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A Kleinian group with contractible quotient not simply connected at
infinity ,

DARYL COOPER* AND DARREN LONG**

Abstract. We give an example of a co-compact Kleinian group I' which contains a subgroup I'y having
the property that H*/T'y is contractible but not simply connected at infinity.

1. Introduction
The purpose of this article is to prove the following theorem:

THEOREM 1.1. There is a hyperbolic 3-orbifold X homeomorphic to a con-
tractible 3-manifold without boundary that is not simply connected at infinity. The
singular locus of the orbifold X is a circle at which the cone angle is m. Furthermore
X is an orbifold covering of a closed hyperbolic orbifold X which is homeomorphic to
S* and the singular locus of X is a link of two components at which the cone angle is
.

We recall that a hyperbolic 3-orbifold is the quotient of H? by a discrete group of
hyperbolic isometries. The theorem may thus be reformulated as:

REFORMULATION. There is a co-compact Kleinian group I' which contains
an infinitely generated subgroup Ty having the property that H*|T,, is contractible but
not simply connected at infinity. There are two conjugacy classes of torsion element in
I' and each has order two.

This result is perhaps somewhat surprising. Of course Thurston [Th2] has
shown that many closed 3-manifolds have hyperbolic structures. Furthermore, the
fact that there is a universal hyerbolic link [Th3, HLM] implies that every closed
orientable 3-manifold has a hyperbolic orbifold structure. However such general
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42 DARYL COOPER AND DARREN LONG

results do not seem to predict the existence of an example of this type. The orbifold
X is an irregular orbifold covering of a closed hyperbolic orbifold X which is S3
with a singular locus the link of two components shown in Fig. 1. The cone angle
around each component is n. It is an unresolved question whether a closed
3-manifold can be covered by a contractible manifold other than Euclidean space.
However, it has been shown that many contractible manifolds cannot do this [My,
Wr]. Our examples shows that this can almost happen in the sense that the closed
orbifold X has such an orbifold cover. Perhaps the most surprising feature of our
example is that we could prove that is exists at all. It will be seen in the construction
that several fortuitous accidents combine to enable the construction to succeed. For
a more general definition of orbifold, see [Mo]. The authors thank the referee for
finding errors in the original proof of 1.2(2) and for other helpful comments.

N
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Let I', and I', be the pair of graphs embedded in S shown in Fig. 2. Each graph
is homeomorphic to the graph shown in Fig. 3, which we call a theta-curve. We will
denote by M the compact 3-manifold S —int(N, UN,) where N, is a regular
neighborhood of I';. Thus dM consists of two genus 2 surfaces 6,M = 0N,, fori =1,
2. The proof of the theorem depends on the following technical result the proof of
which is deferred to section 2.

PROPOSITION 1.2.

(1) M has incompressible boundary.

(2) m,(M) contains no Z x Z subgroup.

(3) Every properly embedded annulus A in M is isotopic rel 0A into OM.
(4) M contains no essential 2-sphere.

There is an involution 7 of S* given by rotation around the circle C shown in
Fig. 4 which exchanges I'; and I',. The restriction of this to M gives an involution,
also called 1, of M which exchanges the boundary components of M.

Let ¢:3,M — 3, M be a diffecomorphism with ¢? the central element in the
mapping class group of d, M and such that ¢ exchanges the un-oriented meridians
of I'; with the un-oriented longitudes. To be precise we require that ¢(/!) = m! and
¢(m)) =1"" for i =1, 2, where m!, m} are the meridians of I', and /!, I} are the
longitudes of I', shown in Fig. 5. Similarly we define meridians m?, m2 and the
longitudes /3, I3 of I', to be the images under 7 of the corresponding loops for I';.

Figure 3
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Figure 4

To see that such ¢ exists, consider the genus 2 surface d, M as the union of two
punctured tori. A punctured torus is a punctured square with opposite sides
identified. A quarter rotation of the square gives an order 4 symmetry of the
punctured torus, see Fig. 6. Then ¢ is the map of 0, M which restricts to the above
map on each punctured torus.

Take 2 copies of M which are denoted by M and A(M) where h: M — h(M) is
a diffeomorphism. Define an involution 7 on the disjoint union of M and A(M) by
T|M =t and T |h(M) = hth~'. Now construct a closed 3-manifold N by identify-
ing the boundary of M with the boundary of A(M) as follows. Identify 0, M with
h(0, M) via ¢, = h¢. Identify 9, M with h(0, M) via ¢, = Th¢t. Then the involution
7 passes to the quotient to give a well defined involution, also denoted 7, of N. See
Fig. 7.

Then proposition 1.2 implies that N is Haken. Suppose that 7; N contains a
Z x Z subgroup. The Torus theorem implies that N contains an essential torus 7,

N \J
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A
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Figure 5
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Figure 6

by 1.2(2) T cannot be isotoped into either copy of M. Thus T n M contains an
essential non-boundary parallel annulus which is impossible by 1.2(3). Thus N
contains no Z x Z subgroup. Thus Thurston’s uniformization theorem implies that
N has a hyperbolic structure. It follows from Mostow rigidity that 7 is homotopic
to an isometry of N. A complete proof of Thurston’s Uniformization theorem has
been published by McMullen [McM1, McM2]. In fact it can can be shown that N
does not fiber over the circle, and so the particular case of the uniformization
theorem which we appeal to is Haken manifolds that don’t fiber.

If we knew that T was comjugate to an isometry by a diffeomorphism isotopic to
the identity then we could conclude that N/T was a hyperbolic orbifold. Instead we
argue as follows. The involution, T of N has 1 dimensional fixed locus C U A(C), and

¢, =htét
aM

B(3M)

b
M - > h(M)

t heh!

3M b@M)

¢ = ho

Figure 7
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so by Thurston’s Orbifold Theorem [Th, Ho], the quotient has a geometric
decomposition. However since the 2-fold orbifold (branched) cover gives N back,
the quotient N/T must in fact be a hyperbolic orbifold. Set X = N/7, a closed,
orientable, hyperbolic orbifold.

The referee has pointed out that we may avoid appealing to the Orbifold
Theorem as follows. By a result of Tollefson [To] two involutions of a Haken
3-manifold that are homotopic are in fact conjugate by a diffeomorphism isotopic
to the identity provided that the manifold is not a Seifert fiber space and H,(M) is
infinite. We may apply this to the manifold N and to 7 and the isometry provided
by Mostow rigidity.

Now X = (M /1) )5, h(M]7) identified along d(M/z) by the map
¢, : A(M 1) — d(h(M [7))

which is covered by ¢,. Let n: N — N/1 be the projection; we will also use 7 for the
restriction n: M — M/t. Now N/t is S3, and Fig. 8 shows n(I';) = n(I',) and n(C).
The graph n(I',) is easily seen to be isotopic in S to an un-knotted theta curve,
thus n(M) = S*> — N(nT,) is a genus 2 handlebody H. The branch locus n(C) is
shown in a standard handlebody in Fig. 9. The following result is crucial to our
construction, and appears to be a fortuitous accident:

LEMMA 1.3. n(!}) and n(l}) bound discs in H.

Proof. We sketch two proofs. First the curves n(/!) and =(/}) are shown in
H = 83— N(arI';) in Fig. 10. A little manipulation shows that these curves are
unlinked from #(I';) and are unknotted. The second proof is to calculate the (free)
homotopy classes of /}, /3. One then adds the relations which identify an element of

Iy

i ~ N

</_—%6 ®(C) = Cone locus

— e

C ) )

Figure 8
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Figure 9

m (M) with its image under 7, and checks that /i, /) are killed by this. This
calculation is shown in Fig. 11 where we have made the identifications induced by
1, writing down the Wirtinger presentation of n;(M). Thus =n(l}), n(/}) are simple
closed curves in the boundary of the handlebody H which are inessential in H and

thus bound discs in H. O
1
T ——— { )
L 1 i M J
(T)
L - { ‘ } N
_ | I [
(1)
ﬂ(ll) ~ —k
\

Figure 10
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The curves n(m}), n(m)) are longitudes of H, and it follows from (1.3) that X is
topologically S> since the handlebodies M/t and A(M /1) are glued together by
identifying meridians to longitudes via ¢,. As a hyperbolic orbifold, H contains a
singular locus, a topological circle, with cone angle 7, shown in Fig. 8 and also in
Fig. 9. Thus X has singular locus a link of 2 components C, L C, each with a cone
angle of =, this link is shown in Fig. 1. The linking number of C, with C, is zero,
in fact since C, bounds a Seifert surface in H, we see that C, u C, is a boundary link
in S>. Thus there is a homomorphism from =, (S* — (C, u C,)) onto the free group
of rank 2. This in turn maps onto Z, « Z, where the meridians of C, and C, map
to the generators of order 2 in Z,* Z,. This determines a homomorphism
G - Z,» Z, where G is the orbifold fundamental group of X. Now let X be the
irregular orbifold covering space of X corresponding to the subgroup {«, > of order
2 in Z, » Z, generated by the meridian o, of C,. Thus Xisa hyperbolic orbifold.

LEMMA 1.4. Denoting the normal closure by { - >y we have:
(1) Band 1} are trivial in 7, M[{m3, m3) .
(2) 2 and 12 are trivial in n,M[{m} , m}>.

Proof. Referring to Figs. 2 and 5, the manifold obtained from M by filling in
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N(I",) is seen to be a handlebody in which /}, /; bound discs. From this it follows
that after attaching 2-handles to 8, M along meridians m?, m3 that [}, ) bound
discs, this proves (1). Applying the involution 7 of M proves (2). O

Proof of Theorem. The orbifold X is obtained by glueing copies of M to a single
copy of H using ¢, and ¢, to do the glueing, as shown in Fig. 12. We calculate the
topological (not orbifold) fundamental group =, ()f’ ) by applying Van Kampen’s
theorem to this decomposition to show that X is simply connected. For each
positive integer n let M, be a copy of M and let H, denote the union of H and the
first n copies of M with boundaries identified appropriately. Then X is the union of
the increasing family of submanifolds H,. The boundary 0H, is a component of
M,, a genus two surface with copies /7, [5 of /,, [, marked on it.

Note that H is attached to M, by the map ¢, which identifies the longitudes
nl?, nl3 in H with m}, m} in M, but nl/?, n/2 are trivial in =, (H) by the lemma 1.3,
and so mj, m} are trivial in n,(H U4 M). By lemma 1.4, 2,12 are trivial in
m(H vy, M), and these are identified by ¢5' to m}, m} in the second copy of M
in X. Thus these loops are trivial in 7, (H v, MU, -1 M). Continuing in this way,
we see that nl(X ) is trivial. A detailed argument will now be given.

We claim that H, is a handlebody and that /7§, /3 bound discs in H,. Indeed
Lemma (1.3) implies this for the case that n = 0. Suppose inductively this is true for
H, then since /%, I3 bound discs in H,, it follows that H,_ , is obtained from M, ,
by attaching 2-handles to M, ., along the curves m}*', m5*! in M, , to which
I1, 15 are identified. One then caps off the resulting two-sphere boundary component
with a 3-handle to obtain H,_,. This proves the claim.

Thus there is a homeomorphism 6: H, = S> — int[N(T";)] taking H, to N(T',)
and taking M, ., onto S*—int[N(I',) uN(I;)]. We show below that the map
induced by inclusion

(in) g 1 (H,) = 1y (H, 4 1)

has infinite cyclic image contained in the commutator subgroup of mn;(H,,,). It
follows from this that (i, ; o i,), =0 and thus that X is simply connected.

Since H, is a handlebody in whlch I7, 13 bound discs it follows that =, (H,) is
freely generated by the copies m7, m} of m,, m, on 0H,. These are identified to
copies of /,, 1, on M, ,,. Now O(m?), 6(m3) are I3, I3 (recall the identification of
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O0H, with a component of dM, , swaps meridians and longitudes.) Referring to
Figs. 2 and 5 (with t applied which relabels I'; as I',), one sees that the loops /2, /3
in §3 — N(T',) are both homotopic rel basepoint to the loop E shown in Fig. 4. One
also sees that E is homologically unlinked from I'; and thus lies in the commutator
subgroup of n,(S* — N(I'})). This proves the claim and completes the proof that X
is simply connected.

We next show that =, (A~’ — int(H)) is not finitely generated. Now X-— int(H) is
obtained by glueing copies of M together using the maps ¢,, ¢,. M has incompress-
ible boundary, and it is clear that incls: n,(6, M) - n;(M) is not surjective, other-
wise it would be an isomorphism. This proves the claim. If Xis simply connected
at infinity then there is an open set U disjoint from the compact set H and which
has _compact complement and such that =,(U) maps to zero in n,(X H). Thus
T, (X H) is the image of ©, of some compact submanifold of X— int(H), and is
thus finitely generated, a contradiction. WL

2. Proof of 1.2

We now turn to proving proposition 1.2 We will consider a particular 2-fold
branched convering p: S*>— S* branched over the circle E contained in I', shown in
Flg 4. The restnctlon of p to M= =p~ (M) glves an unbranched 2-fold cover
p: M- M. Set T; =p~!(I';) and N, =p~\(N,) then N, is a regular neighborhood of
T'; and the graphs I', embedded in S* are shown in Fig. 13. Now N, is a genus-3
handlebody and N1 is the disjoint union of genus-2 handlebodies. The two

=1
52

[ —
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\ JL \____lﬁ

Figure 13
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Figure 14

components of 0, M will be denoted by G, and G,, each of which is a closed genus-2
surface. Note that M = S® — int(N, UN,).

LEMMA 2.1. M uN2 is diffeomorphic to G, x L.

Proof. Slide T', around to obtain the configuration in Fig. 14, which clearly
gives G, x L. O

From the lemma we see that n,(G,) injects into n,(ﬂ uﬁz) under the map
induced by inclusion, and therefore also injects into 7, (M ). Since 0, M lifts to G, in
M, it follows that n,(0, M) injects into 7,(M). Thus 6, M is incompressible, and by
using the involution t of M, one sees that d,M is also incompressible, proving
1.2(1).

If M contains an essential 2-sphere S then S must separate I’y from I', otherwise
by the Schonflies theorem S would bound a ball. Now S lifts to a 2-sphere Sin M
which separates I', from I',. However inspection of Fig. 13 reveals that each
component of I, and fz are algebraically linked in S thus S cannot separate them.
This proves S cannot exist, establishing 1.2(4).

Consider the sphere S in S* shown in Fig. 20, which meets (I', uI,) in 4 points.
Then S separates S* into twe closed balls B, and B, and S may be chosen so that
7 exchanges these balls. We may arrange that S meets N(I'; uT',) standardly in 4
discs, each of which contains one pont of (I', uT,). Set S_ = M N S, a 4-punctured
sphere, Q; =M nB, for i=1,2. Then S_ =00, 0Q,.

LEMMA 2.2. S_ is incompressible in both Q, and Q,.

Proof. Suppose D is a properly embedded disc in @, with 6D < S_. Then D
separates B, into two balls and if D compresses S_ then I'; must lie on one side of
D and I', on the other side of D. Thus #,(Q,) splits as a free product. Now there
is a loop y in a neighborhood of I', which is a commutator of meridians in I', and
I',. Thus y lies on the same side of D as I', but such a commutator cannot be disjoint
from D. Thus there is no compressing disc for S_. Since S_ is incompressible in Q,,
applying the involution T we see that S_ is also incompressible in Q,. O
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LEMMA 2.3. Q, is a genus-3 handlebody.

Proof. Q, is the complement in S* of an open regular neighborhood of the

graph in S® shown in Fig. 21. By sliding this graph, one obtains the graph in Fig
22, the complement of which is clearly a genus-3 handlebody

d
Now suppose that M contains an essential torus 7. Then we may assume T is
transverse to S_ and has the least possible number of circles of intersection with

Ny

| <§/ AL

Figure 15(a)-(c)
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Figure 15(g)

S_. Since S_ is incompressible it follows that every circle of intersection is essential
in 7. Since a handlebody contains no essential torus, by (2.3) 7 must have
non-empty intersection with S_. Thus S_ separates T into components each of
which is an annulus and none of these annuli can be isotoped rel boundary into S_.
Let A4 be such an annulus properly embedded in Q, with boundary 4 = a, Ua, two
disjoint circles in the four punctured sphere S_. These circles are essential in S_.
They cannot be isotopic in S_ because this would give a torus K consisting of the
union of 4 and an annulus in S_. But Q, is a handlebody so K compresses and thus
A can be isotoped into S_ a contradiction.

Figure 16
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Now «, is a simple closed curve on the 4 punctured sphere S_ and if a, has 2
punctures on either side then since «, = a, in H,(Q,) one sees that a, must also have
2 punctures on either side. But since a; and a, are disjoint this means that they are
isotopic, a contradiction. It follows that «; has one puncture on one side and 3
punctures on the other side. Again considering H,(Q,) one sees that a, must also
have one punctured on one side and that there are only two possibilities for a;, «,
up to isotopy. Either they are the two meridians of I, on S_ or they are the two
meridians of I', on S_. Referring to Fig. 20 we see that the first case is possible,
there is an annulus in a neighborhood of I'; in Q,. However the second case is
impossible. One way to see this is to observe that the annulus provides a free
homotopy in Q, between the two meridians of I, on S_. One calculates these two

Component of 1£°!(B)

]

T '(v)

N

Figure 18
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meridians using the Wirtinger presentation and since 7, Q, is a free group the fact
that these two elements are not conjugate is visible.

It follows that every component of TnS_ is a meridian of I'; but using the
involution 7 the above analysis applied to Q, implies that these curves must also be
meridians of I', and so TnS_ is empty, a contradiction. This proves 1.2(2)

Suppose now that M contains a properly embedded non-boundary parallel
annulus A. Using the involution * we may assume that 4 meets ¢, M. Then p ~'(4)
consists of either one or two components each of which is a non-boundary parallel
annulus properly embedded in M. Choose a component A of p ~!(A), and note that

Figure 20
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A meets 8, M. The covering p: M —» M is regular and so there is a covering
transformation exchanging G, and G,. Thus we may assume that a boundary
component of A lies in G,. The boundary of A consists of 2 disjoint essential simple
closed curves, 7,8 in M and we label them so that y lies in G,. We will now
distinguish 3 cases, according to whether the second boundary component § of 4
lies in g,, G, or 0, M.

First suppose that ¢ is contained in G,. By lemma 2.1, M UN, = G, x I and we
may do an ambient isotopy of G, x I so that A=y x1Iis vertical in G, x I, where
y is some essential simple closed curve in G,. The image of I'; under this isotopy
must be disjoint from y x 1. Let Y be the graph in G, x I shown in Fig. 15(g), and
p.: G, x I - G, be projection onto the first factor.

LEMMA 2.4. P, . I1,(Y) is conjugae to P, I1,(I',) in I1,(G,).

Proof. This is done in the sequence of figures 15(a) to 15(g). First, ;“2 is
homotoped from the position in Fig. 13 to that in Fig. 15(a). Now observe that
there are 2 distinct loops in I, which are homotopic to each other in Gy x I Let YV’
be the graph in G, x I shown in Fig. 15(b). Then p,,7,(Y") = p,«n,(I'y). Perform

J

Figure 22
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the sequence of homotopies of Y’ in G, x I shown in Figs. 15(c) to 15(g) to
transform Y’ into Y. O

The graph Y shown in Fig. 15(g) lies in a regular neighborhood of a component
of I';. The image of Y and G, under the projection p, is shown in Fig. 16.
Topologically Y is a wedge of two circles, the projection of which are the two loops
a, f in G, shown in Fig. 16. The vertex of Y projects to the point v in Fig. 16 on
the intersection of « and f. Thus p,(f ,) contains 2 loops which are homotopic to
the 2 loops @ and B in G, shown in Fig. 16. The loops « and g fill G, and so cannot
be homotoped to be disjoint from any essential closed curve such as y. This
contradicts the disjointness of Aand T ,, proving that no annulus A can exist in this
case.

The next case that we consider is that 6 is contained in G,. Since
M uﬁz-: G, x I, there is an annulus 4’ in G, with the same boundary as A Tt
follows that the torus A U A’ bounds a solid torus T in G, x I on one side. We may
perform an isotopy of G; x I so that T=A4"x [0, 1/2]. If T contains fz then y x I
is an essential annulus disjoint from I’ which cannot exist by the previous case.
Otherwise if T does not contain I’ , then T is a solid torus in M and so A is
boundary parallel in M. But this implies that 4 is boundary parallel in M, a
contradiction.

The last case is that é is contained in 621&

LEMMA 2.5. y is isotopic in G, to the curve labelled o in Fig. 16.

Proof. We first observe that 6 is an essential G, x I and that é can be
homotoped in G, x I into I',, and thus homotoped into an essential loop in Y. It
follows that p,d is freely homotopic into p,(Y). Let v be the point in G,, shown in
Fig. 16, which is the image under p, of the vertex in the graph Y. We claim that the
only non-trivial element of p,,n,(Y) which is homotopic to an essential simple
closed curve is a*'. To see this, let n: G, — G, be the covering of G, corresponding
to the subgroup p,,m,(Y) of n,(G,). Then 51 is a punctured torus, on which there
are unique lifts &, ﬁ of a, . Now 4, ﬁ intersect in a single point lying over v as
shown in Fig. 18. Also y is homotoplc to p,6 and therefore lifts to a loop 7 on G,.
If § cannot be homotoped in Gl into &, then § runs around ﬁ and intersects other
components of n~!(f) because B has an essential self-intersection on G,, and
therefore § intersects other components of = ~!(y). But this contradicts the simplicity
of y and proves the lemma. [

We have shown that y is isotopic in G, to « and thus the boundary component
of 4 on 0, M is isotopic to ¢ = p(a). By tracing the loop « back through the Figs.
15(g) to 15(a), we see that o is homotopic in G, x I to the loop p~!'(E) shown in
Fig. 17. Thus « is homotopic in G, to the loop labelled « in Fig. 17. Hence ¢ = p(a)
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is homotopic in dM, to the loop labelled ¢ in Fig. 19. Applying the involution t
we see that the other boundary component of 4 must be isotopic in d,M to 7e.
From Fig. 19 one sees that & is contractible in M UN, and hence that t¢ is
contractible in M U N,. The annulus A4 provides a free homotopy from ¢ to ¢, and
thus ¢ is contractible in M UN, also. We compute the homotopy class
[e] € my(M UN,) from Fig. 19, and see that it is non-trivial. This contradicts the
existence of the annulus A in this last case, and proves 1.2(3), completing the proof
of the proposition. O
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