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Halves of a real Enriques surface

Alexander Degtyarev and Viatcheslav Kharlamov

Abstract The real part Eu of a real Enriques surface E admits a natural décomposition in two halves,
Eu E$}vE$\ each half bemg a union of components of ER We classify the tnads (ERt E$\ Eff) up
to homeomorphism Most results extend to surfaces of more gênerai nature than Enriques surfaces We
use and study m détails the properties of Kahnin's filtration m the homology of the fixed point set of
an mvolution, which îs a convenient tool not widely known in topology of real algebraic vaneties

Introduction

A real Enriques surface is a complex Enriques surface equipped with an
anti-holomorphic involution, called complex conjugatwn; îts fixed point set is called
the real part of the surface. This involution lifts to an involution of the covering
À3-surface (Lemma 1.3.1). Thus the study of real Enriques surfaces is équivalent to
the study of real jO-surfaces equipped with a holomorphic fixed point free

involution which commutes with the real structure.
A systematic study of the topological properties of real Enriques surfaces was

started by V. Nikulin. It is his preprint [N2] that stimulated our investigation. In
our preceding paper [DK1] we hâve completed the classification of real Enriques
surfaces by the topological types of their real part.

This classification has a natural refinement (also first studied by V. Nikulin): the

real part ER of a real Enriques surface admits a natural décomposition in two halves

Em Eul)uE^}, each half being a union of components of ER. This splitting is due

to the fact that the real structure lifts to the covering K3 surface in two différent

ways: each half is covered by the fixed point set of one of the two liftings (see 1.3).

This gives rise to the following problem: to classify the triads (ER; Eul\ Effi) up to
homeomorphism.

For a large number of topological types an arbitrary splitting is realizable. For
some other types the splittings are determined by the only restriction: the orientation

double covering of a half must either consist of two topological tori or hâve at
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most one nonspherical component. The surfaces constructed in [DK1] show the
existence of such splittings in many cases. On the other hand, as it was discovered

by Nikulin, there are topological types whose distributions must satisfy to certain
restrictions.

It is the distribution of the components between the two halves that is the

principal subject of the présent paper. Similar to what happened during the

investigation of other spécial classes of surfaces, the présent study is stipulated by
and based on the discovery of some new prohibitions. Thèse prohibitions (see 2.1)
apply not only to Enriques surfaces but as well to other classes of surfaces with non
simply connected complexification. More precisely, in this paper we treat what we
call gêneralized Enriques surfaces: quotients of a nonsingular compact complex
surface X with HX(X\ Z/2) =0 and w2{X) =0 by a fixed point free holomorphic
involution (see 1.2 and Appendix B).

Note that there are quite 'classicaP examples of generalized Enriques surfaces: in
Horikawa's construction (see Section 8.1) bi-degree (4,4) can be replaced with
(4k, 4k), keZ+ (and even with (4k + 2, 4k + 2), keZ+; this leads to Spin-surfaces,
see Appendix B). Thus, our results also provide some prohibitions on the topology
of symmetric real curves on real quadrics.

The prohibitions obtained (see 2.1 and Appendix B) are a combination of the

inequality-type and congruence-type prohibitions. To an extent they may be re-
garded as some kind of refinement of the Smith-Thom inequality and extension of
the Arnold-Rokhlin congruences to non simply connected surfaces. (Additional
prohibitions of this kind, which also hâve no précise analogues in the simply
connected case and whose proofs are based on similar techniques, can be found in

[DK3].)
We apply thèse results to the classical Enriques surfaces and complète the

classification of the distributions of their components (see 2.2.2).
Another by-product are new proofs which clarify the nature of the prohibitions

obtained in our previous paper, devoted to the topological classification of real

Enriques surfaces (see 2.2 and [DK1, 3.7-3.10]).
The key rôle in our présent study is played by so called Kalinin's spectral

séquence and Viro homomorphisms, used in combination with more traditional
tools of topology of real algebraic varieties. The spectral séquence in question is

derived from the Borel-Serre spectral séquence: it is some sort of its stabilization
with only one grading. It converges to the homology of the fixed point set, and the

corresponding filtration and identification with the limit term are given by the Viro
homomorphisms, which hâve an explicit geometrical définition (see Section 5 for
the détails).

The paper consists of eight sections and two appendices. In Section 1 we

introduce the main objects, such as a generalized Â3-surface (which, from our point
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of view, is just a Spin-surface X with Hx (X; Z/2) 0) and a generalized Enriques
surface, give some définitions and fix the principal notation. In Section 2 we
formulate the main results and apply them to the classical Enriques surfaces. In
Section 3 we expose some auxiliary results on the arithmetic of involutions. Section
4 is devoted to the study of the basic topological properties of generalized Enriques
surfaces. In Section 5 we introduce Kalinin's homology spectral séquence and Viro
homomorphisms and examine their gênerai properties which we need in subséquent
proofs; thèse results are then applied to generalized Enriques surfaces in Section 6.

Finally, in Section 7 we prove the main results announced in Section 2, and in
Section 8 we construct some surfaces to extend the list of distributions found in

[DK1] and thus complète the classification for the case of classical Enriques
surfaces.

In Appendix A we study the multiplicative structure in Kalinin's spectral

séquence and prove Theorem 5.2.3, which in the case of an involution on a closed

manifold relates the intersection pairings on the manifold and on the fixed point set.

In Appendix B we introduce Spin generalized Enriques surfaces and extend to
them the main results of Section 2. (The proofs are found in [DK2], along with the

necessary information on the Steenrod opérations in Kalinin's spectral séquence.)

1. Preliminary définitions and notation

1.1. Notation

We agrée that, unless specified explicitly, the coefficients of ail the homology
and cohomology groups are Z/2. Both the cohomology characteristic classes of a

closed smooth manifold and their dual homology classes are denoted by wr
Throughout the paper we use the following notation:

• br and pr stand for the Betti numbers with the intégral and Z/2-coefficients
respectively: br{) rkHr( ; Z) and &(•) dimHr{)\

m 0* is the total Betti number: £*(•) Lr>o&();
• X(X) is the Euler characteristic of a topological space X;

• a(M) is the signature of an oriented manifold M;
• Tors2 G is the 2-primary component of an abelian group G.

1.2. Generalized Enriques surfaces

A nonsingular compact complex surface X will be called a generalized K3-sur-
face if Hl (X; Z/2) 0 and w2(X) 0. A generalized Enriques surface is a complex
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surface E which (1) has w2(E) ^ 0, and (2) can be obtained as the orbit space X\x
of a generalized À3-surface by a fixed point free holomorphic involution t: X-* X;
the latter is called the Enriques involution.

As it follows, e.g., from the Ghysin exact séquence, HX(E\ Z/2) Z/2 (cf. 4.2.1).
Thus, X is the only double covering space of E, and t is its deck translation. Hence,

they are both determined by E.

Remark. Orbit spaces of generalized À3-surfaces with w2(E) 0 are considered
in Appendix B.

1.3. Décomposition of the real part

As usually, by a real structure on a nonsingular complex surface we mean an
anti-holomorphic involution. When not empty, the flxed point set of such an
involution is a real 2-manifold.

Let E be a generalized Enriques surface, and let conj: E -+ E be the real structure
on E. Dénote by Eu the real part, ER Fix conj.

1.3.1. LEMMA. There are exactly two liftings t(l\ t{2): X-+ X ofcon] to X. They

are both anti-holomorphic involutions, commute with each other, and their composition

is t. Both the real parts X$ Fix t°\ i 1,2, and their images E$ in E are
disjoint, and E^uE^ ER.

Proof The case ER 0 is considered in [Ht]. If ER ^ 0, the proof is obvious
as soon as the points of X are represented by homotopy classes of paths in E
starting at a point of ER: two paths defîne the same point in X iff they differ by a

loop homologous to zéro in HX(E\ Z/2).

Due to this lemma, ER canonically splits into two disjoint parts, which we will
refer to as the halves of ER. Both E^ and Effî consist of whole components of ER,

and XR° is an unramified double covering of E$, i 1,2. In most cases thèse

coverings are determined by ER intrinsically:

1.3.2. LEMMA. The real parts Xu X^uX^ are orientable. The restriction of
the projection X-*E to XU-+ER is the orientation double covering unless a(X)
(mod 32), one of the halves of Eu is empty, and the nonempty half is orientable.

The orientability is well known, see [E], [S], or [K]. The rest follows from the

fact that the canonical orientations of Xu are reversed by t. For classical Enriques
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surfaces thèse orientations are given by an exterior holomorphic 2-form co which is

nowhere zéro, T-skew-invariant and becomes ?(l)-real (i.e., satisfying œ tu)œ) after
multiplication by a proper constant at. In the gênerai case the construction is

slightly différent. In the proof below we use the Spin-structures as in [DK1,
Theorem A.2].

Proof of 1.3.2. Since Hl(X) =0, on I there is a unique Spin-structure ij/. In
particular, \j/ is equivariant in respect to any involution, i.e., it takes equal values on
symmetric framed loops. Let X$ be a nonempty half. In order to compare local
orientations of X$ at two points x,yeX$\ represent them by 2-frames and

complète thèse frames to positive 4-frames of X by some pairs of f(1)-skew-invariant

vectors. Then pick a path y Connecting x and y, extend the 4-frames to a field
S (&, Ç2> £3» £4) on 7? and evaluate \j/ on the loop y * t0)y~l framed with E * S',
where E' (dt™Çl9dt™Z29 -*(1)<J3, -dt^4). (The latter framed loop is called a

test loop.) The two orientations are considered cohérent iff the value obtained is 0.

This construction is consistent since \\i is equivariant; thus, it gives a canonical pair
of opposite orientations of X$\ and it remains to check that x reverses them.

For any orientation preserving free involution c: X -> X with Xjc not Spin (in
particular, for c t) the value of ^ on a c-symmetric loop with a 4-frame field
S (£j, £2, £3, £4) is 1 if S is oinvariant and 0 if S is c-skew-invariant, i.e.,

dc(Çl9 £2, £3, £4) =(£i> £2* "-£35 —£4)- Thus, it suffices to construct a t-invariant
test loop. If X$ 7e 0, pick x e X^ and a e X%, join them by an arc (xa), and let y

be the loop formed by (xa), til)(xa), x(xa), and t(2\xa). Pick a f(1)-invariant frame
at x and a f(2)-invariant frame at a, complète them by pairs of f(1)-skew-invariant

(respectively, /(2)-skew-invariant) vectors to positive 4-frames, and extend thèse

4-frames to a 4-frame field over (xa). Reflection gives a t-invariant continuous

4-framing over y.
Let now JJf(R2) 0 and a(X) # 0 (mod 32). Then X/ti2) is not Spin, since

a(X/ti2)) =\a(X) ^0 (mod 16). Pick a point aelwhose orbit a, t(l)a, xa, t(2)a

consists of four éléments and form a loop from the same four arcs as above, an arc
ô Connecting a and ti2)a, and t(1)ô. The test loop constructed as before is the sum
of a t-invariant loop (obtained by replacing t (1)<5 with xô) and a f (2)-skew-invariant

one, and ij/ equals 1 on the former portion and 0 on the latter one (as t{2) is also

free now), which totals to 1 on y.

Finally, if X$ is nonorientable, the resuit follows from the obvious fact that,
since ij/ is t-equivariant, x either préserves or reverses the canonical orientation of
ail the components of X^ simultaneously.

Since E is a compact surface, each component C of Eu is a closed manifold. By
the first part of 1.3.2, C may be of one of the following three types:
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Sg - a trivially covered orientable surface of genus g > 0;

Vg - a nonorientable surface of genus g>0, Vg^ #gUp2, covered by an
orientable component Sg_lcz XR;

Tg - a nontrivially covered orientable surface of genus g > 0.

In our notation we use any of S So Vo for S2. To describe the décomposition
of ER into the two halves, we write Eu {half Etf} U {hal

Remark. According to 1.3.2, the type Tg is very spécial: Eu may hâve such a

component only if a(X) 0 (mod 32) (or, equivalently, a(E) 0 (mod 16)), one of
the halves of ER is empty, and the other one is orientable. In particular, this type
never occurs in the case of the classical Enriques surfaces.

Remark. Lemma 1.3.2 gives rise to the foliowing problem: Let X be a closed

complex surface with Hl(X)=0 and w2(Ar)=0, and let t and conj be two
commuting fixed point free involutions on X, holomorphic and antiholomorphic
respectively. If X\x is not Spin, can X/conj be Spin?

1.4. Types of the real part

Given a nonsingular compact complex surface Y with real structure, its real part
Yu has a well defined Z/2-homology fundamental class [YR]. We say that YR and Y

are of type Io (respectively, Iw) if Yu is homologous to zéro (respectively, w2(Y)) in
H2(Y). The surface is said to be of type I if it is of type Io or Iw; otherwise it is said

to be of type IL
In the case of a generalized Enriques surface E and its double covering X the

notion of type obviously extends to the halves J?g} and X$. For the covering and

its halves the types Io and Iw coincide.

1.5. (M — d) -surfaces

According to the Smith-Thom inequality, for any complex surface Y with
real structure one has P*(YU) < p*(Y)9 and the différence P*(Y) - fi+(Yn) is

even. By définition, Y is called an (M - d) -surface if the above différence is

2d.
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2. Main results

From now on we fix a generalized real Enriques surface E with Eu # 0 and
follow the notation of Section 1: conj: E ->E is the real structure on E, X is the
double covering of E with Enriques involution t: X-+X, and /(1), ti2) are the two
real structures on X determined by conj (see 1.3.1).

2.1. General prohibitions

2.1.1. THEOREM. Let X$> be of type I and both the halves nonempty. Then

(1) Eu has no nonorientable components of odd genus (i.e., V2g+l);
(2) at least one of the two halves E$\ Eff is orientable.

2.1.2. THEOREM. Suppose that Eu is orientable. Then E is an (M - d)-surface
with d>2, and

(1) ifd 2, then x(ER) a{E) (mod 16) and Eu is of type I;
(2) ifd 3, then x(Eu) a(E) ± 2 (mod 16);

(3) ifd 4 and x(Eu) s a(E) + 8 (mod 16), then Eu is of type I.

If in addition, ail the components of Eu are sphères, then d>3.

Remark. The last assertion of Theorem 2.1.2 follows from Comessatti-Severi

inequality x(Er) <hh\E) (see [Co]), which transforms into d>?> + h2\E) for a

generalized Enriques (M — </)-surface with only spherical components. Thus, such

a surface may exist only if d > 3, and if d 3, the lattice H2(E; Z) must be

hyperbolic (as this is the case, e.g., for classical Enriques surfaces).

2.1.3. THEOREM. Suppose that Eu consists of a single half and does not hâve

nonorientable components of odd genus (i.e., V2g + l). Then E is an (M — d)-surface
with d>2, and

(1) ifd 29 then x(Eu) s o(E) (mod 16) and Eu is of type I;
(2) ifd 3, then x(Em) a{E) ± 2 (mod 16);

(3) if d 4 and x(Eu) a(E) + 8 (mod 16), then Eu is of type I.

2.1.4. THEOREM. Let E be an (M - 3)-surface with Eu kS. Then

EH {4pS} U {(4# -h 1)5}, both the halves being nonempty unless k \ (mod 8).

2.1.5. THEOREM. Ut En V2g U kS9 g > 0. Suppose that E is an (M - d)-
surface and x(ER) tr(E) + 2ô (mod 16). Then for the values of(d, S) listed in Table



Halves of a real Enriques surface

Table 1

635

k{2) (mod 4)

0
1

2

3

0

1

-1

o

2

-2
4

±3

0

0, 1

0, 3

fO, 2 (if
(P, 1, 3 (if

0, 1,2
0,2,3
0, 2

0, 1, 2, 3

£R is of type I)
Eu is of type II)

1 one has Eu {V2g U k{l)S} U {Â:(2)S}, n>/*m> A:(2) (mod 4) takes one of the values

given in the table; furthermore, k(2) ^ 0 with the possible exception of the case d 2,

ô — 0, Eu is of type I. Besides, there are the following additional prohibitions:
(1) ifd 09 then E%> is of type I0 and E$ is of type Iw ;

(2) ifd 0, then k(l) #0 unless k=0 (mod 8);

(3) ifd 1 and A:(1) 0, /A^/i either k Ô (mod 8), or k s 0 (mod 4) a/

Remark. Note that in the case d 3 the last theorem only states that, if
X(EU) a{E) ± 6 (mod 16), then both the halves are not empty. This follows also

from Theorem 2.1.3.

2.2. Classical Enriques surfaces

The topological types realizable by the real part of a classical Enriques surface

were enumerated in [DK1], where we treated separately the types 6S, 5, U 5S, 3V2

and séries Sx U F, U • • • not prohibited by the standard inequalities and congru-
ences known in topology of real algebraic varieties. The prohibition of thèse

types is now an immédiate conséquence of the results of Section 2.1: the first

two are prohibited by Theorem 2.1.2, the others - by Theorem 2.1.1. To apply
Theorem 2.1.1 one should note that, if the real part of a real À3-surface Xcontains
two components 5,, then X is of type I and XR has no other components, see

[Khi].
Consider now the décomposition Eu EffuEff. The following obvious

observation can be found, e.g., in [DK1]:
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b 6

a

{V4Ua5}U{65} {K6Ua5}U{65} {V8UaS}u{6S},
{V2UaS}U{bS} {Vl0UaS}U{bS}

Figure 1. Exceptional topological types.

2.2.1. Each half of a classical real Enriques surface may only be either

(1) aVgU aVxUbS with g > \, a > 0, b > 0, a =0, 1, or
(2) 2F2, or
(3) 5,.

In [DK1] and in Section 8 we construct a number of realizations of Enriques
surfaces sufficient to show that, with few exceptions, any distribution satisfying
2.2.1 is realizable. The exceptional topological types are listed in Figure 1: the
distributions marked by the black nodes are realized, e.g., in [DK1]; the white node

represents the distributions {25} U {25} and {V2 U 25} U {25} constructed in [N2].
Theorems 2.1.4 and 2.1.5 imply that this list is complète.

2.2.2. THEOREM. With the exception of the types kS and V2r U kS any
distribution of components of a real Enriques surface satisfying 2.2A is realizable. The

exceptional types admit only the distributions listed in Figure 1.

Remark. The distributions {25} U {25}, {V2 U 25} U {25}, { V2 U 25} U
{V2 U25}, and {V2 U45} U {V2} are not constructed in [DK1] or Section 8; their
existence is announced in [N2]. The first two of them cannot be obtained by our
construction, i.e., the covering JO-surface is not a double of a symmetric quadric.
(Proof will be published elsewhere.)*

3. Involutions on modules

In this section we expose some elementary facts on the Galois cohomology of
modules with involution and on the discriminant forms of intégral lattices with
involution. Most results appear, explicitly or implicitly, in [NI]. We give proofs
when it is easier than to find a précise référence or when the direct proof is simpler.

*Added in proof. Now we can prove the existence of thèse 4 distributions.
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3.1. Galois cohomology of Z/2-vector spaces with involution

The zero-dimensional cohomology group of a Z/2-vector space F with involution

c is H°(V) Ker(l -h c). Ail the other cohomology groups are isomorphic to
Ker(l + c)/Im(l +c); to be short and in accordance with the notation commonly
used in the literature we dénote them by H°(V).

3.1.1. LEMMA. Let V and V be finite dimensional vector spaces over Z/2 with
involution. If they are connected by one of the following two short exact séquences of
spaces with involution

0->Z/2->F->F'->0 or 0-? F'-> F-> Z/2-? 0,

then dim H°(V) - dim H°(V) ±1. In the former case the différence is -1 if and

only if the gêner ator of the subgroup Z/2 vanishes in H°( F). In the latter case it is — 1

if and only if the gênerator of the quotient group Z/2 does not lift to H°(V), i.e.9 does

not belong to the image of Ker( 1 4- c) a F.

Proof Dénote by c, c', and c0 the involutions on V, V, and Z/2 respectively.
Then Ker(l + c0) Coker(l + c0) Z/2, and the resuit follows immediately from
the additivity of dimension and the Ker-Coker exact séquences (see, e.g., [CE,
Lemma V.10.1])

0 -> Ker( 1 + c0) - Ker( 1 + c0) -> Ker( 1 + O -> Coker( 1 + c0) -> Coker( 1 + c)

and

Ker( 1 + c) -+ Ker( 1 + c0) -> Coker( 1 + c') -> Coker( 1 + c) -+ Coker( 1 + c0) -? 0.

D

Suppose now that V is equipped with a oequivariant symmetric bilinear form
°: F®F->Z/2. Then ° induces, in a natural way, a symmetric bilinear form on

H\V).

3.1.2. LEMMA. 7/*°: F® F-+Z/2 îs nondegenerate, then so is the inducedform

Proof Since /f°(F) Ker(l + c)/Im(l + c), the resuit follows from the additivity

of dimension and the existence of the induced form.
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3.2. Free abelian groups with involution

Let I be a finitely generated free abelian group with involution e. Let
L± {x eL | ex ±x} be its eigensubgroups and H(L) — H\L\2L) the cohomol-

ogy group of the associated Z/2-vector space L/2L L ® Z/2. Obviously, both L±
are primitive in L (i.e., the quotients L/L* are torsion free), and L + nL~ 0.

3.2.1. LEMMA. One feu

Ker[( 1 + e) : LjlL -> L/2L] (L +/2L) + (L -/2L),

Im[( 1+ c) : L/2L -> L/2L] (L +/2L) n (L -/2L),

dim H(L) dim L - 2 dim[(L +/2L) n (L ~/2L)].

Proof. In L®Q each élément x is represented as x =x+ +x~, where

x+ |(x + ex) and x~ 5(x — ex). The first statement follows from the fact that,
given an x eL, the éléments \{x -f ex) and |(x — ex) belong to L if and only if
x ex (mod 2L). To prove the second statement just notice that 1 -h c)y 1 — c)y

(mod2L) for any y eL, and that whenever x+ eL+ and x" eL" are such that
x+ x~ (mod 2L), one has x+ =y + ey, where >> |(x+ + x~) eL.

The last statement is an immédiate conséquence of the first two.

3.3. Intégral lattices

Suppose now that L is a unimodular intégral even lattice, i.e., L is supplied with
a symmetric bilinear pairing ©: L ® L -»Z so that (1) the corrélation cp: L -»L* —

Hom(L, Z), <px(>>) x © j, is an isomorphism (L is unimodular), and (2) x © x e 2Z

for any x eL (L is even). Assume also that L is supplied with an involution
c: L->L which is a lattice morphism, i.e., cx<> cy =xoy for any x,yeL. Under
thèse assumptions each of the sublattices L± is the orthogonal complément of the

other one, and they are both nondegenerate, i.e., their corrélations are injective.
Recall that, given a nondegenerate even lattice M, one can define a quadratic

space discr M, called the discriminant space, in the following way: the underlying
finite group, called the discriminant group, is discr M M*/M, where M* is

considered, via the corrélation, as an extension of M in M ® Q. The quadratic
function q: discrM-+Q/2Z is induced from o extended to M®Q: given

x € M* <= M ® Q, define #(x) x o x (mod 2).

Let (^±, #), or briefly ®±, be the discriminant spaces discr L1.



Halves of a real Enriques surface 639

3.3.1. LEMMA (see [NI]). Spaces (^±, q) are anti-isometric, Le., there exists a

group isomorphism a: @+ -*@~ such that q(ax) — q(x) for any x e@+.

At the group level this statement has the following conséquence:

3.3.2. LEMMA. 2(Lf)*cL and the quotient a±: ®± (£*)*/£* -+L/2L of
the multiplication by 2 is an isomorphism ^± ->(L+/2L) n(L~/2L) czL/lL. In
particular, ^± are 2-periodic groups and dim H{L) rk L — 2 dim ^±.

Proof Let x e (L+)*, i.e., let x e L + ® Q be an élément such that x ° L+ e Z.
Then for any y eL one has 2xoy =2x o(y+ +y~) =2x oy+ x o (y +cy) eZ.
Hence, 2x e L * L and 2(L +) * c L. Since 2L + c 2L, the multiplication by 2 has a

well defined quotient <x+:@+= (L+)*IL+-+L/2L.
Let xeKera+, i.e., 2xe2L. Then xeLn(L+®Q) =L+, i.e., x =0 in 0+.

Thus, Ker a+ 0 and ^+ is a 2-periodic group.
Given 2x (1 +c)y e(L+/2L) n(L~/2L) (see Lemma 3.2.1), for any zeL+

one has xoz=|(j;oz + gocz)6Z, i.e., xe(L+)*. This proves that Ima+=>

Since @+ is a 2-periodic group, 2x e L + for any xe(I+)*. Hence Ima+cL +/2L.
Since L+ is primitive in the unimodular lattice L, the map L=L*->(L+)* induced

by the inclusion L+ cL is onto, and, given x €(£+)*, there is some j^eLso that

(x-y)oL+ 0. Then z =2jc - 2y eL~ (L4)1 and 2x=z (mod 2L). Hence

Ima+ czL~/2L. This complètes the proof for <x+; the other isomorphism is con-
structed similarly. D

3.3.3. COROLLARY. An xeL+ vanishes in H(L) if and only ifxoL+e2Z.

Proof. According to Lemmas 3.2.1 and 3.3.2, x vanishes in H(L) if and only if
xmod2LeIma+, Le., jxe(L+)*.

3.3.4. To formulate the next statement, remind that, given a (not necessary

unimodular) nondegenerate lattice M and nondegenerate primitive sublattice

M'a M, one can define subgroups T'cdiscrAT and F" c discr M'1 and an

anti-isometry oc: F' -+F" so that M is the pull back of the graph F of a under the

projection (M')*© (M'1)*-?discr M'©discr M'1 and discr M FLIF. (Détails can

be found in [NI].)

3.3.5. LEMMA. Suppose that M' is a primitive nondegenerate sublattice of L +

and M is the primitive hull of M'®L~ in L. Let x e M'c L + be an élément with

x o M' e 2Z, so that {x defines an élément in discr M'. If this élément belongs to the

subgroup F' defined above, then x vanishes in H(L).
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Proof. According to Nikulin's construction, if the élément defined by \x in
discr M' belongs to F', there are some y gL~ and z eM such that z =\x + \y.
Then x 2z — y and x © L+ e 2Z (since y ° L+ 0). The statement follows now
from Corollary 3.3.3.

4. Basic topological properties of generalized Enriques surfaces

4.1. General facts

First, consider an arbitrary complex algebraic surface Y equipped with a real

structure conj: Y-*Y. Let L=H2(Y; Z)/Tors, 2± discr L±, where L± are the

subgroups of conj^-invariant and conj^-skew-invariant éléments of L, and Br 3i±

the Brown invariant of ®±.

4.1.1. LEMMA. The fundamental class [YR]eH2(Y) and the Stiefel-Whitney
class w2(Y) are intégral, i.e., belong to the image of H2(Y; Z) in H2(Y).

Proof, As it is known (see [HH]), w2(Y) is intégral for any closed orientable
4-dimensional manifold.1 According to [Ar], Lemma 32, [YR] is the characteristic
class of the twisted intersection form (jc, y) \-> x ° conj^ y. In particular, it is orthogonal

to the image of Tors H2(Y; Z) in H2(Y), which, by Poincaré duality, is the

orthogonal complément of the image of H2(Y; Z).

Thus, the projections of [Yu] and w2(Y) to LjlL are well defined, and since both
thèse classes are conj#-invariant, they further descend to H(L).

4.1.2. LEMMA. The projections of[YR] and w2(Y) in H(L) coincide.

Proof Since H(L) consists of only conj^-invariant classes, the twisted and the

standard intersection forms on it coincide, and so do their characteristic classes

(Lemma 3.1.2). On the other hand, [Yu] is the characteristic class of the twisted
intersection form (Arnol'd Lemma, loc. cit.), and w2(Y) is the characteristic class of
the standard intersection form.

!For complex manifolds this assertion is eompletely obvious as w2(Y) =c,(y) mod2.
2ArnoPd formulâtes and proves this assertion only for orientable YR; the proof in the gênerai case

is literally the same.
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4.1.3. LEMMA. If Y is an (M-d)-surface, then

(1) x(Yu)=a(Y)+2 Br@- (mod 16);
(2)

Proof Hirzebruch's signature theorem gives v(Yu) <x(L+) —g(L~). The left
hand side hère equals — x(YR) as the normal Euler number of Yu in Y; the right
hand side is -<x(7) +2cr(L+) -a(Y) -2 Br^~ (mod 16), since due to Lemma
3.3.1. one has Br^" -Br^+ -a(L+) (mod 8). This proves (1).

Since Fis an algebraic surface, o{Y) —x(Y) -f}*(Y) (mod 4). By définition,
P^(Y) =p^(YR) + 2d. Substitution to (1) and replacing %(YU) with -p*(Yu)
X(YR) (mod 4) and Br 2~ with dim 9~ Br 9~ (mod 2) gives (2).

4.1.4. LEMMA. The quadratic space 2~ is even (i.e., q(x) gZ/2Z for any
xe@-) iff[Yu] - w2(Y) belongs to the image ofTors H2(Y; Z) in H2(Y).

Proof [Yu] and w2(Y) are the characteristic classes of the (respectively, twisted
and standard) intersection forms. In particular, they are both orthogonal to the

image of Tors H2(Y; Z) in H2(Y). In addition, they are both intégral (see Lemma
4.1.1). Thus, the condition that [Yu] - w2(Y) belongs to the image of Tors H2(Y; Z)
in H2(Y) is équivalent to the condition that this différence annihilâtes ail the

intégral classes, which, in turn, is équivalent to the congruence x2 x ° conj# x
(mod 2) for any x eL.

Let x ± \(x ± conj^ x)eL±®Q. Then x x + + x ~ and x2 — x ° conj,,, x
2(x~)2 (mod2Z). Since x~ o L~ =x o L~ takes intégral values, x~ belongs to
(L~)* and, hence, represents an élément in Q)~. Moreover, each élément in S>~

admits such a représentative. Thus, (x~)2eZ for any x eL if and only if Q)~ is

even.

4.1.5. COROLLARY. Suppose that the 2-primary component Tors2 H2(Y; Z) is

gênerated by w2{Y). {This is the case for gêneralized Enriques surfaces', see Lemma
4.2.3 below.) Then Yu is of type I if and only if 9~ is even.

AU the statements above except Lemma 4.1.33 extend literally to any (not
necessary anti-holomorphic) orientation preserving involution conj on any (not
necessary complex) oriented 4-manifold Y. Lemma 4.1.4 has then the following
corollary:

34.1.3 extends to any anti-holomorphic involution on any quasi-complex variety, cf. [Wi].
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4.1.6. COROLLARY. Let conj be a fixed point free orientation preserving
involution on an orientée 4-manifold Y. Then the quadratic spaces Q}± are even if and

only if so is H2(Y\ Z)/Tors.

4.2. Homology of a gêneralized Enriques surface

We now consider a generalized Enriques surface E covered by a generalized
JO-surface X with Enriques involution t. We dénote by pr: X -» E the projection
and by tr: H^(E; R) -+H+(X; R) the transfer (with coefficients in a group R).

Note that HX(X) 0 implies Tors2 H2(X; Z) 0.

4.2.1. LEMMA. There are isomorphisms Tors2 HX{E\ Z) HX(E) Z/2 and an

exact séquence

0 -Tors2 H2(E; Z) -H2(E) -^- H2(X\

where Tors2 H2(E\ Z) Z/2 is gênerated by w2(E).

Proof From the Smith-Ghysin exact séquence it follows that Hl (E) Z/2 and

Ker[tr2: H2(E) -+H2(X)] Z/2. As tr w2(E) w2(X) 0 and w2(E) ï 0, the only
nontrivial élément of Kertr2 is w2(E). By the Poincaré duality and universal
coefficient formula, from HX(E) T\2 it follows that Tors2 H2(E; Z)
Tors2 Hx (E; Z) is a cyclic group. It cannot be larger than Z/2 since otherwise X
would hâve a nontrivial double covering.

4.2.2. LEMMA. For any p 1, 2, 3 there is a short exact séquence

0 -* Tors2 Hp(E; Z) -+ Hp(E; Z) -^ H^X; Z) - 0,

where HpX(X; Z) dénotes the subgroup of x ^invariant éléments.

4.2.3. LEMMA. Let L H2(X; Z)/Tors and let L±x be the sublattices ofx^invariant

and t ç-skew-invariant éléments of L. Then H2(E; Z)/Tors is an even lattice
isometric via tr to L^x(^), which is L+t with modifiedpairing (x9y) ^{-{x °y).

Proof of Lemmas 4.2.2 and 4.2.3. The transfer H*(E;R) -+H$\X;R) for
R Q and R Z/q, q odd, is an isomorphism (see, e.g., [B]). Thus, in the intégral
homology Ker ttp Tors2 HP(E; Z), and to prove 4.2.2 it remains to show that tr2
reduced modulo torsion maps H2(E; Z)/Tors onto L+x.
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Let L H2(E; Z)/Tors and Z/ trL<=L, where tr is the intégral transfer
modulo torsion. Then L'c L+x is a subgroup of finite index. The identity
tr x o tr y 2(x o j;) implies that L L'(î) as a lattice and, since L is unimodular,
discr L'is a 2-periodic group of dimension rk L rk Z/. Since, due to Lemma 4.2.1,
the index of L' in L+x is odd (tr® Z/2 is a monomorphism) and discr L+r is also

2-periodic (Lemma 3.3.2), thèse two subgroups coincide.
Thus tr2 provides an isometry between the lattices H2(E; Z)/Tors and L+X(j)

and an isomorphism between the groups H2(E; Z)/Tors and L+T. The lattice L+x(^)
is even due to Corollary 4.1.6. O

4.3. Eigenspaces of conj^.

Let now E be a generalized Enriques surface with real structure conj: E-+E.
The following fact is well known and follows from the Lefschetz fixed point
theorem (part (1)) and Hirzebruch signature theorem (part (2)). Note that (2)
applies, in fact, to any real algebraic surface, and (1) applies to any surface E with

//,(£; Q)=0.

4.3.1. LEMMA. Let L H2(E; Z)/Tors and let L± be the subgroups o/conj#-
invariant and con^-skew-invariant éléments of L. Then

(1) rk L+ \(b2(E) + x(Eu)) - 1, rk L- l2(b2(E) - X(EU)) + 1;

(2) a(L+)=&(E)-X(Eu)), a{L~) ={-{<j{E

5. Kalinin's spectral séquence and Viro homomorphisms

In this section we summarize some auxiliary results from algebraic topology of
involutions. The constructions, which we présent in their homology form, require,
in principle, a cautious choice of the homology theory, as well as certain appropri-
ate conditions on the underlying topological spaces. One possibility is to use the

sheaf théories and suppose that the topological spaces are locally compact and finite
dimensional. However, as we apply the results to the best topological spaces one

can possibly expect - smooth compact manifolds - we do not need any definite

choice and can use any theory.

Throughout this section Fis a good (see the paragraph above) topological space

with involution c: F-» F.
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5.1. Kalinin's homology spectral séquence

5.1.1. There exist a filtration

0 &n + l cFc---c/° H*(Fix c),

a H-graded spectral séquence (i/*, */*), where

dq:Hq-+Hq + r_u dq + r_xodq=0,

(H%,d%) is the chain complex of 7, and Hrq+l Ker drqllmdq_r+u

and homomorphisms bvr : !Fr -> H™ such that

(1) H\=H+{Y)andd\ \+c+\
(2) a cycle xp e Hp survives to Hp if and only if there are some chains

yP:==xpiyp+u...9yp + r_l in Y so that dyl+l (1 + cjyt. In this case

(3) bvq annihilâtes ^q + l and maps ^/^ + l isomorphically onto H™;
(4) the filtration, spectral séquence, and homomorphisms are ail natural with

respect to equivariant mappings.

When necessary, we will use the notation Hrq=Hrq(Y) and &q &q(Y) to
indicate the original space Y.

The original construction of this spectral séquence is due to I. Kalinin [Ka], who
derived it from the Borel-Serre spectral séquence and related results by Borel (see

[Bo]). This construction is briefly outlined in Appendix A. Property (2) is proved in
[D]. An alternative description of Kalinin's spectral séquence, based upon the Smith
exact séquence, can be found in [DK2].

The foliowing results are straightforward conséquences of 5.1.1.

5.1.2. COROLLARY. If Y is connected and Fixe 7*0, then HQ(Y)
Hl(Y) H$(Y) Z/2 andeach nonzero élément ofH\(Y) which survives to Hf(Y)
is nonzero in H?(Y).

5.1.3. COROLLARY-DEFINITION. If a cycle admits a représentation by an

equivariant chain, it survives to H™(Y). Thus, in particular, there are tautological
homomorphisms Hp(Fix c) -*Hp°(Y); with certain abuse of terminology we will call
them the inclusion homomorphisms.
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5.1.4. COROLLARY. One has H22(Y) H°(H2(Y)).

The homomorphisms bv* were first discovered, in an équivalent form, by O.
Viro. That is why we call them Viro homomorphisms. The following geometrical
description, close to the original one (cf. [VZ]), is found in [D].

5.1.5. Suppose that Fix c ^ 0. Then
1 bv0: H+ (Fix c) -? Hq (Y) is zéro on H>x(Fix c); its restriction to

H0(Fix c) -^Hq(Y) H0(Y) coïncides with the inclusion homomorphism (cf.
5.1.2 ara/5.1.3);

(2) a (nonhomogeneous) élément x eH^(F\xc) représentée! by a cycle yLxl be-
longs to J* Ker b\p_y (see 5.1.1) if and only if there exist some chains yl9
1 < / <p, so that dyx x0 and ôyl+, xt -h 1 H- c^)yt for i>\; the class of
xp + (1 + c^)yp in Hf(Y) represents then bvpx.

5.1.6. EVIDENT COROLLARY. For any p the Viro homomorphism bvp is zéro
on H>pFixc) and coincides with the inclusion homomorphism (see 5.1.3) when

restricted to Hp(¥'\\ c) -+H™(Y).

5.2. Kalinin9s intersection pairing

The original construction presented in [Ka] gives a cohomology spectral
séquence (H?, df) starting at H\ Hq(Y) and converging to #*(Fix c). We dénote

by J^ the corresponding filtration on H*(Fi\c) and by bv*: H% -^ //*(Fix c) the

cohomology Viro homomorphisms. This spectral séquence is dual to its homology
counter-part 5.1.1; the cup-product in H*(Y) converts H* to a spectral séquence of
Z-graded algebras, and 5.1.1 is a spectral séquence of graded i/*-moduli. The

following resuit, which, to our knowledge, is stated explicitly only in [Ka], is proved
in [DK2]:

5.2.1. PROPOSITION. If Y is a closed n-dimensional manifold and Fix c # 0,
then for any r, 1 < r < + oo, one has H" £ Z/2, and the product map Hpr ® H" ~p ->

Hnr is a nondegenerate pairing.

5.2.2. COROLLARY (the dual version of 5.2.1). If Y is a closed n-dimensional

manifold and Fixc#0, then the intersection pairing in H^(Y) descends to a

nondegenerate pairing Hp ®HZ_p-+Z/2.
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Corollary 5.2.2 is a paraphrase of 5.2.1 using the Poincaré duality. The pairing
H™ ®Hn_p-*l.l2 is called Kalinin's intersection form. Its relation to the standard
intersection form in //^(Fixc) is given by the following theorem, which we prove
in Appendix A.

5.2.3. THEOREM. Let Y be a smooth closed N-dimensional manifold with
smooth involution c: Y—> Y and F Fix c the fixedpoint set of c. Then for any two
classes ae^p and be^g one has w(v) n(ao b) e^p + q~N and bvpaobvqb
bvp + g_ n[w(v) n (a ° b)], where w(v) is the total Stiefel- Whitney class of the normal
bundle v of F in Y.

5.3. Application to a real structure of a complex surface

Let 7 be a compact nonsingular complex surface with real structure c: Y-> Y.

Then the Z/2-homology fundamental class [YR] of YR Fix c is well defined.

5.3.1. LEMMA. The Stiefel- Whitney class w2{Y) survives to Hf(Y). The

projection ofw2(Y) in Hf(Y) coincides with bv2|TR].

Proof As any Chern or Stiefel-Whitney class, w2(Y) is realized by the
fundamental class of a c-invariant divisor. (The earliest référence which we could find in
the literature is [BH]; the statement is based on the simple observation that
Schubert cycles are defined over R and even over Z.) Thus, w2 survives to H2{Y).
The other part of the lemma follows from 5.2.2, 5.1.4, and the fact that the image
of [Yu] in H2(Y) coincides with the characteristic class of the twisted intersection
form (cf. the proof of Lemmas 4.1.1 and 4.1.2).

Dénote by (Ct) e H0(Fix c) and [CJ eH2(Fixc) the classes represented by a

component Ct of Yu. It is clear that H^2 is spanned by the following values of Viro
homomorphisms: (we abbreviate (Ct — C7 > <Ct > — <C, »

- bv, a and bv,<Cf - C,> in Hf(Y), where a

- bv2[CJ, bv2a, bv2<C, - Cj}9 and bv2(a + <C, - Cy» in Hf(Y).

From 5.1.5 (which also gives an explicit géométrie description of the corresponding
chains) and 5.1.6 it immediately follows that:

- ail the above classes but the last three are always well defined;

- bv2 a is defined if and only if bv} a 0;
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Table 2

bv2<Cl-Cy> bv2a bv2[Ç]

bv2<Q-C7> 0 0 ôtk+ôtl
bv2A 0 («o«[rR]
bv2[Q] àlk+ôjk (a°«)[Q] ôtkX(Ct)

- bv2<Q - q > is defined if and only if bv, <C, - Ç, > 0;

- bv2(a + (Ct - Cj » is defined if and only if bv, a bv, <C, - C, >.

Theorem 5.2.3 gives the following values for the intersection numbers:

5.3.2. INTERSECTION MATRIX. The intersection form on H?(Y) =Imbv2
is that defined by Table 2, where Cn ...,Cl are some connected components of YR,

and ce, (3 are some Udimensional homology classes in Yu. The intersection a ° /? is

regarded as an élément of H0(YR), and (a o j8)[FR] and (a o j8)[CJ are, respectively, the

total intersection number and its part whichfalls into Ct. ôy stands for the Kronecker

symbol: ôH 1 and ôy =0 if i #7. The intersection form extends linearly to the

classes of the form bv2(a + (Ct — Cj », as if bv2 a and bv2<C, — Cy > were well

defined.

Remark. Note that in this dimension one can avoid référence to 5.2.3 and use

the standard géométrie techniques: represent classes by chains given by 5.1.5,

smoothen them, bring to gênerai position, and count the intersection points. Since

the intersection numbers are considered modulo 2, the imaginary intersection

points, which appear in pairs, can be ignored (cf., e.g., [Kh2, Lemma 2.3]).

6. Viro homomorphisms in generalized Enriques surfaces

Recall that we dénote by E a generalized real Enriques surface. We assume that

Eu # 0. The main goal of this section is to prove Propositions 6.1 and 6.2 below.

We use the homology spectral séquence E\ and dénote firp dim Hrp.

6.1. DIMENSION OF THE DISCRIMINANT SPACE. Let E be an (M - d)-
surface, and let <$~ be the discriminant space of the sublattice ofconyskew-invariant

vectors in H2(E; Z)/Tors. Then:
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d - dim @- =0 if either

(1) Eu has a comportent V2g + l (i.e., w2(Eu) #0), or
(2) ER is nonorientable and both the halves are nonempty,

d — dim ®~ =2 if either

(1) EM is nonorientable, w2(Eu) 0, and one of the halves is empty, or
(2) ER is orientable and both the halves are nonempty;

d — dim Q)~ may be 2 or 4 if Eu is orientable and one of the halves is empty.

6.2. RELATIONS BETWEEN REAL COMPONENTS. There is at least one
and at most two relations between the éléments of H2{E)jw2{E) realized by the

fundamental classes of the components of Eu. One relation is bv2[Eu] w2(E); the

only other possible relation is bv2[E$}] bv2[E^] 0 (mod w2(E)).

6.3. Proof of Proposition 6.1

6.3.1. LEMMA. Let Cu C2 be two components ofEu. Then bv{ <C, - C2> 0 //
and only if thèse two components belong to the same half of Eu.

Proof Pick two points ct e Ct and connect them with a path y in E. By 5.1.2,

bvj (Cx — C2> 0 if and only if the loop ô (conj y)~l • y is homologous to zéro in
HX(E). Thus bv,(Cx - C2> 0 if and only if ô lifts to a loop in X. Suppose that
Ci e 2s(R1} and lift y to a path y with the endpoints cx, c2. Then ô y • (t(l)y)~l is a

lift of ô which connects t(l)c2 and c2. It is a loop if and only if t(1)c2 c2, i.e.,

c2 e E%\ D

6.3.2. LEMMA. Let a be an élément of HX(EU). Then bvx oc #0 if and only if
a) o a 1, where co eHi(Er) is the characteristic élément of the covering Xu-+Eu.
Moreover, bv! a # 0 whenever a2 1.

Proof. Since Hx(E) Z/2, from 5.1.2 it follows that bv, a =0 if and only if
in* aeHl (E) is zéro, or equivalently, if co ° a 0. The last assertion follows from
Lemma 1.3.2: if h>i(£r) ^ 0, then œ h^ (£R).
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6.3.3. LEMMA. The Stiefel-Whitney class w2{E) {which, due to 5.3.1, always
survives to H%{E)) represents a nonzero élément in Hf{E) if and only if either

(1) ER has a component V2g+l (i.e.9 w2{ER) ^0), or
(2) ER is nonorientable and both the halves are nonempty.

Proof By 5.2.2 and since w2{E) is a characteristic élément of the intersection
form, w2(E) ^0 in Hf(E) if and only if there is an élément xeH+{Eu) with
(bv2x)2#0. According to 5.3.2 such an x can be found in one of the follow-
ing three forms: (i) x [Q], where Cx c Eu is a component of odd Euler characteristic;

(ii) x a + <Cj —C2>, where ae^(£R) is an élément with a2=l and
bv! a ^ 0; (iii) x a e^^) with a2 1 and bv! a 0. In (i) we hâve case (1) of
the lemma. In (ii), according to 6.3.1, we hâve case (2). Finally, (iii) contradicts
to 6.3.2.

6.3.4. LEMMA. Hf{E) ^0 if and only if either

(1) Eu is nonorientable, or
(2) ER has a component Tg, or
(3) both the halves of Eu are nonempty.

IfH?(E) # 0, then the spectral séquence collapses at H\\ in particular, P\ — pf 0.

IfH?(E)=0, then Pl~p? 0or 2 and fif pf 0.

Proof By 5.1.5, H?(E) bwl H^(Fixc). According to 6.3.1 and 6.3.2, a

homogeneous élément x e H^(EU) with b\l x # 0 is either a e H^E^) with œ o a 1

(cases (1) and (2) of the lemma, see 1.3.2) or (C{ — C2>, where Ct aE$ are two
components from différent halves of Eu (case 3)).

The last statement is a straightforward conséquence of the relations Pl Po =1
and j82=l>/?î° and the existence of a nondegenerate pairing in the spectral

séquence. When i/;° 0 one has pl~pf O if H\(E) is killed by d3 and

p22-pf 2 if it is killed by d2.

6.3.5. End of the proof

By définition, 2d P*(E) - /?£. According to Lemma4.3.1, we hâve 2 dim 9~
b2(E) - b22, where b\ dim ^(conj,,, H2(E; Z)/Tors). Therefore,

2(d - dim 3~) [(2 - Pf - Pf) + {fil - fi?)] + [2 - {P22 - b22)l

The first term of this expression is zéro if Hf{E) ï 0 and 2 or 4 otherwise, see 6.3.4.

Applying Lemma 3.1.1 to the exact séquences
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0 -> Tors2 H2(E; Z) -> H2(E; Z) ® Z/2 -> Ctf2(£; Z)/Tors) ® Z/2 -> 0,

0 - i/2(£; Z) (g) Z/2 ->H2(E) - Z/2 ->0

gives that )5| — ô| is equal to 2 if w2(E) ^ 0 in //2CE), and it is equal to 0 or -2
otherwise. The combination pl — b2 O and w2(ls) ^ 0 in H2(E) is excluded by an
additional argument: the intersection form on H2(E) is nondegenerate, hence,
h>2(2s), which générâtes Tors2 H2(E; Z/2) c H2(E), and an arbitrary élément, which
générâtes the quotient H2(E)/(H2(E; Z) ® Z/2) and thus has a nonzero intersection
with w2(2s), must either both survive to H\(E) or both disappear. Now the lemma
follows from Lemmas 6.3.3 and 6.3.4 and the (mod2)-congruence 4.1.3(2).

6.4. Proof ofProposition 6.2

The relation bv2[iTR] w2(E) is given by Lemma 5.3.1.

Suppose that bv2([C,] H + [Cr]) kw2(E), k e Z/2, is a relation other than
bv2[£(Rl)] 0 (mod w2(E)) or bv2[£(R2)] 0 (mod w2(E)). This means that one of the

components C, involved in the relation, say Cx, belongs to E$\ and there is another

component of E#\ say Z>, which does not belong to the relation. Then

bv2<C, -Z>> is well defined, and, according to 5.3.2, bv2<Cî -Z>> ° bv2([C,] +
• • • -f [Q]) 1 and (bv2<C, -Z)»2 0. On the other hand, w2(E) survives to
H2(E)9 and, since w2(E) is the characteristic class, one has bv^C^ — £>> ° w2(E)
(bv2<C, - Z)»2 0. This contradicts to b\2([Ci] + • • + [Cr]) kw2(E) and

bv2<C, - /)> o bv2([C,] + • • • + [Cr]) 1.

7. Proof of the main results

Below, as in Section 2, E is a generalized real Enriques surface with nonempty
real part, conj: E -+E is the real structure on E, and Z is the double covering of E
with Enriques involution x: X-*X and two real structures f(1), t(2) determined by
conj.

7,1. Proof of Theorem 2.1.1. By the hypothesis, the fundamental class of
vanishes in H2(X). On the other hand, it is equal to the image of the fundamental
class of E$} under the transfer tr: H2(E) -~>H2(X), whose kernel is generated by
w2(E) (see Lemma 4.2.1). Thus, the half E#> realizes either 0 or w2(E) in H2(E).
Since, according to Lemma 5.3.1, the union E^uEff realizes w2(E) in H2(E), the

half E(i} realizes either w2(E) or 0. In any case at least one of the two halves realizes

zéro in Hf(E).
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Suppose that there is a component C, c E^ of type V2k +1. Then, according to
5.3.2, bv2[^>] o bv2[Q] wï(C,) 1, Le., bv2[^>] * 0. Furthermore, by assump-
tion there also is a component C2 c £(R2). Then x bv2(wl(C,) H- <C, - C2» is well
defined (see 5.3), and, due to 5.3.2, bv2[£(R2)] o * l, i.e., also bv2[E$] ^0. This
contradiction to the previous paragraph proves the fîrst assertion.

Let now each of the halves contain a nonorientable component Ct c E$ (which,
due to the fîrst statement, are of even genus). Pick some classes ateHi(Çt)
with bv,a,#0. Then for both (/J) =0,2) and O',y)=(2, 1) one has

bv2(a, + <Q - C2» o bv2[J^}] 1, which is also a contradiction. D

7.2. Proof of Theorems 2.1.2 and 2.1.3. Let 2~ be the discriminant form of the
sublattice of conj^-skew-invariant vectors in //2(is; Z)/Tors. From Lemma 6.1 it
follows that, under the hypothèses, d-dim@~ =2 or 4. Since the dimension is

nonnegative, d > 2.

Ail the congruences are derived from x(Eu) <r{E) +2 Br 3)~ (mod 16) given
by Lemma 4.1.3(1) (just like the other congruences known in topology of real

algebraic manifolds, cf. [Kh3], [M], and [NI]).
If d 2, then 9~ 0 and Br 3' 0. This gives the congruence. The fact that

ER is of type I follows from Corollary 4.1.5.

If d 3, then dim 2~ 1. Hence 9~ <±|> and Br @~ ± 1.

If d 4 and x(Er) o{E) + 8 (mod 16), then Br @- 4 and dim ®~ 2. The

only such form is the one given by the (2 x 2)-matrix I (see Table 3); it

is even and Corollary 4.1.5 applies to prove that Eu is of type I. D

7.3. Proof of Theorems 2.1.4 and 2.1.5. In addition to the lattice L
H2(E;Z)ITors with involution conj*, the eigenlattices L1 of conj*, and their
discriminant forms ^±, let us consider the sublattice M' of L+ generated by the

classes sl9... 9skeL realized by the spherical components of ER (with some

Table 3. Discriminant forms of even rank <. 2

Odd forms

9- *r®~

<-à>*<-i>

Even forms

9-

0

(l/2 'o)

(l/2 'D

Br0-

0

0

4
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orientations), and dénote by N the orthogonal complément of M'in L+. Recall that
L and ail its sublattices are even, see 4.2.3.

7.3.1. LEMMA. If M' is not primitive in L+, then either Eu has a half {IS} of
type I with / 0 (mod 4), or Eu kS, it is of type I, and k 0 (mod 4). Ifail the k
spherical components constitute one half of Eu and, besides, Q)~ 0 and

vkN k-29 then k=0 (mod 8).

Proof. Since st ° Sj —2ô[J, nonprimitiveness of M' means that there is an x e L
such that 2x s{ + • • • + sh l > 0. (We simplify the notation and assume that the

relation involves the first / components.) Pick such a relation with the smallest

possible number / of components. Then, due to 6.2 and 6.3.4, either the first /
spherical components form a half {IS} of ER of type I, or IS ER and Eu is of type
I. Since / — 2jc2, the first part of the lemma follows from the fact that L+ is an
even lattice.4

Suppose that ail the spherical components form together one half of ER. As it
follows from the first part of the proof, no partial sum of s^,. sk is divisible by
2 (as otherwise the corresponding components would form a half), and the

primitive hull M" of M1 in L+ is generated by M1 and an x g L such that
2x sr + • • • -f- sk. Thus, the discriminant form of M" is the nondegenerate part of
the restriction of -5(0? H + Q\), 0, e Z/2, to 0, + • • • + 0* 0. In particular,
dim discr M" k - 2 and discr M" is an even form. If 2~ 0, then 9+ 0 and L +

is unimodular. If, in addition, rk N k — 2, then, since dim discr JV

dim discr M" — k — 2, the lattice \N is intégral and unimodular. Besides, it is even,
since so are discr M" and L+. Hence, k -a{M') <r$N) - a(L+) 0

(mod 8).

7.3.2. LEMMA. If M' is primitive in L+ and dim discr M' 4- dim Q)~ >
dim discr JV, then either Eu has a half {IS}, or ER IS, where l # 0 and l 2q{y)
(mod 4) for some non trivial élément y e 2". If in addition, l k, dim Q)~~ 1, and

rkN k-l, then k Br®~ (mod 8).

Remark. If dim^" l, then $~ contains only one nontrivial élément, and

2q{y) Br 3i" (mod 8). In ail cases y \y_ (mod L~) for some élément y_eL~,
and 2q(y) =£yl (mod 4).

Proof. Dénote by M the primitive hull of L ~ © M'in L. Since M and N are the

orthogonal compléments of each other in the unimodular even lattice L, their

4Since the Chern classes hâve equivariant représentatives (cf. 5.3.1), L+ is even for any compact
complex (and even quasicomplex) surface with real structure.
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discriminant forms are anti-isometric. On the other hand, dim discr M' +
dim 3)~ > dim discr N dim discr M by the hypothèses, and, hence, L~®M' is

not primitive in L and the subgroup /"" c discr M' (see 3.3.4) is nontrivial: for some
/>0 there exists an élément y_eL~ which represents a nonzero élément

y e discr M' so that the class s 2-(y_+sï-\ hJ/) belongs to L. Then
Sx + • • • + Sf s + conj,,, s. Thus s} + • • • + st vanishes in H(L) and therefore the
élément realized by the corresponding / spherical components of ER in H(H2(E, Z))
is either 0 or w2.

Due to 6.2 and 6.3.4, either thèse components form a half of ER, or Eu — IS and
/ k. Furthermore, 2q(y) \y2_ \(sx + • • • + s{)2 / (mod 2).

If the additional assumptions hold, then discr M is an even discriminant form of
dimension (k — 1). Therefore, as in 7.3.1, \N is an intégral even unimodular lattice
and k - Br 9~ a(\N) 0 (mod 8).

In order to complète the proof, consider separately the différent cases.

7.3.3. The case Eu kS (Theorem 2.1.4). Comessatti-Severi inequality
l(Eu)<hl\E) gives d>3 + h2<°(E). Hence d>3 and, if </ 3, then a(E)
2 — b2(E). In the latter case a calculation using 4.3.1 shows that L" is a positive
definite lattice of rank 1 and L+ is a négative definite lattice of rank 2k — 1. Hence,
dim ^~ 1 and Br 2)~ 1. By 4.1.3, this implies that k 1 (mod 4). This congru-
ence excludes, in particular, the second choice ER kS, k s 0 (mod 4) in Lemma
7.3.1. The theorem follows now from 7.3.1 and 7.3.2, which cover the two
possibilities for M' and both give the same décomposition {4pS} LJ {(4# + 1)5}
(with / Aq + 1 in the latter case).

7.3.4. The case Eu V2g LJ kS (Theorem 2.1.5). From Lemma 4.3.1( 1) it follows
that vkL+ =2k + d-2 and, hence, dim discr N < rk N k + d - 2. If d 0, then

L+ is a unimodular lattice and dim discr M' > dim discr M Hence M' cannot be

primitive and 7.3.1 applies. Corollary 4.1.5 gives the missing information: ER is of
type I. If </ l, then dim^~ l and dim discr N <k — 1, and the statement
follows from 7.3.1 and 7.3.2. The possibility "fc =0 (mod 4), £(R2) is of type I" for
A;(1) 0 arises from the case when M' is not primitive: then k=ki2) must be

divisible by 4. If d 2, then <2)~ is one of the forms given in Table 3. Q>~ 0 is the

exceptional case of Theorem 2.1.5 when k(2) may be trivial. (In fact, ki2) is trivial
in this case since dim 9~ d — 2 and, according to Lemma 6.1, Eu must consist of
a single half.) In ail the other cases 7.3.1 and 7.3.2 give ail the values of k(2) (mod 4)

listed in Table 1.

The remaining case d 3, à ±3 follows from Theorem 2.1.3, though, due to
6.6 and 4.1.3, in this case dim 2~ 3, and one can also apply 7.3.2.
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Finally, to distinguish between types Io and Iw in (1) and (3) it suffices to notice
that, under the hypothèses, w2(E) ^0 in H2{E) (see Lemma 6.3.3) and, hence, a

half is of type Io if and only if its fundamental class vanishes in Hf(E), i.e., belongs
to the kernel of the intersection form. Using 5.3.2 one can see that the spherical half
realizes w2(E); hence, it is of type Iw.

8. Construction

8.1. General idea (see [DK1] for détails)

Let X be the JG-surface obtained as the double covering of Y Cp1 x Cp1

branched over a non-singular bi-degree (4,4) curve CaY. Let s: Y-+ Y be the
Cartesian product of the nontrivial involutions (u: v) \-* — u; v) of the factors. If C
is s-symmetric, s lifts to two différent involutions on X, commuting with the deck
translation d of X -? Y. If, besides, C contains no fixed points of s, then exactly one
of thèse two involutions, which we dénote by t, is fixed point free (see, e.g., [H] or
[BPV]), and, hence, the orbit space E X\x is an Enriques surface.

Suppose that Y is equipped with a real structure conj y commuting with s and C
is a real curve. Then s o conj Y is another real structure on Y and C. We dénote the

real point sets of thèse structures by Y$ and C$, i 1, 2 (/ 1 corresponding to
conj y) and call them the halves of Y and C. The involutions conj r and s ° conj Y lift
to four différent commuting real structures (/(1), t{1) t° /(1), d ° /(1), and d o t(2)) on
X, which, in turn, descend to two real structures on E, called the expositions of E.

A choice of an exposition is determined by a choice of one of the two liftings t(l\
t™ of conjrto X.

We use for Y a quadric in Cp3 real in respect to the standard complex
conjugation involution and invariant in respect to the real symmetry s: Cp3-»Cp3,

(xo:xx: x2: x3) t-*(x0: x,: — x2: —x3). Since the bi-degree of C is even, C^ séparâtes

F(r} into two parts with common boundary C$; at least one of them is

non-empty unless Y$ is empty. The fixed point set X$ of til) is the pull-back of one
of the parts. Thus, a choice of t(1) is équivalent to a choice of one of the two parts
of Y$\ and, since t{2) t o r(l), the latter détermines as well the part of F(R2) whose

pull-back is Fixf(2): as X$} and Xffi are disjoint, the pull-back of a point of
Y]Pn Y$P is contained in exactly one of X%\ X%\ (Note that in ail the examples we

use hère Y^nY$*0.)
The branch curve C e F is constructed by perturbing the équation / 0 of a

singular s-symmetrie curve Ce Ytof+sh =0; hère/and h are homogeneous real

s-symmetric polynomials of bi-degree (4,4) and e is a small real parameter. AU the
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Figure 2

facts necessary to construct a perturbation and to control its topology can be found
in [DK1, Sect. 4].

8.2. The distributions of 2VXU kS

It suffices to construct the distributions {aS} U {2V{U bS} and {F, UaS} U

{Vx U bS} with (û, 6) (1, 3), (2, 2) or (3, 1); the rest is constructed in [DK1]. Let
Y be the ellipsoid given by xl x] + x\ + x\ and C C,uC2, where Cx and C2 are
eut on Y by xl 0 and 2(x2 — xf)=Xo respectively (see Figure 2(a), which

represents the two halves of YR and C. The two black dots in each figure are the
fixed points of the restriction of s to the corresponding half.) To perturb C take for
h the équation of a bi-degree (4,4) j-symmetric real curve which intersects the two
real halves of Cx dit eight points (the ramification points)', ail thèse points must be

outside of the ovals of C2 and différent from the fixed points of s. Then, under a

proper choice of the sign of e, the portions of the real part of C, which are either
inside the ovals of C2 or between pairs of the ramification points double, and the

rest of Cx disappears (see, e.g., Figure 2(b), corresponding to {3S} U {2F, U S}; to
obtain the other distributions note that one or both the ovals surrounding the fixed

points can be moved to the 'left hand' half, and the pair of small ovals can be

moved to the 'right hand' half). If the exposition is chosen so that X^ covers the

interior of the two ovals surrounding the fixed points of s, then thèse two ovals

produce the Vx components of Eu; the other pairs of symmetric ovals produce
sphères.

8.3. The distributions of2V2UkS

The distributions constructed hère are {V2UaS} U {V2UbS} for ail (a, b)

except (0, 0), (4, 0), (2, 2), and (0,4). (The first exception is found in [DK1], the

others, in [N2], see the remark at the end of 2.2.) Let Y be the hyperboloid

- jef and C C,uC2, where C, and C2 are given, respectively, by
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(c)

Figure 3

x\ 0 and (2x3 — x2)2 s(xl + x\) for some small real e > 0 (see Figure 3(a)). The

perturbative term h (see 8.1) is chosen so that its zéro set does not intersect the right
half of Cj and intersects its left half at 4(a — 1) points, a 1, 2, 3, close to the fixed
points of s. Under a proper choice of the sign of the perturbation, the right half of
Cx doubles and the ramification points generate 2{a — 1) ovals which do not contain
the fixed points of s (Figure 3(b)). The exposition is chosen so that the two strips
containing the fixed points of s in Y$ are covered by Z(R2); they produce the

components V2 of ER. Thus we obtain the distributions {V2 UaS} LJ {V2UbS}
with a 1, 2, 3 and b 1. To construct surfaces with b — 0, we replace C2 with the

curve given by (2x3 — x2)2 s(xl — x]); its right hand half is empty.

8.4. The distributions of V3 \JVxUkS

We construct the distributions {V3UVlUaS}U{bS} and {V3UaS}U
{Vx LJbS) with 1 < a + b <4 and a > 1; the rest is found in [DK1]. Start with a

quartic Q a Up2 with (k + 1) real components, 1 < /: < 3, obtained by perturbing
the union of two conics (see Figure 4, where k 3). Pick an oval O (the lowest one
in Figure 4) and dénote by L the double tangent to O and by Lb, 0 < b < k, another

tangent, which together with L séparâtes O in IRp2 from b other ovals of Q.
We use the following technical resuit, proved at the end of this section.

8.4.1. LEMMA. The union L\jLb can be perturbed to an irreducible conic K
which is still tangent to O at three points, has no other real intersection points with Q,
and such that O is in the outer part of the oval of K.

Let K be the conic given by the lemma. Consider the double cover Y of the

projective plane branched over K. Dénote by s the deck translation involution, by
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Figure 5 Figure 6

K its fixed point set (which projects to K), and by Q the pull-back of Q. Due to s

(cf. 8.1), each of Y, Q and K has two real halves. F(R° is the hyperboloid shown in

Figure 5: Q^} has a component Ô (the pull-back of 0) with three nondegenerate
double points in K^} and (k — b) pairs of symmetric ovals. The other half F(R2) is an

ellipsoid in which g(R2) has b pairs of ovals disjoint from K{^\ Now (F, s) is obtained
from (F, s) by the following real s-symmetric birational transformation: blow up the

singular points of Q and then blow down the transforms of K and the two
génératrices Gx, G2 of F through the singular point of Q whose image in Rp2 is close

to the tangency point of Lb and O. Let C be the transform of Q (Figure 6). Clearly,
C(R° consists of a large oval Ô (the transform of Ô) surrounding {k — b) pairs of
symmetric ovals and three isolated double points: the image of K, fixed under s, and

the image of GUG2, symmetric to each other. The other half consists of b pairs of
ovals and an isolated double point, the image of K. AH the ovals but O are not nested

and do not surround the singular points of C. Finally, perturb C to a nonsingular
symmetric curve C (see 4.3.1 in [DK1]); the fixed double point, which produces the

Vx component of ER, can be made to pop up in either side, and the two symmetric
double points may either form a pair of symmetric ovals or disappear. Thus, we

obtain {V3 U Vx U(k -b + Ô)S} U {bS} and {V3 U (k -b + Ô)S} U{VxUbS} with
(5=0, 1.

Proof of Lemma 8.4.1. Given an imaginary point ueQ, define an involution pu

of a Zariski open subset of the symmetric power S3Q in the following way: for a

generic triple (xu x2, x3) e S3Q there is a unique conic through u, m, x, x2, x3; it
intersects Q at three more points yx, y2, J>3, and we let pu(xx, x2, x3) (yx, y2, y3).

Clearly, the above conic is tangent to Q at xx, x2, x3 if and only if (xx, x2, x3) is a

fixed point of pM.

Dénote by ax,a2, a3 the three tangency points of L KjLb and g, and by v one of
the two imaginary intersection points of Lb and Q. Then the graph Fv of py
intersects the diagonal A aS3Q x S3Q at a =(ax,a2,a3) x(ax,a2,a3) transver-
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sally. (Note that S3Q is smooth at this point.) Indeed, let pl9p2 be the two
projections S3Q x S3Q -* S3Q, and let e, be some real generators of the tangent
spaces TaQ9 which we regard as basis vectors of Tiai,a2,a3)S3Q- Then TaA is

spanned by pfe, +p%et9 i l,2,3, and TaTv is spanned by pfet H-a^Je,,
i 1, 2, 3, with some real at < 0. (To see that, one can move one point at a time;
then the conic is still reducible, and it is easy to estimate the tangent vectors.) Thus,
for any other point v' close to v the graph of pv> also has a unique (and hence real)
intersection point with A close to a9 Le., there is a real conic K through v' tangent
to Q at three real points close to ax, al9 a3. If the Une (v'v') is not tangent to Q, this
conic is irreducible. Finally, to control the topology (actually, to choose one of the

two possible real directions of the perturbation), just note that K has no real
intersection points with (v'v'); hence, this line lies outside of the oval of K9 and if
v' is chosen so that (v'v') intersects O at two real points, then O is also
outside.

Remark. The involution pu is similar to that in [GH, Sect. 7], where it is used

for a similar purpose. It also seems possible to apply Shustin's approach [Sh].

Appendix A. Kalinin's intersection forai

AA. The local case

Kalinin's spectral séquence and, in particular, Viro homomorphisms admit an
obvious relative version. We make use of such a version to do some calculations in
a neighborhood of the fixed point set. Then, in the next subsection, we apply the

resuit obtained to prove Theorem 5.2.3.

A. 1.1. LEMMA. Let v be an m-dimensional vector bundle over a finite cell

complex F, and let T and dT be the associated disk and sphère bundles, respectively,
supplied with the antipodal involution. Then the homology filtration #"* associated

with Kalinin's spectral séquence of (T9ôT) is given by &rm+p vv(v)"1 nH^p(F),
where w(v) 1 -f Wi(v) H- w2(v) H- • • • is the total Stiefel-Whitney class of v.

Proof. Given a topological space F with involution c: Y-> F and an integer k,
0 < k < oo, dénote by Yk the twisted product

^ (A.1.2) Yk=Yx Skl{(y, s) ~ (cy, gs)}9

where g: Sk-+Sk is the antipodal involution on the standard sphère Sk. It is clear

(see, e.g., [D]) that Tk and (dT)k are, respectively, the disk and the sphère bundles



Halves of a real Enriques surface 659

associated with v ® rj over Fk=F x Rp*, where rj is the tautological linear bundle

over Rp*. Let h, eHt(Upk) be the generators. (We let ht 0 for i <0 or / >k.)
According to [D], a sufficient condition for a class 7Lxnxl eH^F), to belong to J^
is that the image of I, xl®hq_l_l in Hq_l(Tq,dTq) under the inclusion map
H*{Fq) -+H^(Tq, dTq) should vanish. (In [D] the absolute case is considered, but
the proof transfers literally to the relative case.) The inclusion map H^{Fq) -+

H*(Tq,dTq) is equal to the composition of the multiplication by wm(v®rç)
yLwl(v)®hm~l and Thom isomorphism, and spelling out the product wm(v ® rj) n
Hxl®hq_l_l and taking into account the coefficients of those of h} which are not
identically zéro in H^ Upq) shows that the above sufficient condition is équivalent
to w(v)r\yLxl eH>q_m(F), i.e., I, xtew(v)~l nH>q_m(F). A priori, the subgroup
obtained is only a portion of &*, but comparing the dimensions shows that, in fact,
thèse two subgroups coincide.

A.1.3. COROLLARY. Let F, v, T, and dT be as in Lemma A.l.l, and let

th: Hq + m(T, dT) ->Hq(F) be the Thom isomorphism. Then for any class a eHq(F)
one has bv^ + m(w~1(v) na) th"1 a.

Proof. The resuit is actually proved for the case when F is a g-dimensional
polyhedron with Hq(F) Z/2, and a is the generator of Hq(F): in this case

w~l(v)na is the only nontrivial élément in ^ + m, th-1a is the only nontrivial
élément in Hq+m(T9 dT), and bvq+m: ^q+m-+Hq+m(T9 dT) is an isomorphism. In
gênerai, one can find a singular #-dimensional polyhedron /: P -»F with Hq(P)
generated by a single élément [P] so that a =/*[/*]. The resuit follows then from the

naturality of bv* and th.

A.2. Proof of Theorem 5.2.3

A.2.1. LEMMA. Let 7, c9 and F be as above. Dénote by DY\ H*(Y) -+H+(Y)
and DF: H*(F) ->H+(F) the Poincaré duality maps in Y and F respectively, and by

Dc:H*(F)^Hit(F) the map a h» (xn(w~l(v)n[F]). Then:

(1) Dc induces isomorphisms ^N_p^^p\
(2) given xe^p,one has x l

Proof From the naturality of Kalinin's spectral séquence and Corollary A.1.3

it follows that the only nontrivial élément of !FN is w~x{v)c\{F\ and, hence,

[Y] =bvAr(w~1(v)n[F]). Thus, Dc is the multiplication by the generator of &N\
hence, it maps ^N-p to &p. Furthermore, Dc is an isomorphism (as composition of
Poincaré duality and multiplication by an invertible élément), and comparing the
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dimensions shows that so is its restriction to ^N_p-^^p. (Recall that
dim &N_p dim &p due to 5.2.2 and duality between H% and //£.)

It follows that Dc bvN-q(DYx bvqx)e&rp9 and one has:

bvp(Dc bvN-P(Dyl bwpx))=DYl bwpxn[Y] =bvpx;

since Ker bv^ ^p + \ this gives Dc bvN~p(DYl bvp x)=x mod &p+1. D

Proof of Theorem 5.2.3. By the définition, w(v) n(a o b) D~la nb e ^N^.p n
^ and a direct caicuiation using Lemma A.2.1(2) shows that

DYl b\panbvqb =b\pao b\qb. D

Mention also the following immédiate conséquence of A. 1.1 and A. 1.3:

A.2.2. PROPOSITION. Let 7, c, F, and v be as in Theorem 5.2.3. Pick a

component Ft a F ofdimension (N — m), and dénote by in, : Ft -* Y the inclusion. Then

^Fqr\H^{F^ czw~1(v)nH^q_m(Fl), and for any class a e^q one has in) bvqa
[w(v) na]q_m \Ft, where inf is the inverse Hopf homomorphism and []9_m stands for the

(q — m)-dimensional component of a nonhomogeneous homology class.

Proof The first statement follows from the naturality of the filtration and
Lemma A. 1.1 applied to v|F/. To prove the second one just note that in) is the

composition of the relativization homomorphism Hq(Y) ->Hq(Tn dTt) and Thom
isomorphism Hq(Tl9 ôTt) -+Hq_m(Fl\ and apply Corollary A.2.1. D

Appendix B. 'Gêneralized Enriques surfaces9 with w2(E) 0

In this section we assume that E satisfies ail the axioms of generalized Enriques
surfaces (see 1.2) except the requirement w2(E) #0, Le., E is the orbit space of a

generalized JO-surface A" by a fixed point free holomorphic involution t: X->X9
and w2(E) 0. Thèse surfaces are closely related to symmetric curves of bi-degree

(4k + 2,4k + 2) on real quadrics (cf. Introduction). We only state the results,

parallel to those of Section 2; proofs are found in [DK2]. (The proofs require some

properties of the action of the Steenrod algebra in Kalinin's spectral séquence,
which are also studied in [DK2].)

As in the case w2 ¥" 0, the components of ER may be of one of the types Sg, Vg,

or Tg (see 1.3). Note that ER has no components of type V^ + i, as for such a

component Ct one would hâve [C,]2 1. We say that ER or E$ is of type I if its
fundamental class belongs to the image of Tors2 H2(E; Z) in H2(E).
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B.l.l. THEOREM (cf. Theorem 2.1.2). If Eu is nonorientable, then Eu consists

of a single half and the restriction Xu -? Eu of the projection X-+E is the orientation
double covering (i.e., there is no components of type Tg). Besides, E is an (M — d)-
surface, d>2, and

(1) ifd 2, then x(Eu) <r(E) (mod 16) and Eu is of type I;
(2) if d 3, then x(Eu) a(E) ± 2 (mod 16);

(3) ifd 4 and x(ER) a(E) + 8 (mod 16), then Eu is of type I.

B.1.2. THEOREM (cf. Theorems 2.1.2 and 2.1.3). If E is an (M - d)-surface
with orientable real part and either Eu is trivially covered by Xu (Le., there is no

components of type Tg) or Eu consists of a single half then d>2 and

(1) ifd 2, then x(Eu) °(E) (mod 16) and Eu is of type I;
(2) ifd 3, then x(Eu) a(E) ± 2 (mod 16);

(3) ifd 4 and x(Eu) g{E) + 8 (mod 16), then ER is of type I.

B.1.3. THEOREM (cf. Theorem 2.1.4). Let E be an (M -3)-sutface with

Eu kS. Then Eu {4pS} LJ {(4q + 1)5*}, both the halves being nonempty unless

k 1 (mod 8).

B.1.4. THEOREM (cf. Theorem 2.1.5). Let Eu TgU kS. Suppose that E is an

(M - d)-surface and x(Er) <*(E) + 2(5 (mod 16). Then for the values of(d, ô) listed
in Table 1 in 2.1 one has Eu {V2g Ukil)S} U {Jt(2)S}, where k™ (mod 4) takes one

of the values given in the table; furthermore, &(2) # 0 with the possible exception of the

case d 2, ô 0, ER is oftype I. Besides, there are thefollowing additionalprohibitions :

(1) if d 0, then both the halves (as well as Eu itself) are of type I;
(2) //d 0, then k(l) ï0 unless k=0 (mod 8);

(3) ifd 1 and kiX) 0, then either k ô (mod 8), or k 0 (mod 4) and E$ is

of type I.
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Added in proof. The proof of Theorem 2.1.4 has a gap: in 7.3.2 one needs to eliminate
the case k / with both ERl) and Effi nonempty. It is eliminated by the following
lemma: ifER is orientable, both the halves are nonempty, and [E^] x + conj^ jc with

xeHx(E), then jc2 0 mod 2. (This implies that if in 7.3.2 both the halves are
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nonempty the relation [E^] x -h conj^ x holds not only in H2(E) but also m
H2(E, Z) and, hence, .s, + -f s{ can be taken to represent one of the halves To
prove the lemma apply the Pontrjagm square P[E$}] 2P(x) + 2{x ° conj* x) Then

pick an s eH2(E, Z) so that [Eu] =s -hconj^ s such an élément exists m H2(E)
as w2 vanishes in H2 H2, and ît lifts to H2(E,T) smce, due to the Arnol'd
lemma, s2 s ° [E®\ — so conj^ s 0 mod 2 Due to the Arnol'd lemma

again, x o conj+ x x o 1 + conj^)^ (x + conj^ x) o s s © [jE1^1 }] Thus, x
equals ±(j H- conj* 5) o [£(*>] ±[£R] o [^0)] l[j?O)]2 reduced mod 2 and 2x2 mod 4

equals 2P(x) P[E^] - [E^]2 0 D
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