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The rigidity of CMord torus S1! /Mx S—1

QlNG-MîNG CHENG

Abstract. In this paper, we prove that if M is an «-dimensional closed minimal hypersurface with two
distinct principal curvatures of a unit sphère «Sn+1(l), then S**n and M is a Clifford torus if
n <; S £ n 4- [2n\n 4- 4)/3(«(/i + 4) -f 4)], where S is the squared norm of the second fundamental form
ofM.

1. Introduction

Let M be an w-dimensional closed hypersurface in a unit sphère Sw + 1(l) of
dimension n + 1. Let S dénote the squared norm of the second fundamental form
of Af. It is well-known that Chern, do Carmo and Kobayashi [2] and Lawson [3]
obtained independently that Clifford tori are the only closed minimal hypersurfaces
of the unit sphère with S ~n. When the scalar curvature of M is constant, there are

very nice results on the rigidity of the Clifford torus (see [5] and [6]). On the other
hand, Otsuki[4] studied the converse problem for minimal hypersurfaces in Sn +1( 1).

He proved that if M is a closed minimal hypersurface in Sw+1(l) with two distinct
principal curvatures and the multiplicités of them are at least two, then M is

Sm(*Jmjn) x SH~"m(sJ(n—m)lri) (1 <m <n — 1). But for the case in which one of
the two principal curvatures is simple, he constructed infinitely many minimal
hypersurfaces other than Sl(^fïjn) x SH^1(s/(n - l)/n) which are not congruent to
each other in S*+1(l). When professor K. Shiohama visited China in 1993, he

proposed the following interesting problem:

PROBLEM. LetMbea closed minimal hypersurface inSn + \\) with two distinct

principal curvatures kx and X2 and one of them be simple {we assume kx)> Is there a
constant € «* c(«) such that if \Xt — Alo| < € and \X2 — X20\ < e/0* — 1) then Af is

/ x S*~l(^/(n — j)/m)» where Xm are the corresponding principal curvatures

*The Pmject Supported by NNSFC, CPSF and FECC.
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The rigidity of Clifford torus 61

This problem is équivalent to whether there is constant ô ô(n) > 0 such that if
n-ô<S<n+ô, then Mis S\y/ÎJn) x Sn'\y/(n - \)jn).

In this paper, we consider the problem and give a partial answer.

THEOREM. Let M be an n-dimensional closed minimal hypersurface of a unit
sphère 5W+I(1) with two distinct principal curvatures and one of them be simple.

V

2n2(n+4)n<S<n+--

then S n and M is S\^f\jn) x Sn~lQ(n - l)/«).

COROLLARY. Let M be an n-dimensional closed minimal hypersurface of a
unit sphère 5n+1(l) with two distinct principal curvatures. If

2/î2(h+4)
n <S <n -h

then S n and M is a Clifford torus.

Proof of Corollary. This is obvious from the resuit due to Otsuki and Theorem.

2. Local formulae

Let M be an «-dimensional closed minimal hypersurface in a unit sphère

Sn+l(l). We choose a local orthonormal frame field {*?,,.,.,£„ + ,} in Sn + \l),
restricted to M, so that ex,..., en are tangent to M. Let col,..., con dénote the dual
coframe field on M. The connection form colJ are characterized by the structure

équations

j
d(DtJ + Y, o)lk a œkj Qir (2.1)

£ kj
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where QtJ (resp. RljM) dénotes the curvature form (resp. the components of the

curvature tensor) of M. The second fondamental form a of M is given by

a^EV^A+i and £*„=<>. (2.2)
v «

Since a is a symmetric tensor, htJ hJt. The Gauss équation, Codazzi équation and
Ricci formulas for the second fondamental form and its covariant derivatives are

given by

R«ki (StSj, - ôtlôjk) + {hlkhjt - htlhjk\ (2.3)

Kk=Kkj=hJlky (2.4)

Kjkl — hykl S KmRmjkl + Z ^mj^mikh (2.5)

where A^, AyA:/ and AiyÀr/w are the coefficients of the first, the second and the third
covariant derivatives of the second fondamental form of M, respectively. The

components of the Ricci curvature and the scalar curvature are given by

£****, (2.7)
k

(2.8)

Now we compute some local formulae. For any fixed point p in M, we can choose

a local frame field ex,..., en such that

'°V*J. (2-9)
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The following formulas can be found in [1]. Let

n). (2.10)

l Yl \ (2.11)
ij,k *•

where A 2V,* l2h2ljk and £ IlM ^A^?^.

where/3 Z, Af.

3. Proofs of theorems

At first we give an algebra Lemma which will play a crucial rôle in the proof of
our theorems.

LEMMA. Let atJ and bt {ij 1,..., n) be real numbers satisfying Xlbl=0 and

Zlb2l=b>^ Svb,atJ b(n -b) and Zvb3atJ 0. Then

I al + 3 X al + 3 £ (^ - *?6>v - 3é(/i - 6)

2(/i+4)

f. We consider F S, a2u + 3 E,#y aj + 3 Ejy (è^è, — b2bj)atJ — 3b(n — b) as

a function of atJ. Solve the following problem for the conditional extremum:

3 X a2 + 3

(3.1)
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where A and n are the Lagrange multipliera. It is obvious that the critical point of
/is the minimum point of/ Taking derivatives of/with respect to av, we get

/«„ 6av + Wfb, ~ bfbj) + AZ>, + /iZ>, 0, for i *j, (3.2)

/au=2a1,+AZ>,+^ 0, for/=7. (3.3)

Hence

Z aJau 2 Z a?, + A Z b,an + fi Z b,a,, 0, (3.4)
/ / / i

Z «/.„ =6 Z <»î + 3 ZW - *?*>„+a Z *.a«+/* Z V«=0. (3-5)

Z *A, - 6 £ *,atf + 362 + k £ ftf + |i X ft.6, 0, (3.7)

Z *A 6 Z *,fly -362 + A Z b,bj +aI*;2=0. (3.8)
n'y i#y i*j i*j

(3.4)+(3.5) implies

«5 + 3 Z < + 3 Z (bjb, - 626>,, - 3b(n - 6))

- 3 Z (bfb, - bfb, Xj + A Z b,atJ + n Z *,««, -

Thus

2/mm « 2f£ flî + 3 I aj + 3 £ (*^ - *?*y>iv - 3b(n -

3 Z (bfb, - b*b,)av - 6b(n -b)-kb(n- b). (3.9)
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According to (3.6), we get

(3.10)
i

(3.6)+(3.7)+(3.8)yield

-4 X aub, + 3b2 + 6b(n - b) + nbX 0, (3.11)

l 0. (3.12)

Solving the System of the linear équations (3.10), (3.11) and (3.12) with unknown
X, \i and Htanbn we obtain

and

6(« - b)
+ /l~~(«+4)'

(3.13)

From (3.2) we hâve

-6atJ 3(bfa - bft)

Hence

L L
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From (3.9) and (3.13) and the above equality, we conclude

Thus we complète the proof of Lemma.

Proof of theorem.

Zk*.){h,w + (A, - A, 1 + A,A,)) + 2X k,
k

\ Z

Hence

Aj + (2^ - ^) + S/4 -A - S2] dM,
J

where ^ is defined by /4 £, Af, i.e.,

M L-3 tjjc

f (^ - 25) dM f ïsf4 - S2 -j% - \ \VSf\ dM. (3.15)
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2|h + 3 £ h2lJtJ

I Ku + 3 X ^V + 3[«5 - 252 + S X A? - fe xi)\ (3.16)

Since

S, A, 0 and Zf Af 5 > 0, we hâve

iVi^Sfo-S) and I^y=0. (3.17)

From Ricci formulas, we hâve

^ujj ~ hjjtl (A, — A^Xl -f À,/^).

Note that in view of (3.17) hnJJ and Àt satisfy the conditions of Lemma. Hence we
hâve

+3 X KwhJjn

3 X h2UJJ + 3 X (^, - A?Ay)Aw - 35(/i - 5)

(3.18)

Since M has only two distinct principal curvatures A, and À2 and Aj is simple, we
hâve A, — (n — 1)A2 and

\ (5/4 -/! - 252 + *S)=1 S(S - n)2.
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Thus we get, from (3.16) and the above inequality,

S hlu * 3(5/4 -ft - 25* + nS) -^ ff'. (3.19)

According to (2.10) and (2.11), we obtain

[S(S - «)] dM, (3.20)

Using again (3.20) and the inequality

._ 2n\n+A)

dM.

(3.21)

f £ hlk dM [
JM ij,k JM

f X Hlu dM=[ \ - (2« + 3 - S) X AJ* - 3(25 -
JM ij,kj JM L ijJc

From (3.15), (3.19), (3.20) and (3.21), we infer

L {{2n -S) S *- -î |psp-^frf }àM £ °- <322>

From (2.10), we get

~ f \ I^P [ \s X h%k + (n - S)S2] dM. (3.23)

(3.22) and (3.23) yield
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we have

0 > [ \(ln + £)x K* + (S - ri) £ hjjk

}

Hence

ijk
Since S and Y*ljkh2ljk are contmuous functions, we have S n Thus from the

assumption of Theorem, M îs Sl(y/ÏJn) x Sn~1(y/(n — l)/n) aœordmg to a resuit
due to Chern, do Carmo and Kobayashi [2] or Lawson [3] We complète the proof
of Theorem
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