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Fox’s congruence classes and the quantum-SU(2) invariants of
links in 3-manifolds

MARC LACKENBY

1. Introduction

From the time Jones first discovered his polynomial, it has been hoped that it
provides information about the unknotting properties of knots and links. This hope
was founded on the fact that the polynomial of a link can be calculated from that
of two closely related links which differ only in the neighbourhood of a single
crossing. It is the purpose of this paper to demonstrate that the Jones polynomial
does indeed contain unknotting information. However, the methods we employ do
not exploit the recurrence relation of the polynomial, but instead take advantage of
its relation to the quantum-SU(2) invariants of links in 3-manifolds.

These invariants were discovered by Witten [15] using techniques from theoret-
ical physics. A rigorous mathematical proof of their existence was first given by
Reshetikhin and Turaev [11], and then by Kirby and Melvin [4]. These proofs relied
heavily upon the representation theory of quantum groups. A very simple and
elegant proof of the existence of the invariants has been given by Lickorish [7]. We
follow his approach in this paper.

In [2], Fox introduced the notion of congruence classes of knots in S°. He
termed two knots congruent if they differ by a sequence of 1/n surgeries about
certain unknotted curves. Here, we generalise his definition.

DEFINITION 1.1. Let n and g be non-negative integers. Let K and L be tame
oriented framed links in a closed connected oriented 3-manifold M. Then K and L
are said to be congruent modulo (7, gq), written K= L (mod(n, q)), if there are
oriented framed links K, K|, ..., K,, and trivial knots J,, J,, ..., J, in M such
that

- (1) K;_, and J, are disjoint,

(2) K, is obtained from K;_, by 1/n surgery along J,,

(3) the linking number k(K;_,, J;) =0 (mod ¢), and

4) Ky=Kand K,,=L.

664
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Figure 1

Thus, K and L are congruent if they differ by a sequence of moves as shown in
Figure 1, with suitable restrictions on the linking number of the link with J,.

Fox asked whether the set of congruence classes of a knot in S? determines the
knot type. That is, if K and L are knots in S°, and K= L (mod(n, ¢)) for all n >0
and ¢ > 0, then are K and L equivalent? He gave evidence supporting this conjecture
by showing that the Alexander polynomial of a knot restricts its possible congruence
classes. His result has since been corrected and extended by Nakanishi and Suzuki
[10]. See also [9]. In this paper, we shall show that the quantum-SU(2) invariants of
knots and links in 3-manifolds also provide information about their congruence
classes. As a corollary, we show that if two knots fail Fox’s conjecture, then they
must have the same Jones polynomial. In fact, we prove the following result.

COROLLARY 24. If two oriented links K and L in S* have different Jones
polynomials, then, for any framings on K and L, K= L (mod(n, 2)) for at most
finitely many n.

It is worth noting what the effect a move as in Figure 1 has on the framing of
a link K. Now, the framing of K is determined by a set of annuli, each annulus
having a boundary component equal to a component of K. The effect of surgery
along J; on the framing of the link is determined by the effect on these annuli. An
example is given in Figure 2. In this figure and, indeed, in all the diagrams of this
paper, the links are given blackboard framings. Note also that the framing on an
oriented link in S* uniquely determines the writhe of any diagram which represents
1t.

In this paper, we shall be examining the cases ¢ =1 and 2. Note that when
¢ = 1, there is no restriction on /k(K;_,,J;). Thus, if K= L (mod(n, q)) for some
non-negative ¢, then K= L (mod(n, 1)). Note that if J; bounds a disc which
intersects K in two points, and n =1, then 1/n surgery along J, is the standard
notion of a crossing change.
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Figure 2

In §2, the main theorem is proved, and a number of corollaries are deduced. In
§3, we generalise the notion of congruence to an equivalence relation between
closed connected oriented 3-manifolds. We show that the quantum-SU(2) invari-
ants also provide information about these congruence classes.

2. The main theorem

For a framed link K in a closed connected oriented 3-manifold M, we shall
often be considering the quantum-SU(2) invariant at a specified root of unity A.
We shall adopt the terminology of Lickorish in his paper [7]. Strictly speaking, the
invariant for the framed link is a linear form on &(S! x I)®*X, that is the tensor
product of #K copies of the linear skein of the annulus. However, we shall evaluate
this form by inserting «, that is a single strand going round the annulus, into each
copy of #(S' x I). This gives a complex number which we shall denote, by a
mild abuse of terminology, .4 (M, K). The following is the main theorem of this

paper.

THEOREM 2.1. Let n be an integer greater than one. Let A be a primitive 4n"™
root of unity. Let K and L be framed links in a closed connected oriented 3-manifold
M. If K= L (mod(n, 2)) or K= L (mod(4n, 1)), then 4 (M, K)=4(M, L).

Proof. 1t suffices to check that the invariant is preserved by a single move on K
as shown in Figure 1, subject to one of the following conditions:

(i) there is an even number of strands running from top to bottom, or

(ii) n is replaced by 4n in Figure 1.
For, K= L (mod(n, 2)) if and only if K and L differ by a sequence of moves
satisfying (i), and K = L (mod(4n, 1)) if and only if K and L differ by a sequence of
moves satisfying (ii).
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Figure 3

We shall use the equality shown in Figure 3, a proof of which is in [16]. The
symbol f* refers to the element of the linear skein of the disc with 2k marked
points in its boundary which is defined in Lemma 1 of [7].

Recall the map [7]

Go  Dpi FS' X DX x P(S x I) - F(R?)

associated with a planar link diagram D. Recall also that S, («) is the element of
F(S! x I) obtained by inserting f*’ into the annulus and then joining up the 2k
points in the standard way with strings encircling the annulus. Then, 4, denotes
(S, (a)>y, where U is a diagram of the unknot with zero framing. Recall also the
definitions of the elements w, w, and w, of F(S' x I).

n—2 n—2 n—2
w= Z A Sy () Wy = Z A4S, () Wy = Z A4S ().
=0 i oven K odd

The equality in Figure 3, together with the assumption that 4 is a 4n™ root of
unity, implies the equality shown in Figure 4. It also implies a similar equality, with
w, replaced by w, and with » kinks replaced by 4n. It is exactly this freedom to
change the framings of surgery curves which is the basis of this paper.

Let H be the standard diagram of the Hopf link with each component having
zero framing.

CLAIM. {w, w ) and {wy, wy )y are both non-zero.

Proof. Now, (w, o>y ={(w),, by Lemma 6 of [7]. It is proved in 4.1 of [7]
that this is non-zero. The claim will be proved if we can show that {w,, wy)y
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n kinks =

QO

Figure 4

is a non-zero multiple of {w, w),. Note first that Lemma 1 (iv) of [7] implies
that

d=(=1)"4,_5
This also follows from Proposition 9 (the Symmetry Principle) of [6], which

was first introduced by Kirby and Melvin in [4]. The Symmetry Principle also gives
that

(Sp(@), /Yy =(—=1Y*"(S, _» (), )y
and hence that
<AkSk(a)’ aj>H= ('_ 1)j<An-——2—kSn—2——k(a)a aj>1-l‘

Therefore, the following equalities hold.

<AkSk(a)’ wO>H= <An-2—kSn——2-—k(a)a w0>Ha
<AkSk(fx)’ W )= —{4y_2_,Sp_2_k(2), © )y

We shall now consider the cases of n odd and n even separately.
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Case A: n odd. Then we have the following equalities.

oy, 0y = —<{ Wy, ®)n,
oy, Wy = g, Wg) s

(o, w)y = 2{wy, @) y-

This proves the claim in this case.
Case B: n even. In this case,

wy, w1 =0,
g, 0y =0,

{w, )y =Wy, W)y,

which establishes the claim.

The sequence of equalities in Figure 5 establishes that, if K= L (mod(n, 2)), then
S, (M, K)= 4 (M, L). However, a number of the equalities require further explana-
tion. The first and sixth equalities are trivial, although we are implicitly assuming
that {w,, wy); 1s non-zero, which was proved in the Claim. The third and fifth
equalities are an application of that in Figure 4. The second and fourth follow by
repeated use of the fact an element of #(R?) remains unchanged when an even
number of strands are slid, via Kirby moves, over a component decorated with w,.
Hence, in the second figure, we slide the vertical curves over one of the components
decorated with w,. In the fourth figure, we slide the vertical curves over the
component containing » kinks (call this curve C,, say). This operation adds » full
twists to the vertical curves. However, C, becomes entangled with these curves. But
the other component decorated with w, (C,,say) now bounds a disc which
intersects C; in a single point and which is disjoint from all other curves. Hence, by
the argument of Lemma 4.5 in Chapter I of [3], we may pull C, and C, clear of the
vertical curves. Note that, in this process, we slide an even number of curves over
C,. This establishes the fourth equality.

A similar sequence of equalities, with n and w, replaced throughout by 4»n and
w respectively, and where we allow any number of strings to run from top to
bottom, establishes the theorem when K= L(mod(4n, 1)). O

We now use Theorem 2.1 to relate the congruence classes of a link to its Jones
polynomial.
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THEOREM 2.2. Let n be an integer greater than two. Let A be a primitive 4n"*
root of unity. Let K and L be oriented framed links in S3. If K= L (mod(n, 2)) or
K= L (mod(4n, 1)), then Vi (A=H=V,(A7%.

Proof. Theorem 2.1 implies that
£(S% K)=4(S% L).
Now,

4 (S K)
(—A72— 4%’

(K=

where { > denotes the Kauffman bracket of a framed link evaluated at the complex
number A. Note that (—A~?— A?) is non-zero. The theorem is almost proved,
since (K> and V(4% differ only by a factor of (—A4) 3%, where w(K) is the
writhe of K. Now, if two framed links K; |, and K differ by a move as shown in
Figure 1, then their writhes differ by n[lk(K;_,, J)P>. (See [13] for instance).
Thus, w(K) and w(L) differ by a multiple of 4n. This implies that Vi(4~%) =
Vi, (A™%). O

Thus, the Jones polynomial of a link greatly restricts the possible congruence
classes to which it belongs.

Example 2.3. Let K be the (right-handed) trefoil knot. Then Vi (¢) = —t*+ 1> +
t. Then

Ve(@)—1=(—1)(=1>+1).
Thus, K is not congruent modulo (n, 2) to the unknot for any n greater than 3.
COROLLARY 2.4. If two oriented links K and L in S* have different Jones

polynomials, then, for any framings on K and L, K = L (mod(n, 2)) for at most finitely
many n.

Proof. The equation Vg (t) — V() =0 has only a finite number of roots. [

Further information about the congruence classes of a link can be found by
consideration of its parallels.
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DEFINITION 2.5. Let K be an oriented framed link in a 3-manifold M. For
any positive integer j, define the j* parallel of K, written K’, to be the oriented
framed link having j parallel components for each component of K, the choice of
parallel being determined by the framing on K. The framing and orientation of each
component of K/ come from the framing and orientation of the relevant component
of K.

For example, when K is a zero-framed knot in S?, then two components of K’
have linking number zero, and each component has framing zero. The following
lemma is immediate.

LEMMA 2.6. Let K and L be oriented framed links in a 3-manifold M. Let n and
q be non-negative integers, and let j be a positive integer.
(1) If K= L (mod(n, q)), then K/ = L' (mod(n, g/)).
(2) If K= L (mod(n, q)), then K= L (mod(n’, q')), for any non-negative integers
n' and q' satisfying n’ln and q'|q.

COROLLARY 2.7. Let n be an integer greater than one. Let A be a primitive
4n™ root of unity. Let K and L be framed links in a closed connected oriented
3-manifold M.

(1) If K= L (mod(n, 2)), then 4 (M, K')= % (M, L’) for all natural numbers |j.

(2) If K= L (mod(n, 1)), then % (M, K') = 4,(M, L’) for all even natural numbers

Jj.
(3) If K= L (mod(4n, 1)), then 4 (M, K'Y= 4 (M, L’) for all natural numbers j.

Proof. If K= L (mod(n, 2)), then by Lemma 2.6, K’ = L’ (mod(n, 2)). (1) now
follows from Theorem 2.1. Parts (2) and (3) are proved similarly. O

COROLLARY 2.8. Let n be an integer greater than two. Let A be a primitive
4n™ root of unity. Let K and L be oriented framed links in S°.

(1) If K=L (mod(n, 2)), then Vi, (A=*)=V,,(A~*) for all natural numbers |j.

(2) If K= L (mod(n, 1)), then Vi (A==V,,(A=*) for all even natural numbers

J.
(3) If K= L (mod(4n, 1)), then Vi, (A==V,,(A~*) for all natural numbers |j.
Proof. Apply Lemma 2.6 and Theorem 2.2. O

COROLLARY 2.9. Let K and L be oriented framed links in S*. Suppose that
there is some even natural number j such that K' and L’ have distinct Jones
polynomials. Then, for any natural number q, K = L (mod(n, q)) for at most finitely
many n.
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Proof. This is proved in the same way as Corollary 2.4, together with
the observation from Lemma 2.6 (2) that K= L (mod(n, q)) implies that K=
L (mod(n, 1)). O

Given the efficacy with which the Jones polynomial distinguishes links, the above
corollary establishes the following conjecture in a large number of cases.

CONIJECTURE 2.10. (cf. [2]) If K and L are two different oriented links in
S3, then, for any non-negative integer q and choice of framings on K and L,
K= L (mod(n, q)) for at most finitely many n.

The following corollary relates the notion of crossing number to that of
congruence classes.

COROLLARY 2.11. Suppose that K and L are two knots with distinct Jones
polynomials. Let K and L have crossing number ¢(K) and c(L) respectively. Then, for
any framings on K and L, K# L (mod(n, 2)) for any n> 3 max{c(K), c(L)} + 1.

Proof. Throughout, we shall use the ‘state-sum’ terminology of [8]. Pick a
diagram D for the knot K, with c(D) crossings. We do not insist that the framing
of K is the same as the blackboard framing due to D. A state for D is a function
s:{ieN:1 <i<c(D)} - {—1,1}. A state s gives a diagram sD with the crossings of
D removed in a way determined by s. See [8] for more details. There it is shown that
the Kauffman bracket (D) is a polynomial in 4 with highest order M { D) satisfying

M{D) < c(D)+2s,.(D)|-2,

where s__ is the state which sends all numbers to 1, and where |s+(D)| is the number
of curves in the diagram s (D). Now, a simple induction on ¢(D) establishes that

|s+(D)| <c(D)+1,
and hence
M{D»<3c(D).
Similarly the lowest order m{D) satisfies the inequality
m{D» > —3c(D).
Also, the writhe w(D) of the diagram D satisfies the inequality

Iw(D)I <c(D).
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Therefore, Vi(t) is a polynomial in ¢ with lowest order m(V(¢)) and highest order
MV (2)) satisfying

(V)2 =2,
M( VK(t))_<,3c§K).

Thus, Vi (t) — V,(¢) is a polynomial in ¢ with breadth B(V(t) — V. (¢)) satisfying
B(Vk(t)— V(1)) <3 max{c(K), c(L)}.

CLAIM. If K = L (mod(n, 2)) and 0 is an n' root of unity other than —1, then
Vi(0) = V_,(0).

If 6 is an n'® root of unity, then it is a primitive n{" root of unity for some
natural number n, which divides »n. If n, =1, then § =1 and it is well known that
Ve()=V,(1). If n, =2, then 8 = —1 which is contrary to assumption. Hence, we
may assume that n, > 2. It is not hard to find a primitive 4n'" root of unity 4 such
that § = 44, If K= L (mod(n, 2)), then by Lemma 2.6 (2), K = L (mod(n,, 2)) and
hence by Theorem 2.2, V,(8) =V, (6). This proves the Claim.

Thus, if K= L (mod(n, 2)), then

B(Vi(t)—V, (t)=n—1.
and hence

n <3 max{c(K), c(L)} + 1. O

\

Figure 6
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Examples 2.12. Let K be a knot with a reduced alternating diagram D. Let DK
be an untwisted double of K. Then DK has a diagram with 4c(D)+2|w(D)|+2
crossings, where c¢(D) is the number of crossings of D and w(D) is its writhe. See
Figure 6. It is shown in [8] that DK has non-trivial Jones polynomial. Thus,
Corollary 2.11 gives that DK is not congruent modulo (#, 2) to the unknot for any
n greater than 12¢(D)+6[w(D)|+7. In fact, sharper bounds may be deduced, using
the fact that one of the knots in Corollary 2.11 is the unknot. Since, DK has trivial
Alexander module, classical methods (for example [10]) could not have given this
result.

3. A generalisation — congruence of manifolds

The kernel of the proof of Theorem 2.1 was that changing the framing on a
certain unknotted surgery curve by a multiple of » did not change the quantum-
SU(2) invariants at certain roots of unity. The point of this section is to show that
similar results hold when the surgery curve is arbitrary. Thus we investigate the
following equivalence relation on closed connected oriented 3-manifolds.

DEFINITION 3.1. Let n be a non-negative integer. Let M and M’ be closed
connected oriented 3-manifolds. Then M and M’ are said to be congruent modulo 7,
written M = M’ (mod n), if there are links L, ..., L,, in S* and framings F; and F;
on each L, satisfying the following conditions.

(1) The framings on each component of L, which arise from F; and F; differ by

a multiple of n.

(2) Surgery on L, with framing F, and surgery on L, , with framing F, , both

yield the same oriented manifold.

(3) Surgery on L, with framing F, yields M, and surgery on L,, with framing

F,, yields M’

Note that, by [5], there is a framed link in S* surgery along which yields a given
closed connected oriented 3-manifold M. When # is not divisible by 4, there is a
quantum invariant defined for M together with a specified class in H'(M; Z,). The
existence of this invariant was first noted by Turaev in [14]. Lickorish has exhibited
a skein-theoretic version in [7]. We denote the invariant associated with the zero
cohomology class by .9 (M).

THEOREM 3.2. Let n be an integer greater than two, and let A be a primitive
4n™ root of unity. Let M and M' be closed connected oriented 3-manifolds.
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(1) If M= M’ (mod 4n), then | %(M)|=|%(M")|
(2) If n is not divisible by 4, and M = M’ (mod n), then |9%(M)|=|5% (M)

Proof. 1t suffices to prove the theorem when # = 1 in Definition 3.1. Let D be
a diagram of L, with framing F;, and let D’ be the same diagram, but with the
framings altered so as coincide with F). Then, in the terminology of [7, p. 185],

GM) = po, . .., po)plpw)]_{po)y'.

Here, U_ is a diagram of the unknot with framing —1. (Similarly, U, is a dia-
gram of the unknot with framing 1.) Also, x is a real number satisfying u=2=
(w)y, {w)y_,and o is the signature of the linking matrix associated with D. Now,
[Kuw)y_|=1, since uw)y, =<uwdy', and {uwd,, and {uw),_ are complex
conjugate. Therefore, in Case (1),

4 (M)] = [Kpe, ... ., podp| [pedp! ]
=Cuo, ..., poyy| |[Kuods'|
=4 (M),

A similar argument, with o replaced throughout by w,, establishes Case (2). [

Remark 3.3. Note that under the conditions of Theorem 3.2 (1), we can deduce
that the Turaev-Viro invariants of M and M’ associated with the complex number
A are the same. See [12] for instance.
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