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Fake spherical spaceforms of constant positive scalar curvature

Slawomir Kwasik and Reinhard Schultz

If Mn is a compact nemannian manifold, the global topological properties of
Mn often restrict the curvature properties of the nemannian metnc For example,
the solution of the classical spaceform problem shows that Mn admits a metnc with
constant positive sectional curvature only if îts universal covenng manifold fàf" is

the sphère Sn In fact, a stronger conclusion is true Up to a positive scale factor M
is isometric to the standardly embedded «-sphère in IR" + 1 This paper deals with a

converse problem If Mn is a smooth manifold such that Sïn is homeomorphic to
Sn, what sorts of positive curvature properties can be reahzed by some riemanman
metnc on MnCf The weakest of thèse properties is positivity of the scalar curvature
function k Mn -> U which is essentially an iterated average value for the sectional

curvature (see [LM, p 60]) Results of N Hitchin imply that metncs with positive
scalar curvature need not exist Specifically, this happens if n 8/r + 1 > 9 and the
universal covenng does not bound a spm manifold (see Hi, p 42] or [LM, Thm
II 8 12, p 162]), simply connected examples of this sort are well known (compare
[Hi, p 44] or [LM, Thm II 8 13, p 162]), and examples with nontnvial fundamen-
tal groups are given by taking connected sums of the simply connected examples
with lens spaces whose (cychc) fundamental groups hâve odd order Our main
results provide a converse to Hitchin's resuit and the preceding observations If
n > 5 and $n bounds a spin manifold, then Mn admits a riemanman metnc with
positive scalar curvature Furthermore, if the fundamental group nx (Mn) has even

order, then such a metnc always exists (the fundamental group nx{Mn) must be

finite because the universal covermg is compact)
Complète nemannian manifolds with constant positive sectional curvature ail

hâve the form SnjG, where G acts freely on Sn via some homomorphism G -> On + x,

and are often called hnear spherical spaceforms A smooth manifold Mn will be

called a fake (smooth) spherical spaceform if îts universal covenng is homeomorphic
to Sn but Mn is not diffeomorphic to a hnear spaceform By the solution of the
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2 SLAWOMIR KWASIK AND REINHARD SCHULTZ

Generalized Poincaré Conjecture one can replace "homeomorphic" by "homotopy
équivalent" in dimensions ^3, but in gênerai $n need not be diffeomorphic to Sn.

Such manifolds hâve been studied extensively by topologists over the past quarter
centry (cf. [DM, Mdl-2, MThW]), and questions about positive curvature can be

viewed as a first step towards understanding the géométrie properties of such

manifolds (e.g., see [Md2, Question, p. 98]).
With the preceding terminology our main results can be stated as follows:

THEOREM. Let Mn be afake spherical spaceform with n>5 and let G be the

fondamental group of Mn.

(A) Ifn^l,2 mod 8, then Mn admits a riemannian metrie with constant positive
scalar curvature.

(B) //nsl, 2 mod 8 and G has even order, the same conclusion holds.

(C) If n s 1 mod 8 and G has odd order, then Mn admits a riemannian metric
with constant positive scalar curvature ifandonly ifMn does; more precisely,
such a metric exists if(x(Mn) 0 in KO~n({pt})9 where ce is the characteristic
number associated to the KO-theoretic Dirac orientation on MSpin, and no

metric with positive scalar curvature exists if ca(£ïn) # 0.

Remarks.
1. The theorem does not specifically mention the case where dim Mn 2 mod 8

and G has odd order, but this is covered by the results of [GL1] because G £ {1}
is the only possibility.

2. The number a(Mn) is the one considered in [Hi] (also see [LM]); it is denoted

by n° in [ABP] and [Stg].
3. Three-dimensional manifolds with metrics of positive scalar curvature hâve

been studied by R. Schoen and S. T. Yau [SY2] and also by R. Hamilton [Hal].
Thurston's geometrization conjecture for 3-manifolds implies that ail 3-manifolds
with finite fundamental groups are diffeomorphic to linear spherical spaceforms.

4. Although fake spherical spaceforms are known to exist in dimension 4

(compare [CS, FS]), very little is known about their curvature properties (the
results of [Ha2] are the best currently known).

5. The possibilities for G in the theorem were completely determined by I. Madsen,
C. Thomas, and C. T. C. Wall [MThW]; specifically, for each prime p dividing the

order of G, ail subgroups of order/?2 and 2p are cyclic. In contrast, the fundamental

groups of linear spaceforms satisfy an additional condition - for ail pairs of primes

/?, q dividing the order of G every subgroup of order pq is cyclic (see [Wo]).
6. A closed smooth manifold In that is homotopy équivalent to Sn automati-

cally bounds a spin manifold if n £ 1, 2 mod 8 or n < 2. If n > 3, then I" bounds

a spin manifold if and only if a(Xn) « 0 (see [ABP]).
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Outline of the proof

By the positive solution of the Yamabe problem (see [Shn]), it suffices to show
that one can find metrics with (possibly variable) positive scalar curvature in the

appropriate cases (a brief summary of this topic appears in [RS, Section 1]). The
next steps are elaborations of results in our previous paper [KwS] (which in turn
uses earlier work of Gromov-Lawson, Schoen-Yau, and J. Rosenberg [RI-3]).
Specifically, by the methods of [KwS] it suffices to consider fake spherical spaceforms

whose fundamental groups are 2-groups. The proof then splits into cases

depending upon the dimension of Mn mod4. For even values of n the only
spherical spaceforms are fake real projective spaces, and the existence of metrics
with positive scalar curvature follows from results of Rosenberg and S. Stolz (Le.,

[RS, Thm. 5.3(6)-(7)]), so therefore it suffices to consider cases where n is odd. If
n 1 mod 4 the resuit is established by proving a spécial case of a gênerai
conjecture due to Rosenberg [R4]. We verify this using methods developed by Stolz
to characterize the closed 1-connected manifolds with metrics of positive scalar

curvature [Stz]. In the remaining cases the initial step is to notice that a fake

spherical spaceform has the homotopy type of a linear spaceform if its fundamental

group is a finite 2-group (cf. [DM], [Mdl]). This suggests a more gênerai problem:

PROPAGATION QUESTION. If Mn has a riemannian metric with positive
scalar curvature and h : Nn-+ Mn is a homotopy équivalence, does Nn also hâve such

a metric0!

The results of [Hi] and [GL1] answer this completely when Mn Sn; the answer is

yes if and only if Nn bounds a spin manifold. More generally, the results of [GL]
and [SY] on surgery and positive scalar curvature imply that the answer to the

Propagation Question only dépends upon the normal cobordism class of the

homotopy équivalence. Thus it suffices to détermine which bordism classes of
degree 1 normal maps hâve représentatives h : P ~-*M where P has a metric with
positive scalar curvature. This analysis has several parts. The classes of degree 1

normal maps are in 1-1 correspondence with the abelian groups of homotopy
classes [Mw, F10] given by stable vector bundles over Mn with stable fiber homotopy

trivializations. Since it suffices to consider cases where nx(Mn) is a finite
2-group, one can reduce further to examination of the localized normal invariant in
the localized group [M, F/O\2). The solution of the Adams Conjecture then yields
a splitting FjO{2) ~ BSO{2) x Cok /(2) that passes to a (nonadditive!) splitting of
[M, FjO\2) into KÔ+(M){2) x [M, Cok J(2)], where KO+ dénotes the kernel of the

Stiefel-Whitney class map
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The first factor of the splitting is relatively easy to compute, but the second is highly
nontrivial (the homotopy groups of Cok /(2) are the "bad" part of the 2-primary
stable homotopy groups of sphères). Fortunately, the answer to the Propagation
Question turns out to be independent of the second coordinate of the 2-localized
normal invariant; the crucial point in proving this is a resuit of V. Snaith on
triviality of KÔ(Cok J(2)) [Snl]. Analaysis of the JBSO(2)-component requires a

variety of tricks from À#-theory, homotopy theory, and the représentation theory
of compact Lie groups. As in the work of Stolz [Stzl], fiber bundle constructions
provide important examples of manifolds with metrics of positive scalar curvature.
Another important thème in our work is the analysis of bordism classes for degree
1 normal maps in terms of normal maps with other degrees.

This paper is divided into six sections. The first section introduces some

necessary terminology and contains some straightforward variants of some results
in [Stzl-2]. In Section 2 we prove the main resuit when n 1 mod 4; the argument
is similar to the proof of [RS, Thm. 5.3(4)]. Section 3 develops a theory of oriented
normal maps whose degrees are arbitrary integers; this is similar to the nonoriented
théories in [BrM] and [HM] for which the degree is a nonnegative integer, but the

extra orientation data allow one to construct a well defined sum opération by
disjoint union. The gênerai setting for the Propagation Question is presented in
Section 4, and the final two sections (5 and 6) deal with the remaining cases in
which the dimension is congruent to 3 mod 4 and the fundamental group is either

a cyclic or generalized quaternionic 2-group. Separate techniques are required for
thèse two subcases; the generalized quaternionic case is treated in Section 5, and the

cyclic case is treated in Section 6.

1. Stable splittings and réduction principles

If Mn is a closed spin manifold of dimension >5 and G 7i,(M) is a finite
2-group, then the techniques of Stolz [Stz2] show that Mn has a metric with positive
scalar curvature if a characteristic class in the connective JW-homology of K(G91)
is trivial. In this section we shall give analogous results for certain semispin

manifolds Mn such that M" is not a spin manifold but its universal covering is a

spin manifold. The basic examples for our purposes are linear and fake spherical
spaceforms whose dimensions are not congruent to 3 mod 4.

We begin by recalling some elementary facts about the fundamental groups and
the first two Stiefel-Whitney classes of linear spherical spaceforms whose
fundamental groups are nontrivial 2-groups.

OBSERVATION 1.1. Let Mn be a linear spaceform whose fundamental group G

is a finite 2-group, and let k : Mn-+K{G> 1) be 2-connected.
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(i) If n 3 mod 4 then Mn is a Spin manifold and G is either cyclic or
gêneralized quaternionic.

(ii) If n 1 mod 4 then G is cyclic, wx{Mn) 0, and w2(Mn) fik*i, where

i e Hl(K(G, 1); G) corresponds to the identity and j8 is the Bockstein operator
for the short exact séquence 0 -» 2G -> G -? Z2 -? 0.

CONSEQUENCE 1.2. //*« 1 mod 4 ffe/i MM is a Spinc manifold, where Spinc
is the homotopy pullback in the following diagram:

Spinc

ï
SO

>K(Z,
ï

2-conn
>K(Z,

1)

1)

In case (i) the classifying map Mn-+BSpin associated to the Spin structure and
the 2-connected map k combine to yield a 2-connected map from M" to
BSpin x K(G, 1), and the surgery invariance principle of [GL, SY] shows that if
n > 5 then Mn has a metric with positive scalar curvature if and only if the bordism
class [Mn, structure; Mn-+K(G, 1)] in Qsnpin{K{G, 1), has a représentative [N\... ]

for which Nn has such a metric.
We need a similar principle when n 1 mod 4, but we cannot use BSpin0

because the lifting Mn-+BSpinc of the normal bundle classifying map Mn -+MS0
is not 2-connected. The appropriate classifying spaces in this case are the spaces
Y(G9 P) that are the colimits of the spaces Yn(G9 /?) constructed in [KwS, pp.
282-283]. Specifically, Y(G9 p) is the homotopy fiber of the maps BSO x
K(G, 1)-+K(Z2,2) corresponding to

w2 x 1 -h 1 x p(i) e H\BSO x K(G9 1); Z2).

PROPOSITION 1.3. The space Y(G, p) is homotopy équivalent to BSpin x
K(G9 1), and the canonically associated Thom spectrum Th(G9 /?) is stably homotopy
équivalent to MSpin a S~2(K(G, 1)/C), where C^S1 G K(G9 1) is the l-skeleton in the

standard cell décomposition of K(G9 1) with one cell in each nonnegative dimension.

Proof (Sketch). The idea is standard and resembles the proofs that
BSpinc - BSpin x K(Z9 2) and MSpinc a MSpin /\S~2(K(Z9 2)) (compare [Stg]). A
map/M : BSpinn x K(G9 l)-*Yn + 2(G9f}) is defined by taking the direct sum of the
standard «-plane vector bundle over BSpinn and the canonical complex Une bundle
over BG (recall that G is cyclic). The maps/w pass to a homotopy équivalence on
the stable level; the assertion about Thom spectra follows because the stable Thom
spectrum on the left is just MSpin aS~2(K(G, 1)/1 - skeleton). D
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PROPOSITION 1.4. Let Mn be as in Proposition 1.1 with n 1 mod4. Then

Mn admits a Y(G, p) structure, and Mn has a metric with positive scalar curvature if

a[M\...]ebon(S-2(K(G,l)IQ)(2)

is equal to (x[Nn,...] where Nn has a metric with positive scalar curvature.

Proof. (Sketch) The existence of the Y(G, /?) structure is established in [KwS, p.
283], and the balance of the argument is formally parallel to the reasoning in [RS,
Section 5] for the nonorientable cases.

2. The nonspin cases

In this section we shall consider fake spherical spaceforms Mn where n > 5 and

n 1 mod 4. Observation 1.1 and elementary considérations show that Mn is a spin
manifold if and only if nx(Mn) has odd order (see also [KwS, pp. 281-282]). Since

the positive scalar curvature properties in the odd order case are completely
determined by the results of [KwS, Section 1], we shall also assume that nx(Mn) has

even order henceforth. In fact, the first steps in our approach are already contained
in [KwS], and the resuit for n 1 mod 4 is essentially a combination of thèse steps
and the vérification of a conjecture due to Rosenberg in certain cases (see [RS,
Thm. 5.3(5)]).

As noted in the proof of [KwS, Thm.2.1, Case 2, pp. 282-283], if Mn is a fake

spherical spaceform of dimension n 4k + 1 > 5 and G nx(Mn) has even order,
then the Sylow 2-subgroup is cyclic and the second Stiefel-Whitney class is

nontrivial. The methods of [KwS] also yield the following réduction:

PROPOSITION 2.1. Let Mn be a fake smooth spherical spaceform of dimension

2m -f 1 > 5, let Nn be the covering manifold associated to a Sylow 2-subgroup of
nx (Mn)9 and assume that Nn has a riemannian metric with positive scalar curvature.
Then Mn also has such a metric.

Proof. Let p be a prime dividing the order of G nx (M) and let Np be the

covering associated to a Sylow />-subgroup; then the techniques of [KwS] show that
Mn has a metric with positive scalar curvature if and only if Np does for ail primes

p dividing the order of G. If p 2 this is given; on the other hand, if p > 2 then

[KwS, Cor. 1.9] implies that Np admits such a metric if and only if its universal

covering ftp does. But if/? is odd then fitp =M i^2» and this manifold admits a
metric with positive scalar curvature because N2 admits such a metric.
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From now on let G be a nontrivial cyclic 2-group, and let Y(G, p) be the space
considérée în Section 1. This space is similar to the classifying space for Spinc
structures on manifolds. Since thèse structures are given by liftings of the second

Stiefel-Whitney class to H\Mn\ Z), it follows that every Y(G, p) structure defines

a Spinc structure (because fi lifts canonically to H\G\ Z) « G). The following resuit
shows that Y(G, P) and BSpinc are clsoely related.

PROPOSITION 2.2. The space Y(G, P) is homotopy équivalent to the total space

of the principal fibration

œ :Sl c+ Y(G, p) -? BSpinc

with characteristic class

\G\ - generator e H2(BSpinc; Z) « Z.

Proof. The spaces BSpinc and Y(G9 P) are homotopy fibers of maps from
BSOxK(Z, 2) and BSOxKiG,!) to A:(Z2,2); specifically, the restrictions of
BOS x K(Z, 2) -+K(Z29 2) to the first and second factors are given by the second

Stiefel-Whitney classes, and the restrictions of BSO x K(G, 1) ->K(Z2, 2) to the
factors are given by the second Stiefel-Whitney class and the Bockstein /?'

respectively. This implies that

> BSpinc

1 I (2.3)

BSO x K(G, 1) ^> BSO x AT(Z, 2)

is a pullback square. Since /?' : K(G, 1) -»K(Z2, 2) is a principal «S^-bundle classified

by \G\ times the generator of the 2-dimensional intégral cohomology, the conclusion
of the proposition follows.

As in [KwS, Section 2] we shall let Th(G, j8) dénote the Thom spectrum
associated to 7(G, /?); the usual transversality arguments imply that the stable

homotopy groups nf(Th(G, /?)) are isomorphic to the bordism groups Q*(G, p) of
manifolds with (7, (G, P) -*BO) -structures on their stable normal bundles (more
precisely, in the setting of [Stg, Chapter II] we take the structure associated to the

maps FW(G, P) -? BOn). It is fairly easy to show that the groups Q2k+i(G,P) are
finite; this fact was noted in [KwS, Section 2], and it played a crucial rôle in the

proof of [KwS, Thm. 2.1]. In this paper we shall need more précise information.
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The first step is a direct conséquence of Proposition 2.2; namely, the map
Y(G, p) -+BSpinc defines a morphism of Thom spectra p : (G, P) -+MSpinc. This is

useful because the homotopy groups of MSpinc can be described quite well via the

équivalence of the Thom spectra MSpinc ^ S~2K(Z9 2) AMSpin associated to the

homotopy équivalence BSpinc ~ K(Z, 2) x BSpin (compare [Stg, p. 354]). In partic-
ular, the bordism classes in Q%pmC s n%(MSpinc) are detected by characteristic
numbers over Z2 and the rationals [Stg, p. 337]. The following resuit establishes an

even closer relationship between Q*(G, P) and Spinc bordism.

THEOREM 2.4. The homomorphisms p* : (G, p) -* Q%pinC fit into a long exact

séquence of graded Q^pm modules

> Qskpinl -^ Qk(G, p) -^> QskpinC —+ Qskpinl —^ • • •

where co1 sends a Spinc-manifold (M,f : M -*BSpinc) into the circle bundle that is the

pullback off and Y(G, p) ~> BSpinc. This séquence is canonically isomorphic to the

twisted Gysin séquence in Q%pm homology associated to the map of Thom spectra

p' : K(G9 X)IC->K{Z, 2) - Jf(Z, 2)y associated to the Bockstein P' : K(G, 1) -^
K(Z, 2) arising from the short exact séquence

\G\

0-+Z—>Z-+G->0

and the universal complex Une bundle y over K(Z92).

Results of this type are fairly well known to workers in the area, but the

complète dérivations are not well documented in the literature; therefore we shall
discuss the proof of Theorem 2.4 at the end of this section for the sake of
completeness.

Bordism classes with positively curved représentatives

As in [KwS, p. 283], let Pos* (G, p) £ Qk(G, P) dénote the bordism classes that
can be represented by a manifold Mn (with appropriate extra data) such that Mn
has a riemannian metric with positive scalar curvature. The usual arguments show

that Pos^ (G9 P) is a graded subgroup of Q#(G, P), and the main objective of this
section is the following description of Pos^ (G, p).

THEOREM 2.5. If a4m : Q4m(G, p)-^Q is defined by the Â-genus, then Pos4w

(G, P) is equal to the kernel of ot4m. Ifk^O mod4, then Pos*(G, P) Qk(G, P).
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Proofof 2.5. The first step is to note that Pos4m (G, /?) is contained in the kernel
of a4m, Let (M4m; g : M-^K(G, 1),...) represent u e Pos* (G, 0), where M has a

metric with positive scalar curvature, and let M' -* M be the regular covering deter-
mined by g. It follows that M'is a spin manifold, and therefore the Â genus of M'
is zéro. But this genus clearly satisfies Â(M') |Gpî(M), and therefore Â(M) =0.

The second step in the proof is to show that œXQ^TÎ) is contained in
Pos* (G, P) if k > 5. To see this, we first note that each élément of Q^x has a

représentative of the form Mk~l; g : M -*K(Z9 2)- • •)* where M is 1-connected and
has a metric with positive scalar curvature. In fact, by surgery and taking connected

sums with the nonspin sphère bundle over S2 one can find 1-connected nonspin
représentatives of ail bordism classes if k > 5, and by [GL2] ail such manifolds hâve
metrics with positive scalar curvature; the existence of similar représentatives if
k 5 follows directly from the structure of QfmC as described in [Gk, Thm. 3.1.4,

pp. 205-206]. Given such a représentative for a class w, it follows that œ(u) is

represented by the circle bundle g*K(G, 1) ~> Af with its induced (G, /?) structure,
and standard results (cf. [Na], p. 250) now imply that g*K(G, 1) has a metric with
positive scalar curvature so that œ\u) e Pos^ (G, jS).

The third step in the proof is considerably deeper and requires the full strength
of Stolz's methods [Stz2]:

STEP III. Let bo be the connective KO-spectrum, and let D : MSpin -+bo be the

Dirac orientation as in [KwS] or [RS]. Then Pos^ (G, /?) contains the kernel of the

composite

D
A* : Qk(G9 pi) s G%T2(K(G9 1)/C) -A b~ok+2(K(G, 1)/C).

Proof Let PSp3 be the projective symplectic group Sp3/{±I}, and consider the
natural action of i^S^ on the quaternionic projective plane !KP2 by projective
transformations. Recall that the approach of [Stz2] invovles a Grothendieck bundle

transfer f* : S8(BPSp3+) AMSpin -*MSpin (in the sensé of Boardman [Bd]) deter-
mined by the associated fiber bundle IKP3->2s-? BPSp3. The Diarac map yields a

splitting MSpin(2) ^ boi2} v MSpin such that the localization of f* at 2 factors
through MSpin and the iiiduced factorization/# : Ss(BPSp3+) a Spin(2) -> MSpin is

a retraction in the homotopy category of spectra. A similar construction yields a
Grothendieck bundle transfer

h # : S*(BPSp%+) a Th(G9 p) - Th(G9 P)

with a corresponding géométrie interprétation; namely, if we view a class in

Kk_s(BPSp3+ATh(G,P))
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via a représentative object (Mk~*;f: M -+K(G9 l)9g :M^>BPSp39...) then the

induced stable homotopy mapK takes this to theclass of the KP2-bundleg*E j Mk~8
together with extra data including g*E -+M -*K(G9 1). Since PSp3 is the structure

group for this bundle and PSp3 acts isometrically on (KP3 with respect to its canonical
riemannian metric - which has positive scalar curvature - it follows as in [Stzl] that

Image h' s Pos* (G, p). (2.6)

Since G is a 2-group it follows that the localization map

Bo+(K(G9 l)IQ-+Bo*(K(G, 1)/C) ® Z(2)

is injective, and therefore it suffices to show that

(i) Qk(G9 fi) -> Qk(G9 /0c2> is injective,
(ii) the image of h[2) equals the kernel of J5*(2).

Assertion (i) amounts to saying that Qk(G, /?) has no odd torsion; this can be

checked directly by localizing at an arbitrary odd prime p (because K(G9 l)(/0 is

contractible). The proof of assertion (ii) requires the following elementary
conséquence of the construction of the Grothendieck bundle transfer:

(2.7). Under the équivalence front Th(G, fi) to MSpin aS~2(K(G9 1)/C) the bundle

transfer h # corresponds to the smashproduct off* and the identity on S~2(K(G, 1)/C).

A proof of (2.7) appears at the end of this section.

By (2.6) and (2.7) it follows that Pos* (G, P) contains the image of

9 llC)A(BPSp3+)) ^Û^n2(K(G9 1)/C) s Qk(G9

But Stolz's results imply that the image of/' is the kernel of D*.
Conclusion of the proof Consider the following commutative diagram, the rows

of which arise from twisted Gysin séquences:

2)) -^ Ûsk??2{K(G9 1)/C) -» Û%?2(K{Z, 2))

2))^ Bok+2(K(G9 ^
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Recall that the maps £>'*, Z^, D% are spht surjective after localization at 2 If M4m

and other data represent u e Q4m(G9 p) and M4m has a metnc with positive scalar

curavture, then Â(M4m) 0 by the first step of the proof Suppose now that
Â(M4m)=0 (or dimM^O mod4), and let M plus the other necessary data

represent w e Qk(G, p) By 1 4 ît suffices to show that the 2-locahzation of u lies in
the subgroup Pos^ (G, fi)(2)

By the second and third steps of the proof we know that Pos* (G, /?)(2) contains
the image of co\2) and the kernel of Z)(2)l|t Since the composite of Z)(2)j|e with the

projection Bok + 2(K(G, 1)/C)/Torsion îs detected by the A genus, ît follows that
D^u îs torsion

It îs well known that Bo^(K(Z9 2))(2) is torsion free, an elementary proof of this
fact can be obtained by the method indicated m [MhMi, §6] (alternate références

for the change of rings results mentioned there are [Lvl, Ch I] and [Lv2, §1]) Since

D^u is torsion it follows that Ji2)^D{2)^u 0 and thus D{2)if.u cdxz for some
z e Bok +, (K(Z, 2))(2) A diagram chase now shows that £>(2)3|e w Di2)^œ'v for some

v, and therefore by the first two steps of the proof and Proposition 1 4 we conclude
that u e Pos* (G, p)

Implications for sphencal spaceforms

Theorem 2 5 immediately yields the main resuit of this paper for (4k -f l)-di-
mensional fake sphencal spaceforms

THEOREM 2 S If M4k+ x (k>\) is a fake sphencal spaceform with an even

order fundamental group, then M4k+X admits a nemannian metnc with positive scalar

curavture

Proof By Proposition 2 1 it suffices to consider examples whose fundamental

groups are (nontnvial) 2-groups On the other hand, if Mn is a closed smooth
onented mamfold such that n > 5 is not divisible by 4, the fundamental group
G £ 7c, (M) is a nontnvial cychc 2-group, the second Stiefel-Whitney class of Mn is

nonzero, but the universal covenng $n is a spin mamfold, then Theorem 2 5 and

surgery invariance imply that Mn admits a nemannian metnc with positive scalar

curvature Finally, if M4k + l(k > 1) is a fake sphencal spaceform such that nx(M) is
a nontnvial finite cychc 2-group, then M satisfies the conditions in the preceding
sentence and therefore has a nemannian metnc with positive scalar curvature

QUESTION If M is a fake sphencal spaceform as in Theorem 2 8, does M hâve

infinitely many cobordism or concordance classes of metncs with positive scalar
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curvaturel - One can combine the results of [BG] and this paper to obtain
conclusions of this type for fake spherical spaceforms such that dim M Ak +
3>7 or \nx(Mn)\ is odd.

Addendum. Proofs of technical assertions

We shall now give some of the détails that were deferred in the course of
proving Theorem 2.5.

Proof of Theorem 2.4. {Sketch) Diagram (2.3), at the end of the proof of
Proposition 2.2, induces a corresponding commutative diagram of Thom spectra:

MSpin a S-2(K(G, 1)/C) ^> Th(G, j?)

|1a.S-V) \P

MSpin a S~2(K(Z, 2)) -^ MSpinc

The theorem will follow directly from gênerai considérations involving Gysin
bordism séquences. Hère is a version that suffices for our purposes.

PROPOSITION 2.9 (Twisted Gysin séquences). Let co : S1—>E^B be a

principal Sx-bundle over a finite CW complex B, and let Ç be a high dimensional

vector bundle over B. Then the stable homotopy cofiber of the induced map En*^ —?
B^ of Thom complexes is the Thom complex B^®0* (where œ is identified with its
2-plane bundle), and the Connecting homomorphisms

hâve a bordism theoretic interprétation by taking induced circle bundles.

EXPLANATIONS.
(1) We use the Atiyah notation X* to dénote the Thom complex/spectrum for

a virtual vector bundle a over X for which the dimension of the bottom cell is dim a

[At].
(2) By transversality every class in %k+n{B^m) is represented by a submanifold

Mk~2 of Un+k with an isomorphism cp of the normal bundle of Mk~~2 with a

pullback/*(£ ®co) for some map/: M -+B. Since the circle bundle f*E is canoni-

cally embedded in the total space/*o> with trivial normal bundle, it follows that we
hâve an associated realization off*E as a submanifold of Un+k and an identification

<p* of the normal bundle of/*E with the pullback/*(£ © R), where/:/*£ -> E
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is the bundle projection. The Connecting homomorphism takes the class représentée

by the data {M, <p,f} to the class représentée by the data {f*E9 <p*,/}.

Proof of Proposition 2.9. The bundle projection from E to B factors as a

composite

E -^ D(œ) -^> B

where D(co) is the associated Z)2-bundle and q:D(œi)-+B is the vector bundle

projection. This yields an inclusion of Thom complexes En*E-+D(œ)q*t9 and the

quotient complex D(a})g*^En:¥i is equal to 2?w®{. j^ proves the assertion about
the stable homotopy cofiber.

The preceding observations and a standard corollary of the Blakers-Massey
Theorem (see [Wh], Thm. 7.12, p. 368) yield an exact séquence

provided k «n dim £.

The only thing remaining to prove is the assertion regarding the boundary
homomorphism d. To see this, consider the isomorphism C* : nn + k(D(œ)q*^
E71*^) -+nn+k(Bœ®^ *) that [s implicit in the exact séquence. By transversality the
éléments of the domain are represented by neatly embedded manifolds (W,
ôW)^(Dn+k9Sn+k-1) with {q*Ç J, Z>(a;)}-structured normal bundles and refine-

ments to {n*^ J, £}-structured normal bundles on the boundaries; relative groups of
this sort are defined in [Stg, Chapter II]. The usual transversality considérations
also show that such représentatives can be made transverse to B viewed as the zéro
section of D{œ) j B. Thus geometrically the isomorphism is given by sending the

transverse inverse image of the zéro section D(œ) ç D(œ © £) into the transverse
inverse image of the zéro section B ç D(œ © Ç). Similarly, if M is a submanifold of
Sn+k with an {œ ©£ J, 5}-structured normal bundle and référence map g : M-+B,
then the pair (g*Z)(co), g*E) with appropriate extra data will represent the inverse

image of the class determined by (M; g, other data). Since elementary considérations

show that <3C* is given geometrically by sending the class of (W, ôW;...) to
the class determined by dW and its extra data, the asserted description of d follows
immediately.

COROLLARY 2.10. The maps of bordism groups Qk(G, fi) -+QlpinC correspond
to the maps of Spin bordism groups

2))
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under the canonical équivalences of Propositions 2.2 and 2.9 and thus are embedded in
the following long exact twisted Gysin séquences of Q%pm homology groups:

2)) ^ Qs/:n2(K(G, 1)/C) ^ Gfr2(*(Z, 2)) -> • • •

Proof. {Sketch) Choose finite subcomplexes of K(Z, 2) and BSpin such that the
inclusions are highly connectée, and construct the corresponding finite approximations
to K(G9 1)/C and MSpin; similarly, choose finite approximations to BSpinc whose

inclusions are highly connected, and take corresponding approximations to Y(G, p)
and the associated Thom spectra. By Proposition 2.9 one has isomorphic twisted Gysin
bordism séquences for the finite approximations to Th(G, f$) ->MSpinc and

'2(K(G 1)/C) -> MSpin aS~2MSpinAS'2(K(G, 1)/C) -> MSpin aS~2K(Z, 2)

through some large range of dimensions. The corollary follows directly from thèse

and the standard transversality isomorphisms Q%pin(X) £ n%(MSpin aX+).

Proof of (2.1). (Sketch) Let t be the bundle of tangents along the fibers in the total
space 2s of the KP2 bundle over BPSp3; as noted in [Stzl] the bundle t is a Spin bundle.

If U : S*(BSp3+) -+ES~X is the Umkehr map in S-theory associated to the bundle

projection, where 8 — t is the O-dimensional virtual vector bundle that is stably inverse

to t, then the Grothendieck bundle transfer for A MSpin has the form

where T* is induced by the classifying map of — t from E to BSpin and © is the

lsx ring spectrum structure on MSpin given by direct sum of vector bundles

(compare [May]). We hâve introduced the symbol A because we want a similar
formula for A Th(G9 P). This will hold if we hâve an analogous direct sum pairing
MSpin a Th(G, P) -? Th(G, P). But this is elementary to construct because the direct
sum of a Spin vector bundle and a F(G, P) vector bundle has a canonical

F(G, P) -structure; in fact, if © represents this module structure on spectra then the

canonical splitting of Th(G, p) is the composite of © with the obvious map

MSpinAS-2(K(G, 1)/C) -» MSpin a Th(G9 P).
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Since the module structure for Th(G, /?) and the ring spectrum structure for MSpin
satisfy a mixed associative law up to homotopy (by the associativity properties of
direct sums of vector bundles), the validity of (2.7) follows immediately.

3. Orientée normal maps with signed degrees

In this section we shall establish some results on normal maps of degree # 1 that
will be needed later. For our purposes it is necessary to consider normal maps
whose degrees hâve definite signs, in contrast to the normal maps of [BrM] and

[HM] which hâve unsigned degrees. This can be done quite simply for oriented
manifolds by taking bundle data involving oriented vector bundles and orientation-
preserving bundle maps (the trivial bundle is taken to hâve a standard orientation -
for example, the one associated to the ordered basis of standard unit vectors on
R*). Specifically, one can proceed as follows:

DEFINITION. Let M be a closed oriented manifold, let £ be an oriented vector
bundle over M, and let d be an integer. The set of normal bordism classes of
oriented degree d normal maps into M with oriented bundle Ç is given by taking ail
pairs (/, b), where f:N->M has degree d and b represents orientation preserving
bundle data, and factoring out the équivalence relation generated by

(i) normal bordisms (F, B) where F; W-+B x / is a degree d maps of triads,
B is orientation preserving, and the stable tangent bundle of B is the

pullback of f to M x /,
(ii) orientation preserving vector bundle isomorphisms £«£' covering the

identity,
(iii) bundle data stabilization covering the identity for which £ is replaced by

£ © R and b by b © R.

This définition is virtually identical to the concepts of degree ^ 1 normal maps
in earlier work of Agoston [Ag] and G. Anderson [AnG]. The normal bordism
classes obtained in this fashion will be denoted by Q(M, £, d).

In the setting above an oriented degree d normal map on a connected manifold
Mn corresponds to a family of classes in the homotopy group of some Thom
complex nn+k{M^)9 where k»n and the common Hurewicz image of the classes in
Hn+k(Mi) s Z is d times the generator determined by the orientations of M and £;

one needs a family of classes because the normal map is represented by a set of
classes <p* u where cp runs through ail orientation preserving vector bundle automor-
phisms of Ç and cp\ is the automorphism associated to the one point compactifica-
tion <p#, viewed as a self homeomorphism of Af\

If Ç is the oriented bundle vM, then the following resuit illustrâtes the usefulness

of normal maps with signed degrees.
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PROPOSITION 3.1. If vM is the oriented normal bundle of M in Un+k (where
k »n as usual), then disjoint union with the identity on M defines an isomorphism
O(M, vM, d) -> Q(M, vM, d+\) for ail integers d.

Proof Let sf, : Sn + k-+ Th{vM) be a degree 1 collapse map defined by the Pon-

trjagin-Thom construction, if A : Th(vM) -»SM + A: is a degree 1 collapsing map onto
the one point compactification of a coordinate disk, then there is an associated splitting

nn + k{Th(vM)) ^Ze%®Kernel A*.

The set Q(M9 vM, d) is then equal to

>

{ t+(vM)

where Aut+ (vM) is the group of homotopy classes of orientation-preserving vector
bundle automorphisms of M; as before, the action is given by [cp] • u <pj (u), and

Aut+ (vM) sends each set A~\{d}) into itself because A cpm is homotopic to A by
Hopfs Theorem). Thus one has an algebraic isomorphism from {d} xKerJ*/
Aut+ (vM) to {d -h 1} x Ker J*/Aut+ (vM) induced by sending the class [v] repre-
sented by v into [v + sff]. The géométrie assertion in the proposition follows
because if v is represented by /: N -+M and a bundle map B : vN^>f*vM, then

v H- e%f is represented by the disjoint union/LJ w/^ and the bundle map B \_j identity
(v*).

We shall also need the following comparison principle for oriented normal maps
into linear spherical spaceforms:

PROPOSITION 3.2. Let Nn be an oriented linear spaceform whose fundamental

group G is a finite 2-group and n 3 mod 4, let V be a free (n H- X)-dimensional
G-module so that Nn S( V)jG, let kv: N -? BG be a 2-connected map classifying the

orhit space bundle, and let {Mn, W9 kw) be another set ofsuch data. Then there is an
odd degree map f : Mn -» N" such that the following hold:

(i) The maps kw and kvf are homotopic.

(ii) Given a 2-connected degree one normal map g : P ->7V, there is a 2-connected

degree one normal map h : Q~+M such that fh is normally cobordant to a

disjoint union of d degree(f) copies of g.

Remarks
1. The hypothèses imply that the map f* : KÔ(N) -» KÔ(M) is an isomorphi-

sism, and thus for each stable vector bundle f over M we can find a stable

vector bundle £ over N such that /*£ £.
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2. Given degree 1 bundle data on an oriented manifold Mn we can always
extend it to oriented bundle data because the bundle Ç is orientable (it is

stably fiber homotopy équivalent to vM and orientability is invariant under
stable fiber homotopy équivalence) and we can simply choose orientations to
make the bundle map B : v^ -» Ç orientation preserving.

Proofof Proposition 3.2. The existence of/is a standard exercise in obstruction
theory; specifically, one can find a G-equivariant map F : S{V) -+S(W) and since

Z? £ G acts by the antipodal map it follows that F has odd degree. If/ F/G then

/ also has odd degree and condition (i) follows from the equivariance of F.

Given an oriented vector bundle œk over N or Af, define A : Th(œk) -+Sn+k to
be a degree one collapsing map as in the proof of 3.1. Let £ be an oriented vector
bundle over N such that some degree 1 normal map (X -+N9vx-+ Ç) exists, and let
d be an odd integer. Then it is elementary to verify that multiplication by d maps

bijectively to A*l({d}); specifically, the kernel of A^ is isomorphic to
where No N — disk, and since Ë*(N0) is 2-primary the same is true for

^ and n^(N^0), and thus multiplication by d is bijective on Kernal A^.
Next let (h : Q -? M, fi : vQ -> Ç) represent a degree 1 normal map. By Remark 1

we may write Ç =/*£ for some vector bundle £ over JV, and we can choose an
orientation of Ç consistent with the orientation Ç. If / : f -» £ is the associated
bundle map, then its one point compactification induces a homomorphism

sending representing classes for degree 1 normal maps into (M, Q to representing
classes for degree d(=deg(f)) normal maps into (N9 Ç). By the reasoning in the
first paragraph it will suffice to show the existence of some degree one normal map
into (N, Ç). As usual, this holds if £ is (stably) fiber homotopy équivalent to v^. If
F/O is the classifying space for stable vector bundles with stable fiber homotopy
trivializations, then it is a straightforward exercise to show that f* : [N, F\
O]-+[M,F/O] is bojective at the prime 2 and [N, F/O] -+[N9BO] (giving the

underlying vector bundle) is trivial at odd primes; consequently, it suffices to show

that/*£ and/*v,v are stably fiber homotopy équivalent. But/is a 2-local homotopy
équivalence, and this implies that cf*vN =f*(cvN) is stably fiber homotopy équivalent

to cvM for some odd integer c (this is implicit in [Shz2, §1]); since f?O{M) is

2-primary it follows that/^v^ and vM are stably fiber homotopy équivalent. Finally,
/*£ C, and C is stably fiber homotopy équivalent to vM because there is a degree
one normal map into (M, Q. Combining the preceding two sentences, we conclude
that /*£ and f*vM are stably fiber homotopy équivalent as required.

Hère is another comparison resuit that will be needed:
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PROPOSITION 3.3. Let Nn be a ~L2r lens space where r > 1 and n is odd (ifr 1

then Nn RP), let Ç be a vector bundle over Nn, and let d, q be positive odd integers.
Then Q(N, £, d) is nonempty if and only if Q(N, Ç, qd) is nonempty, in which case

q-fold disjoint union defines an isomorphism from Q(N, £,, d) to Q(N, £, qd).

Proof If Q(N, Ç9d) ¥" 0 then a disjoint union of q copies of some représentative

defines a class in Q(N9 £, qd). Conversely, if Q(N, £, qd) # 0, then one can use the

argument at the end of the proof of 3.2 to show that Q(N, £, 1) ^ 0, and by taking
d-fold disjoint unions we again obtain Q(N, Ç, d) ^ 0.

As before we hâve Q(N, ^d) s A ~l({d})lAut+ (0- The sets A~]({d}) are
cosets of the kernel of A*; since this kernel is a finite 2-group it follows that
multiplication by the odd integer q defines an isomorphism from A~]({d}) to
A~\{dq}). This passes to an isomorphism from A~l({d})/Aut+ (£) to A~]({dq})l
Aut+ (Ç) because the action of Aut+ (Ç) on nn+k(N4) sends the sets A~x({c}) to
themselves and the linearity of the action implies that cp*(qx) =qcp*(x) for ail
q> g Aut+ (0 and x e A "! {d}).

4. Homotopy propagation of positive scalar curvature metrics

In [R3] and [R4] Rosenberg has formulated some very striking conjectures for
characterizing manifolds with finite fundamental groups that hâve metrics of
positive scalar curvature. Since the results of Section 2 for fake spherical spaceforms
were conséquences of spécial cases of Rosenberg's conjecture, one natural approach
to the remaining cases would be to proceed similarly. However, our current
knowledge about the relevant cases is still fragmentary (see [RS, §5]). We shall view
the scalar curvature properties of fake spherical spaceforms in dimensions
4k H- 3(k > 1) as essentially a spécial case of the following:

PROPAGATION QUESTION 4.1. Let Mn and Nn be closed smooth manifolds
that are homotopy équivalent, and suppose that Nn has a riemannian metric with

positive scalar curvature. Does Mn also admit such a metricl

The terminology is motivated directly by the results on propagating group
actions through homotopy équivalences as in work of S. Cappell, S. Weinberger,
and several others (cf. [CW]).
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Example. If Nn S", then Mn has a riemannian metric with positive scalar

curvature if and only if Mn bounds a spin manifold (cf. [GL1-2]). More generally,
if Nn is simply connected, then the results of [STzl] show that Mn has a riemannian
metric with positive scalar curvature if and only if oc(Mn) 0 in KO~n({pt}).

The preceding discussion raises another question; namely, how can one reduce

the proof of our main resuit for (4k -f- 3)-diemensional fake spherical spaceforms to
the propagation question? This requires two steps:

(1) By Propositon 2.1 it suffices to consider cases where the fundamental group
is a 2-group.

(2) If Mn is a fake spherical spaceform whose fundamental group is a 2-group,
then Mn is homotopy équivalent to a linear spaceform. In this case the
fundamental group is either cyclic or generalized quaternionic; in the cyclic
case it is well known that M" is homotopy équivalent to a lens space, and
in the generalized quaternionic case this is still true but requires additional
work (e.g., see [Mdl]).

As noted in Section 1, every fake spherical spaceform of dimension 4k + 3 is a

spin manifold. Therefore the standard bordism invariance property implies that the
existence of a positive scalar curvature metric on a (4k -f-3)-dimensional fake
spherical spaceform N (where k > 1) only dépends upon the bordism class of N,
some spin structure oN, and a 2-connected référence map kN : N -? BG in
&ÏJkli(BG). Of course, a similar assertion holds for every closed, connected spin
manifold Nn where n > 5.

The first step in handling the homotopy propagation question for positive scalar

curvature is to show that the answer only dépends upon the normal cobordism
class. Considérations of this type were implicit in [KwS, §2]. For the sake of
completeness, hère is a gênerai statement.

PROPOSITION 4.2. Let Nn(n > 5) be a closed connected spin manifold, let

(f : Mn -+ Nn9 B :vM->Ç) be a degree one normal map, let aN be a spin structure on
Nn, and let kN : N -> BG be a 2-connected référence map. Suppose that f : Mn -> Nn
is 2-connected and (f\Mn-+Nn,...) is normally cobordant to a normal map

(f : Mf -> N,...) where M' has a riemannian metric with positive scalar curvature.
Then Mn also has such a metric.

Proof (Sketch) A good référence map for M is kM kN of. Also, since £ is fiber
homotopy équivalent to v^ and spin structures are invariants of fiber homotopy
type, it follows that one can move the spin structure from v^ to £ by the fiber
homotopy équivalence and from £ to vM by B. In fact, with thèse conventions and

surgery theory to kill extra low-dimensional homotopy one can construct a well
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defined map from [N, F/0] £ {bordism classes of degree 1 normal maps} to
Q%pin(BG). Given this, the existence of a positive scalar curvature metric on Mn
follows immediately from the bordism invariance property.

The next step is to analyze the map

B : [Nn9 F/O] -> Q*pin{BG)

constructed in the proof of Proposition 4.2. Let q : N -+ FjO be given, and let

(/: M-+N9 F : vM ->£) be a degree one normal map associated to the homotopy
class of q in the usual fashion (cf. [Wa]). By définition, the bordism class

representing X M or N is given by the composite bx of the maps in the following
diagram:

cx A*

A Xv > BG+ a MSpin.

Hère cx is the degree one collapse map, A\ is the map of Thom spaces induced by
the diagonal A2 : X-+ X x X and the identification v s J* (0-dimensional trivial
bundle x v), the map kx is a 2-connected referenœ map, and C(vx)m is the map of
Thom spectra associated to the classifying map C(vx) : X->BSpin for vx. We need

to relate thèse composites using the data associated to the normal map.

THEOREM 4.3. Let X M or N9 let (/: M ->N9F :vM->Q be a degree one

normal map wherefis 2-connected, and let kN, etc. be as above. Then bx is given by
the composite

BG+ a MSpin a MSpin

1a© j

BG+ a MSpin

where (^3)# is the map of Thom complexes associated to the diagonal

A3:N-+NxNxN and the identity vN A f (0 x { x (v^ — £)), the maps C(œ)m are
induced by the classifying maps ofthe Spin vector bundles co £ and vN — £, the map
® is defined by direct sum9 and Ex is given as follows:

(i) EN is the identity.
(M) EM is the smash product of the identity on N+ a N* with the composite

j o Pif* F) where j :SQ-~*Nv'~t is induced byfiber inclusion and p(f9 F) is an
S-map Nv~t-*S° ihat is S-dual to F* o cM.
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EXPLANATION. We are viewing v — £ as a zero-dimensional virtual vector
bundle, so that Nv~* has a canonical map y : S0-*Nv~z corresponding to inclusion

of the Thom space over a point in JV. The composite p(f, F) oj is the identity on S0

in S-theory.

Proof. First of ail, the map (A3)m factors through (A2)* as a composite

is induced by the diagonal map from N into N x N. Since C(vN)* is stably
homotopic to the composite

it follows that bN is given by the composite

(id a 0) o (<:({)• a C(vN - OmAkN+)

as claimed in (i). To prove (ii), first notice that bM is given by the composite

(id a ®) JC(O* *C(vN - 0* *kN+) J o(Ai)' OF* ocM

where F9 is the map of Thom complexes induced by F, the map
(A^)m : N^^N+ aN^ is induced by the diagonal, and / is given by the smash

product of j with the identity on N+aN^ (under the usual identification
Af+ a N^ A^+ a N^ a S0). Thus the proof of (ii) is reduced to checking that

/ o (id a p(f, F)) o (A^y o cN is stably homotopic to/ o(Ai)9 OF* ocM; of course, it
also suffices to prove the corresponding resuit for the shorter composites with /
removed from the left ends, and thus it remains to compare

(idAP(f,F))o(A,roCN and

Consider the following diagram

j= I ilAp \l
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in which A^v'^ is induced by the diagonal map. The right hand square commutes
by the elementary properties of smash products, the left hand square commutes in
S-theory because p is S-dual to F*, and the composite along the top row is just
(^a)# o cn- Therefore (1 ap)(A3)m 0 cN ~ (Aty oFm ocM as required by the discussion

in the preceding paragraph.

Remark. The map C(vN — £)• can be factored (in the stable homotopy cate-

gory) as a composite

N»n-ï^1+ (F/Oy -^ MSpin

where q :N -+FJO classifies the degree one normal map, y is the universal fiber in
homotopically trivial vector bundle, q* is the associated map of Thom spaces, and

s is the canonical lifting of the classifying map hy : FjO -+BSO to BSpin (note that
y has a unique Spin structure because Hl(F/O; Z2) 0).

We would like to apply Theorem 4.3, the preceding remark, and the homotopy-
theoretic properties of FjO to obtain usable information comparing bM to bN. The
first resuit is a localization formula.

PROPOSITION 4.4. Suppose that Nn, Mn, etc. are given as in Theorem 4.3, let

q : N-+ FfO classify (f F) as in the preceding remark, let p be a prime, and suppose
that the image of q is zéro in the localization [N, FjO\p) ^ [N9 F/O(p)]. Then the

images of bM and bN in Q%pm(BG)ip) are equal.

Proof By the basic properties of localization at p in the stable category it
suffices to show that the p -localization of qm : Nv~^-^{FjO)y factors through the

p -localization of the S-map p :NV~^-*S°. Let Y be the homotopy fîber of the

localization map FjO -*F/O(/?), and let y<p> be the pullback of y to Y; then Y(p)

is contractible, and it is an elementary exercise to show that the canonical map of
S0 into the Thom spectrum P' Y is a (p) -local stable équivalence. But the triviality
of q under localization implies that q factors through some map N ->Y, and thus
the assertion about the p -localization of q* follows immediately.

COROLLARY 4.5. Suppose we are given (f :Mt^N, F, : vMl -?£) as above

where i^lor 2, let qt : N-+F/O classify (/, Ft and let bt e Q^ln(BG+) be the Spin
bordism class associated to Mt with the induced Spin structure and référence map
^Noft- If P is a prime such that the différence class [q2]-[q\] maps to zéro in

[N,FIO]ip}9 then the images of bx and b2 in Q^pm{BG\p) are equal.

Proof Write [#0] *= fe] ~~ tfil» so that qo@q\ represents q2. It then follows that
è, and b2 are given by composites $(A, B) of the following type:
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11 Al AAAB

BG+ a MSpin a MSpin a MSpin
I 1 A ®

BG+ a MSpin

The basic idea is that a and a fiber trivialization represent qx, while /? and a fiber
trivialization represent q0. Let E((x) : N* -+ N* and E(P) : Np -? A^ be given by
composing the compactified fiber retraction N* -» S0, ^ -> S0 with the fiber inclusions

of S0 in iVa, Np respectively. By Theorem 4.3 we hâve the following
conclusions:

(0) If A and B are identity rnaps, then &(A, B) ~bN.
(1) If A £(a) and £ is the identity, then <P(A, B)=bl.
(2) If A E((x) and B £(£), then <P(A, B) è2.

One can now apply the argument proving Proposition 4.4 to conclude that C(f})*
and C(/?)#

o E(P) become homotopic after localization at p, and by the preceding
observations it follows that bx and b2 become equal after localization at p.

As before, let Nn be a closed connected Spin manifold with fundamental group
G and 2-connected référence map kN : N -+ BG. If p is a prime, the previous
considérations show that the map

Vp : [N9 F/O]^Qs/'n(BG) ->Qs/'n(BG)ip)

factors through the image of [N, F/O] in [iV, F/O(p)] [N, FIO](P). This allows us to
study Vp by means of the Adams Conjecture splittings

FIOip)*BSO(p)xCokJip)

(see [MdMi, Chapter 5, p. 106]). If we consider the corresponding splitting

[N, FIO](p) s [N, BSO\P) x [N, Cok J(p)]

(which is not necessarily additive!)

the first factor looks manageable at least in some cases, but the second factor is

highly complicated; in particular, nk(CokJ(p)) is the "bad" summand of the
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/>-primary component of ftn+k(Sn) for n »k. In order to work effectively we must
show that the second factor is irrelevant for our purposes. Since a gênerai
discussion would be quite lengthy, we shall only prove a results that suffices for
cases where N" is a linear spherical spaceform, where n Ak -f 3 with k > 1 and
G nx{Nn) is a (nontrivial) finite 2-group.

Preliminary remark. For each prime p the standard map Cok J(p) -+F/O(p) lifts
to F/0. This is true because it lifts to F{p) by the basic construction of the Adams

Conjecture splitting and the finiteness of the groups nk(F) shows that F is a weak

product of its localizations F(p) over ail primes p.

THEOREM 4.6. Let Nn be a closed connected Spin manifold with n>5 and

fundamental group G, let qx : N-*F\O classify the 2-connected degree one normal

maP (/i : Mx-+Ni Fx : vMl -*£), and let bN, bx be the classes in Q%pin(BG) represent -

ing Mx and N. Let q0 : N-+Cok J(2), let i : Cok J(2) -*FjO be the map described in
the preceding paragraphe let qi^Qx®^* kt (/2,F2) represent q2 where f2 is

2-connected^ and let b2€Q%pin(BG) represent the domain M2 of f2. If
D(2) : Q%pm(BG)a) -»bon{BG){2) is the 2-local Dirac map, then D{2){bx) D(2)(b2).

Before proving this resuit, we shall dérive its application to positive scalar

curvature.

THEOREM 4.7. Suppose we are given the setting of Theorem 4.6, and assume

further that G is a finite 2-group and Ml has a riemannian metric with positive scalar

curvature. Then M2 also has a metric with positive scalar curvature.

Proof that 4.6. implies 4.7. Since G is a 2-group and bo* has no odd torsion, it
follows that ail torsion in bo*(BG) is 2-primary and hence the 2-localization map
is injective. Therefore the unlocalized Dirac map satisfies D(b}) =D(b2). But bx is

represented by Mu which has a riemannian metric of positive scalar curvature.
Since D(bx) D(b2) and M2 is connected, by [Stz2, Thm. 1.1] the différence b2 - bx

is represented by a manifold with a metric of positive scalar curvature. Hence the

same also holds for b2 (b2 — bx) + bx, and by the 2-connectedness of M2-+BG it
follows that M2 also admits such a metric.

Proofof Theorem 4.6. Let \i : bo a bo -? bo be the map of spectra determined by
the tensor product pairing ® : 50 xBO~*BO (see [May, Section VIII.2] for a

construction of this map); this makes bo into a ring spectrum such that the Dirac

map D induces a weakly multiplicative map of spectra (where © induces the ring
speetruift structure on MSpin). As in the proof of Corollary 4.5, the classes D(2)(bx)
aad D(2)(bt) are given by the following composites:
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j
1 aI A/4 a i?

cN
Sn + k

\kN + a C(£)* a C(a> a C(/3)«

BG+ a MSpin a MSpin a MSpin

|1aZ>(2)aZ>(2) aD(2)

BG+ A bO(2) A bOçr) A bO(2y

|1a/i(2)

BG+ a bo(2)

More precisely, the proof of 4.5 shows that D{2)(bx) and Di2)(b2) are given by
composites where 1 a a 3D{2y) and 1 a fi(2) are replaced by 1 a © and 1 a D{2)

respectively, but one obtains the same classes from either pair because D(2) is a map
of ring spectra. Most of the argument proving Corollary 4.5 also applies in the

présent setting; the crucial différence is that the map q0 represents the trivial class

after localization in the setting of 4.5, but hère q0 : N -*FIO is assumed to factor
through Cok/(2). However, in analogy with 4.5 it suffices to prove that the

composites D(2) o C(p)* and D{2) 0 C(j8)# o E(P)* are homotopic (Le., D{2) o C(P)m

factors homotopically through S°-+bo{2). Since qo factors through Cok J(2) we can
Write D(2) o C(/0# as

q% & hy D(r\
N* (Cok Ji2)y —> F10" —> MSpin —A bom

and therefore it suffices to show that D ohy OP factors homotopically through S0.

But in the stable category we hâve

{(Cok /(2))\ bo) s KÔ((Cok Ji2)n

and the right hand side is isomorphic to i£&(Cok /(2)+) by the Thom isomorphism
(since y is a Spin bundle). Since jf&(Cok/(2)) is trivial (see [Snl, Thms. 9.3 and
9.9]) it follows that £b(Cok J(2))y) z£b(S°)9 where the isomorphism is given by
the fiber induced mapping S°->(Cok/)y. Therefore D(2)o C(jS)# is stably homotopic

to Z)(2) 0 C(py o E(p) as required.

Remarks. By [ABP] the localized spectrum MSpini2) is a wedge of suspensions
of the Eilenberg-MacLane spectrum HZ2 and the 2-local connective i^-spectra bom
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and bsp{2); furthermore, the suspended HZ2 summands map into wedge sum-
mands of the Thom spectrum MO, which is itself a wedge of suspended copies
of HZ2. This splitting of MSpin{2) and the argument for Theorem 4.6 lead to a

proof that the images of bx and b2 in Qf"n(BG)i2) are equal; however, we are

omitting this because the results of [Stz2] make Theorem 4.6 sufficient for our
purposes. If p is an odd prime and (M, -* N,...), (M2 -+ N,...) describe 2-con-
nected degree one normal maps that differ by an élément of [N, Cok Jip)]9 then it
also seems likely that the /?-localizations of the bordism classes bu b2 are equal,
but we hâve not attempted to check this.

We shall now define ATO-theoretic invariants that often détermine the
obstruction to propagating a positive scalar curvature metric across a homotopy
équivalence. As noted in [MdMi, Section V.C] there is a //-map /?2 : F/
O(2) -? BS0®} whose restriction to the Adams Conjecture summand BSOi2) s Fj
0(2) is an /7-space équivalence from BSO®} to BS0®}; the inverse to this

"exponential" équivalence [AS] will be denoted by 5£. IF Nn is a closed con-
neeted Spin manifold and / : Mn -+Nn is a homotopy équivalence, let

n(f) € [N, F/0] be its normal invariant and let &p2(f) e [N, BS0\2) be the

image of the 2-localization rf(f)i2) under J£?/?2. The following resuit shows that

i?/?2(/) gives a sufficient condition for M to hâve a metric of positive scalar

curvature:

THEOREM 4.8. Let Nn be a closed connectée Spin manifold such that n>5 and
G ?i,(iVr) is a finite 2-group. Let f:Mn-j>Nn be a homotopy équivalence and

suppose that J^j82(/) <$fp2(g) where g : M' -*N is a degree one normal map such

that M' admits a riemannian metric ofpositive scalar curvature. Then N also admits
such a metric.

Proof The condition J?2(/) j82(g) implies that rj(f) rf(g) +q2 + q\ where

qx€[N,FIO) has odd order and q2 e [N, Cok J{2)). Let (/3 : M3-+M9...) be a

2-connected degree one normal map representing rj(g) -f q2, and let b3 e Q%pin(BG)

be the associated bordism class. By the bordism invariance of positive scalar

curvature and surgery in low dimensions, we may also assume that M'^>N is

2-connected and has a metric of positive scalar curvature. By Theorem 4.7 it follows
that M3 also admits a metric of positive scalar curvature. D

5. Fake quaternionic spaceforms

The purpose of this section is to prove the main theorem when the dimension is

4k -f 3 ^ 7 and the fundamental group is a quaternionic 2-group.
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THEOREM 5.1. Let N4k + 3 (k>\) be a fake spherical spaceform whose funda-
mental group G is a generalized quaternionic 2-group. Then N admits a riemannian

metric with positive scalar curvature.

The observations and results of Section 4 provide the first steps in the proof.
Specifically, there is a homotopy équivalence f:N-*Mv, where Mv is the linear

spaceform associated to the free G-représentation F, and the existence of a metric
with positive scalar curvature only dépends upon an invariant <&/}(/) e [N, BSO].
Since [N, BSO] is isomorphic to the kernel of the first Stiefel-Whitney class

wx : KÙ(N) -+H\N; Z2) and KO(N) is a quotient of the real représentation ring
[GKa], the value gorup for J?P(f) is fairly tractable; recall that the map from
RO(G) to KO(N) is given by sending a virtual G-représentation V — W to the

virtual flat vector bundle:

(ff xGVlN)-(ff xGWlN).

More generally, if G is an arbitrary compact Lie group and Hom (G, Z2) is the
abelian group of homomorphisms from G to Z2, then there is a unique homomor-
phism from RO(G) to Hom (G, Z2) whose value on a représentation is given by
taking déterminants. We shall dénote the kernel of this représentation by RSO(G).
With this notation the observations of the previous paragraph state that [N9 BSO]
is a quotient of RSO(Q(2r)). The following description of this group will be needed

in our approach.

PROPOSITION 5.2. Let Q(2r) be a generalized quaternionic 2-group where

r > 3, and let A : Q(2r) -»Z2 x Z2 be the abelianization map. Then RSO(Q(2r)) is the

sum of the images of the map A* : RSO(Z2 x Z2) -+RSO{Q{2r)) and the restriction

map defined by the standard inclusion Q(2r) c= S3.

Proof. (Sketch) Let D(2r~x) be the dihedral group Ô(2r)/Z2. The nontrivial
irreducible real représentations of Q(2r) separate naturally into three types:

(I) One-dimensional représentations given by nontrivial homomorphisms into
Z2; there are three of thèse up to équivalence.

(II) Two-dimensional représentations defined by pulling back représentations
of the quotient group D(2r~l); there are 2r~3 — 1 of thèse up to équivalence

(hence none if r 3).

(III) Four-dimensional free représentations that arise from différent embed-

dings of Q(2r) into S3; there are 2r~3 of thèse up to équivalence.
We shall dispose of the case r 3 first because it is exceptional; namely, there

are no Type II représentations and there is a unique Type III représentation up to
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équivalence. Thus a typical élément of RSO(Q(S)) has the form X +Y where X is

a sum of Type I représentations and F is a sum of Type III représentations. Since

the latter is orientation preserving, it follows that the sum of Type I représentations
must also be orientation preserving and thus lie in the image of A*. On the other
hand, we also know that Y lies in the image of the restriction map from S3, so this

proves the proposition when r 3.

Assume now that r>4 and let A be the unique nontrivial 1-dimensional
représentation that is trivial on the unique cyclic subgroup of index 2; by construction

A factors through a représentation 1 of the dihedral quotient group. If p is an
irreducible représentation of Type II then p -f A is orientation preserving. Further-
more, if p is the irreducible dihedral représentation that pulls back to p then p -f Â
extends to an élément of RO(SO3) RSO(SO3) by the standard description of
irreducible représentations of SO3 in terms of weights (c/. [Hs, pp. 17-19]). Let r
be a 1-dimensional représentation of Q(2r) that is nontrivial on a generator of the

index two subgroup; then the représentations of Type I are given by A, F and their
tensor product AF.

Given an orientation preserving virtual représentation p of Q(2r) write it as a

sum of irreducible représentations (that do not necessarily préserve orientations)

p arF -haAA + aràFA + £ xtpt -f £ w,y,
« j

where each pl is of Type II and each yt is of Type III. The right hand side can be

rewritten in the form

arF + M 4- arâFA + £ *,(p, + à)

for a suitable choice of Aj, and by the previous paragraph the sums over i and y lie
in the image of RO(Sy) RSO(S*). Therefore V arF + bAA + arâFA must also

lie in RSQ(Q(2r)); the latter in turn implies that ar -f arÂ9 ar +bÂ, and bA -f ar4 are

ail even, which means that V is the sum of a multiple of F + A + FA with even

multiples of F, J and FJ. Since each of the représentations F -h A + FA, 2F, 2A

and 2FJ lies in the image of A* it follows that Ve Image A*. This proves the

conclusion of the proposition when r ;> 4. D

By the results of Section 4, the proof of Theorem 5.1 reduces to showing that
each class in [N> BSO] has the form &f}i2)(ti)9 where tf is the normal invariant of a

degree one normal map (f:M~+N%F\vM~+!;) such that M has a riemannian
aaetric with positive scalar curvature. Separate considérations are needed for the
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images of RO(S3) and RSO(Z2 x Z2) The followmg resuit deals with the subgroup
déterminée by représentations of Z2 x Z2

THEOREM 5 3 Suppose that u e [N, BSO] satisfies u &fSm{r\), where rj is the

normal invariant of a degree one normal map (/ M -*N, such that M has a

metnc of positive scalar curvature^ and let v e [N, BSO] lie m the image of the

composite

A % RSO(Z2 x Z2) -^ RSO(G) - [N9 BSO]

Then u + v $£/?(2)(rç')> where rj' is the normal invariant of a degree one normal map

(/ M'-+N, such that M' has a metnc ofpositive scalar curvature

In other words, the existence of a riemanman metnc with positive scalar

curvature only dépends on the image of &p2(rj) m the quotient group of [N, BSO]
modulo the image of RSO(Z2 x Z2), by 5 2 this quotient is generated by the image
of RO(S3)

Proof The map A % is given by the composite in the followmg diagram

RSO(Z2 x Z2) -^ [B(Z2 x Z2), BSO]

r
RSO(G)

yb
> [BG, BSO]

[AT, BSO]

Hère kN N-+BG is a 2-connected référence map, the maps A* are induced by
abehanization, and the maps Vb associate a flat onented virtual vector bundle to
each onented virtual représentation of the group in question

Let ô F\O -» BO be the homotopy fiber of the map BO -> BF, and consider the

composite

RSO(12 x Z2) - KÔ(B(Z2 x Z2)>'(2)

Since d(2)3|ea2s|{ \j/3 — 1 where if/3 is the usual Adams opération, ît follows that the

composite sends the représentation Q into the flat bundle associated to the

représentation \j*3Q — Q But ^3 is the îdentity on one-dimensional représentations
and every irreducible représentation of Z2 x Z2 is 1-dimensional, and therefore
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^3-l=0on RSO(Z2 x Z2). By exactness this means that the image of a(2)j|cFf2)jje

is contained in the image of [B(Z2 x Z2), F] s {^(Z2 x Z2), 5°} (as usual, one must
remember that the 1-1 correspondence does not send the direct sum on the left to
the loop - or track - addition on the right). According to the Segal Conjecture, the
abelian group {i?(Z2 x Z2), S0} is isomorphic to the completion IA(Z2 x Z2)A of
the augmentation idéal in the Burnside ring A(Z2xZ2); this was shown more
generally for elementary abelian 2-groups by G. Carlsson in [Cal]. Furthermore,
loop sum generators for {B(Z2 x Z2), S0} s IA(Z2 x Z2)A are given by the S-maps
JS(Z2xZ2)^S°of theform

transfer aug
B(l2 x Z2) s B(Z2 x Z2)+ > BC+ S0

where C runs through ail proper subgroups of Z2 x Z2 and "aug" dénotes the

augmentation map collapsing BC to a point; this can be seen by combining the
statement of the Strong Segal Conjecture in [Ca2, p. 190] with [tD, §7.6 and Thm.
8.5.1, p. 215] or by combining the construction of the map A(G)A ->{BG+, S0} in [Lt,
§0] with the définition of the stable homotopy transfer in [KP, §1]. By naturality it
follows that the image of (*2+A%i2) lies in the image of {N, S0}, and since the image
of {2?(Z2 x Z2), S0} in {N9 S0} is finite it follows that every class in the image of
<*2*A %i2) cornes from a loop sum of reduced transfer maps tG(l) : N-+S0 where G(i)
is a séquence of proper subgroups (probably with répétitions) in G.

If S tG(t) e {N9 S0} is a sum of reduced index two transfers, then one can realize
this sum as the normal invariant of a stably tangential degree one normal map as

follows: Each pair (tG(l),2) e {N+9S0} s {N,S0} 0 {wf(5°)sZ} is the normal
invariant of the standard degree two of four (stably tangential) covering space

projection NGil)-+N; this follows from standard duality considérations (cf. [BeS,
§13]). If there are r2 summands with G(i) s Z2 and r4 summands with G(i) {1},
this realizes {Lt tG(l), 2r} as the normal invariant of an oriented covering space
projection of degree 2r, where r =r2-h2r4. Take the disjoint union of this with
2r — 1 copies of the identity map from the oriented manifold

—N (N, négative of usual orientation)

to N with its usual orientation. By Proposition 3.1 and the standard rule
d(N x [0, 1]) £ N u — N it follows that this disjoint union is a stably tangential
degree one normal map with normal invariant E, tGi0. If/ : M -+ N is the associated

degree one map, then by construction/is a covering space projection (but M is in
gênerai disôonneeted); note that the degree of the mapping and the number of
sheets in the covering are not necessarily equal because the degree takes orientations
on différent components into account.
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We now claim the following: If u e image A % represents the normal invariant of
a degree one orientée! covering space projection as above and v e [N, F/O] is

represented by the degree one normal map (g : P -» N,...) then w © v is repre-
sented by the composite (f*P -? M -» N,...) where f*P -» P is the covering space
induced by / : P -? N via g. The fastest way to see this is to consider the external
direct sum w x/*u in [N x M, F10], which is represented by the product of
/: M ->N and f*g :f*P -+M. If F : M -+N x M is the graph of/, then w © t? can
be recovered by taking the transverse inverse image of F(M) in f*P x M (by
construction f*g x/is transverse to F(M)). Since this inverse image is precisely the

graph oîf*P-*M, the claim follows.
To complète the proof, let u and v be as in the preceding paragraph and assume

that the représentative (g : P->N,. has a domain P with a metric of positive
scalar curvature. Since f*P is a covering space of P, it follows that f*P also has
such a metric.

Simple spherical spaceforms

The next step in the proof of Theorem 5.1 involves quaternionic spherical
spaceforms that fiber geometrically over quaternionic projective spaces. Specifically,
we shall say that N is simple if it is given by the free linear Q(2r) action on
N S4k + 3 that extends to a free linear S3 action. The following resuit implies
Theorem 5.1 for fake spherical spaceforms that are homotopy équivalent to simple
quaternionic linear spaceforms. In fact, it proves a little more:

THEOREM 5.4. If M4k + 3 (k > 1) admits a 2-connected degree one normal map
into a simple quaternionic spherical spaceform, then M4k + 3 has a riemannian metric
ofpositive scalar curvature.

Proof The argument uses an observation that also figures importantly in the
work of Stolz [Stzl, §1]: If F is a riemannian manifold with a metric of positive
scalar curvature such that the compact Lie group G acts by isometries, and
F ~» E -+ B is a compact smooth fiber bundle with structure group G, then E also
has a riemannian metric of positive scalar curvature.

Consider the following commutative diagram:

RO(S3) -^ RSO(Q(2r))
yb, ybi

[KP*, BSO] -^ [S4k + 3/Ô(2r), BSO]

[KP*, BSO]i2) -^-> [S4k + 3IQ(T)9 BSO\2)
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The map p : Q(2r) -+S3 is the inclusion homomorphism, and n is the projection of
the fiber bundle

S3IQ(2r) -+S4k + 3IQ(2r) -> KPk;

note that the structure group for this bundle is S3, and the transitive action of S3

on S3/Q(2r) is by isometries of the constant curvature metric.
Let N be the simple spaceform S4k + 3/Q(2r). Then a chase of the diagram shows

that every élément z of [N, BSO\2) [N, BSO] can be written as a sum
A%x + ^(P2)*n*y for some y e [KPk9 F/O]. If we represent y be a degree 1 normal

map (/:2?->KP*,...) then the induced map of total spaces f:f*B^>N,...)
represents n*y; but now one can use the observation in the first paragraph of the

proof to show that f*B has a metric of positive scalar curvature. By Theorem 5.3

it foliows that z A%x + S£(fi2)*n*y has the form J^/?2(rç'), where rj' is the normal
invariant of some degree one normal map (f : M'->N,...) such that M' has a

metric of positive scalar curvature. If (f : M" -> N,...) is a 2-connected map in the

same normal bordism class, then surgery invariance implies that M" also has a

metric of positive scalar curvature. Since z was arbitrary, this complètes the proof.

One can extend Theorem 5.4 to nonsimple quaternionic spherical spaceforms by
means of Proposition 3.2:

THEOREM 5.5. The conclusion of Theorem 5.4 remains true in one considers

2-connected degree one normal maps into arbitrary linear spaceforms whose funda-
mental groups are quaternionic 2-groups {in dimensions Ak + 3 > 7).

Proof Let G be a quaternionic 2-group, let No be its simple spaceform in dimension
Ak + 3, let N be an arbitrary spaceform with the same fundamental group, and let

/: N0^N be the odd degree map in Proposition 3.2; let d be the degree of/. If
(g : M -? N,...) is a 2-connected degree one normal map, then by 3.2 there is a degree

one normal map g' : M''-* No such that ./g' is normally cobordant to a sum of ^copies
ofg. It follows that d - (kNg :M-+BG,...) and (kNJgr :M'-+BG,...) détermine the

same élément ofû§+s(BG). By Theorem 5.4 we may assume without loss ofgenerality
that M' has a metric of positive scalar curvature.

Since G is a finite 2-group it follows that Q$+3 (BG) is also a finite 2-group. Choose

an odd positive integer d' so that d'à is congruent to 1 modulo the exponent of this

group. Then (kNg : M -? BG,...) and d' • (kNofg' : M' -? BG,...) détermine the same
élément of Qf^^BG); since M' has a metric of positive scalar curvature and the

map kNg is 2-connected, the existence of a metric with positive scalar curvature on
M follows from surgery invariance.
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6. The remaining cases

We hâve now established the main theorem in ail cases except the (4k + 3)-di-
mensional case when the Sylow 2-subgroup is nontrivial and cyclic. As usual it
suffices to dispose of the case where the fundamental group is a nontrivial 2-group
(hence cyclic). Thus it remains to consider the propagation question for fake

(4k -f 3)-dimensional lens spaces whose fundamental groups are isomorphic to Z2r

for some r > 1. In analogy with Section 5 the discussion has two parts - a proof of
the propagation resuit for fake spaceforms that are homotopy équivalent to certain
simple lens spaces and an extension to the gênerai case using Proposition 3.2. The

argument presented hère is somewhat différent from the one outlined in [Shz4] and
involves the subséquent work of Stolz [Stzl].

Simple lens spaces

A lens space L2t + l with fundamental group Zq is said to be simple if the

associated free linear action of Zg on S2r+l extends to a free linear action of S1. In
this case one has a smooth fibering

¦2r+l. CP2

However, since positive scalar curvature is not a meaningful concept for 1-mani-
folds this situation is not completely analogous to the fibering over IKP* in the

preceding section. Despite this, one has a complète analog of Theorem 5.4.

THEOREM 6.1. If M4k + 3 (k > 1) admits a 2-connected degree one normal map
into a simple lL2q lens space (where q >l)9 then M4k + 3 has a riemannian metric of
positive scalar curvature.

Proof The argument splits into two subçases depending upon the congruence
class of 4k + 3 mod 8, but the first steps are the same for both cases. By the results

of Section 4 we need to show that every class in [L, BSO\2) [L9 BSO] has the form
^(j32)0?') where y\' is the normal invariant of some degree one normal map

(/ : M -? L,...) such that M has a metric of positive scalar curvature. As in Section
4 we know that the map Vb from RSO(Z2q) to [K, BSO] is surjective (by [GKa]
again).

Elementary considérations imply that the restriction homomorphism p* from
RO(Sl) to RSO(l2q) is onto. If Sl^L-^CP2k+l is the fiber bundle discussed

previously, then there is a commutative diagram
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-C RSO(Z2q)

[CP2**1, BSO] -X [L9 BSO](2)

1(2)

and a chase of this diagram shows that every class u e [L, BSO]i2) has the form
&(f}2)n*v where v e [CP2k + ï, F/O] is represented by a degree one normal map

At this point we must consider the cases 4k + 3 3, 7 mod 8 separately. We begin
with the latter because it is easier.

Case 1. Suppose that 4k + 3 7 mod 8 (i.e.9 k is odd). It will suffice to show

that every degree one normal map (f: M->CP2k + \ is normally cobordant to
one (q : M' -+CP2k + l,...) such that M' has a metric of positive scalar curvature.
For this will imply that the circle bundle g*L4k+3 also has such a metric and thus

that every class in the image of J?(f}2)n* has the form J?(p2)*(?!') where y\' is

represented by a degree one normal map whose domain has a metric of positive
scalar curvature. But the vertical composites are surjective and p* is also surjective,
and therefore if(j52)*7t* is onto by a diagram chase.

Given a 2-connected degree one normal map /: A/-+CP2*"1"1, by surgery
invariance it is clear that M admits a metric of positive scalar curvature if M maps
to zéro in Of|+2- This assertion can be verified as follows: Since 4k -h 2 6 mod 8

and the forgetful map fiff+e^&ff+e to oriented bordism in injective {cf. [ABP]),
it suffices to show that M is an oriented boundary. But M has the same Stiefel-
Whitney classes (and hence numbers) as CP2*"^1 by the fiber homotopy invariance

of thèse classes (the pullback of the tangent bundle of CP2* + 1 is stably fiber

homotopy équivalent to the tangent bundle of M). Since Qg°+6 is detected by

Stiefel-rWhitney numbers and CP2*4" * is an oriented boundary, the same is true for
M, As noted before, it follows that M must be a Spin boundary and thus has a

metric of positive scalar curvature.
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Case 2 Suppose that 4k + 3 3 mod 8 (Le., k is even). Write k 2m so that
the dimension becomes Sm + 3. As in Case 1 it suffices to consider degree one

normal maps of the form (f*M-^L9...) where (/: M -?CP4m + 1,...) is a degree

one normal map; more precisely, it suffices to show that each degree one normal

map into CP4k + ï has a représentative (/: M ->CP4k + \ such that/"M has a

metric of positive scalar curvature. By surgery we may assume that/is 2-connected.

In this case we cannot conclude that M automatically has a metric of positive
scalar curvature. However, the work of Stolz [Stzl] yields a reasonable substitute.

Namely, if M is 1-connected and Z* is a homotopy (8m + 2)-sphère whose normal
invariant is the generator fimrj of

then either M has a metric of positive scalar curvature or the connected sum
M # Z* admits such a metric. If the first possibility holds, one can proceed as in
Case 1 to show that the circle bundle f*L has metric of positive scalar curvature.
To deal with the second possibility let fx : M # Z* -? dP4"7*l be the composite of/
and the canonical degree 1 normal map M # Z* -?M. The normal invariants of/
and fx are related by

where h : CP4m + 1->iS8m + 2 is the degree one collapse map and a générâtes the

group nSm+2(BSO) ^ Z2. Let/i :ffL ->L be the associated degree 1 normal map of
circle bundle total spaces and define f:f*L -*L similarly. By the reasoning of Case
1 we know that/?L has a metric of positive scalar curvature, and diagram chases

show that fx and / are both 2-connected. Since fx is normally cobordant to the

disjoint union of/and the constant map Z* -? CP4m + \ it follows that/! is normally
cobordant to the disjoint union of/and ^xP -^-+ Sl-^L where g* : n^S1) -»

ft\{L) s Z2r is surjective. Comparing with the référence map kL : L->BZ2r, we see

that the différence between the classes representing (kjx :ffL-+BZ2r,...) and

(kJ:f*L-+BZ2r,...) in Qi%n+3(BZ2r) has the form

(kL : Sl->BZ2r9...) x (const. : Z* ^ {pt.},...).

There is a unique Spin structure on Z*, but S1 has two Spin structures and thus it
is necessary to see what happens to the bordism class if one changes the Spin
structure on S1. We claim that the bordism class does not dépend upon the choice
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of Spin structures. This is true because there is an orientation-preserving diffeomor-
phism H from S1 x E* to S1 xS*#Z1, for some homotopy (8m + 3)-sphere Zl9
such that H commutes with projection onto S1 up to homotopy and H sends one
Spin structure to the other (e.g., see [Shzl]); since Zx bounds a Spin manifold (in
fact, a parallelizable manifold) it follows that both Spin structures define the same
Spin bordism class. If bmr e Q$%n+3(BZ2r) is the class described above, then it
follows that for each s < r the bordism transfer map Qi%n+3(BZ2r) -+Q$%n+3(BZ2S)

sends ôm%r to ôm,s.

It is well known that the homotopy (8m + 2)-sphère S* is spin cobordant to
Pm - tj2 where PeQ$pm is a class with ^4-genus equal to 1 and r\2 générâtes
Ofm*%2*Z2 (cf. [ASP]). If we define ôo,r e Qfin(BZ2r) to be (kL,...) • tj\ then
by construction we hâve 2<50,r=0, and since fimrj=Pmt]2 in Q^pm by the first
sentence of this paragraph, the identity èmr PmôOtK follows immediately. The latter
observation and the discussion in the preceding paragraphs yield the crucial
réduction for Case 2:

PROPOSITION 6.2. If ô^ lies in Pos3 (BZ2r) for each r then the conclusion of
Theorem 6.1 holds.

Proof The preceding discussion shows that the Dirac invariant of a fake

(8m + 3)-dimensional Z2r lens space is either zéro or D(ômr) D(Pmô0 r), so the

conclusion of the main theorem is true if ômr e Pos8m + 3 (BZ2r) for each m > 0. On
the other hand, since ômr PmàQr the assertion of the previous sentence will hold
if <50,r lies in Pos3 (BZ2r).

The next step is to verify the hypothesis of Proposition 6.2.

PROPOSITION 6.3. For each r > 1 we hâve ô^r e Pos3 (BZ2r).

Proof. Let L be the simple Z2r lens space in dimension 3, let a be some spin

structure, and let k : L -* BZ2r be a polarization map. We shall first construct an
odd degree normal map g :L*-*L such that L* is a lens space and the 2-local
normal invariant rj(g) e [L, FjO\2) (in the sensé of [Shz2] satisfies >&P2(rj(g))
Vh(p) for a nontrivial irreducible free représentation p; standard results on the

iiT-theory of classifying spaces imply that [L, F/O] « [L, FjO\2) £ [L, BSO\2) « Z2,

with the nontrivial élément given by Vb(p). The construction involves iterated
branched coverings as in [Shz3]. Specifically, write L S(p ® p)/Z2r, where p is the

standard irreducible free unitary représentation, and using the invertibility of 3 in
E2r write p $cPo for some other irreducible représentation (specifically, p0 &cPo
where 3X s 1 mod 2r). Define a 3-sheeted equivariant branched covering

y sending (v9 z) e S(p ©p0) to
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This map passes to a degree 3 normal map/0 of lens spaces that commutes with the

canonical polarization maps from L(p © p) S(p © p)/Z2r and L(p © p0)

S(p®po)/Z2r to BZ2r; furthermore, f0 induces an isomorphism in 2-local homology
(with twisted coefficients, in fact), and by [Shz3] the 2-local normal invariant rj(f0)
is equal to <x2 Vb(po).

To complète the proof we must relate / to a degree one normal map with the

same normal invariant. By construction r\{f) is obtained by taking a stable

homotopy class y e {Lw, S0} on a finite Thom spectrum Lw (where the virtual
dimension of œ is zéro) such that y | S0 degree (/) and dividing by the degree. In
the situation considered in the previous paragraph, by Proposition 3.3. it follows
that

3([L, <r, k] + V) [£*> **> **1 e Of"(5z2,)

where L* is the lens space described in the preceding paragraph and cr* and k*
represent appropriate extra data. Since Pos3 (BZ2r) is a subgroup it follows that it
must contain 3ôOr for ail r > 1, and since this class has exponent 2 we obtain the
desired relation èQr e Pos3 (BZ2r). D

The gênerai case

As in Section 5 we hâve the following extension of Theorem 6.1; this will
dispose of ail cases in the main theorem that hâve not yet been treated.

THEOREM 6.4. The conclusion of Theorem 6.1 remains true if one considers

2-connected degree one normal maps into arbitrary Z2r lens spaces {or real projective
spaces if r 1) in dimensions 4k + 3 > 7.

Proof. Modulo substituting lens spaces (resp., simple lens spaces) for linear
spaceforms (resp., simple linear spaceforms) whose fundamental groups are quater-
nionic 2-groups, the proof of Theorem 5.5 goes through unchanged. D

Remark. If r 1 the results of this section follow immediately from more
gênerai theorems of Rosenberg and Stolz (Le., [RS, Thm. 5.3(4)]).
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