity as in (iv). By the lemma, the sets cl(Ug,) are
&)nincrea,sing‘ The lemma also implies that z € ﬂt Ug,s must belong to some
X p; for all ¢ sufficiently large, where P C R is fixed, and thus ap(z) € Ap(tpbp).
Therefore (b;lap(z))o‘ > 1% = t%(tF)™* — oo for all & ¢ AR (note that (¢F)~2
is bounded from below by Remark 3.3(i)), and so z € e(R). Thus n(cl(Tg,)) is a
decreasing family of compact sets with intersection 7(e(R)) and therefore (compare
[12, §10.2]) any open neighborhood of w(e(R)) must contain one of them. O

9. The space of regular parameters

As indicated in the introduction, it is also of interest to study tilings whose pa-
rameters are not necessarily large. In this final section we make a first step in this
direction. Define a parameter b € B to be regular if a tiling exists with parameter
b, and denote the subset of regular parameters by Byeg; by Proposition 2.6 this set
is preserved under automorphisms of G defined over @Q. Theorem 5.7 demonstrat-
ed that the set of regular I'-invariant tilings Bfeg is nonempty by constructing an
analytic tiling for large I'-invariant parameters. We will now show in Theorem 9.6
that B;eg is an open subset of B'' and is cl(A(1))-invariant. We also find that
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any [-invariant tiling is analytic and that any cl(A(1))-family of such tilings is
W-adapted for some I'-invariant cylindrical cover YW. For large parameters this
was part of Theorem 5.7 and was the our main tool in using tilings. Along the
way we will give a criterion for when a parameter is regular, which may be of use
in studying degenerations of tilings.

Proposition 9.1. Fiz b € B and let a subset X C X be given for each R € P.
Then {X gYrep is a tiling of X with parameter b if and only if there exists a
-invariant cylindrical cover W = {W p}pep of X such that for all P, R € P,

(1) bp NWP, and
S X(P),nW PCR
(i) XanWp =~ DROWe  Jor PR,
0 for PZ R.
Before beginning the proof we single out a simple lemma which will be useful
later as well.

Lemma 9.2. Let_Fp be the closure of a cylindrical set relative to P. The cylin-
drical sets W p O Kp are cofinal among I p-invariant neighborhoods of K p.

Proof. Project to Tp\X(P) = Ap x I'p\e(P). The set Kp (resp. W p) projects
to a product of compact (resp. relatively compact) sets with the I'p\e(P) factor
having full unipotent fibers. (Recall that I'p\e(P) is fibered by (I'p N Np)\Np
over a locally symmetric space for a Levi Q-subgroup for 0P.) The result follows. O

Proof of Proposition 9.1. First we assume (i) and (ii) hold and demonstrate that
{XRr}rep is a tiling. By Proposition 2.2(ii), ORX(P)y = X(P)yNecl(X(P)y). So
for R € P define %Xy = XgNcl(XRg). Then it follows from (ii) that

ORX(P)ynWp  for PCR,

0 for PZ R. (0.1)

8RX0 me = {

Now (ii), (9.1) and Lemma, 5.4 imply that X g "W p = Ag(1) o(0%XgNW p) for
P C R, which yields . .
Xp=Ar(1)0d%Xy (9.2)

(since by (ii) and (9.1) every point in X r or &% X belongs to W p for some P C R).
The conditions of Definition 2.1 clearly follow from (ii), (9.1), and (9.2).

Now assume that {X g} rep is a tiling ([-invariant since b is). We will construct
the desired I-invariant cylindrical cover W = {W p} pcp by a modification of the
inductive argument in [52, (3.6)]. Namely, totally order the I'-conjugacy classes
of parabolics [P] such that P-rank P < P-rank P’ implies that [P] < [P’]. Then
given a [-conjugacy class [P], assume W ps has been constructed for P’ in all
higher I'-conjugacy classes. Set
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Kp

Il

cl(Ap(bp)) X <€(P) v U CIP(WP’)>~

P/CP
and define Wp = ZP(SP) x Op to be a product neighborhood of K p. _If the
previously constructed collection {W pr }[p/|-[p| is I-invariant, we see that K~p =
~ ~F£, and thus we can assume Wop = ~ _W p. We will prove below the claim
that K p lies in the complement of URZP cl(X r). Then since this latter set is I" p-
invariant, Wp (or even cl(W p)) may likewise be chosen to be in its complement by
Lemma 9.2. If we continue in this fashion, we will have constructed W satisfying
(i) and the second line of (ii). For the first line of (ii) one needs to check that
the decompositions {X g "MW p}rop and {X(P), "W p}rop of Wp agree, which
follows from Proposition 2.4. L

It remains to prove the claim. Note that the W p, satisfy by induction

U Wp/ 2 U CI(YP/). (93)

P'CP P'CP

It follows that K p C cl(X p), which is disjoint from cl(X r) by Proposition 2.2(ii)
unless RN P € P. But in this case the intersection is coitained in CI(YRQP).
Since R 2 P, RN P ¢ P and so this is contained in | Jp,~ p W ps. But such points

have been removed from K p by definition. O

We can now characterize via cylindrical covers those parameters b € BU for
which a tiling exists. Recall that given b we defined normalized functions ap =

ap/bp.

Proposition 9.3. A tiling of X with parameter be Bl ezists if and only if there
exists a I'-invariant cylindrical cover W = {W p}pep of X such that for all P,
P ep,
(i) bp N_Wp,_and
(i) ap(WpNW p)PVE lies in the central tile of AEVE".

In this case, the tiling will be W-adapted.

Proof. If a tiling {YR}Rep exists with parameter b € B‘F7 Proposition 9.1 implies
there exists a I'-invariant distinguished cover W for which it is W-adapted. In
particular,

Xp=J X(P)rnWp. (9.4)

PCR

Conversely, given a I-invariant cylindrical cover W satisfying (i), we may use (9.4)
to define X g. Then Proposition 9.1 shows that this is a tiling if_(ii) is satisfied.
Thus it suffices to show that (ii) is equivalent to (i)’ given that X g is defined as
in (9.4).
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Now (ii) is easily seen to be equivalent (given (9.4)) to

— X(P),NWpNWp  for P,P'CR
X(P), " WpnWp = FlaNWenWe  for £, 2L it (9.5)
0 for PCR,P"ZR.
We claim this is equivalent to
WenWpC [[ X(P) forP,PeP. (9.6)

RDPVP’

For it is clear that the second line of (9.5) is equivalent to (9.6). Now (9.6)
implies that {X(P), N Wpn WP/}RQPVPI is a decomposition of Wp N W p/
satisfying the conditions of Proposition 2.4. Since the same holds true with P and
P’ interchanged, these two tilings must agree by that proposition; in other words,
the first line of (9.5) holds. This proves the claim.

Now assume (9.6) holds. The left-hand side is A py p+(1)-invariant and therefore
contains its projection to e(PV P’). But only the R = PV P’ factor on the right-
hand side intersects e( PV P’). Thus gpy pr(WpNWp) lies in e(PVP )YNX (P)py pr.
The application of ap now yields (ii)’. (Note that we use the identification of
ap(e(PV P") with Agvp/ as in the proof of Proposition 3.7.)

On the other hand, (i)’ and Lemma 3.5 imply that ap(Wp N Wp/)PVPI -

<AP>§¥§ = OPVP'(Ap)g. We find then that

ap(WpNWp) CApyp -7V (Ap)o C H (Ap)r,
ROPVP

where we use Lemma 3.5 again for the last inclusion. This implies (9.6) since
W p N W pr is °P-invariant. O

To prove our final theorem, we will need the above cylindrical covers to have
as few nonempty intersections as possible.

Definition 9.4 (compare with [52, (3.6)]7). A cylindrical cover W of X is said
to be distinguished if

WpNWp =0 for PZ P and P 2 P'. (9.7)
A T-invariant cylindrical cover W is I'-distinguished if

WpNWpr =0 for P £ P and P # P’ (9.8)

7Our notion of I'-distinguished corresponds, after taking quotient by I', to what is called
distinguished in [52]. Our notion of distinguished, on the other hand, appears to be new.
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(We write P < P’ to mean that "P C P’ for some v € T'.)
Remark. A T'-invariant distinguished cover is clearly I'-distinguished. On the

other hand, it is not difficult to show that a I'-distinguished cover W is distin-
guished if and only if

(| J Wp)=Tr  forall ReP, (9.9)
PCR
where
MK)={yeT|yKNK #£0}. (9.10)

In [27, Theorem 1.3.2] and [52, (3.6)], I'-distinguished covers are constructed
such that II(Wg) = I'g for R € P; a priori this is weaker than (9.9). By using the
existence of I'-invariant tilings, however, we can show that distinguished covers
exist:

Proposition 9.5. The I'-invariant cylindrical covers in Propositions 9.1 and 9.3
may be chosen to be distinguished.

Proof. Note that in the inductive construction of Wp_for Proposition 9.1, we ar-
ranged that K p C cl(X p) and that for [P'] > [P], cI(W p/) lies in the complement
of Upzps cl(Xr). Thus Kp is in the complement of

CI(WP/).
Prap, [P>[P]

Since this set is T'p-invariant, the neighborhood W p may likewise be chosen in
its complement by Lemma 9.2. This establishes (9.7) in the case [P'] > [P]. For
the case [P'] = [P], we need to choose W p such that Wp N Wap =0 for v & T'p,
that is, such that II{W p) C T'p. However K p N K~p C cl(Xp) Nel(X+p) =0 by
Proposition 2.2(ii), so II(K p) C I'p. Now (compare [12, §10.3]) let C C K p be
compact such that Kp =I'p - C and let U be a relatively compact neighborhood
of C. Since I' acts properly on X [12, §9.3], the sets I1(C) C II(U) are finite
[14, 111, §4.5]. By shrinking U if necessary, we can assume that [1(C) = II(U). Thus
if we choose W p so that Kp C W p C T'p-U, we have H(Wp) Clp-MU)-Tp =
I'p-1I(C) - T'p CTI'p as desired. |

Theorem 9.6. The subset Bgeg C BY of regular T-invariant parameters is open
and cl(A(1))-invariant. For anyb € Bl,,, there exists a T-invariant distinguished

reg? o
cover W and a neighborhood U of b for which the tilings of X wﬁh parameters
t-b,t eclA(l)) and b € U, are all W-adapted. All tilings of X are analytic

and depend analytically on b.
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Proof. By Propositions 9.3 and 9.5, a parameter b € BT belongs to Bfeg if and
only if there exists a T-invariant distinguished cover W satisfying (i) and (ii)’, and
in this case the tiling is W-adapted. Since the number of I'-conjugacy classes of
parabolics is finite, condition (i) is clearly an open condition. Clearly we may
shrink W and replace (ii)" by

(it)” ap(cl(W p) Nel(W p/))PVF lies in the interior of the central tile of ABVF".

The left-hand set of (ii)"” is compact (since 3, for o € AEVF" is bounded from above
on the central tile and from below on ap(cl(W p))PVF") and depends continuously
on b. We would like to conclude that requiring (ii)” for all P, P’ € P is an open
condition on b, but unfortunately the number of I'-conjugacy classes of pairs of
parabolics (and hence independent conditions in (ii)”) is not necessarily finite.

However it does suffice by I'-invariance to restrict P to belong to a finite set
of representatives of I'-conjugacy classes. Then if P’ C P we may assume by an
application of an element of I'p that P’ belongs to a finite set of representatives
of I' p-conjugacy classes of parabolics in P. If on the other hand P’ € P, we may
by the disjointness property (9.7) of a distinguished cover restrict P’ to the finite
set of parabolics containing P. Thus we obtain an open condition. Consequently
(ii)” remains valid for b’ in a small neighborhood of b, and so b’ € Bll:eg.

If one replaces b by ¢ -b for ¢ € cl(A(1)), the function a5¥F" from (i)’ becomes
multiplied by (tf;vp/)*l. This value belongs to the central tile ofAIP;VP/ by Lem-

ma 3.2, so condition (ii)” remains valid. Clearly (i) remains true, and consequently
Bl is cl(A(1))-invariant.

reg

The final statements are a consequence of adaptedness and the analyticity of
the tiling asssociated to each parabolic (Proposition 4.1). O
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