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Fake spherical spaceforms of constant positive scalar curvature

SEAWOMIR KWASIK AND REINHARD SCHULTZ

If M" is a compact riemannian manifold, the global topological properties of
M" often restrict the curvature properties of the riemannian metric. For example,
the solution of the classical spaceform problem shows that M” admits a metric with
constant positive sectional curvature only if its universal covering manifold M" is
the sphere S”. In fact, a stronger conclusion is true: Up to a positive scale factor M
is isometric to the standardly embedded n-sphere in R"*!. This paper deals with a
converse problem: If M” is a smooth manifold such that M~ is homeomorphic to
S”, what sorts of positive curvature properties can be realized by some riemannian
metric on M"? The weakest of these properties is positivity of the scalar curvature
function k£ : M” — R which is essentially an iterated average value for the sectional
curvature (see [LM, p. 60]). Results of N. Hitchin imply that metrics with positive
scalar curvature need not exist. Specifically, this happens if # =8k + 1 > 9 and the
universal covering does not bound a spin manifold (see Hi, p. 42] or [LM, Thm.
I1.8.12, p. 162]); simply connected examples of this sort are well known (compare
[Hi, p. 44] or [LM, Thm. I1.8.13, p. 162]), and examples with nontrivial fundamen-
tal groups are given by taking connected sums of the simply connected examples
with lens spaces whose (cyclic) fundamental groups have odd order. Our main
results provide a converse to Hitchin’s result and.the preceding observations: If
n>5 and M" bounds a spin manifold, then M" admits a riemannian metric with
positive scalar curvature. Furthermore, if the fundamental group n,(M") has even
order, then such a metric always exists (the fundamental group =,(M") must be
finite because the universal covering is compact).

Complete riemannian manifolds with constant positive sectional curvature all
have the form S”/G, where G acts freely on S” via some homomorphism G — O, , ,,
and are often called linear spherical spaceforms. A smooth manifold M" will be
called a fake (smooth) spherical spaceform if its universal covering is homeomorphic
to S” but M” is not diffeomorphic to a linear spaceform. By the solution of the
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2 SEAWOMIR KWASIK AND REINHARD SCHULTZ

Generalized Poincaré Conjecture one can replace ‘“homeomorphic” by ‘“homotopy
equivalent” in dimensions # 3, but in general M™ need not be diffeomorphic to S”.
Such manifolds have been studied extensively by topologists over the past quarter
centry (¢f. [DM, Md1-2, MThW]), and questions about positive curvature can be
viewed as a first step towards understanding the geometric properties of such
manifolds (e.g., see [Md2, Question, p. 98]).

With the preceding terminology our main results can be stated as follows:

THEOREM. Let M" be a fake spherical spaceform with n > 5 and let G be the
Jfundamental group of M”".

(A) If n #£1, 2 mod 8, then M" admits a riemannian metric with constant positive
scalar curvature.

(B) If n=1, 2 mod 8 and G has even order, the same conclusion holds.

(OC) If n=1 mod 8 and G has odd order, then M" admits a riemannian metric
with constant positive scalar curvature if and only if M™ does; more precisely,
such a metric exists if (M™) = 0 in KO~"( {pt}), where o is the characteristic
number associated to the KO-theoretic Dirac orientation on MSpin, and no
metric with positive scalar curvature exists if a( M™) #0.

Remarks.

1. The theorem does not specifically mention the case where dim M” =2 mod 8
and G has odd order, but this is covered by the results of [GL1] because G = {1}
is the only possibility.

2. The number a(M”) is the one considered in [Hi] (also see [LM]); it is denoted
by n° in [ABP] and [Stg].

3. Three-dimensional manifolds with metrics of positive scalar curvature have
been studied by R. Schoen and S. T. Yau [SY2] and also by R. Hamilton [Hal].
Thurston’s geometrization conjecture for 3-manifolds implies that all 3-manifolds
with finite fundamental groups are diffeomorphic to linear spherical spaceforms.

4. Although fake spherical spaceforms are known to exist in dimension 4
(compare [CS, FS]), very little is known about their curvature properties (the
results of [Ha2] are the best currently known).

5. The possibilities for G in the theorem were completely determined by I. Madsen,
C. Thomas, and C. T. C. Wall [MThW]; specifically, for each prime p dividing the
order of G, all subgroups of order p? and 2p are cyclic. In contrast, the fundamental
groups of linear spaceforms satisfy an additional condition — for all pairs of primes
p, q dividing the order of G every subgroup of order pq is cyclic (see [Wo]).

6. A closed smooth manifold £” that is homotopy equivalent to S$” automati-
cally bounds a spin manifold if » #1, 2 mod 8 or n < 2. If n > 3, then " bounds
a spin manifold if and only if «(Z") =0 (see [ABP)).
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Outline of the proof

By the positive solution of the Yamabe problem (see [Shn]), it suffices to show
that one can find metrics with (possibly variable) positive scalar curvature in the
appropriate cases (a brief summary of this topic appears in [RS, Section 1]). The
next steps are elaborations of results in our previous paper [KwS] (which in turn
uses earlier work of Gromov-Lawson, Schoen-Yau, and J. Rosenberg [R1-3]).
Specifically, by the methods of [KwS] it suffices to consider fake spherical space-
forms whose fundamental groups are 2-groups. The proof then splits into cases
depending upon the dimension of M” mod 4. For even values of n the only
spherical spaceforms are fake real projective spaces, and the existence of metrics
with positive scalar curvature follows from results of Rosenberg and S. Stolz (i.e.,
[RS, Thm. 5.3(6)-(7)]), so therefore it suffices to consider cases where n is odd. If
n=1 mod4 the result is established by proving a special case of a general
conjecture due to Rosenberg [R4]. We verify this using methods developed by Stolz
to characterize the closed 1-connected manifolds with metrics of positive scalar
curvature [Stz]. In the remaining cases the initial step is to notice that a fake
spherical spaceform has the homotopy type of a linear spaceform if its fundamental
group is a finite 2-group (¢f. [DM], [Md1]). This suggests a more general problem:

PROPAGATION QUESTION. If M”" has a riemannian metric with positive
scalar curvature and h : N" - M" is a homotopy equivalence, does N" also have such
a metric?

The results of [Hi] and [GL1] answer this completely when M” = §”; the answer is
yes if and only if N” bounds a spin manifold. More generally, the results of [GL]
and [SY] on surgery and positive scalar curvature imply that the answer to the
Propagation Question only depends upon the normal cobordism class of the
homotopy equivalence. Thus it suffices to determine which bordism classes of
degree 1 normal maps have representatives 4 : P - M where P has a metric with
positive scalar curvature. This analysis has several parts. The classes of degree 1
normal maps are in 1-1 correspondence with the abelian groups of homotopy
classes [M", F|O] given by stable vector bundles over M" with stable fiber homo-
topy trivializations. Since it suffices to consider cases where m,(M?”) is a finite
2-group, one can reduce further to examination of the localized normal invariant in
the localized group [M, F/O],,. The solution of the Adams Conjecture then yields
a splitting F/Og, ~ BSO(,, x Cok J,, that passes to a (nonadditive!) splitting of
[M, F|O),, into KO, (M)q, x [M, Cok J,,], where KO, denotes the kernel of the
Stiefel -Whitney class map

w, : KO(M) » H'(M; Z,).
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The first factor of the splitting is relatively easy to compute, but the second is highly
nontrivial (the homotopy groups of Cok J,, are the “bad” part of the 2-primary
stable homotopy groups of spheres). Fortunately, the answer to the Propagation
Question turns out to be independent of the second coordinate of the 2-localized
normal invariant; the crucial point in proving this is a result of V. Snaith on
triviality of K"VO(COk Jz) [Snl]. Analaysis of the BSO,-component requires a
variety of tricks from KO-theory, homotopy theory, and the representation theory
of compact Lie groups. As in the work of Stolz [Stzl], fiber bundle constructions
provide important examples of manifolds with metrics of positive scalar curvature.
Another important theme in our work is the analysis of bordism classes for degree
1 normal maps in terms of normal maps with other degrees.

This paper is divided into six sections. The first section introduces some
necessary terminology and contains some straightforward variants of some results
in [Stz1-2]. In Section 2 we prove the main result when #» = 1 mod 4; the argument
is similar to the proof of [RS, Thm. 5.3(4)]. Section 3 develops a theory of oriented
normal maps whose degrees are arbitrary integers; this is similar to the nonoriented
theories in [BrM] and [HM] for which the degree is a nonnegative integer, but the
extra orientation data allow one to construct a well defined sum operation by
disjoint union. The general setting for the Propagation Question is presented in
Section 4, and the final two sections (5 and 6) deal with the remaining cases in
which the dimension is congruent to 3 mod 4 and the fundamental group is either
a cyclic or generalized quaternionic 2-group. Separate techniques are required for
these two subcases; the generalized quaternionic case is treated in Section 5, and the
cyclic case is treated in Section 6.

1. Stable splittings and reduction principles

If M" is a closed spin manifold of dimension >5 and G =n,;(M) is a finite
2-group, then the techniques of Stolz [Stz2] show that M” has a metric with positive
scalar curvature if a characteristic class in the connective KO-homology of K(G, 1)
is trivial. In this section we shall give analogous results for certain semispin
manifolds M" such that M" is not a spin manifold but its universal covering is a
spin manifold. The basic examples for our purposes are linear and fake spherical
spaceforms whose dimensions are not congruent to 3 mod 4.

We begin by recalling some elementary facts about the fundamental groups and
the first two Stiefel-Whitney classes of linear spherical spaceforms whose funda-
mental groups are nontrivial 2-groups.

OBSERVATION 1.1. Let M" be a linear spaceform whose fundamental group G
is a finite 2-group, and let k : M" — K(G, 1) be 2-connected.
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(i) If n=3 mod4 then M" is a Spin manifold and G is either cyclic or
generalized quaternionic.

(i) If n=1 mod 4 then G is cyclic, w,(M") =0, and w,(M") = pk*1, where
1 € H'(K(G, 1); G) corresponds to the identity and B is the Bockstein operator
for the short exact sequence 0 —2G —» G — Z,—0.

CONSEQUENCE 1.2. If n =1 mod 4 then M" is a Spin© manifold, where Spin¢
is the homotopy pullback in the following diagram:

Spin¢ —— K(Z, 1)
! !
S0 ", Kz, 1)

In case (i) the classifying map M” — BSpin associated to the Spin structure and
the 2-connected map k combine to yield a 2-connected map from M” to
BSpin x K(G, 1), and the surgery invariance principle of [GL, SY] shows that if
n > 5 then M™ has a metric with positive scalar curvature if and only if the bordism
class [M", structure; M" — K(G, 1)] in Q37"(K(G, 1), has a representative [N”, .. .]
for which N” has such a metric.

We need a similar principle when n» =1 mod 4, but we cannot use BSpin°
because the lifting M”" — BSpin° of the normal bundle classifying map M” - MSO
is not 2-connected. The appropriate classifying spaces in this case are the spaces
Y(G, B) that are the colimits of the spaces Y,(G, f) constructed in [KwS, pp.
282-283]. Specifically, Y(G, B) is the homotopy fiber of the maps BSO x
K(G, 1) - K(Z,, 2) corresponding to

wy, x 1 +1 x (1) e H(BSO x K(G, 1); Z,).

PROPOSITION 1.3. The space Y(G, B) is homotopy equivalent to BSpin x
K(G, 1), and the canonically associated Thom spectrum Th(G, B) is stably homotopy
equivalent to MSpin A S ~*(K(G, 1)/C), where C = S' < K(G, 1) is the 1-skeleton in the
standard cell decomposition of K(G, 1) with one cell in each nonnegative dimension.

Proof. (Sketch). The idea is standard and resembles the proofs that
BSpin© ~ BSpin x K(Z,2) and MSpin° ~ MSpin A S ~%K(Z, 2)) (compare [Stg]). A
map f, : BSpin, x K(G, 1) -» Y, ,(G, p) is defined by taking the direct sum of the
standard n-plane vector bundle over BSpin, and the canonical complex line bundle
over BG (recall that G is cyclic). The maps f, pass to a homotopy equivalence on
the stable level; the assertion about Thom spectra follows because the stable Thom
spectrum on the left is just MSpin A S~%(K(G, 1)/1 - skeleton). O
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PROPOSITION 1.4. Let M" be as in Proposition 1.1 with n =1 mod 4. Then
M?" admits a Y(G, p) structure, and M" has a metric with positive scalar curvature if

o[M", . ..] € bo, (S AK(G, 1)/ C))

is equal to o[N", ...] where N" has a metric with positive scalar curvature.

Proof. (Sketch) The existence of the Y(G, p) structure is established in [KwS, p.
283], and the balance of the argument is formally parallel to the reasoning in [RS,
Section 5] for the nonorientable cases. O

2. The nonspin cases

In this section we shall consider fake spherical spaceforms M"” where n > 5 and
n =1 mod 4. Observation 1.1 and elementary considerations show that M" is a spin
manifold if and only if n;(M") has odd order (see also [KwS, pp. 281-282]). Since
the positive scalar curvature properties in the odd order case are completely
determined by the results of [KwS, Section 1], we shall also assume that n, (M”) has
even order henceforth. In fact, the first steps in our approach are already contained
in [KwS], and the result for » = 1 mod 4 is essentially a combination of these steps
and the verification of a conjecture due to Rosenberg in certain cases (see [RS,
Thm. 5.3(5))).

As noted in the proof of [KwS, Thm.2.1, Case 2, pp. 282-283], if M" is a fake
spherical spaceform of dimension n =4k + 1> 5 and G = n,(M") has even order,
then the Sylow 2-subgroup is cyclic and the second Stiefel-Whitney class is
nontrivial. The methods of [KwS] also yield the following reduction:

PROPOSITION 2.1. Let M" be a fake smooth spherical spaceform of dimension
2m +1>5, let N” be the covering manifold associated to a Sylow 2-subgroup of
n,(M"), and assume that N" has a riemannian metric with positive scalar curvature.
Then M" also has such a metric.

Proof. Let p be a prime dividing the order of G =m;(M) and let N, be the
covering associated to a Sylow p-subgroup; then the techniques of [KwS] show that
M" has a metric with positive scalar curvature if and only if N, does for all primes
p dividing the order of G. If p =2 this is given; on the other hand, if p > 2 then
[KwS, Cor. 1.9] implies that N, admits such a metric if and only if its universal
covering N, does. But if p is odd then N, = M = N,, and this manifold admits a
metric with positive scalar curvature because N, admits such a metric. O
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From now on let G be a nontrivial cyclic 2-group, and let Y(G, f) be the space
considered in Section 1. This space is similar to the classifying space for Spin®
structures on manifolds. Since these structures are given by liftings of the second
Stiefel-Whitney class to H*(M"; Z), it follows that every Y(G, B) structure defines
a Spin© structure (because f lifts canonically to H*(G; Z) ~ G). The following result
shows that Y(G, f) and BSpin© are clsoely related.

PROPOSITION 2.2. The space Y(G, B) is homotopy equivalent to the total space
of the principal fibration

w:S!' o Y(G, B) » BSpin©
with characteristic class

|G| - generator e H*(BSpin©; Z) ~ Z.

Proof. The spaces BSpin® and Y(G, f) are homotopy fibers of maps from
BSO x K(Z,2) and BSO x K(G, 1) to K(Z,,?2); specifically, the restrictions of
BOS x K(Z,2) - K(Z,,2) to the first and second factors are given by the second
Stiefel - Whitney classes, and the restrictions of BSO x K(G, 1) - K(Z,, 2) to the
factors are given by the second Stiefel-Whitney class and the Bockstein g’
respectively. This implies that

Y(G, B) — BSpin©

| l (2.3)
BSO x K(G, 1) —5 BSO x K(Z. 2)

is a pullback square. Since ' : K(G, 1) —» K(Z,, 2) is a principal S'-bundle classified
by |G| times the generator of the 2-dimensional integral cohomology, the conclusion
of the proposition follows. 0

As in [KwS, Section 2] we shall let Th(G, f) denote the Thom spectrum
associated to Y(G, B); the usual transversality arguments imply that the stable
homotopy groups n¥(Th(G, B)) are isomorphic to the bordism groups Q«(G, ) of
manifolds with (Y, (G, ) - BO)-structures on their stable normal bundles (more
precisely, in the setting of [Stg, Chapter II] we take the structure associated to the
maps Y,(G, f) —» BO,). It is fairly easy to show that the groups Q,.,,(G, f) are
finite; this fact was noted in [KwS, Section 2], and it played a crucial role in the
proof of [KwS, Thm. 2.1]. In this paper we shall need more precise information.
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The first step is a direct consequence of Proposition 2.2; namely, the map
Y(G, B) — BSpin¢ defines a morphism of Thom spectra p : (G, f) - MSpinc. This is
useful because the homotopy groups of MSpin‘ can be described quite well via the
equivalence of the Thom spectra MSpinc ~ S~?K(Z, 2) A MSpin associated to the
homotopy equivalence BSpin© ~ K(Z, 2) x BSpin (compare [Stg, p. 354]). In partic-
ular, the bordism classes in Q7" = n;(MSpin) are detected by characteristic
numbers over Z, and the rationals [Stg, p. 337]. The following result establishes an
even closer relationship between Q«(G, f) and Spin© bordism.

THEOREM 2.4. The homomorphisms px : (G, f) — Q™ fit into a long exact
sequence of graded QP modules

o Pu ) -,
- 05 0,6, B L o — o — -

where w' sends a Spin‘-manifold (M, f : M — BSpin©) into the circle bundle that is the
pullback of f and Y(G, ) — BSpin¢. This sequence is canonically isomorphic to the
twisted Gysin sequence in QP™ homology associated to the map of Thom spectra
p' K(G,1)|C—-K(Z 2) ~K(Z,2)" associated to the Bockstein B’ :K(G,1)—
K(Z,2) arising from the short exact sequence

07 -—l—G—L Z-G—-0
and the universal complex line bundle y over K(Z, 2).

Results of this type are fairly well known to workers in the area, but the
complete derivations are not well documented in the literature; therefore we shall
discuss the proof of Theorem 2.4 at the end of this section for the sake of
completeness.

Bordism classes with positively curved representatives

As in [KwS, p. 283], let Pos; (G, B) = Q,(G, p) denote the bordism classes that
can be represented by a manifold M” (with appropriate extra data) such that M”
has a riemannian metric with positive scalar curvature. The usual arguments show
that Pos, (G, f) is a graded subgroup of Q_(G, f), and the main objective of this
section is the following description of Pos, (G, p).

THEOREM 2.5. If ay, : Q4.(G, B) = Q is defined by the A-genus, then Pos,,
(G, B) is equal to the kernel of a,,,. If k #0 mod 4, then Pos, (G, p) = Q.(G, p).
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Proof of 2.5. The first step is to note that Pos,,, (G, B) is contained in the kernel
of ay,. Let (M*"; g : M - K(G,1),...) represent u € Pos, (G, ), where M has a
metric with positive scalar curvature, and let M’ — M be the regular covering deter-
mined by g. It follows that M’ is a spin manifold, and therefore the 4 genus of M’
is zero. But this genus clearly satisfies A(M") = |G|4(M), and therefore 4(M) = 0.

The second step in the proof is to show that »'(Q3?™) is contained in
Pos, (G, B) if k > 5. To see this, we first note that each element of Q™ has a
representative of the form M*~'; ¢ : M - K(Z,2)- - -), where M is 1-connected and
has a metric with positive scalar curvature. In fact, by surgery and taking connected
sums with the nonspin sphere bundle over S? one can find 1-connected nonspin
representatives of all bordism classes if & > 5, and by [GL2] all such manifolds have
metrics with positive scalar curvature; the existence of similar representatives if
k =5 follows directly from the structure of Q37 as described in [Gk, Thm. 3.1.4,
pp. 205-206]. Given such a representative for a class u, it follows that w'(u) is
represented by the circle bundle g*K(G, 1) - M with its induced (G, f) structure,
and standard results (c¢f. [Na], p. 250) now imply that g*K(G, 1) has a metric with
positive scalar curvature so that w'(u) € Pos, (G, B).

The third step in the proof is considerably deeper and requires the full strength
of Stolz’s methods [Stz2]:

STEP III. Let bo be the connective KO-spectrum, and let D : MSpin — bo be the
Dirac orientation as in [KwS] or [RS]. Then Pos, (G, B) contains the kernel of the
composite

D, : Qu(G, p) = QFH(K(G, 1)[C) -, bor . »(K(G, 1)/C).

Proof. Let PSp; be the projective symplectic group Sp,/{ + 1}, and consider the
natural action of PSp, on the quaternionic projective plane KP? by projective
transformations. Recall that the approach of [Stz2] invovles a Grothendieck bundle
transfer f* . S¥(BPSp;., ) A MSpin — MSpin (in the sense of Boardman [Bd]) deter-
mined by the associated fiber bundle KP? — E — BPSp,. The Diarac map yields a
splitting MSpin,, ~ bo,, v MSpin such that the localization of f* at 2 factors
through MSpin and the induced factorization f* : S%(BPSp;.) A Spin, — MSpin is
* a retraction in the homotopy category of spectra. A similar construction yields a
Grothendieck bundle transfer

h* : SX(BPSps.) A Th(G, B) — Th(G, p)
with a corresponding geometric interpretation; namely, if we view a class in

T _g(BPSp;, A Th(G, B))
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via a representative object (M*~83,f: M - K(G, 1),g : M — BPSps,...) then the
induced stable homotopy map A' takes this to the class of the KP2-bundle g*E | M*~?
together with extra data including g*E —» M — K(G, 1). Since PSp, is the structure
group for this bundle and PSp, acts isometrically on KPP with respect to its canonical
riemannian metric — which has positive scalar curvature — it follows as in [Stz1] that

Image h' < Pos, (G, p). (2.6)
Since G is a 2-group it follows that the localization map

bo,(K(G, 1)/C) »box(K(G, 1)/C) ® Z,,
is injective, and therefore it suffices to show that

(1) (G, p) = (G, P) ) is injective,
(i) the image of h,, equals the kernel of D .

Assertion (i) amounts to saying that Q,(G, f) has no odd torsion; this can be
checked directly by localizing at an arbitrary odd prime p (because K(G, 1), is
contractible). The proof of assertion (ii) requires the following elementary conse-
quence of the construction of the Grothendieck bundle transfer:

(2.7). Under the equivalence from Th(G, B) to MSpin A S~*(K(G, 1)/C) the bundle
transfer h* corresponds to the smash product of f* and the identity on S ~*(K(G, 1)/ C).

A proof of (2.7) appears at the end of this section.
By (2.6) and (2.7) it follows that Pos, (G, f) contains the image of

[ QF((K(G, 1/C) A (BPSps..)) » QF5(K(G, 1)[C) = (G, p).

But Stolz’s results imply that the image of f* is the kernel of Dx.

Conclusion of the proof. Consider the following commutative diagram, the rows
of which arise from twisted Gysin sequences:

w!

g S aGh G
1= 1= 1=

o GPR(K(Z,2) = APN(K(G, 1)/C) — FFnK(Z,2) — -
lD' lD' lD;

o —b0p  (K(Z,2) S b0g 2 (K(G, 1)/C) > Bog 4 (K(Z,2)) —> - - -
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Recall that the maps D%, D, D% are split surjective after localization at 2. If M*"
and other data represent u € Q,,,(G, ) and M*" has a metric with positive scalar
curavture, then A(M*") =0 by the first step of the proof. Suppose now that
AM*") =0 (or dim M #0 mod4), and let M plus the other necessary data
represent u € @, (G, B). By 1.4 it suffices to show that the 2-localization of u lies in
the subgroup Pos, (G, B)q).

By the second and third steps of the proof we know that Pos, (G, ff),, contains
the image of w(,, and the kernel of D, . Since the composite of D, with the
projection bo, , ,(K(G, 1)/C)/Torsion is detected by the 4 genus, it follows that
D, u is torsion.

It is well known that 50*(K(Z, 2))2 s torsion free; an elementary proof of this
fact can be obtained by the method indicated in [MhMIi, §6] (alternate references
for the change of rings results mentioned there are [Lv1, Ch. I} and [Lv2, §1]). Since
D, u is torsion it follows that J,, D)« =0 and thus D, u = w,;z for some
z ebo, ., (K(Z, 2))2)- A diagram chase now shows that D), u = D, w'v for some
v, and therefore by the first two steps of the proof and Proposition 1.4 we conclude
that u € Pos, (G, p). O

Implications for spherical spaceforms

Theorem 2.5 immediately yields the main result of this paper for (4k + 1)-di-
mensional fake spherical spaceforms.

THEOREM 2.8. If M*+! (k > 1) is a fake spherical spaceform with an even
arder fundamental group, then M*+' admits a riemannian metric with positive scalar
curavture.

Proof. By Proposition 2.1 it suffices to consider examples whose fundamental
groups are (nontrivial) 2-groups. On the other hand, if M" is a closed smooth
oriented manifold such that n > 5 is not divisible by 4, the fundamental group
G = 7,(M) is a nontrivial cyclic 2-group, the second Stiefel-Whitney class of M" is
nonzero, but the universal covering Mrisa spin manifold, then Theorem 2.5 and
surgery invariance imply that M” admits a riemannian metric with positive scalar
curvature. Finally, if M* *1(k > 1) is a fake spherical spaceform such that =, (M) is
a nontrivial finite cyclic 2-group, then M satisfies the conditions in the preceding
sentence and therefore has a riemannian metric with positive scalar curvature. [J

QUESTION. If M is a fake spherical spaceform as in Theorem 2.8, does M have
infinitely many cobordism or concordance classes of metrics with positive scalar
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curvature? — One can combine the results of [BG] and this paper to obtain
conclusions of this type for fake spherical spaceforms such that dim M =4k +
3>7 or |r,(M")| is odd.

Addendum. Proofs of technical assertions

We shall now give some of the details that were deferred in the course of
proving Theorem 2.5.

Proof of Theorem 2.4. (Sketch) Diagram (2.3), at the end of the proof of
Proposition 2.2, induces a corresponding commutative diagram of Thom spectra:

MSpin A S~XK(G, 1)|C) => Th(G, p)
ll AS-2(p) lp

MSpin nS~%K(Z,2)) -= MSpin®

The theorem will follow directly from general considerations involving Gysin
bordism sequences. Here is a version that suffices for our purposes.

PROPOSITION 2.9 (Twisted Gysin sequences). Let @ :S'— E—— B be a
principal S'-bundle over a finite CW complex B, and let ¢ be a high dimensional
vector bundle over B. Then the stable homotopy cofiber of the induced map E™** —
B¢ of Thom complexes is the Thom complex B*®® (where w is identified with its
2-plane bundle), and the connecting homomorphisms

0 : My, ,(B°®?) —*ﬂk+n—1(E”*f)
have a bordism theoretic interpretation by taking induced circle bundles.

EXPLANATIONS.

(1) We use the Atiyah notation X* to denote the Thom complex/spectrum for
a virtual vector bundle « over X for which the dimension of the bottom cell is dim «
[At]. .
(2) By transversality every class in =, , ,(B*®®) is represented by a submanifold
M¥* -2 of R*** with an isomorphism ¢ of the normal bundle of M*~2 with a
pullback f*(¢ @ w) for some map f: M — B. Since the circle bundle f*E is canoni-
cally embedded in the total space f*w with trivial normal bundle, it follows that we
have an associated realization of f*E as a submanifold of R”** and an identifica-
tion ¢* of the normal bundle of f*E with the pullback f"‘(ﬁ @® R), where f: f*E—-E
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is the bundle projection. The connecting homomorphism takes the class represented
by the data {M, ¢, f} to the class represented by the data {/*E, ¢o*, f}.

Proof of Proposition 2.9. The bundle projection from E to B factors as a
composite

E S D(w) => B

where D(w) is the associated D2-bundle and ¢ : D(w) — B is the vector bundle
projection. This yields an inclusion of Thom complexes E™%— D(w)?*°, and the
quotient complex D(w)?*¢/E™¢ is equal to B“®¢. This proves the assertion about
the stable homotopy cofiber.

The preceding observations and a standard corollary of the Blakers—Massey
Theorem (see [Wh], Thm. 7.12, p. 368) yield an exact sequence

& &
. nn+k+l(Bw®c) — nn+k(En 6) B nn+k(B€) B 7rn-ﬁ-k(Bw@é) —

provided k «n =dim €.

The only thing remaining to prove is the assertion regarding the boundary
homomorphism 6. To see this, consider the isomorphism Cx :m,, ,(D(w)7",
E™) —m,. . (B“®¢, ) that is implicit in the exact sequence. By transversality the
elements of the domain are represented by neatly embedded manifolds (W,
OW) = (D"+*, S"+¥=1) with {g*¢ | D(w)}-structured normal bundles and refine-
ments to {n*¢ | E}-structured normal bundles on the boundaries; relative groups of
this sort are defined in [Stg, Chapter II]. The usual transversality considerations
also show that such representatives can be made transverse to B viewed as the zero
section of D(w) | B. Thus geometrically the isomorphism is given by sending the
transverse inverse image of the zero section D(w) € D(w @ &) into the transverse
inverse image of the zero section B < D(w @ &). Similarly, if M is a submanifold of
§"** with an {w @ ¢ | B}-structured normal bundle and reference map g : M — B,
then the pair (g*D(w), g*E) with appropriate extra data will represent the inverse
image of the class determined by (Mg, other data). Since elementary consider-
ations show that dCx is given geometrically by sending the class of (W, dW;...) to
the class determined by W and its extra data, the asserted description of 0 follows
immediately.

COROLLARY 2.10. The maps of bordism groups Q,(G, B) = Q™" correspond
to the maps of Spin bordism groups

Q%(K(G, 1)/C) - Q¥ (K(Z, 2))
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under the canonical equivalences of Propositions 2.2 and 2.9 and thus are embedded in
the following long exact twisted Gysin sequences of Q" homology groups:

- QP (K(Z,2) — QFH(K(G, 1)/C) > QP (K(Z,2) - -

Proof. (Sketch) Choose finite subcomplexes of K(Z, 2) and BSpin such that the in-
clusions are highly connected, and construct the corresponding finite approximations
to K(G, 1)/C and MSpin; similarly, choose finite approximations to BSpin¢ whose
inclusions are highly connected, and take corresponding approximations to Y(G, B)
and the associated Thom spectra. By Proposition 2.9 one has isomorphic twisted Gysin
bordism sequences for the finite approximations to Th(G, ) — MSpin¢ and

MSpin A S~ K(G, 1)/C) - MSpin A S 2K(Z, 2)

through some large range of dimensions. The corollary follows directly from these
and the standard transversality isomorphisms Q.7"(X) = nJ(MSpin A X ,). O

Proof of (2.7). (Sketch) Let © be the bundle of tangents along the fibers in the total
space E of the KP? bundle over BPSp;; as noted in [Stz1] the bundle 7 is a Spin bundle.
If U:S%BSp;,) — E® ° is the Umkehr map in S-theory associated to the bundle
projection, where 8 — 7 is the 0-dimensional virtual vector bundle that is stably inverse
to 7, then the Grothendieck bundle transfer for 4 = MSpin has the form

Unl
SYBSp, ) AA — > E*~"A 4

lF'AlA
MSpin A A

1@

A

where I'*® is induced by the classifying map of —t from E to BSpin and @ is the
E. ring spectrum structure on MSpin given by direct sum of vector bundles
(compare [May]). We have introduced the symbol 4 because we want a similar
formula for A = Th(G, B). This will hold if we have an analogous direct sum pairing
MSpin A Th(G, B) — Th(G, B). But this is elementary to construct because the direct
sum of a Spin vector bundle and a Y(G, f) vector bundle has a canonical
Y(G, B)-structure; in fact, if @ represents this module structure on spectra then the
canonical splitting of Th(G, f) is the composite of @ with the obvious map

MSpin A S~*(K(G, 1)/C) —» MSpin A Th(G, P).
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Since the module structure for Th(G, B) and the ring spectrum structure for MSpin
satisfy a mixed associative law up to homotopy (by the associativity properties of
direct sums of vector bundles), the validity of (2.7) follows immediately. O

3. Oriented normal maps with signed degrees

In this section we shall establish some results on normal maps of degree # 1 that
will be needed later. For our purposes it is necessary to consider normal maps
whose degrees have definite signs, in contrast to the normal maps of [BrM] and
[HM] which have unsigned degrees. This can be done quite simply for oriented
manifolds by taking bundle data involving oriented vector bundles and orientation-
preserving bundle maps (the trivial bundle is taken to have a standard orientation —
for example, the one associated to the ordered basis of standard unit vectors on
R¥). Specifically, one can proceed as follows:

DEFINITION. Let M be a closed oriented manifold, let £ be an oriented vector
bundle over M, and let d be an integer. The set of normal bordism classes of
oriented degree d normal maps into M with oriented bundle ¢ is given by taking all
pairs ( f, b), where f: N - M has degree d and b represents orientation preserving
bundle data, and factoring out the equivalence relation generated by

(1) normal bordisms (F, B) where F; W — B x I is a degree d maps of triads,
B is orientation preserving, and the stable tangent bundle of B is the
pullback of & to M x I,

(i) orientation preserving vector bundle isomorphisms ¢ ~ ¢’ covering the

identity,

(iii) bundle data stabilization covering the identity for which ¢ is replaced by

E®R and b by b ®R.

This definition is virtually identical to the concepts of degree # 1 normal maps
in earlier work of Agoston [Ag] and G. Anderson [AnG]. The normal bordism
classes obtained in this fashion will be denoted by Q(M, &, d).

In the setting above an oriented degree d normal map on a connected manifold
M"” corresponds to a family of classes in the homotopy group of some Thom
complex =, , ,(M*), where k > n and the common Hurewicz image of the classes in
H, (M%) = Z is d times the generator determined by the orientations of M and ¢;
one needs a family of classes because the normal map is represented by a set of
classes ¢ u where ¢ runs through all orientation preserving vector bundle automor-
phisms of £ and ¢¢, is the automorphism associated to the one point compactifica-
tion @*, viewed as a self homeomorphism of M*.

If £ is the oriented bundle v,,, then the following result illustrates the usefulness
of normal maps with signed degrees.
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PROPOSITION 3.1. If v,, is the oriented normal bundle of M in R"** (where
k > n as usual), then disjoint union with the identity on M defines an isomorphism
QM, vy, d) - QM, v,,d+1) for all integers d.

Proof. Let ¢%,: S"**— Th(v,,) be a degree 1 collapse map defined by the Pon-
trjagin—Thom construction. if 4 : Th(v,,) = S"** is a degree 1 collapsing map onto
the one point compactification of a coordinate disk, then there is an associated splitting

T+ k(Th(vy,)) = Ze¥, @ Kernel Ax.

The set Q(M, v,,, d) is then equal to

A;l({d})/AUt+ (Var)

where Aut, (v,,) is the group of homotopy classes of orientation-preserving vector
bundle automorphisms of M as before, the action is given by [¢] - u = ¢%(u), and
Aut, (v4) sends each set 4 '({d}) into itself because 4 = ¢* is homotopic to 4 by
Hopf’s Theorem). Thus one has an algebraic isomorphism from {d} x Ker A« /
Aut, (vy) to {d + 1} x Ker 4« [Aut, (v,,) induced by sending the class [v] repre-
sented by v into [v + ¢%,]. The geometric assertion in the proposition follows
because if v is represented by f: N> M and a bundle map B :vy —f*v,,, then
v + &% is represented by the disjoint union f| | id,, and the bundle map B | | identity

(Var). U

We shall also need the following comparison principle for oriented normal maps
into linear spherical spaceforms:

PROPOSITION 3.2. Let N" be an oriented linear spaceform whose fundamental
group G is a finite 2-group and n =3 mod 4, let V be a free (n + 1)-dimensional
G-module so that N" = S(V)|G, let k,, : N — BG be a 2-connected map classifying the
orbit space bundle, and let {M", W, ky, } be another set of such data. Then there is an
odd degree map f: M" — N" such that the following hold:

(i) The maps ky, and k,f are homotopic.

(i1) Given a 2-connected degree one normal map g : P — N, there is a 2-connected

degree one normal map h : Q - M such that fh is normally cobordant to a
disjoint union of d = degree( f) copies of g.

Remarks

1. The hypotheses imply that the map f*: I?O(N) —-»K@O(M ) is an isomorphi-
sism, and thus for each stable vector bundle { over M we can find a stable
vector bundle ¢ over N such that f*¢ = (.
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2. Given degree 1 bundle data on an oriented manifold M" we can always
extend it to oriented bundle data because the bundle & is orientable (it is
stably fiber homotopy equivalent to v,, and orientability is invariant under
stable fiber homotopy equivalence) and we can simply choose orientations to
make the bundle map B : v, — ¢ orientation preserving.

Proof of Proposition 3.2. The existence of f'is a standard exercise in obstruction
theory; specifically, one can find a G-equivariant map F : S(V) — S(W) and since
Z, < G acts by the antipodal map it follows that F has odd degree. If f = F/G then
f also has odd degree and condition (i) follows from the equivariance of F.

Given an oriented vector bundle w* over N or M, define 4 : Th(w*) - S"** to
be a degree one collapsing map as in the proof of 3.1. Let £ be an oriented vector
bundle over N such that some degree 1 normal map (X — N, vy — &) exists, and let
d be an odd integer. Then it is elementary to verify that multiplication by d maps
4.1 ({1}) bijectively to 4x'({d}); specifically, the kernel of 4, is isomorphic to
.. «(N§), where N, = N — disk, and since H*(N,) is 2-primary the same is true for
H,(Ng) and 7, (Nj), and thus multiplication by d is bijective on Kernal 4,,.

Nextlet (h: Q- M, k : vo — () represent a degree 1 normal map. By Remark 1
we may write { =f*¢ for some vector bundle & over N, and we can choose an
orientation of ¢ consistent with the orientation (. If f :{ - & is the associated
bundle map, then its one point compactification induces a homomorphism

()% Ty k(MF) > 70, (N9

sending representing classes for degree 1 normal maps into (M, {) to representing
classes for degree d( =deg (f)) normal maps into (¥, &). By the reasoning in the
first paragraph it will suffice to show the existence of some degree one normal map
into (N, &). As usual, this holds if & is (stably) fiber homotopy equivalent to v,. If
F|O is the classifying space for stable vector bundles with stable fiber homotopy
trivializations, then it is a straightforward exercise to show that f*:[N, F/
O] »[M, F/O] is bojective at the prime 2 and [N, F/O]—[N, BO] (giving the
underlying vector bundle) is trivial at odd primes; consequently, it suffices to show
that f*& and f*v,, are stably fiber homotopy equivalent. But fis a 2-local homotopy
equivalence, and this implies that ¢f™*v, = f*(cvy) is stably fiber homotopy equiva-
lent to cv,, for some odd integer ¢ (this is implicit in [Shz2, §1]); since KO(M) is
2-primary it follows that f*v, and v,, are stably fiber homotopy equivalent. Finally,
S*E ={(, and { is stably fiber homotopy equivalent to v,, because there is a degree
one normal map into (M, {). Combining the preceding two sentences, we conclude
that f*¢ and f*v,, are stably fiber homotopy equivalent as required. O
Here is another comparison result that will be needed:
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PROPOSITION 3.3. Let N" be a Z,, lens space where r > 1 and n is odd (if r = 1
then N" = RP"), let & be a vector bundle over N", and let d, q be positive odd integers.
Then €N, &, d) is nonempty if and only if Q(N, &, qd) is nonempty, in which case
q-fold disjoint union defines an isomorphism from Q(N, &, d) to Q(N, &, qd).

Proof. If Q(N, &, d) # J then a disjoint union of g copies of some representa-
tive

(f:M_’NaF:vM—’é)

defines a class in Q(N, &, gd). Conversely, if Q(N, &, qd) # &, then one can use the
argument at the end of the proof of 3.2 to show that Q(N, &, 1) # &, and by taking
d-fold disjoint unions we again obtain Q(N, &, d) # .

As before we have Q(N, ¢, d) =4.'({d})/Aut, (£). The sets A4_'({d}) are
cosets of the kernel of Ax; since this kernel is a finite 2-group it follows that
multiplication by the odd integer g defines an isomorphism from 4_'({d}) to
4.'({dq}). This passes to an isomorphism from 4_'({d})/Aut, (¢) to 4_'({dq})/
Aut, (£) because the action of Aut, (¢) on =, ,(N°) sends the sets 4.'({c}) to
themselves and the linearity of the action implies that @x(gx) = qex(x) for all
@ € Aut, (&) and x € 4.1 ({d}). O

4. Homotopy propagation of positive scalar curvature metrics

In [R3] and [R4] Rosenberg has formulated some very striking conjectures for
characterizing manifolds with finite fundamental groups that have metrics of
positive scalar curvature. Since the results of Section 2 for fake spherical spaceforms
were consequences of special cases of Rosenberg’s conjecture, one natural approach
to the remaining cases would be to proceed similarly. However, our current
knowledge about the relevant cases is still fragmentary (see [RS, §5]). We shall view
the scalar curvature properties of fake spherical spaceforms in dimensions
4k + 3(k = 1) as essentially a special case of the following:

PROPAGATION QUESTION 4.1. Let M" and N" be closed smooth manifolds
that are homotopy equivalent, and suppose that N" has a riemannian metric with
positive scalar curvature. Does M" also admit such a metric?

The terminology is motivated directly by the results on propagating group
actions through homotopy equivalences as in work of S. Cappell, S. Weinberger,
and several others (cf. [CW]).
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Example. If N"=S", then M" has a riemannian metric with positive scalar
curvature if and only if M” bounds a spin manifold (c¢f. [GL1-2]). More generally,
if N is simply connected, then the results of [STz1] show that M” has a riemannian
metric with positive scalar curvature if and only if a(M”) =0 in KO~"({pt}).

The preceding discussion raises another question; namely, how can one reduce
the proof of our main result for (4k + 3)-diemensional fake spherical spaceforms to
the propagation question? This requires two steps:

(1) By Propositon 2.1 it suffices to consider cases where the fundamental group

is a 2-group.

(2) If M" is a fake spherical spaceform whose fundamental group is a 2-group,
then M” is homotopy equivalent to a linear spaceform. In this case the
fundamental group is either cyclic or generalized quaternionic; in the cyclic
case it is well known that M” is homotopy equivalent to a lens space, and
in the generalized quaternionic case this is still true but requires additional
work (e.g., see [Md1]).

As noted in Section 1, every fake spherical spaceform of dimension 4k + 3 is a
spin manifold. Therefore the standard bordism invariance property implies that the
existence of a positive scalar curvature metric on a (4k + 3)-dimensional fake
spherical spaceform N (where k£ > 1) only depends upon the bordism class of N,
some spin structure og,, and a 2-connected reference map ky:N —BG in
Q3™ .(BG). Of course, a similar assertion holds for every closed, connected spin
manifold N* where n > 5.

The first step in handling the homotopy propagation question for positive scalar
curvature is to show that the answer only depends upon the normal cobordism
class. Considerations of this type were implicit in [KwS, §2]. For the sake of
completeness, here is a general statement.

PROPOSITION 4.2. Let N*(n > 5) be a closed connected spin manifold, let
(f: M"> N", B :v,, —&) be a degree one normal map, let o be a spin structure on
N", and let ky : N - BG be a 2-connected reference map. Suppose that f: M" — N"
is 2-connected and (f:M"—N",...) is normally cobordant to a normal map
(f:M' > N,...) where M' has.a riemannian metric with positive scalar curvature.
Then M™ also has such a metric.

Proof. (Sketch) A good reference map for M is k,, = ky _ f. Also, since £ is fiber
homotopy equivalent to v, and spin structures are invariants of fiber homotopy
type, it follows that one can move the spin structure from v, to & by the fiber
homotopy equivalence and from ¢ to v,, by B. In fact, with these conventions and
surgery theory to kill extra low-dimensional homotopy one can construct a well
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defined map from [N, F/O] = {bordism classes of degree 1 normal maps} to

Q3rn(BG). Given this, the existence of a positive scalar curvature metric on M"

follows immediately from the bordism invariance property. O
The next step is to analyze the map

B : [N", F|O] » 25P"(BG)

constructed in the proof of Proposition 4.2. Let g : N - F/O be given, and let
(f:M—>N,F:vy,—¢{) be a degree one normal map associated to the homotopy
class of ¢ in the usual fashion (¢f. [Wa]). By definition, the bordism class
representing X = M or N is given by the composite b of the maps in the following
diagram:

®
cx 4> kx+)AC(vy )e .
Stk L X' S X, AX > BG, A MSpin.

Here c is the degree one collapse map, 43 is the map of Thom spaces induced by
the diagonal 4,: X —» X x X and the identification v =~ 4% (0-dimensional trivial
bundle x v), the map k is a 2-connected reference map, and C(vy)® is the map of
Thom spectra associated to the classifying map C(vy) : X — BSpin for v,. We need
to relate these composites using the data associated to the normal map.

THEOREM 4.3. Let X=Mor N, let (f: M - N, F:v,,— &) be a degree one
normal map where f is 2-connected, and let k,,, etc. be as above. Then by is given by
the composite

n+k N v “3)° 14 vw—¢& Ex 4 -¢
St —a3 NN ——> N, AN*ANN - ——> N AN AN

kv ACE AC(y —O°|
BG _ A MSpin A MSpin

1A®l

BG . A MSpin

where (4,)® is the map of Thom complexes associated to the diagonal
A45: N - N x N x N and the identity vy, = A¥(0 x & x (vyy — &)), the maps C(w)® are
induced by the classifying maps of the Spin vector bundles w = & and vy, — &, the map
@ is defined by direct sum, and E is given as follows:
(i) Ey is the identity.
(ii) E,, is the smash product of the identity on N, A N* with the composite
J o P(f, F) where j : 8°— N"~¢ is induced by fiber inclusion and p(f, F) is an
S-map N*'~*— 8° that is S-dual to F* _c,,.
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EXPLANATION. We are viewing v — ¢ as a zero-dimensional virtual vector
bundle, so that N'~¢ has a canonical map j : S°— N*~¢ corresponding to inclusion
of the Thom space over a point in N. The composite p(f, F) _j is the identity on S°
in S-theory. '

Proof. First of all, the map (4;)* factors through (4,)* as a composite
(45 Anid) _ (4,)® where

A : NV > NSANN ¢

is induced by the diagonal map from N into N x N. Since C(vy)® is stably
homotopic to the composite

@ L (C(O*AC(vy — ) Akyy) ,(43)°, 45
it follows that b, is given by the composite
([dA D) (CO*ACvy — O* Nkny) , (43)°  Cn
as claimed in (i). To prove (ii), first notice that b,, is given by the composite
(i[dA @), (CO*AC(vy — O Akn.) T, (45)  F*  ci
where Fe is the map of Thom complexes induced by F, the map
(45)*: N°> N, AN°¢ is induced by the diagonal, and ;' is given by the smash
product of j with the identity on N, AN‘ (under the usual identification
N, AN*=N_AN'AS%. Thus the proof of (ii) is reduced to checking that
J . @id A p(f, F)) ,(43)®, cy is stably homotopic to j' _ (45)® . F® _ ¢, ; of course, it

also suffices to prove the corresponding result for the shorter composites with j’
removed from the left ends, and thus it remains to compare

(idnp(f, F)),(45)*,Cy and (45)* F° cy.
Consider the following diagram

M A= ¢ (43l

Snt+k > NV » NSANY—¢

N, ANSAN"—
1~ l L' ine

m Fe . (45)e
Sk — M — N* — N, AN*¢
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in which 4%"~¢ is induced by the diagonal map. The right hand square commutes
by the elementary properties of smash products, the left hand square commutes in
S-theory because p is S-dual to F*, and the composite along the top row is just
(43)® , cn. Therefore (1 Ap)(4;5)®, cy ~(45)°, F® _ c) as required by the discus-
sion in the preceding paragraph. O

Remark. The map C(vy — £)® can be factored (in the stable homotopy cate-
gory) as a composite

N =¢ L, (Floy =5 MSpin

where g : N — F/O classifies the degree one normal map, y is the universal fiber in
homotopically trivial vector bundle, g*® is the associated map of Thom spaces, and
s is the canonical lifting of the classifying map 4, : F/O — BSO to BSpin (note that
y has a unique Spin structure because H'(F/O; Z,) = 0).

We would like to apply Theorem 4.3, the preceding remark, and the homotopy-
theoretic properties of F/O to obtain usable information comparing b,, to b,. The
first result is a localization formula.

PROPOSITION 4.4. Suppose that N", M", etc. are given as in Theorem 4.3, let
q : N = F|O classify (f, F) as in the preceding remark, let p be a prime, and suppose
that the image of q is zero in the localization [N, F/O),, =[N, F|O,)]. Then the
images of by, and by in Q7"(BG),,, are equal.

Proof. By the basic properties of localization at p in the stable category it
suffices to show that the p-localization of ¢®: N'~¢— (F/0)” factors through the
p-localization of the S-map p : N'"¢—S8° Let Y be the homotopy fiber of the
localization map F/O — F/O,,,, and let y{p) be the pullback of y to Y; then Y,
is contractible, and it is an elementary exercise to show that the canonical map of
S° into the Thom spectrum Y”! ¥ is a (p)-local stable equivalence. But the triviality
of g under localization implies that g factors through some map N — Y, and thus
the assertion about the p-localization of ¢® follows immediately. O

COROLLARY 4.5. Suppose we are given (f,: M; > N, F,:v,,; — &) as above
where i =1 or 2, let q, : N - F|O classify (f,, F,), and let b, € Q5°™(BG ) be the Spin
bordism class associated to M; with the induced Spin structure and reference map
ky . fi- If p is a prime such that the difference class [q,]-[q,] maps to zero in
[N, F|O),), then the images of b, and b, in Q;7"(BG),,, are equal.

Proof. Write [go] = [¢,] — [¢,], so that g,@® g, represents g,. It then follows that
b, and b, are given by composites #(A4, B) of the following type:
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5 N (44)° £
Srtk— NV — N, AN‘AN*AN®
VL]/\l/\A/\B
N, AN‘AN*AN*#

lkN +ACEAC()* A C(B)®

BG A MSpin A MSpin A MSpin

ll/\@

BG A MSpin

The basic idea is that o and a fiber trivialization represent ¢q,, while  and a fiber
trivialization represent ¢,. Let E(x): N*— N* and E(B) : N - N*? be given by
composing the compactified fiber retraction N*— S° N* — S° with the fiber inclu-
sions of S° in N* N’ respectively. By Theorem 4.3 we have the following
conclusions:

(0) If 4 and B are identity maps, then @(A4, B) =b,.

(1) If A = E(x) and B is the identity, then ®(A4, B) =b,.

(2) If A =E(a) and B = E(f), then &(A4, B) =b,.
One can now apply the argument proving Proposition 4.4 to conclude that C(f)*®
and C(B)® , E(B) become homotopic after localization at p, and by the preceding
observations it follows that b, and b, become equal after localization at p. O

As before, let N” be a closed connected Spin manifold with fundamental group
G and 2-connected reference map ky : N - BG. If p is a prime, the previous
considerations show that the map

V, : [N, F|O] » 257"(BG) —» Q5"(BG), ,,

factors through the image of [N, F/O] in [N, F/O,,)] =[N, F|O},,,. This allows us to
study ¥V, by means of the Adams Conjecture splittings

F|O,, ~ BSO, x Cok J,
(see [MdMi, Chapter 5, p. 106]). If we consider the corresponding splitting

[, F|O),y =[N, BSO],, x [N, Cok J,]

(which is not necessarily additive!)

the first factor looks manageable at least in some cases, but the second factor is
highly complicated; in particular, =, (Cok J(») is the “bad” summand of the
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p-primary component of 7, ,(S”) for n > k. In order to work effectively we must
show that the second factor is irrelevant for our purposes. Since a general
discussion would be quite lengthy, we shall only prove a results that suffices for
cases where N” is a linear spherical spaceform, where n =4k + 3 with k > 1 and
G ==n,;(N") is a (nontrivial) finite 2-group.

Preliminary remark. For each prime p the standard map Cok J,, = F/O,,, lifts
to F/O. This is true because it lifts to F,, by the basic construction of the Adams
Conjecture splitting and the finiteness of the groups =, (¥) shows that F is a weak
product of its localizations F(,, over all primes p.

THEOREM 4.6. Let N" be a closed connected Spin manifold with n > 5 and
Sfundamental group G, let q,: N — F[O classify the 2-connected degree one normal
map (fy: M, > N, F, : vy, —&), and let by, b, be the classes in QP"(BG) represent-
ing M, and N. Let qo: N = Cok J,), let i : Cok J;) = F[O be the map described in
the preceding paragraph, let q,=q,®iq,, let (f,, F,) represent q, where f, is
2-connected, and let b, e Q5P"(BG) represent the domain M, of f,. If
Dy, : Q3P"(BG) 3y — b0, (BG) 3y is the 2-local Dirac map, then D (b;) = D,(b,).

Before proving this result, we shall derive its application to positive scalar
curvature.

THEOREM 4.7. Suppose we are given the setting of Theorem 4.6, and assume
Sfurther that G is a finite 2-group and M, has a riemannian metric with positive scalar
curvature. Then M, also has a metric with positive scalar curvature.

Proof that 4.6. implies 4.7. Since G is a 2-group and bosx has no odd torsion, it
follows that all torsion in bo«(BG) is 2-primary and hence the 2-localization map
is injective. Therefore the unlocalized Dirac map satisfies D(b,) = D(b,). But b, is
represented by M,, which has a riemannian metric of positive scalar curvature.
Since D(b,) = D(b,) and M, is connected, by [Stz2, Thm. 1.1] the difference b, — b,
is represented by a manifold with a metric of positive scalar curvature. Hence the
same also holds for b, = (b, — b,) + b,, and by the 2-connectedness of M, — BG it
follows that M, also admits such a metric. O

Proof of Theorem 4.6. Let u : bo A bo — bo be the map of spectra determined by
the tensor product pairing ®: BO x BO — BO (see [May, Section VIIL.2] for a
constructiont of this map); this makes bo into a ring spectrum such that the Dirac
map D induces a weakly multiplicative map of spectra (where @ induces the ring
spectrum structure on MSpin). As in the proof of Corollary 4.5, the classes D ,,(b,)
and D,,,(b,) are given by the following composites:
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k_N (40’ AN A NB
Sttk—— N'V — N, AN:AN*AN
llAlAA/\B
N, AN‘AN*AN?

[ + A CEWA T A CiPre

BG ., A MSpin A MSpin A MSpin

ll /\D(2)/\D(2) AD(2)

BG+ A bO(z) A b0(2) A b0(2)

IR

BG , Abo,

More precisely, the proof of 4.5 shows that D, (b,) and D, (b,) are given by
composites where 1 A(A°Dg)) and 1Ap,, are replaced by 1A @ and 1A Dy,
respectively, but one obtains the same classes from either pair because D,,, is a map
of ring spectra. Most of the argument proving Corollary 4.5 also applies in the
present setting; the crucial difference is that the map g, represents the trivial class
after localization in the setting of 4.5, but here ¢, : N - F/O is assumed to factor
through Cok J,. However, in analogy with 4.5 it suffices to prove that the
composites D, , C(B)* and D, , C(B)* . E(B)* are homotopic (i.e., D), C(f)*
factors homotopically through S°— bo,,. Since g, factors through Cok J,, we can
write D,, . C(f)® as

2 I h D
N* -2, (Cok J))" — FJO" —> MSpin —2 bog,

and therefore it suffices to show that D _ A’ _i? factors homotopically through S°.
But in the stable category we have

{(Cok J))", bo} = KO(Cok Jz,)"),

and the right hand side is isomorphic to I?b(Cok J2)+) by the Thom isomorphism
(since y is a Spin bundle). Since K%(Cok Jiay) is trivial (see [Snl, Thms. 9.3 and
9.9)) it follows that KNO(Cok Jo)) = I?b(SO), where the isomorphism is given by
the fiber induced mapping S°— (Cok J)’. Therefore Dy , C(B)* is stably homo-
topic to D,, . C(B)* , E(B) as required. O

Remarks. By [ABP] the localized spectrum MSpin,,, is a wedge of suspensions
of the Eilenberg—~MacLane spectrum HZ, and the 2-local connective K-spectra boy,,
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and bsp,; furthermore, the suspended HZ, summands map into wedge sum-
mands of the Thom spectrum MO, which is itself a wedge of suspended copies
of HZ,. This splitting of MSpin,, and the argument for Theorem 4.6 lead to a
proof that the images of b, and b, in Q3"(BG),, are equal;, however, we are
omitting this because the results of [Stz2] make Theorem 4.6 sufficient for our
purposes. If p is an odd prime and (M, —>N,...), (M,— N, ...) describe 2-con-
nected degree one normal maps that differ by an element of [N, Cok J ], then it
also seems likely that the p-localizations of the bordism classes b,, b, are equal,
but we have not attempted to check this.

We shall now define KO-theoretic invariants that often determine the ob-
struction to propagating a positive scalar curvature metric across a homotopy
equivalence. As noted in [MdMi, Section V.C] there is a H-map f,:F/
Op,— BSOS whose restriction to the Adams Conjecture summand BSO,, < F/
O, is an H-space equivalence from BSO® to BSOS ; the inverse to this
“exponential” equivalence [AS] will be denoted by #. IF N”" is a closed con-
nected Spin manifold and f:M"—>N" is a homotopy equivalence, let
n(f) €[N, F/O] be its normal invariant and let #B,(f) €[N, BSO],, be the im-
age of the 2-localization #(f)s under £B,. The following result shows that
ZLB,(f) gives a sufficient condition for M to have a metric of positive scalar
curvature:

THEOREM 4.8. Let N” be a closed connected Spin manifold such that n > 5 and
G =mn,(N) is a finite 2-group. Let f: M"— N" be a homotopy equivalence and
suppose that LB,(f) = LB,(g) where g : M' - N is a degree one normal map such
that M' admits a riemannian metric of positive scalar curvature. Then N also admits
such a metric.

Proof. The condition B,(f) = p,(g) implies that n(f) =n(g) + g, + g, where
g, €[N, F/O] has odd order and ¢, €[N, CokJy). Let (f3:M;—>M,...) be a
2-connected degree one normal map representing 7(g) + ¢q,, and let b; € QP™(BG)
be the associated bordism class. By the bordism invariance of positive scalar
curvature and surgery in low dimensions, we may also assume that M'— N is
2-connected and has a metric of positive scalar curvature. By Theorem 4.7 it follows
that M, also admits a metric of positive scalar curvature. O

5. Fake quaternionic spaceforms

The purpose of this section is to prove the main theorem when the dimension is
4k + 3 > 7 and the fundamental group is a quaternionic 2-group.
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THEOREM 5.1. Let N**3 (k > 1) be a fake spherical spaceform whose funda-
mental group G is a generalized quaternionic 2-group. Then N admits a riemannian
metric with positive scalar curvature.

The observations and results of Section 4 provide the first steps in the proof.
Specifically, there is a homotopy equivalence f: N - M, where M, is the linear
spaceform associated to the free G-representation ¥V, and the existence of a metric
with positive scalar curvature only depends upon an invariant Z(f) € [N, BSO].
Since [N, BSO] is isomorphic to the kernel of the first Stiefel-Whitney class
W, :I?’O(N) — H'(N;Z,) and KO(N) is a quotient of the real representation ring
[GKa], the value gorup for ZB(f) is fairly tractable; recall that the map from
RO(G) to KO(N) is given by sending a virtual G-representation V' — W to the
virtual flat vector bundle:

(N xgV|IN)—(N xzs W |N).

More generally, if G is an arbitrary compact Lie group and Hom (G, Z,) is the
abelian group of homomorphisms from G to Z,, then there is a unique homomor-
phism from RO(G) to Hom (G, Z,) whose value on a representation is given by
taking determinants. We shall denote the kernel of this representation by RSO(G).
With this notation the observations of the previous paragraph state that [NV, BSO]
is a quotient of RSO(Q(2")). The following description of this group will be needed
in our approach.

PROPOSITION 5.2. Let Q(2") be a generalized quaternionic 2-group where
r>3,andlet A : Q(2") - Z, x Z, be the abelianization map. Then RSO(Q(2")) is the
sum of the images of the map A* : RSO(Z, x Z,) —» RSO(Q(2")) and the restriction
map defined by the standard inclusion Q(27) < S°.

Proof. (Sketch) Let D(2"~") be the dihedral group Q(2")/Z,. The nontrivial
irreducible real representations of Q(2") separate naturally into three types:
(I) One-dimensional representations given by nontrivial homomorphisms into
Z,; there are three of these up to equivalence.
(IT) Two-dimensional representations defined by pulling back representations
of the quotient group D(2"~'); there are 2" =2 — 1 of these up to equiva-
lence (hence none if r = 3).
(III) Four-dimensional free representations that arise from different embed-
dings of Q(2") into S3; there are 2"~ 3 of these up to equivalence.
We shall dispose of the case r = 3 first because it is exceptional; namely, there
are no Type II representations and there is a unique Type III representation up to
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equivalence. Thus a typical element of RSO(Q(8)) has the form X + Y where X is
a sum of Type I representations and Y is a sum of Type III representations. Since
the latter is orientation preserving, it follows that the sum of Type I representations
must also be orientation preserving and thus lie in the image of 4*. On the other
hand, we also know that Y lies in the image of the restriction map from S°2, so this
proves the proposition when r = 3.

Assume now that r >4 and let 4 be the unique nontrivial 1-dimensional
representation that is trivial on the unique cyclic subgroup of index 2; by construc-
tion 4 factors through a representation A4 of the dihedral quotient group. If p is an
irreducible representation of Type II then p + 4 is orientation preserving. Further-
more, if p is the irreducible dihedral representation that pulls back to p then g + 4
extends to an element of RO(SO,) = RSO(SO,) by the standard description of
irreducible representations of SO; in terms of weights (c¢f. [Hs, pp. 17-19]). Let I'
be a 1-dimensional representation of Q(2") that is nontrivial on a generator of the
index two subgroup; then the representations of Type I are given by 4, I' and their
tensor product 4TI

Given an orientation preserving virtual representation p of Q(2’) write it as a
sum of irreducible representations (that do not necessarily preserve orientations)

p=aT +a,4 +a,TA +fop.~+zwj?j
i i

where each p; is of Type II and each y, is of Type III. The right hand side can be
rewritten in the form

arl +byd +ar,TA+ Y x;(p; + 4) + ), wyy;
i J

for a suitable choice of b,, and by the previous paragraph the sums over i and j lie
in the image of RO(S>) = RSO(S?). Therefore V =a,I' + b,A + ar,'4 must also
lie in RSO(Q(2")), the latter in turn implies that a, + a,,, ar + b,, and b, + a, are
all even, which means that V is the sum of a multiple of I' + 4 4+ I'4 with even
multiples of I', 4 and I'A. Since each of the representations I' + 4 + I'4, 2I', 24
and 2I'4 lies in the image of A* it follows that V e Image 4*. This proves the
conclusion of the proposition when r > 4. O

By the results of Section 4, the proof of Theorem 5.1 reduces to showing that
each class in [N, BSO] has the form £f,(n), where n is the normal invariant of a
degree one normal map (f: M — N, F :vy, —¢) such that M has a riemannian
metric with positive scalar curvature. Separate considerations are needed for the
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images of RO(S?) and RSO(Z, x Z,). The following result deals with the subgroup
determined by representations of Z, x Z,:

THEOREM 5.3. Suppose that u € [N, BSO] satisfies u = £ ,,(n), where n is the
normal invariant of a degree one normal map (f: M — N, ...) such that M has a
metric of positive scalar curvature, and let v € [N, BSO] lie in the image of the
composite

A*
A% : RSO(Z, x Z,) — RSO(G) —[N, BSO).

Then u + v = LB (n"), where n’ is the normal invariant of a degree one normal map
(f:M'>N,...) such that M' has a metric of positive scalar curvature.

In other words, the existence of a riemannian metric with positive scalar
curvature only depends on the image of .Zf,(n) in the quotient group of [N, BSO]
modulo the image of RSO(Z, x Z,); by 5.2 this quotient is generated by the image
of RO(S?).

Proof. The map A% is given by the composite in the following diagram:

Vb
RSO(Z, x Z,) — [B(Z, x Z,), BSO]

I "
RSO(G) — [BG, BSO]
L
[N, BSO]

Here k, : N - BG is a 2-connected reference map, the maps A* are induced by
abelianization, and the maps V? associate a flat oriented virtual vector bundle to
each oriented virtual representation of the group in question.

Let 0 : F/O — BO be the homotopy fiber of the map BO — BF, and consider the -
composite

Oyt Vs, : RSO(Z, x Z) —» KO(B(Z,, x 7))

Since 0y, ,, = > — 1 where 3 is the usual Adams operation, it follows that the
composite sends the representation  into the flat bundle associated to the
representation 3Q — Q. But 2 is the identity on one-dimensional representations
and every irreducible representation of Z, x Z, is 1-dimensional, and therefore
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Y*—1=0 on RSO(Z, x Z,). By exactness this means that the image of %2y Ve
is contained in the image of [B(Z, x Z,), F] =~ {B(Z, x Z,), S°} (as usual, one must
remember that the 1-1 correspondence does not send the direct sum on the left to
the loop — or track — addition on the right). According to the Segal Conjecture, the
abelian group {B(Z, x Z,), S°} is isomorphic to the completion I4(Z, x Z,)" of
the augmentation ideal in the Burnside ring 4A(Z, x Z,); this was shown more
generally for elementary abelian 2-groups by G. Carlsson in [Cal]. Furthermore,
loop sum generators for {B(Z, x Z,), S°} ~IA(Z, x Z,)" are given by the S-maps
B(Z, x Z,) — S° of the form

transfer aug

B(Z, x Z,) < B(Z, x Z,), — BC, — S°

where C runs through all proper subgroups of Z, x Z, and “aug” denotes the
augmentation map collapsing BC to a point; this can be seen by combining the
statement of the Strong Segal Conjecture in [Ca2, p. 190] with [tD, §7.6 and Thm.
8.5.1, p. 215] or by combining the construction of the map 4(G) * —{BG, , S°} in [Lt,
§0] with the definition of the stable homotopy transfer in [KP, §1]. By naturality it
follows that the image of a,, 4%, lies in the image of {N, S°}, and since the image
of {B(Z, x Z,), S°} in {N, S°} is finite it follows that every class in the image of
o, A% comes from a loop sum of reduced transfer maps t5;, : N - S° where G(i)
is a sequence of proper subgroups (probably with repetitions) in G.

If X165, € {N, S°} is a sum of reduced index two transfers, then one can realize
this sum as the normal invariant of a stably tangential degree one normal map as
follows: Each pair (fg),2) € {N,,S°} = {N, S°} @ {n5(S°) = Z} is the normal
invariant of the standard degree two of four (stably tangential) covering space
projection Ng, — N; this follows from standard duality considerations (cf. [BeS,
§13]). If there are r, summands with G(i) @ Z, and r, summands with G(i) = {1},
this realizes {X, 75,2’} as the normal invariant of an oriented covering space
projection of degree 2’, where r =r, + 2r,. Take the disjoint union of this with
2" — 1 copies of the identity map from the oriented manifold

~ N = (N, negative of usual orientation)

to N with its usual orientation. By Proposition 3.1 and the standard rule
O(N x[0,1]) N u — N it follows that this disjoint union is a stably tangential
degree one normal map with normal invariant X, t5,,. If f : M — N is the associated
degree one map, then by construction f'is a covering space projection (but M is in
general disconnected); note that the degree of the mapping and the number of
sheets in the covering are not necessarily equal because the degree takes orientations
on different components into account.
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We now claim the following: If u € image A% represents the normal invariant of
a degree one oriented covering space projection as above and v €[N, F/O] is
represented by the degree one normal map (g: P —N,...) then w @v is repre-
sented by the composite (f*P - M — N, ...) where f*P — P is the covering space
induced by f: P — N via g. The fastest way to see this is to consider the external
direct sum w x f*v in [N x M, F/O)], which is represented by the product of
f:M—>Nand f*g: f*P >M.If I' : M > N x M is the graph of f, then w @ v can
be recovered by taking the transverse inverse image of I'(M) in f*P x M (by
vonstruction f*g x fis transverse to I'(M)). Since this inverse image is precisely the
graph of f*P — M, the claim follows.

To complete the proof, let # and v be as in the preceding paragraph and assume
that the representative (g : P —» N, ...) has a domain P with a metric of positive
scalar curvature. Since f*P is a covering space of P, it follows that f*P also has
such a metric. O

Simple spherical spaceforms

The next step in the proof of Theorem 5.1 involves quaternionic spherical
spaceforms that fiber geometrically over quaternionic projective spaces. Specifically,
we shall say that N is simple if it is given by the free linear Q(2") action on
N = S%+3 that extends to a free linear S* action. The following result implies
Theorem 5.1 for fake spherical spaceforms that are homotopy equivalent to simple
quaternionic linear spaceforms. In fact, it proves a little more:

THEOREM 5.4. If M*%*3 (k > 1) admits a 2-connected degree one normal map
into a simple quaternionic spherical spaceform, then M**3 has a riemannian metric
of positive scalar curvature.

Proof. The argument uses an observation that also figures importantly in the
work of Stolz [Stzl, §1]: If F is a riemannian manifold with a metric of positive
scalar curvature such that the compact Lie group G acts by isometries, and
F - E — B is a compact smooth fiber bundle with structure group G, then E also
has a riemannian metric of positive scalar curvature.

Consider the following commutative diagram:

*

RO(SY RSO(Q(2)

| gl
[KP*, BSO] —— [S%+3/Q(2"), BSO]
az‘i . az*l
[KPX, F|O),, —  [S*%*+3/Q(2"), F|Oly
«‘1'(/32)‘1 Y(ﬁz).l

[KP*, BSO],, — [S*+3/0(2"), BSO),,
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The map p : Q(2") — S? is the inclusion homomorphism, and = is the projection of
the fiber bundle

S*1Q(2) —» S*+3]Q(2) —» KPP,

note that the structure group for this bundle is S3, and the transitive action of S°
on S?/Q(2") is by isometries of the constant curvature metric.

Let N be the simple spaceform S% *3/Q(2"). Then a chase of the diagram shows
that every element z of [N, BSO], =[N, BSO] can be written as a sum
A¥x + L(B,)*n*y for some y € [IKP*, F/O]. If we represent y be a degree 1 normal
map (f:B—KP*,...) then the induced map of total spaces f :f*B—->N, ...
represents 7*y; but now one can use the observation in the first paragraph of the
proof to show that f*B has a metric of positive scalar curvature. By Theorem 5.3
it follows that z = A% x + Z(B,)*n*y has the form £B,(n"), where 5’ is the normal
invariant of some degree one normal map (f : M'— N, ...) such that M’ has a
metric of positive scalar curvature. If (f: M" > N, .. .) is a 2-connected map in the
same normal bordism class, then surgery invariance implies that M” also has a

metric of positive scalar curvature. Since z was arbitrary, this completes the proof.
O

One can extend Theorem 5.4 to nonsimple quaternionic spherical spaceforms by
means of Proposition 3.2:

THEOREM 5.5. The conclusion of Theorem 5.4 remains true in one considers
2-connected degree one normal maps into arbitrary linear spaceforms whose funda-
mental groups are quaternionic 2-groups (in dimensions 4k + 3 > 7).

Proof. Let G be a quaternionic 2-group, let N, be its simple spaceform in dimension
4k + 3, let N be an arbitrary spaceform with the same fundamental group, and let
f:Ny— N be the odd degree map in Proposition 3.2; let d be the degree of f. If
(g : M > N,...)isa2-connected degree one normal map, then by 3.2 there is a degree
one normal map g’ : M’ — N, such that fg’ is normally cobordant to a sum of d copies
of g. It follows thatd - (kyg : M — BG, . . .)and (ky fg' : M' > BG, . . .) determine the
same element of Q3¢ ,(BG). By Theorem 5.4 we may assume without loss of generality
that M’ has a metric of positive scalar curvature. ,

Since G is a finite 2-group it follows that Q3¢ ,(BG) is also a finite 2-group. Choose
an odd positive integer d’ so that d'd is congruent to 1 modulo the exponent of this
group. Then (kyg : M - BG, .. )and d’ - (ky fg': M’ — BG, . . .) determine the same
element of Q3¢ ,(BG); since M’ has a metric of positive scalar curvature and the
map kyg is 2-connected, the existence of a metric with positive scalar curvature on
M follows from surgery invariance. O
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6. The remaining cases

We have now established the main theorem in all cases except the (4k + 3)-di-
mensional case when the Sylow 2-subgroup is nontrivial and cyclic. As usual it
suffices to dispose of the case where the fundamental group is a nontrivial 2-group
(hence cyclic). Thus it remains to consider the propagation question for fake
(4k + 3)-dimensional lens spaces whose fundamental groups are isomorphic to Z,,
for some r > 1. In analogy with Section 5 the discussion has two parts — a proof of
the propagation result for fake spaceforms that are homotopy equivalent to certain
simple lens spaces and an extension to the general case using Proposition 3.2. The
argument presented here is somewhat different from the one outlined in [Shz4] and
involves the subsequent work of Stolz [Stzl].

Simple lens spaces

A lens space L”*' with fundamental group Z, is said to be simple if the
associated free linear action of Z, on S *' extends to a free linear action of S'. In
this case one has a smooth fibering

S] —>L2r+1-—>CP2r.

However, since positive scalar curvature is not a meaningful concept for 1-mani-
folds this situation is not completely analogous to the fibering over IKP* in the
preceding section. Despite this, one has a complete analog of Theorem 5.4.

THEOREM 6.1. If M*+*3 (k > 1) admits a 2-connected degree one normal map
into a simple Z,, lens space (where q > 1), then M**3 has a riemannian metric of
positive scalar curvature.

Proof. The argument splits into two subcases depending upon the congruence
class of 4k + 3 mod 8, but the first steps are the same for both cases. By the results
of Section 4 we need to show that every class in [L, BSO],, = [L, BSO] has the form
Z(B,)(n") where n’ is the normal invariant of some degree one normal map
(f: M- L,...)such that M has a metric of positive scalar curvature. As in Section
4 we know that the map V? from RSO(Z,,) to [K, BSO] is surjective (by [GKa]
again).

Elementary considerations imply that the restriction homomorphism p* from
RO(SY) to RSO(Z,,) is onto. If S' > L —» CP*+! is the fiber bundle discussed
previously, then there is a commutative diagram
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ROSY 5 RSO(Z,)
| |

[CP*+!, BSO] — [L, BSO),,

“Zul aZ*l
[CPZk+ ! F/O](z) == [L, F/O](z)
2(B2), l 2£(b2), l

[CP%+1, BSO),, — [L, BSO},,

and a chase of this diagram shows that every class u € [L, BSO],, has the form
Z(B,)n*v where v € [CP?*+!, F/O] is represented by a degree one normal map

(f: M —CP*+1 ).

At this point we must consider the cases 4k + 3 =3, 7 mod 8 separately. We begin
with the latter because it is easier.

Case 1. Suppose that 4k +3 =7 mod 8 (i.e., k is odd). It will suffice to show
that every degree one normal map (f: M —» CP?+! ) is normally cobordant to
one (q : M’ - CP%*+! . )) such that M’ has a metric of positive scalar curvature.
For this will imply that the circle bundle g*L**3 also has such a metric and thus
that every class in the image of Z(f,)n* has the form #(B,)*(n’) where n’ is
represented by a degree one normal map whose domain has a metric of positive
scalar curvature. But the vertical composites are surjective and p* is also surjective,
and therefore #(B,)xn* is onto by a diagram chase.

Given a 2-connected degree one normal map f: M —CP%**! by surgery
invariance it is clear that M admits a metric of positive scalar curvature if M maps
to zero in Q3¢ ,. This assertion can be verified as follows: Since 4k + 2 =6 mod 8
and the forgetful map Q5" — Q32, ¢ to oriented bordism in injective (c¢f. [ABP)),
it suffices to show that M is an oriented boundary. But M has the same Stiefel—-
Whitney classes (and hence numbers) as CP?**+! by the fiber homotopy invariance
of these classes (the pullback of the tangent bundle of CP**! is stably fiber
homotopy equivalent to the tangent bundle of M). Since Q3°, ¢ is detected by
Stiefel - Whitney numbers and CP?**! is an oriented boundary, the same is true for
M. As noted before, it follows that M must be a Spin boundary and thus has a
metric of positive scalar curvature.
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Case 2. Suppose that 4k + 3 =3 mod 8 (i.e., k is even). Write k =2m so that
the dimension becomes 8m + 3. As in Case 1 it suffices to consider degree one
normal maps of the form (f*M — L, ...) where (f: M - CP*"+! ) is a degree
one normal map; more precisely, it suffices to show that each degree one normal
map into CP**! has a representative (f: M —CP**! .. ) such that f*M has a
metric of positive scalar curvature. By surgery we may assume that f'is 2-connected.

In this case we cannot conclude that M automatically has a metric of positive
scalar curvature. However, the work of Stolz [Stz1] yields a reasonable substitute.
Namely, if M is 1-connected and X* is a homotopy (8m + 2)-sphere whose normal
invariant is the generator u,,n of

2y = 0y (Mg 4 2(BSO)) S Mgy 4 2(F[O)r)

then either M has a metric of positive scalar curvature or the connected sum
M # X* admits such a metric. If the first possibility holds, one can proceed as in
Case 1 to show that the circle bundle f*L has metric of positive scalar curvature.
To deal with the second possibility let f, : M # £* — CP*"*! be the composite of f
and the canonical degree 1 normal map M # * — M. The normal invariants of f
and f, are related by

n(f) =n(f) +h*(u.n
=n(f) +h*o,0

where h:CP*"*!— §%"+2 is the degree one collapse map and o generates the
group 7y, . ,(BSO) =~ Z,. Let fi :f¥L - L be the associated degree 1 normal map of
circle bundle total spaces and define f: f*L — L similarly. By the reasoning of Case
1 we know that f¥ L has a metric of positive scalar curvature, and diagram chases
show that f; and f are both 2-connected. Since f; is normally cobordant to the
disjoint union of fand the constant map £* - CP*"+, it follows that f; is normally
cobordant to the disjoint union of f and S!' x T* 2. §, £, [ where g« : 7,(S?) -
m (L) = Z,, is surjective. Comparing with the reference map k; : L — BZ,,, we see
that~ the difference between the classes representing (k,j, :f¥L ->BZ,,...) and
kpf:f*L ->BZ,,...) in Q5" ,(BZ,,) has the form

(k. : S'>BZ,,,...) x (const. : Z* - {pt.}, .. .).
There is a unique Spin structure on X*, but S’ has two Spin structures and thus it

is necessary to see what happens to the bordism class if one changes the Spin
structure on S'!. We claim that the bordism class does not depend upon the choice
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of Spin structures. This is true because there is an orientation-preserving diffeomor-
phism H from S' x I* to S' x Z* # X,, for some homotopy (8m + 3)-sphere Z,,
such that H commutes with projection onto S' up to homotopy and H sends one
Spin structure to the other (e.g., see [Shzl1]); since X, bounds a Spin manifold (in
fact, a parallelizable manifold) it follows that both Spin structures define the same
Spin bordism class. If §,,, € Qg5 ;(BZ, ) is the class described above, then it
follows that for each s < r the bordism transfer map Qg™ ;(BZ,.) — Q3P ,(BZ,s)
sends 9,,, to 9,,;.

It is well known that the homotopy (8m + 2)-sphere £* is spin cobordant to
P™-n? where P e Q3 is a class with A-genus equal to 1 and n? generates
Q37" ~ my & Z, (cf. [ABP)). If we define &y, € Q57" (BZ,) to be (k,,...) - n° then
by construction we have 25,, =0, and since pu,,n =P7n* in Q" by the first
sentence of this paragraph, the identity J,,, = P™d,, follows immediately. The latter
observation and the discussion in the preceding paragraphs yield the crucial
reduction for Case 2:

PROPOSITION 6.2. If é,, lies in Pos; (BZ,) for each r then the conclusion of
Theorem 6.1 holds.

Proof. The preceding discussion shows that the Dirac invariant of a fake
(8m + 3)-dimensional Z,, lens space is either zero or D(é,,,) = D(P™d,,), so the
conclusion of the main theorem is true if J,,, € Poss,, , 3 (BZ,) for each m > 0. On
the other hand, since J,,, = P™d,, the assertion of the previous sentence will hold
if d¢, lies in Pos, (BZ,,). O

The next step is to verify the hypothesis of Proposition 6.2.

PROPOSITION 6.3. For each r > 1 we have é,, € Pos; (BZ,).

Proof. Let L be the simple Z,, lens space in dimension 3, let ¢ be some spin
structure, and let k : L —» BZ, be a polarization map. We shall first construct an
odd degree normal map g : L* —» L such that L* is a lens space and the 2-local
normal invariant n(g) € [L, F/O),, (in the sense of [Shz2] satisfies #B,(n(g)) =
V%(p) for a nontrivial irreducible free representation p; standard results on the
K-theory of classifying spaces imply that [L, F/O} ~ [L, F/|O],, =[L, BSO), = Z,,
with the nontrivial element given by V?(p). The construction involves iterated
branched coverings as in [Shz3). Specifically, write L = S(p @ p)/Z,,, where p is the
standard irreducible free unitary representation, and using the invertibility of 3 in
Z,. write p.= Y 2 p, for some other irreducible representation (specifically, p, = ¥ & po
where 3X =1 mod?2). Define a 3-sheeted equivariant branched covering

S(p @ po) = S(p @Y ¢po) by sending (v, z) € S(p @ p) to
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(o] + %) ~*(v, 2°) € S(p @ Y& po)-

This map passes to a degree 3 normal map f, of lens spaces that commutes with the
canonical polarization maps from L(p ®p) =S(p ®p)/Z,, and L(p ® p,) =
S(p ® po)/Z, to BZ,.; furthermore, f, induces an isomorphism in 2-local homology
(with twisted coefficients, in fact), and by [Shz3] the 2-local normal invariant n( f;)
is equal to a, V?(p,).

To complete the proof we must relate f to a degree one normal map with the
same normal invariant. By construction #(f) is obtained by taking a stable
homotopy class y € {L® S°} on a finite Thom spectrum L® (where the virtual
dimension of w is zero) such that y | S° = degree (/) and dividing by the degree. In
the situation considered in the previous paragraph, by Proposition 3.3. it follows
that

3(L, 0, k] +b,) =[L*, c* k*] € Q37"(Bz,)

where L* is the lens space described in the preceding paragraph and ¢* and k*
represent appropriate extra data. Since Pos; (BZ,) is a subgroup it follows that it
must contain 3d,, for all r > 1, and since this class has exponent 2 we obtain the
desired relation &,, € Pos; (BZ,). O

The general case

As in Section 5 we have the following extension of Theorem 6.1; this will
dispose of all cases in the main theorem that have not yet been treated.

THEOREM 6.4. The conclusion of Theorem 6.1 remains true if one considers
2-connected degree one normal maps into arbitrary Z,, lens spaces (or real projective
spaces if r = 1) in dimensions 4k + 3 > 7.

Proof. Modulo substituting lens spaces (resp., simple lens spaces) for linear
spaceforms (resp., simple linear spaceforms) whose fundamental groups are quater-
nionic 2-groups, the proof of Theorem 5.5 goes through unchanged. O

Remark. If r =1 the results of this section follow immediately from more
general theorems of Rosenberg and Stolz (i.e., [RS, Thm. 5.3(4)]).
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