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À Kleinian group with contractible quotient not simply connected at
infinity

Daryl Cooper* and Darren Long**

Abstract We give an example of a co-compact Kleinian group F which contains a subgroup Fo havmg
the property that H3/r0 îs contractible but not simply connected at mfinity

1. Introduction

The purpose of this article îs to prove the following theorem

THEOREM 1 1 There is a hyperbolie 3-orbifold X homeomorphic to a
contractible 3-manifold without boundary that is not simply connected at infinity The

singular locus of the orbifold X is a circle at which the cône angle is n Furthermore
X is an orbifold covermg of a closed hyperbohe orbifold X which is homeomorphic to
S3 and the singular locus of X is a hnk of two components at which the cône angle is

n

We recall that a hyperbohe 3-orbifold is the quotient of H3 by a discrète group of
hyperbohe isometries The theorem may thus be reformulated as

REFORMULATION There is a co-compact Kleinian group F which contains
an infinitely generated subgroup Fo having the property that H3/r0 is contractible but
not simply connected at infinity There are two conjugacy classes of torsion élément in
F and each has order two

This resuit is perhaps somewhat surpnsing Of course Thurston [Th2] has
shown that many closed 3-manifolds hâve hyperbohe structures Furthermore, the
fact that there is a universal hyerbohe lmk [Th3, HLM] implies that every closed
orientable 3-manifold has a hyperbohe orbifold structure However such gênerai
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42 DARYL COOPER AND DARREN LONG

results do not seem to predict the existence of an example of this type. The orbifold
X is an irregular orbifold covering of a closed hyperbolic orbifold X which is S3

with a singular locus the link of two components shown in Fig. 1. The cône angle
around each component is n. It is an unresolved question whether a closed

3-manifold can be covered by a contractible manifold other than Euclidean space.

However, it has been shown that many contractible manifolds cannot do this [My,
Wr]. Our examples shows that this can almost happen in the sensé that the closed

orbifold X has such an orbifold cover. Perhaps the most surprising feature of our
example is that we could prove that is exists at ail. It will be seen in the construction
that several fortuitous accidents combine to enable the construction to succeed. For
a more gênerai définition of orbifold, see [Mo]. The authors thank the référée for
finding errors in the original proof of 1.2(2) and for other helpful comments.

Figure 1
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Figure 2

Let rx and F2 be the pair of graphs embedded in S3 shown in Fig. 2. Each graph
is homeomorphic to the graph shown in Fig. 3, which we call a theta-curve. We will
dénote by M the compact 3-manifold S3 — int(Nx u N2) where Nt is a regular
neighborhood of Ft. Thus SMconsists of two genus 2 surfaces dtM ôNn for / 1,

2. The proof of the theorem dépends on the following technical resuit the proof of
which is deferred to section 2.

PROPOSITION 1.2.

(1) M has incompressible boundary.
(2) 7r,(M) contains no ZxZ subgroup.

(3) Every properly embedded annulus A in M is isotopic rel dA into ÔM.

(4) M contains no essential 2-sphere.

There is an involution x of S3 given by rotation around the circle C shown in
Fig. 4 which exchanges Fl and F2. The restriction of this to M gives an involution,
also called t, of M which exchanges the boundary components of M.

Let (j>: dxM->dxM be a diffeomorphism with (j>2 the central élément in the

mapping class group of ê{ M and such that </> exchanges the un-oriented meridians
of T, with the un-oriented longitudes. To be précise we require that (f>(llt) m] and
<t>(m)) l)~x for / 1, 2, where m\,ml2 are the meridians of F, and l\, l\ are the
longitudes of Tx shown in Fig. 5. Similarly we define meridians m2um\ and the
longitudes l2, l\ of F2 to be the images under t of the corresponding loops for Tx.

Figure 3
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Figure 4

To see that such <j> exists, consider the genus 2 surface 5, M as the union of two
punctured tori. A punctured torus is a punctured square with opposite sides

identified. A quarter rotation of the square gives an order 4 symmetry of the

punctured torus, see Fig. 6. Then $ is the map of bx M which restricts to the above

map on each punctured torus.
Take 2 copies of M which are denoted by M and h(M) where h: M -? h(M) is

a diffeomorphism. Define an involution f on the disjoint union of M and h(M) by

f | M t and f | h(M) =hxh~l. Now construct a closed 3-manifold N by identify-
ing the boundary of M with the boundary of h(M) as follows. Identify dxM with
h(d{M) via 0, /z<£. Identify d2M with h(ô2M) via $2 rh^f. Then the involution
f passes to the quotient to give a well defined involution, also denoted f, of N. See

Fig. 7.

Then proposition 1.2 implies that N is Haken. Suppose that ^JV contains a
Z x Z subgroup. The Torus theorem implies that N contains an essential torus T,

Figure 5
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Figure 6

by 1.2(2) T cannot be isotoped into either copy of M. Thus TnM contains an
essential non-boundary parallel annulus which is impossible by 1.2(3). Thus AT

contains no Z x Z subgroup. Thus Thurston's uniformization theorem implies that
N has a hyperbolic structure. It follows from Mostow rigidity that f is homotopic
to an isometry of N. A complète proof of Thurston's Uniformization theorem has

been published by McMullen [McMl, McM2]. In fact it can can be shown that TV

does not fiber over the circle, and so the particular case of the uniformization
theorem which we appeal to is Haken manifolds that don't fiber.

If we knew that f was conjugate to an isometry by a diffeomorphism isotopic to
the identity then we could conclude that Njï was a hyperbolic orbifold. Instead we

argue as follows. The involution, f of JVhas 1 dimensional fixed locus CuA(C), and

Figure 7
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so by Thurston's Orbifold Theorem [Th, Ho], the quotient has a géométrie
décomposition. However since the 2-fold orbifold (branched) cover gives TV back,
the quotient Njï must in fact be a hyperbolic orbifold. Set X Njï, a closed,
orientable, hyperbolic orbifold.

The référée has pointed out that we may avoid appealing to the Orbifold
Theorem as follows. By a resuit of Tollefson [To] two involutions of a Haken
3-manifold that are homotopic are in fact conjugate by a diffeomorphism isotopic
to the identity provided that the manifold is not a Seifert fiber space and Hl (M) is

infinité. We may apply this to the manifold N and to f and the isometry provided
by Mostow rigidity.

Now Z (M/t)(J<?] h{MJT) identified along 8(M/t) by the map

which is covered by 0,. Let n: N -*Nj% be the projection; we will also use n for the
restriction n\M-*M\x, Now N\x is S3, and Fig. 8 shows %(TX) n(r2) and n(C).
The graph it(rx) is easily seen to be isotopic in S3 to an un-knotted thêta curve,
thus n(M) S3 — N(nr{) is a genus 2 handlebody H. The branch locus n(C) is

shown in a standard handlebody in Fig. 9. The following resuit is crucial to our
construction, and appears to be a fortuitous accident:

LEMMA 1.3. n(l\) and n(l2) bound dises in H.

Proof. We sketch two proofs. First the curves n(l\) and n(ll2) are shown in
H S3 — N(nr{) in Fig. 10. A little manipulation shows that thèse curves are
unlinked from n(r{) and are unknotted. The second proof is to calculate the (free)
homotopy classes oî l\J\. One then adds the relations which identify an élément of

r
C

v i

j
Figure 8
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Figure 9

nx{M) with its image under t^ and checks that l\yl\ are killed by this. This
calculation is shown in Fig. 11 where we hâve made the identifications induced by

t+ writing down the Wirtinger présentation of nx (M). Thus 7c(/J), n{l\) are simple
closed curves in the boundary of the handlebody H which are inessential in H and
thus bound dises in H. D

«dp

r—)

1

<

1

j

Figure 10
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Figure 11

The curves n(m\)9 7i(m2) are longitudes of H, and it follows from (1.3) that Xis
topologically S3 since the handlebodies M\x and h{M\i) are glued together by
identifying meridians to longitudes via §x. As a hyperbolic orbifold, /f contains a

singular locus, a topological circle, with cône angle n, shown in Fig. 8 and also in

Fig. 9. Thus X has singular locus a link of 2 components C\ u C2 each with a cône
angle of n, this link is shown in Fig. 1. The linking number of Cx with C2 is zéro,
in fact since Cx bounds a Seifert surface in i/, we see that Cx u C2 is a boundary link
in S3. Thus there is a homomorphism from nx(S3 - (Cx uC2)) onto the free group
of rank 2. This in turn maps onto Z2 * Z2 where the meridians of Cx and C2 map
to the generators of order 2 in Z2*Z2. This détermines a homomorphism
G -? Z2 * Z2 where G is the orbifold fundamental group of X. Now let X be the

irregular orbifold covering space of X corresponding to the subgroup <a, > of order
2 in Z2 * Z2 generated by the meridian a, of C,. Thus X is a hyperbolic orbifold.

LEMMA 1.4. Denoting the normal closure by (- }N we hâve:

(1) /} and l\ are trivial in niMI(m\9 m\yN.
(2) /? and l\ are trivial in %xMl(m\y m^)^.

Proof. Referring to Figs. 2 and 5, the manifold obtained from M by filling in
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h(M) M h(M) M

Figure 12

N(F2) is seen to be a handlebody in which /}, l2 bound dises. From this it follows
that after attaching 2-handles to dxM along meridians m2um\ that l\J\ bound
dises, this proves (1). Applying the involution t of M proves (2).

Proofof Theorem. The orbifold X is obtained by glueing copies of M to a single

copy of H using </)x and (f)2 to do the glueing, as shown in Fig. 12. We calculate the

topological (not orbifold) fondamental group nx(X) by applying Van Kampen's
theorem to this décomposition to show that X is simply connected. For each

positive integer n let Mn be a copy of M and let Hn dénote the union of H and the
first n copies of M with boundaries identified appropriately. Then X is the union of
the increasing family of submanifolds Hn. The boundary dHn is a component of
Mn, a genus two surface with copies /", l2 of lu l2 marked on it.

Note that H is attached to Mx by the map <px which identifies the longitudes
7r/î, nl2 in H with m\9m2 in M, but ni], nl2 are trivial in nx{H) by the lemma 1.3,

and so m\,m\ are trivial in nx(HKj(f)]M). By lemma 1.4, Ï\>1\ are trivial in
nx(H u^ M), and thèse are identified by (j)2x to m\9 m\ in the second copy of M
in X. Thus thèse loops are trivial in nx(H u^Mu^i M). Continuing in this way,
we see that nx(X) is trivial. A detailed argument will now be given.

We claim that Hn is a handlebody and that /", l2 bound dises in Hn. Indeed
Lemma (1.3) implies this for the case that n 0. Suppose inductively this is true for
Hn then since l", l2 bound dises in Hn it follows that Hn+, is obtained from Mn + X

by attaching 2-handles to Mn + X along the curves m"+1,m2 + 1 in ôMn + x to which
/", l2 are identified. One then caps off the resulting two-sphere boundary component
with a 3-handle to obtain Hn + X. This proves the claim.

Thus there is a homeomorphism 6: Hn + X
-+S3 — int[N(rx)] taking Hn to N(F2)

and taking Mw + 1 onto S3 - int[N(rx) uiV(r2)]. We show below that the map
induced by inclusion

has infinité cyclic image contained in the commutator subgroup of nx(Hn + x). It
follows from this that (/„ +

<> /J^ 0 and thus that X is simply connected.
Since Hn is a handlebody in which /", l2 bound dises it follows that nx(Hn) is

freely generated by the copies m"9m2 of mx,m2 on dHn. Thèse are identified to
copies of /,, l2 on dMn + x. Now 9(mnx)9 6{mn2) are /?, l22 (recall the identification of
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ôHn with a component of dMn+x swaps meridians and longitudes.) Referring to
Figs. 2 and 5 (with t applied which relabels T, as T2), one sees that the loops /?, l\
in S3 - N(TX) are both homotopic rel basepoint to the loop E shown in Fig. 4. One
also sees that E is homologically unlinked from Fx and thus lies in the commutator
subgroup of nx(S3 - N(rx)). This proves the claim and complètes the proof that X
is simply connected.

We next show that nx(X-int{H)) is not finitely generated. Now X-int{H) is

obtained by glueing copies of M together using the maps ^, 02. M has incompressible

boundary, and it is clear that incU: nx(dxM)^>nx(M) isjiot surjective, other-
wise it would be an isomorphism. This proves the claim. If X is simply connected

at infinity then there is an open set U disjoint from the compact set H and which
has compact complément and such that nx(U) maps to zéro innx(X-H). Thus

ni (X — H) is the image of nx of some compact submanifold of X — int(H), and is

thus finitely generated, a contradiction.

2. Proof of 1.2

We now turn to proving proposition 1.2 We will consider a particular 2-fold
branched convering p: S3 «? S3 branched over the circle E contained in F2 shown in
Fig. 4. The restriction of p to M—p~l{M) gives an unbranched 2-fold cover

p:M-+M. Set f, =p-l(rt) and Nt =p~l(Nt) then Nt is a regular neighborhood of
Tt and the graphs f, embedded in S3 are shown in Fig. 13. Now N2 is a genus-3

handlebody and Nx is the disjoint union of genus-2 handlebodies. The two

n

7
U

plY
U

V
A

\

/
V
/\\

Figure 13



A Kleinian group with contractible quotient 51

Figure 14

components of ôx M will be denoted by Gx and G2, each of which is a closed genus-2
surface. Note that M S3 - int(Nx uN2).

LEMMA 2.1. MuN2 is diffeomorphic to Gx x /.

Proof. Slide Tx around to obtain the configuration in Fig. 14, which clearly
gives G] x I.

From the lemma we see that nx(Gx) injects into nx(MuN2) under the map
induced by inclusion, and therefore also injects into nx{M). Since dx M lifts to Gx in
M, it follows that nx{dxM) injects into nx{M). Thus dxM is incompressible, and by
using the involution t of M, one sees that d2M is also incompressible, proving
1.2(1).

If M contains an essential 2-sphere S then S must separate F, from F2 otherwise

by the Schônflies theorem S would bound a bail. Now S lifts to a 2-sphere S in M
which séparâtes F, from F2. However inspection of Fig. 13 reveals that each

component of F, and f2 are algebraically linked in S3 thus S cannot separate them.
This proves S cannot exist, establishing 1.2(4).

Consider the sphère S in S3 shown in Fig. 20, which meets (Fx uf2) in 4 points.
Then S séparâtes S3 into two closed balls Bx and B2 and S may be chosen so that

t exchanges thèse balls. We may arrange that S meets N(FX uf2) standardly in 4

dises, each of which contains one pont of (Fx uf2). Set S_ M nS, a 4-punctured
sphère, Qt MnB, for i 1, 2. Then S_ 5g, nôQ2.

LEMMA 2.2. S_ is incompressible in both Qx and Q2.

Proof. Suppose D is a properly embedded dise in Qx with ôD c S_. Then D
séparâtes Bx into two balls and if D compresses S_ then F, must lie on one side of
D and F2 on the other side of D. Thus nx(Qx) splits as a free product. Now there
is a loop y in a neighborhood of F2 which is a commutator of meridians in Fx and
F2. Thus y lies on the same side of D as F2 but such a commutator cannot be disjoint
from D. Thus there is no compressing dise for S_. Since S_ is incompressible in Qx,

applying the involution r we see that S_ is also incompressible in Q2. D
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LEMMA 2.3. Qx is a genns-3 handlebody.

Proof. Qx is the complément in S3 of an open regular neighborhood of the
graph in S3 shown in Fig. 21. By sliding this graph, one obtains the graph in Fig.
22, the complément of which is clearly a genus-3 handlebody.

Now suppose that M contains an essential torus T. Then we may assume T is

transverse to S_ and has the least possible number of circles of intersection with

ys?^ 7\ 7\
^f-^r~i / y \H_i u ¦ "x—^

K h
/ y \

Y'

Figure 15(a)-(c)
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Figure 15 (d-f)
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Figure 15(g)

5_. Since S__ is incompressible it follows that every circle of intersection is essential

in T. Since a handlebody contains no essential torus, by (2.3) T must hâve

non-empty intersection with S_, Thus S_ séparâtes T into components each of
which is an annulus and none of thèse annuli can be isotoped rel boundary into S_.
Let A be such an annulus properly embedded in Qx with boundary dA =a,ua2 two
disjoint circles in the four punctured sphère S_. Thèse circles are essential in S_.
They cannot be isotopic in S_ because this would give a torus K consisting of the
union of A and an annulus in S_. But Qx is a handlebody so AT compresses and thus
A can be isotoped into S_ a contradiction.

Figure 16
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Now ocx is a simple closed curve on the 4 punctured sphère S_ and if ax has 2

punctures on either side then since a! a2 in HX(QX) one sees that a2 must also hâve
2 punctures on either side. But since vlx and a2 are disjoint this means that they are

isotopic, a contradiction. It follows that <xx has one puncture on one side and 3

punctures on the other side. Again considering HX(QX) one sees that a2 must also
hâve one punctured on one side and that there are only two possibilities for ax, a2

up to isotopy. Either they are the two meridians of Fx on S_ or they are the two
meridians of F2 on S_. Referring to Fig. 20 we see that the first case is possible,
there is an annulus in a neighborhood of Fx in Qx. However the second case is

impossible. One way to see this is to observe that the annulus provides a free

homotopy in Qx between the two meridians of F2 on S_. One calculâtes thèse two

Comportent of fl

Figure 18
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meridians using the Wirtinger présentation and since it\Q\ is a free group the fact
that thèse two éléments are not conjugate is visible.

It follows that every component of TnS^. is a meridian of f, but using the

involution t the above analysis applied to Q2 implies that thèse curves must also be

meridians of F2 and so jfnSL is empty, a contradiction. This proves 1.2(2)

Suppose now that M contains a properly embedded non-boundary parallel
annulus À. Using the involution t we may assume that À meets dxM. Then p~l(A)
consists of either one or two components each of which is a non-boundary parallel
annulus properly embedded in M. Choose a component À o{p~x(À), and note that

Figure 20
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Figure 21

A meets djAf. The covering p:M~+M is regular and so there is a covering
transformation exchanging Gx and G2. Thus we may assume that a boundary
component of A lies in Gx. The boundary of A consists of 2 disjoint essential simple
closed curves, y, (5 in 5Af and we label them so that y lies in Gx. We will now
distinguish 3 cases, according to whether the second boundary component Ô of A
lies in gu G2 or d2M*

First suppose that ô is contained in G2. By lemma 2A, MkjN2-Gxx I and we

may do an ambient isotopy of Gx x / so that A 7 x / is vertical in G1! x /, where

y is some essential simple closed curve in Gx. The image of F2 under this isotopy
must be disjoint from y x /. Let Y be the graph in G, x / shown in Fig. 15(g)> and

px : G{ x I -» Gï be projection onto the first factor.

LEMMA 2.4. & conjugae to Punx{f2) in nx{Gx).

Proof. This is done in the séquence of figures 15(a) to 15(g). First, F2 is

homotoped from the position in Fig. 13 to that in Fig. 15(a)> Now observe that
there are 2 distinct loops in T2 which are homotopic to each other in Gj x /. Let Y'
be the graph in Gx x / shown in Fig. 15(b). Then puîtx(Yf) -px*nx(r2)> Perform

Figure 22
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the séquence of homotopies of Y in G, x / shown in Figs. 15(c) to 15(g) to
transform Y into Y.

pie graph F shown in Fig. 15(g) lies in a regular neighborhood of a component
of Tj. The image of Y and Gx under the projection px is shown in Fig. 16.

Topologically F is a wedge of two circles, the projection of which are the two loops
a, P in Gx shown in Fig. 16. The vertex of Y projects to the point v in Fig. 16 on
the intersection of a and /?. Thus px(f2) contains 2 loops which are homotopic to
the 2 loops a and p in Gx shown in Fig. 16. The loops a and P fill Gx and so cannot
be homotoped to be disjoint from any essential closed curve such as y. This
contradicts the disjointness of A and F2, proving that no annulus A can exist in this
case.

The next case that we consider is that à is contained in G,. Since

MkjN2 Gx x /, there is an annulus A' in Gx with the same boundary as A. It
follows that the torus Au A' bounds a solid torus T in G, x / on one side. We may
perforai an isotopy of Gt x / so that T A' x [0, 1/2]. If T contains F2 then y x /
is an essential annulus disjoint from F which cannot exist by the previous case.

Otherwise if T does not contain F2 then T is a solid torus in M and so A is

boundary parallel in M. But this implies that A is boundary parallel in M, a

contradiction.
The last case is that ô is contained in d2M.

LEMMA 2.5. y is isotopic in Gx to the curve labelled oc in Fig. 16.

Proof. We first observe that ô is an essential Gx x / and that ô can be

homotoped in Gx x / into F2, and thus homotoped into an essential loop in Y. It
follows thatpxô is freely homotopic into/?!(F). Let v be the point in Gx, shown in

Fig. 16, which is the image under/?, of the vertex in the graph Y. We claim that the

only non-trivial élément of Pu7tx(Y) which is homotopic to an essential simple
closed curve is a±!. To see this, let n: Gx ->£, be the covering of Gx corresponding
to the subgrouppXmnx(Y) of nx(Gx). Then Gx is a punctured torus, on which there

are unique lifts a, P of a, p. Now a, P intersect in a single point lying over v as

shown in Fig. 18. Also y is homotopic to pxô and therefore lifts to a loop y on Gx.

If y cannot be homotoped in G, into a, then y runs around p and intersects other

components of n~\P) because P has an essential self-intersection on G,, and
therefore y intersects other components of n~l(y). But this contradicts the simplicity
of y and proves the lemma.

We hâve shown that y is isotopic in G, to a and thus the boundary component
of A on ô,M is isotopic to s =p(ot). By tracing the loop a back through the Figs.

15(g) to 15(a), we see that a is homotopic in G, x / to the loop p~\E) shown in
Fig. 17. Thus a is homotopic in Gx to the loop labelled a in Fig. 17. Hence s =/?(a)
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is homotopic in dMl to the loop labelled e in Fig. 19. Applying the involution t
we see that the other boundary component of A must be isotopic in d2M to te.
From Fig. 19 one sees that s is contractible in MkjNx and hence that T£ is

contractible in MuN2. The annulus A provides a free homotopy from e to te, and
thus e is contractible in MuN2 also. We compute the homotopy class

[e] enl(MuN2) from Fig. 19, and see that it is non-trivial. This contradicts the
existence of the annulus A in this last case, and proves 1.2(3), completing the proof
of the proposition.
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