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Halves of a real Enriques surface

ALEXANDER DEGTYAREV AND VIATCHESLAV KHARLAMOV

Abstract. The real part Ey of a real Enriques surface £ admits a natural decomposition in two halves,
Eg=EQP UEQ, each half being a union of components of Eg. We classify the triads (Eg; EQ, E) up
to homeomorphism. Most results extend to surfaces of more general nature than Enriques surfaces. We
use and study in details the properties of Kalinin’s filtration in the homology of the fixed point set of
an involution, which is a convenient tool not widely known in topology of real algebraic varieties.

Introduction

A real Enriques surface is a complex Enriques surface equipped with an
anti-holomorphic involution, called complex conjugation; its fixed point set is called
the real part of the surface. This involution lifts to an involution of the covering
K3-surface (Lemma 1.3.1). Thus the study of real Enriques surfaces is equivalent to
the study of real K3-surfaces equipped with a holomorphic fixed point free
involution which commutes with the real structure.

A systematic study of the topological properties of real Enriques surfaces was
started by V. Nikulin. It is his preprint [N2] that stimulated our investigation. In
our preceding paper [DK1] we have completed the classification of real Enriques
surfaces by the topological types of their real part.

This classification has a natural refinement (also first studied by V. Nikulin): the
real part Ey of a real Enriques surface admits a natural decomposition in two halves
Ep=EQ UE®, each half being a union of components of Eg. This splitting is due
to the fact that the real structure lifts to the covering K3 surface in two different
ways: each half is covered by the fixed point set of one of the two liftings (see 1.3).
This gives rise to the following problem: to classify the triads (Eg; EQ’, E@) up to
homeomorphism.

For a large number of topological types an arbitrary splitting is realizable. For
some other types the splittings are determined by the only restriction: the orienta-
tion double covering of a half must either consist of two topological tori or have at
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most one nonspherical component. The surfaces constructed in [DK1] show the
existence of such splittings in many cases. On the other hand, as it was discovered
by Nikulin, there are topological types whose distributions must satisfy to certain
restrictions.

It is the distribution of the components between the two halves that is the
principal subject of the present paper. Similar to what happened during the
investigation of other special classes of surfaces, the present study is stipulated by
and based on the discovery of some new prohibitions. These prohibitions (see 2.1)
apply not only to Enriques surfaces but as well to other classes of surfaces with non
simply connected complexification. More precisely, in this paper we treat what we
call generalized Enriques surfaces: quotients of a nonsingular compact complex
surface X with H,(X; Z/2) =0 and w,(X) =0 by a fixed point free holomorphic
involution (see 1.2 and Appendix B).

Note that there are quite ‘classical’ examples of generalized Enriques surfaces: in
Horikawa’s construction (see Section 8.1) bi-degree (4,4) can be replaced with
(4k, 4k), k € Z . (and even with (4k + 2, 4k + 2), k € Z . ; this leads to Spin-surfaces,
see Appendix B). Thus, our results also provide some prohibitions on the topology
of symmetric real curves on real quadrics.

The prohibitions obtained (see 2.1 and Appendix B) are a combination of the
inequality-type and congruence-type prohibitions. To an extent they may be re-
garded as some kind of refinement of the Smith-Thom inequality and extension of
the Arnold-Rokhlin congruences to non simply connected surfaces. (Additional
prohibitions of this kind, which also have no precise analogues in the simply
connected case and whose proofs are based on similar techniques, can be found in
[DK3].)

We apply these results to the classical Enriques surfaces and complete the
classification of the distributions of their components (see 2.2.2).

Another by-product are new proofs which clarify the nature of the prohibitions
obtained in our previous paper, devoted to the topological classification of real
Enriques surfaces (see 2.2 and [DK1, 3.7-3.10]).

The key role in our present study is played by so called Kalinin’s spectral
sequence and Viro homomorphisms, used in combination with more traditional
tools of topology of real algebraic varieties. The spectral sequence in question is
derived from the Borel-Serre spectral sequence: it is some sort of its stabilization
with only one grading. It converges to the homology of the fixed point set, and the
corresponding filtration and identification with the limit term are given by the Viro
homomorphisms, which have an explicit geometrical definition (see Section 5 for
the details).

The paper consists of eight sections and two appendices. In Section 1 we
introduce the main objects, such as a generalized K3-surface (which, from our point
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of view, is just a Spin-surface X with H,(X; Z/2) =0) and a generalized Enriques
surface, give some definitions and fix the principal notation. In Section 2 we
formulate the main results and apply them to the classical Enriques surfaces. In
Section 3 we expose some auxiliary results on the arithmetic of involutions. Section
4 is devoted to the study of the basic topological properties of generalized Enriques
surfaces. In Section 5 we introduce Kalinin’s homology spectral sequence and Viro
homomorphisms and examine their general properties which we need in subsequent
proofs; these results are then applied to generalized Enriques surfaces in Section 6.
Finally, in Section 7 we prove the main results announced in Section 2, and in
Section 8 we construct some surfaces to extend the list of distributions found in
[DK1] and thus complete the classification for the case of classical Enriques
surfaces.

In Appendix A we study the multiplicative structure in Kalinin’s spectral
sequence and prove Theorem 5.2.3, which in the case of an involution on a closed
manifold relates the intersection pairings on the manifold and on the fixed point set.

In Appendix B we introduce Spin generalized Enriques surfaces and extend to
them the main results of Section 2. (The proofs are found in [DK2], along with the
necessary information on the Steenrod operations in Kalinin’s spectral sequence.)

1. Preliminary definitions and notation
1.1. Notation

We agree that, unless specified explicitly, the coefficients of all the homology
and cohomology groups are Z/2. Both the cohomology characteristic classes of a
closed smooth manifold and their dual homology classes are denoted by w;.
Throughout the paper we use the following notation:

e b, and f, stand for the Betti numbers with the integral and Z/2-coefficients

respectively: b,(-) =1k H,(- ; Z) and B,(-) =dim H,(*);

e f, is the total Betti number: B,() =Z,., B,();

e y(X) is the Euler characteristic of a topological space X;

e d(M) is the signature of an oriented manifold M;

e Tors, G is the 2-primary component of an abelian group G.

1.2. Generalized Enriques surfaces

A nonsingular compact complex surface X will be called a generalized K3-sur-
face if H,(X; Z[2) =0 and w,(X) =0. A generalized Enriques surface is a complex
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surface £ which (1) has w,(E) # 0, and (2) can be obtained as the orbit space X/t
of a generalized K3-surface by a fixed point free holomorphic involution 7: X — X
the latter is called the Enriques involution.

As it follows, e.g., from the Ghysin exact sequence, H,(E; Z[2) = Z[2 (cf. 4.2.1).
Thus, X is the only double covering space of E, and 7 is its deck translation. Hence,
they are both determined by E.

Remark. Orbit spaces of generalized K3-surfaces with w,(E£) = 0 are considered
in Appendix B.

1.3. Decomposition of the real part

As usually, by a real structure on a nonsingular complex surface we mean an
anti-holomorphic involution. When not empty, the fixed point set of such an
involution is a real 2-manifold.

Let F be a generalized Enriques surface, and let conj: £ — E be the real structure
on E. Denote by Ej the real part, E; = Fix conj.

1.3.1. LEMMA. There are exactly two liftings tV, t®: X - X of conj to X. They
are both anti-holomorphic involutions, commute with each other, and their composi-
tion is 1. Both the real parts X® = Fix t¥, i =1, 2, and their images E{) in E are
disjoint, and EQ VEY = Eg.

Proof. The case Eg = (J is considered in [Ht]. If E # ¢, the proof is obvious
as soon as the points of X are represented by homotopy classes of paths in E
starting at a point of Eg: two paths define the same point in X iff they differ by a
loop homologous to zero in H,(E; Z/2). d

Due to this lemma, Ejy canonically splits into two disjoint parts, which we will
refer to as the halves of Ey. Both E’ and E{’ consist of whole components of Ej,
and X® is an unramified double covering of E{, i =1,2. In most cases these
coverings are determined by Ejy intrinsically:

1.3.2. LEMMA. The real parts Xg = X U X'Q are orientable. The restriction of
the projection X - E to Xg— Ey is the orientation double covering unless o(X) =
(mod 32), one of the halves of Ey is empty, and the nonempty half is orientable.

The orientability is well known, see [E], [S], or [K]. The rest follows from the
fact that the canonical orientations of Xy are reversed by . For classical Enriques
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surfaces these orientations are given by an exterior holomorphic 2-form » which is
nowhere zero, 7-skew-invariant and becomes ¢®-real (i.e., satisfying @ = tPw) after
multiplication by a proper constant a,. In the general case the construction is
slightly different. In the proof below we use the Spin-structures as in [DKI,
Theorem A.2].

Proof of 1.3.2. Since H'(X) =0, on X there is a unique Spin-structure . In
particular, Y is equivariant in respect to any involution, i.e., it takes equal values on
symmetric framed loops. Let X’ be a nonempty half. In order to compare local
orientations of X’ at two points x, y € X{’, represent them by 2-frames and
complete these frames to positive 4-frames of X by some pairs of ¢‘"-skew-invariant
vectors. Then pick a path y connecting x and y, extend the 4-frames to a field
E=(¢, &, &, &) on y, and evaluate Y on the loop y * My ! framed with Z % Z’,
where E' = (dt V¢, dtVE,, —dtVE,, —ditVE,). (The latter framed loop is called a
test loop.) The two orientations are considered coherent iff the value obtained is 0.
This construction is consistent since ¥ is equivariant; thus, it gives a canonical pair
of opposite orientations of X{’, and it remains to check that t reverses them.

For any orientation preserving free involution c: X — X with X/c not Spin (in
particular, for ¢ =1) the value of  on a c-symmetric loop with a 4-frame field
E=(,E5,8,¢8) is 1 if £ is c-invariant and 0 if £ is c-skew-invariant, i.e.,
de(&,, &, &5, E) = (&, &, — &5, —¢&,). Thus, it suffices to construct a t-invariant
test loop. If X@ # &, pick x € X{’ and a € X3, join them by an arc (xa), and let y
be the loop formed by (xa), t(xa), 1(xa), and t®(xa). Pick a t-invariant frame
at x and a t“P-invariant frame at aq, complete them by pairs of ¢V-skew-invariant
(respectively, t@-skew-invariant) vectors to positive 4-frames, and extend these
4-frames to a 4-frame field over (xa). Reflection gives a t-invariant continuous
4-framing over 7.

Let now X@ = and o(X) #0 (mod 32). Then X/t® is not Spin, since
o(X[t®) =16(X) #£0 (mod 16). Pick a point a € X whose orbit a, tVa, ta, tPa
consists of four elements and form a loop from the same four arcs as above, an arc
& connecting a and t®a, and tMé. The test loop constructed as before is the sum
of a t-invariant loop (obtained by replacing t(V$ with t6) and a t®-skew-invariant
one, and ¥ equals 1 on the former portion and 0 on the latter one (as t® is also
free now), which totals to 1 on 7.

Finally, if X’ is nonorientable, the result follows from the obvious fact that,
since ¥ is T-equivariant, t either preserves or reverses the canonical orientation of
all the components of X§’ simultaneously. O

-

Since E is a compact surface, each component C of Ej is a closed manifold. By
the first part of 1.3.2, C may be of one of the following three types:
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S, — a trivially covered orientable surface of genus g > 0;

V, — a nonorientable surface of genus g >0, V, = #_,Rp? covered by an
orientable component S, | = X;

T, — a nontrivially covered orientable surface of genus g > 0.

In our notation we use any of S =S, = ¥V, for S?. To describe the decomposition
of Eg into the two halves, we write Ep = {half EQ’} LI {half EQ}.

Remark. According to 1.3.2, the type T, is very special: E; may have such a
component only if a(X) =0 (mod 32) (or, equivalently, 6(E) = 0 (mod 16)), one of
the halves of E; is empty, and the other one is orientable. In particular, this type
never occurs in the case of the classical Enriques surfaces.

Remark. Lemma 1.3.2 gives rise to the following problem: Let X be a closed
complex surface with H;(X) =0 and w,(X) =0, and let 7 and conj be two
commuting fixed point free involutions on X, holomorphic and antiholomorphic
respectively. If X/z is not Spin, can X/conj be Spin?

1.4. Types of the real part

Given a nonsingular compact complex surface Y with real structure, its real part
Y has a well defined Z/2-homology fundamental class [Yg]. We say that Yz and Y
are of type I, (respectively, I,,) if Yy is homologous to zero (respectively, w,(Y)) in
H,(Y). The surface is said to be of type I if it is of type I, or I, ; otherwise it is said
to be of type IL

In the case of a generalized Enriques surface E and its double covering X the
notion of type obviously extends to the halves Ef) and X§. For the covering and
its halves the types I, and I, coincide.

1.5. (M — d)-surfaces

According to the Smith-Thom inequality, for any complex surface Y with

real structure one has f,(Yy) <pf,(Y), and the difference B,(Y) — B,(Yg) is
even. By definition, Y is called an (M —d)-surface if the above difference is

2d.



634 ALEXANDER DEGTYAREV AND VIATCHESLAV KHARLAMOV
2. Main results

From now on we fix a generalized real Enriques surface E with Eg # ¢ and
follow the notation of Section 1: conj: E — E is the real structure on E, X is the
double covering of E with Enriques involution 7: X — X, and ™, t® are the two
real structures on X determined by conj (see 1.3.1).

2.1. General prohibitions

2.1.1. THEOREM. Let X be of type 1 and both the halves nonempty. Then
(1) Eg has no nonorientable components of odd genus (i.e., V5, 1);
(2) at least one of the two halves E\P, EQ is orientable.

2.1.2. THEOREM. Suppose that Ey is orientable. Then E is an (M — d)-surface
with d > 2, and

(1) if d =2, then y(Eg) = o(E) (mod 16) and Ey is of type 1,

(2) if d =3, then y(Eg) = o(EF) +2 (mod 16);

(3) if d =4 and y(Eg) = o(E) + 8 (mod 16), then Ey is of type 1.
If, in addition, all the components of Eg are spheres, then d = 3.

Remark. The last assertion of Theorem 2.1.2 follows from Comessatti-Severi
inequality y(Eg) <h"'(E) (see [Co]), which transforms into d >3 + h>%(E) for a
generalized Enriques (M — d)-surface with only spherical components. Thus, such
a surface may exist only if d >3, and if d =3, the lattice H,(E;Z) must be
hyperbolic (as this is the case, e.g., for classical Enriques surfaces).

2.1.3. THEOREM. Suppose that Eg consists of a single half and does not have
nonorientable components of odd genus (i.e., V,, ). Then E is an (M — d)-surface
with d > 2, and

(1) ifd =2, then y(Eg) = o(E) (mod 16) and Ey is of type I;

(2) if d =3, then y(Eg) = o(E) £ 2 (mod 16);

(3) if d=4 and y(Eg) =o(E) + 8 (mod 16), then Ey is of type 1.

2.1.4. THEOREM. Let E be an (M —3)-surface with Ez=kS. Then
Eq={4pS} L {(4q + 1)S}, both the halves being nonempty unless k =1 (mod 8).

2.1.5. THEOREM. Let Eq=V,, L1kS, g >0. Suppose that E is an (M — d)-
surface and y(Eg) = o(E) + 26 (mod 16). Then for the values of (d, ) listed in Table
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Table 1
d 0 k@ (mod 4)
0 0
1 1 0,1
-1 0,3
5 8 {0, 2 (if Eqis of type I)
0,1,3 (if Egis of type II)
2 0,1,2
-2 0,23
4 0,2
3 +3 0,1,2,3

1 one has Eg={V,, LIk"S} LI {k®S}, where k'® (mod 4) takes one of the values
given in the table; furthermore, k® # 0 with the possible exception of the case d = 2,
0 =0, Eg is of type 1. Besides, there are the following additional prohibitions:

(1) if d =0, then E is of type 1, and EQ is of type 1,;

(2) if d =0, then k' #0 unless k =0 (mod 8);

(3) ifd =1 and k'V = 0, then either k =6 (mod 8), or k =0 (mod 4) and EQ is

of type 1.

Remark. Note that in the case d =3 the last theorem only states that, if
¥(Eg) = o(E) + 6 (mod 16), then both the halves are not empty. This follows also
from Theorem 2.1.3.

2.2. Classical Enriques surfaces

The topological types realizable by the real part of a classical Enriques surface
were enumerated in [DK1], where we treated separately the types 6S, S; LI5S, 3V,
and series S, LIV, LI - - not prohibited by the standard inequalities and congru-
ences known in topology of real algebraic varieties. The prohibition of these
types is now an immediate consequence of the results of Section 2.1: the first
two are prohibited by Theorem 2.1.2, the others — by Theorem 2.1.1. To apply
Theorem 2.1.1 one should note that, if the real part of a real K3-surface X contains
two components S;, then X is of type I and X has no other components, see
[Khl].

Consider now the decomposition Eq = E{’ U EQ. The following obvious obser-
vation can be found, e.g., in [DK1]:
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b
bI:[
a a a a

{aS}u{bs}, {ViuaS}u{bs} {VsuaS}u{bS} {VsUaS}u{bS},
{VauaS}u{bs} {VioUaS}u{bS}

Figure 1. Exceptional topological types.

2.2.1. Each half of a classical real Enriques surface may only be either
(1) aV,UaV,LUbS withg>1,a>0,b>0, =0, 1, or

(2) 2v,, or

(3) S.

In [DK1] and in Section 8 we construct a number of realizations of Enriques
surfaces sufficient to show that, with few exceptions, any distribution satisfying
2.2.1 is realizable. The exceptional topological types are listed in Figure 1: the
distributions marked by the black nodes are realized, e.g., in [DK1]; the white node
represents the distributions {25} LI {2S} and {V, LI2S} LI {25} constructed in [N2].
Theorems 2.1.4 and 2.1.5 imply that this list is complete.

2.2.2. THEOREM. With the exception of the types kS and V,, |1 kS any distri-
bution of components of a real Enriques surface satisfying 2.2.1 is realizable. The
exceptional types admit only the distributions listed in Figure 1.

Remark. The distributions {25} L1{2S}, {Vv,uU28}L1{2S}, {Vv,Ui2S}Ll
{V,L2S}, and {V,L14S}LI{V,} are not constructed in [DK1] or Section 8; their
existence is announced in [N2]. The first two of them cannot be obtained by our
construction, i.e., the covering K3-surface is not a double of a symmetric quadric.
(Proof will be published elsewhere.)*

3. Involutions on modules

In this section we expose some elementary facts on the Galois cohomology of
modules with involution and on the discriminant forms of integral lattices with
involution. Most results appear, explicitly or implicitly, in [N1]. We give proofs
when it is easier than to find a precise reference or when the direct proof is simpler.

*Added in proof. Now we can prove the existence of these 4 distributions.
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3.1. Galois cohomology of Z[2-vector spaces with involution

The zero-dimensional cohomology group of a Z/2-vector space ¥V with involu-
tion ¢ is H%(V) = Ker(1 + ¢). All the other cohomology groups are isomorphic to
Ker(1 + ¢)/Im(1 + ¢); to be short and in accordance with the notation commonly
used in the literature we denote them by H o).

3.1.1. LEMMA. Let V and V' be finite dimensional vector spaces over Z[2 with
involution. If they are connected by one of the following two short exact sequences of
spaces with involution

0-Z12-V->V'-0 or 0-V'->V->2Z2-0,

then dim H °¥V) —dim ﬁ"( V'Y = 1. In the former case the difference is —1 if and
only if the generator of the subgroup Z[2 vanishes in H V). In the latter case it is —1
if and only if the generator of the quotient group Z[2 does not lift to H %V), i.e., does
not belong to the image of Ker(1+¢) <= V.

Proof. Denote by c, ¢’, and ¢, the involutions on V, V', and Z/2 respectively.
Then Ker(1 + ¢,) = Coker(1 + ¢;) = Z/2, and the result follows immediately from
the additivity of dimension and the Ker-Coker exact sequences (see, e.g., [CE,
Lemma V.10.1})

0 - Ker(1+¢y) = Ker(1 + ¢5) = Ker(1 + ¢’) = Coker(1 + ¢;) = Coker(1 + ¢)
and

Ker(1 + ¢) = Ker(1 + ¢;) — Coker(1 + ¢’) = Coker(1 + ¢) = Coker(1 + ¢;) = 0.
O

Suppose now that V is equipped with a c-equivariant symmetric bilinear form
o: V® V —7Z/2. Then o induces, in a natural way, a symmetric bilinear form on
Ho(V).

3.1.2. LEMMA. If o: V® V — Z|2 is nondegenerate, then so is the induced form
o: HY(V) ® H'(V) - Z)2.

Proof. Since H(V) =Ker(1 + ¢)/Im(1 + ¢), the result follows from the additiv-
ity of dimension and the existence of the induced form. O
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3.2. Free abelian groups with involution

Let L be a finitely generated free abelian group with involution c¢. Let
L*={xeL |cx = +x} be its eigensubgroups and ﬁ(L) =H %(L/2L) the cohomol-
ogy group of the associated Z/2-vector space L/2L = L ® Z/2. Obviously, both L*
are primitive in L (i.e., the quotients L/L* are torsion free), and L*nL~ =0.

3.2.1. LEMMA. One has

Ker[(1 + ¢): L/2L — Lj2L) = (L*/2L) + (L~ [2L),
Im[(1 + ¢): L/2L —» L|2L] = (L*/2L) n(L~[2L),
dim H(L) = dim L — 2 dim[(L*/2L) ~(L~/2L)].

Proof. In L®Q each element x is represented as x =x* +x~, where
x* =1(x +cx) and x~ =1(x — cx). The first statement follows from the fact that,
given an x € L, the elements 1(x + cx) and i(x — cx) belong to L if and only if
x = ¢x (mod 2L). To prove the second statement just notice that (1 + c)y =(1 —¢)y
(mod 2L) for any y € L, and that whenever x* € L* and x~ € L~ are such that
x* =x~ (mod 2L), one has x* =y + cy, where y =3(x* +x") e L.

The last statement is an immediate consequence of the first two. 0

3.3. Integral lattices

Suppose now that L is a unimodular integral even lattice, i.e., L is supplied with
a symmetric bilinear pairing o: L ® L — Z so that (1) the correlation ¢: L - L* =
Hom(L, Z), ¢x(y) = x o y, is an isomorphism (L is unimodular), and (2) x o x € 2Z
for any x e L (L is even). Assume also that L is supplied with an involution
c: L = L which is a lattice morphism, i.e.,, cxocy =xoy for any x, y € L. Under
these assumptions each of the sublattices L* is the orthogonal complement of the
other one, and they are both nondegenerate, i.e., their correlations are injective.

Recall that, given a nondegenerate even lattice M, one can define a quadratic
space discr M, called the discriminant space, in the following way: the underlying
finite group, called the discriminant group, is discr M = M*|M, where M* is
considered, via the correlation, as an extension of M in M ® Q. The quadratic
function ¢q:discr M - Q/2Z is induced from o extended to M ®Q: given
xeM*cM®Q, define g(x) = x - x (mod 2).

Let (21, q), or briefly 2%, be the discriminant spaces discr L*.
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3.3.1. LEMMA (see [N1]). Spaces (2%, q) are anti-isometric, i.e., there exists a
group isomorphism o:. 2% — 2D~ such that q(oax) = —q(x) for any x € D*.

At the group level this statement has the following consequence:

3.3.2. LEMMA. 2(L*)* c L and the quotient a*: 9* = (L*)*/L* - L[2L of
the multiplication by 2 is an isomorphism 2* —-(L*[2L)n(L~[2L) c L/2L. In
particular, 2% are 2-periodic groups and dim H(L) =rk L — 2 dim 2%,

Proof. Let x e(L™)*, i.e., let xe L*® Q be an element such that xo L+ e Z.
Then for any ye L one has 2xoy =2xo(yt+y " )=2xo0y*=x0(y +cy) €eZ.
Hence, 2x € L* = L and 2(L*)* = L. Since 2L* < 2L, the multiplication by 2 has a
well defined quotient a*: 2+ =(L*)*/L+* —>L/2L.

Let xeKera™, ie,, 2x€2L. Then xeLN(L*®Q)=L"*, ie., x=01in 2.
Thus, Kera™ =0 and 27 is a 2-periodic group.

Given 2x =(1+c)ye(L*/2L) n(L~/2L) (see Lemma 3.2.1), for any ze L*
one has xoz=2%(yoz+cyocz)eZ, ie., xe(L*)* This proves that Ima* o
(L*2L) n(L~/2L).

Since 27 is a 2-periodic group, 2x € L* forany x e (L*)*. HenceIm o * < L*/2L.
Since L™ is primitive in the unimodular lattice L, the map L = L* — (L *)* induced
by the inclusion L* < L is onto, and, given x € (L *)*, there is some y € L so that
(x —y)oL*=0. Then z=2x—-2yeL~ =(L*)* and 2x=z (mod 2L). Hence
Im o™ < L=/2L. This completes the proof for a*; the other isomorphism is con-
structed similarly. O

3.3.3. COROLLARY. 4n x € L* vanishes in H(L) if and only if x o L* €2Z.

Proof. According to Lemmas 3.2.1 and 3.3.2, x vanishes in ﬁ(L) if and only if
xmod2L eImat, ie., 3x € (L1)* O

3.3.4. To formulate the next statement, remind that, given a (not necessary
unimodular) nondegenerate lattice M and nondegenerate primitive sublattice
M’ =M, one can define subgroups I''=discr M’ and I'” =discr M'* and an
anti-isometry a: I’ > I'” so that M is the pull back of the graph I' of a under the
projection (M')* @ (M'*)*—discr M’ @ discr M'* and discr M =I'*/I". (Details can
be found in [N1].)

3.3.5. LEMMA. Suppose that M' is a primitive nondegenerate sublattice of L™
and M is the primitive hull of M@ L~ in L. Let xe M’ c L* be an element with
x o M’ €2Z, so that }x defines an element in discr M". If this element belongs to the
subgroup I'' defined above, then x vanishes in H(L)
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Proof. According to Nikulin’s construction, if the element defined by ix in
discr M’ belongs to I'’, there are some y € L~ and z € M such that z =3x +3y.
Then x =2z —y and xo L*€2Z (since yo L* =0). The statement follows now
from Corollary 3.3.3. O

4. Basic topological properties of generalized Enriques surfaces
4.1. General facts

First, consider an arbitrary complex algebraic surface Y equipped with a real
structure conj: Y — Y. Let L = H,(Y; Z)/Tors, 2* =discr L*, where L* are the
subgroups of conj,-invariant and conj,-skew-invariant elements of L, and Br 2+
the Brown invariant of 2*.

4.1.1. LEMMA. The fundamental class [Yy] € H,(Y) and the Stiefel-Whitney
class w,(Y) are integral, i.e., belong to the image of H,(Y; Z) in H,(Y).

Proof. As it is known (see [HH]), w,(Y) is integral for any closed orientable
4-dimensional manifold.! According to [Ar], Lemma 32 [Yg] is the characteristic
class of the twisted intersection form (x, y) > x o conj, y. In particular, it is orthog-
onal to the image of Tors H,(Y; Z) in H,(Y), which, by Poincaré duality, is the
orthogonal complement of the image of H,(Y; Z). O

Thus, the projections of [ Y] and w,(Y) to L/2L are wellA defined, and since both
these classes are conj,-invariant, they further descend to H(L).

4.1.2. LEMMA. The projections of [Yg] and w,(Y) in ﬁ(L) coincide.

Proof. Since H(L) consists of only conj,-invariant classes, the twisted and the
standard intersection forms on it coincide, and so do their characteristic classes
(Lemma 3.1.2). On the other hand, [Yg] is the characteristic class of the twisted
intersection form (Arnol’d Lemma, loc. cit.), and w,(Y) is the characteristic class of
the standard intersection form. J

'For complex manifolds this assertion is completely obvious as w,(Y) =¢,(Y) mod 2.
2Arnol’d formulates and proves this assertion only for orientable Yg; the proof in the general case
is literally the same.
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4.1.3. LEMMA. If Y is an (M — d)-surface, then
(1) x(Yg) =0(Y)+2 Br2~ (mod 16);
(2) dim 2~ =d (mod 2);

Proof. Hirzebruch’s signature theorem gives w(Yg) = a(L*) —o(L ™). The left
hand side here equals — y(Yg) as the normal Euler number of Yy in Y; the right
hand side is —a(Y) +20(L*) = —a(Y) —2 Br 2~ (mod 16), since due to Lemma
3.3.1. one has Br 2~ = —Br 2+ = —o(L*) (mod 8). This proves (1).

Since Y'is an algebraic surface, a(Y) = —x(Y) = — B ,(Y) (mod 4). By definition,
B (Y) = B,(Yg) + 2d. Substitution to (1) and replacing y(Yg) with —f,(Yg) =
x(Yg) (mod 4) and Br 2~ with dim 2~ = Br 2~ (mod 2) gives (2). a

4.1.4. LEMMA. The quadratic space 2~ is even (i.e., q(X) € Z[2Z for any
X €D7) iff [Yr] — wy(Y) belongs to the image of Tors H,(Y; Z) in H,(Y).

Proof. [Y] and w,(Y) are the characteristic classes of the (respectively, twisted
and standard) intersection forms. In particular, they are both orthogonal to the
image of Tors H,(Y; Z) in H,(Y). In addition, they are both integral (see Lemma
4.1.1). Thus, the condition that [Yg] — w,(Y) belongs to the image of Tors H,(Y; Z)
in H,(Y) is equivalent to the condition that this difference annihilates all the
integral classes, which, in turn, is equivalent to the congruence x2= x o conj, x
(mod 2) for any x € L.

Let x* =3(x +conj, x) e L*®Q. Then x =x*+x~ and x? —x o conj, x =
2(x7)? (mod 2Z). Since x~ oL~ =xo L~ takes integral values, x~ belongs to
(L7)* and, hence, represents an element in 2~. Moreover, each element in 2~
admits such a representative. Thus, (x )2e Z for any x € L if and only if 2~ is
even. 0

4.1.5. COROLLARY. Suppose that the 2-primary component Tors, H,(Y; Z) is
generated by w,(Y). (This is the case for generalized Enriques surfaces; see Lemma
4.2.3 below.) Then Yy is of type 1 if and only if D~ is even.

All the statements above except Lemma 4.1.3° extend literally to any (not
necessary anti-holomorphic) orientation preserving involution conj on any (not
necessary complex) oriented 4-manifold Y. Lemma 4.1.4 has then the following

corollary:

34.1.3 extends to any anti-holomorphic involution on any quasi-complex variety, cf. [Wi].
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4.1.6. COROLLARY. Let conj be a fixed point free orientation preserving
involution on an oriented 4-manifold Y. Then the quadratic spaces 9* are even if and
only if so is Hy(Y; Z)[Tors.

4.2. Homology of a generalized Enriques surface

We now consider a generalized Enriques surface E covered by a generalized
K3-surface X with Enriques involution 7. We denote by pr: X — E the projection
and by tr: H (E; R) - H,(X; R) the transfer (with coefficients in a group R).

Note that H,(X) = 0 implies Tors, H,(X; Z) =0.

4.2.1. LEMMA. There are isomorphisms Tors, H,(E; Z) = H,(E) = Z/2 and an
exact sequence

0 - Tors, Hy(E; Z) —» Hy(E) — H,(X),

where Tors, H,(E; Z) = Z/2 is generated by w,(E).

Proof. From the Smith-Ghysin exact sequence it follows that H,(E) = Z/2 and
Kertr,: H,(E) - H,(X)] =Z/2. As tr w,(E) = w,(X) =0 and w,(F) # 0, the only
nontrivial element of Kertr, is w,(E). By the Poincaré¢ duality and universal
coefficient formula, from H,(E)=27Z/2 it follows that Tors, H,(E;Z) =
Tors, H,(E; Z) is a cyclic group. It cannot be larger than Z/2 since otherwise X
would have a nontrivial double covering. O

4.2.2. LEMMA. For any p =1, 2, 3 there is a short exact sequence

trp

0-—Tors, H,(E; Z) - H,(E; Z) — H,;“(X; Z) -0,
where H;*(X; Z) denotes the subgroup of t-invariant elements.

4.23. LEMMA. Let L = H,(X; 2) /Tor_s and let L** be the sublattices of T,-in-
variant and T 4 -Skew-invariant elemerlts of L. Then H,(E; Z)[Tors is an even lattice
isometric via tr to L**(), which is L** with modified pairing (x, y) > 3(x o ).

Proof of Lemmas 4.2.2 and 4.2.3. The transfer H, (E; R) > H;*(X; R) for
R =Q and R =Z/q, q odd, is an isomorphism (see, €.g., [B]). Thus, in the integral
homology Ker tr, = Tors, H,(E; Z), and to prove 4.2.2 it remains to show that tr,
reduced modulo torsion maps H,(E; Z)/Tors onto L**.
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Let L = H,(E;Z)[Tors and L' =tr L c L, where tr is the integral transfer
modulo torsion. Then L’'cL*" is a subgroup of finite index. The identity
tr x o tr y =2(x o y) implies that L = L'(3) as a lattice and, since L is unimodular,
discr L’ 1s a 2-periodic group of dimension rk L =rk L’. Since, due to Lemma 4.2.1,
the index of L’ in L*" is odd (fr ® Z/2 is a monomorphism) and discr L** is also
2-periodic (Lemma 3.3.2), these two subgroups coincide.

Thus tr, provides an isometry between the lattices H,(E; Z)/Tors and L**(})
and an isomorphism between the groups H,(E; Z)/Tors and L**. The lattice L*"(})
is even due to Corollary 4.1.6. O

4.3. Eigenspaces of conj,

Let now E be a generalized Enriques surface with real structure conj: E — E.
The following fact is well known and follows from the Lefschetz fixed point
theorem (part (1)) and Hirzebruch signature theorem (part (2)). Note that (2)
applies, in fact, to any real algebraic surface, and (1) applies to any surface E with
H,(E; Q) =0.

4.3.1. LEMMA. Let L = H,(E; Z)[Tors and let L* be the subgroups of conj,-
invariant and conj,-skew-invariant elements of L. Then

(1) tk L* =5(bo(E) + x(Eg)) — 1, tk L™ = 3(b(E) — x(Eg)) + 1;

(2) o(L*) =3((E) — x(Ep)), o(L ") = 3(o(E) + x(Eg)).

5. Kalinin’s spectral sequence and Viro homomorphisms

In this section we summarize some auxiliary results from algebraic topology of
involutions. The constructions, which we present in their homology form, require,
in principle, a cautious choice of the homology theory, as well as certain appropri-
ate conditions on the underlying topological spaces. One possibility is to use the
sheaf theories and suppose that the topological spaces are locally compact and finite
dimensional. However, as we apply the results to the best topological spaces one
can possibly expect — smooth compact manifolds — we do not need any definite
choice and can use any theory.

Throughout this section Y is a good (see the paragraph above) topological space
with involution ¢: Y- Y.
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5.1. Kalinin’s homology spectral sequence

5.1.1. There exist a filtration
0=F""'cFrc - «F°=H,_(Fix o),
a Z-graded spectral sequence (H',, d ), where
d:H,»H,,,_,, d ., _ od =0,
(HY, d3) is the chain complex of Y, and H,*' =Kerd,[Imd’,_, ,,,

and homomorphisms bv,: " — H® such that

() H,=H, (Y)and d}, =1+c,;

(2) a cycle x,eHy survives to Hj, if and only if there are some chains
Vo =Xps Vp+t1sevsVpsr—1 in Y so that 0y,,,=(1+c,)y, In this case
d;raxp = (1 + c*)yp+r——1;

(3) bv, annihilates 9+ and maps F|F 9+ isomorphically onto HY ;

(4) the filtration, spectral sequence, and homomorphisms are all natural with
respect to equivariant mappings.

When necessary, we will use the notation H, = H,(Y) and #9=%9Y) to
indicate the original space Y.

The original construction of this spectral sequence is due to 1. Kalinin [Ka], who
derived it from the Borel-Serre spectral sequence and related results by Borel (see
[Bo]). This construction is briefly outlined in Appendix A. Property (2) is proved in
[D]. An alternative description of Kalinin’s spectral sequence, based upon the Smith
exact sequence, can be found in [DK2].

The following results are straightforward consequences of 5.1.1.

5.12. COROLLARY. If Y is connected and Fixc # &, then Hy(Y) =
H(Y) = HY(Y) = Z/2 and each nonzero element of H?(Y) which survives to H®(Y)
is nonzero in HY(Y).

5.1.3. COROLLARY -DEFINITION. If a cycle admits a representation by an
equivariant chain, it survives to HY(Y). Thus, in particular, there are tautological
homomorphisms H,(Fix c) - HY(Y); with certain abuse of terminology we will call
them the inclusion homomorphisms.
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5.1.4. COROLLARY. One has H3(Y) = I?O(HZ(Y)).

The homomorphisms bv, were first discovered, in an equivalent form, by O.
Viro. That is why we call them Viro homomorphisms. The following geometrical
description, close to the original one (cf. [VZ]), is found in [D).

5.1.5. Suppose that Fix ¢ # . Then

(1) bve: H (Fixc) > HF(Y) is zero on H,,(Fixc), its restriction to
Hy(Fix ¢) » HF(Y) = Hy(Y) coincides with the inclusion homomorphism (cf.
5.1.2 and 5.1.3);

(2) a (nonhomogeneous) element x € H,(Fix c) represented by a cycle X x; be-
longs to #, =Ker bv,_, (see 5.1.1) if and only if there exist some chains y,,
1 <i<p, so that 0y, = xo and 0y, = x; + (1 + ¢, )y, for i > 1; the class of
X, +(1+c¢,)y, in HY(Y) represents then bv, x.

5.1.6. EVIDENT COROLLARY. For any p the Viro homomorphism bv, is zero
on H.,Fixc) and coincides with the inclusion homomorphism (see 5.1.3) when
restricted to H,(Fix ¢) - H;(Y).

5.2. Kalinin’s intersection pairing

The original construction presented in [Ka] gives a cohomology spectral se-
quence (H¥, d*) starting at H{ = H4(Y) and converging to H*(Fix c). We denote
by %, the corresponding filtration on H*(Fix ¢) and by bv?%: H% — H*(Fix c) the
cohomology Viro homomorphisms. This spectral sequence is dual to its homology
counter-part 5.1.1; the cup-product in H*(Y) converts H} to a spectral sequence of
Z-graded algebras, and 5.1.1 is a spectral sequence of graded H}-moduli. The
following result, which, to our knowledge, is stated explicitly only in [Ka], is proved
in [DK2]:

5.2.1. PROPOSITION. If Y is a closed n-dimensional manifold and Fix ¢ # &,
then for any r, 1 <r < + 0, one has H} = Z|2, and the product map H? @ H} ~? —
H?} is a nondegenerate pairing.

5.2.2. COROLLARY (the dual version of 5.2.1). If Y is a closed n-dimensional
manifold and Fix ¢ # &, then the intersection pairing in H (YY) descends to a

nondegenerate pairing Hy @ Hy_, —~Z/2.
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Corollary 5.2.2 is a paraphrase of 5.2.1 using the Poincaré duality. The pairing
Hy @ Hy_,—Z|2 is called Kalinin’s intersection form. Its relation to the standard
intersection form in H,(Fix c) is given by the following theorem, which we prove
in Appendix A.

5.2.3. THEOREM. Let Y be a smooth closed N-dimensional manifold with
smooth involution c: Y — Y and F = Fix c the fixed point set of c. Then for any two
classes a € 7 and be F9 one has w(v)n(a-b)e F7*9~" and bv,a-bv, b=
bv,, .- ~[W(v) N (a  b)], where w(v) is the total Stiefel-Whitney class of the normal
bundle v of F in Y.

5.3. Application to a real structure of a complex surface

Let Y be a compact nonsingular complex surface with real structure ¢: ¥ — Y.
Then the Z/2-homology fundamental class [ Y] of Yi = Fix ¢ is well defined.

5.3.1. LEMMA. The Stiefel-Whitney class w,(Y) survives to HY (Y). The pro-
Jjection of wy(Y) in HY(Y) coincides with bv,[Yg].

Proof. As any Chern or Stiefel-Whitney class, w,(Y) is realized by the funda-
mental class of a c-invariant divisor. (The earliest reference which we could find in
the literature is [BH]; the statement is based on the simple observation that
Schubert cycles are defined over R and even over Z.) Thus, w, survives to H3(Y).
The other part of the lemma follows from 5.2.2, 5.1.4, and the fact that the image
of [Yg] in H,(Y) coincides with the characteristic class of the twisted intersection
form (cf. the proof of Lemmas 4.1.1 and 4.1.2). O

Denote by (C;) e Hy(Fix ¢) and [C;] € H,(Fix c¢) the classes represented by a
component C; of Y. It is clear that H%, is spanned by the following values of Viro
homomorphisms: (we abbreviate {C; — C; ) =<C;)> —(C;))

- bvo<C;) in Hg(Y);
— bv,; @ and bv,{C; — C;) in HY(Y), where a € H,(Yg);
— bvy[C], by, a, bv,{C; — C;), and bv,(a + (C; — C;)) in HY(Y).

From 5.1.5 (which also gives an explicit geometric description of the corresponding
chains) and 5.1.6 it immediately follows that:

— all the above classes but the last three are always well defined;
— bv, a is defined if and only if bv, a =0;
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Table 2
bv,(C; - C,> bv, bv,[C;]
bv,{C, — C,> 0 0 Oy + 0y
bv, B 0 (a0 P Yg] (B~ PIC:]
bv,[C] O + O (2o )[Cy] Ou X(C})

— bv,<C; — C;) is defined if and only if bv,{C; — C;) =0;
— bvy(a + {C; — C; ) is defined if and only if bv, a =bv,{C; — C;).

Theorem 5.2.3 gives the following values for the intersection numbers:

5.3.2. INTERSECTION MATRIX. The intersection form on HY(Y) =Im bv,
is that defined by Table 2, where C,, ..., C, are some connected components of Yg,
and o, 8 are some 1-dimensional homology classes in Yy. The intersection o o f is
regarded as an element of Hy(Yy), and (« o B)[ Y] and (« o B)[C;] are, respectively, the
total intersection number and its part which falls into C,. 6, stands for the Kronecker
symbol: 6;=1 and 6,;=0 if i #j. The intersection form extends linearly to the
classes of the form bv,(a +<C;—C;}), as if bv,a and bv,{C;— C;> were well
defined.

Remark. Note that in this dimension one can avoid reference to 5.2.3 and use
the standard geometric techniques: represent classes by chains given by 5.1.5,
smoothen them, bring to general position, and count the intersection points. Since
the intersection numbers are considered modulo 2, the imaginary intersection
points, which appear in pairs, can be ignored (cf., e.g., [Kh2, Lemma 2.3]).

6. Viro homomorphisms in generalized Enriques surfaces

Recall that we denote by E a generalized real Enriques surface. We assume that
Eg # . The main goal of this section is to prove Propositions 6.1 and 6.2 below.
We use the homology spectral sequence H, and denote f, = dim H),.

6.1. DIMENSION OF THE DISCRIMINANT SPACE. Let E be an (M — d)-
surface, and let 9~ be the discriminant space of the sublattice of conj-skew-invariant
vectors in H,(E; Z)[Tors. Then:
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d —dim 9~ =0 if either

(1) Eg has a component V,, ., (i.e., w,(Eg) #0), or
(2) Eg is nonorientable and both the halves are nonempty;,

d —dim 2~ =2 if either

(1) Eg is nonorientable, w,(Eg) =0, and one of the halves is empty, or
(2) Ey is orientable and both the halves are nonempty;,

d —dim @2~ may be 2 or 4 if Ey is orientable and one of the halves is empty.

6.2. RELATIONS BETWEEN REAL COMPONENTS. There is at least one
and at most two relations between the elements of HS(E)|w,(E) realized by the
fundamental classes of the components of Eg. One relation is bv,[Eg] = w,(E); the

only other possible relation is bv,[EQ] = bv,[EP] = 0 (mod w,(E)).

6.3. Proof of Proposition 6.1

6.3.1. LEMMA. Let C,, C, be two components of Eg. Then bv,{C,— C,> =0 if
and only if these two components belong to the same half of Ey.

Proof. Pick two points ¢; € C; and connect them with a path y in E. By 5.1.2,
bv,{C, — C,)> =0 if and only if the loop é = (conj y) ~' - y is homologous to zero in
H,(E). Thus bv,{C, — C,)> =0 if and only if ¢ lifts to a loop in X. Suppose that
C, e E{ and lift y to a path § with the endpoints ¢,, . Then 6 =5 (¢tM§)~'is a
lift of & which connects V¢, and ¢&,. It is a loop if and only if tV¢, =¢,, i.e.,
e EQ. O

6.3.2. LEMMA. Let a be an element of H,(Eg). Then bv, a #0 if and only if
woo =1, where w € H,(ER) is the characteristic element of the covering Xy — Eg.
Moreover, bv, a # 0 whenever a* = 1.

-

Proof. Since H,(E) = Z/2, from 5.1.2 it follows that bv, « =0 if and only if
in, o« € H,(E) is zero, or equivalently, if @ o a = 0. The last assertion follows from
Lemma 1.3.2: if w,(ER) #0, then w = w,(EyR). O
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6.3.3. LEMMA. The Stiefel-Whitney class w,(E) (which, due to 5.3.1, always
survives to HY (E)) represents a nonzero element in HY (E) if and only if either

(1) Eg has a component V,, ., (i.e., w,(Eg) #0), or

(2) Ey is nonorientable and both the halves are nonempty.

Proof. By 5.2.2 and since w,(E) is a characteristic element of the intersection
form, w,(E) #0 in HY(E) if and only if there is an element x € H, (Eg) with
(bv, x)2#0. According to 5.3.2 such an x can be found in one of the follow-
ing three forms: (i) x =[C,], where C, = Ey is a component of odd Euler character-
istic; (ii)) x =a + {C, —C,), where a € H,(Ey) is an element with a?>=1 and
bv, a #0; (iii) x = a € H,(Eg) with «>=1 and bv, « = 0. In (i) we have case (1) of
the lemma. In (ii), according to 6.3.1, we have case (2). Finally, (iii) contradicts
to 6.3.2. O

6.3.4. LEMMA. H{(E) #0 if and only if either

(1) Ey is nonorientable, or

(2) Ey has a component T,, or

(3) both the halves of Eg are nonempty.
If HP(E) # 0, then the spectral sequence collapses at H}; in particular, 3 — 5 = 0.
If HP(E) =0, then B53— B2 =0 or 2 and ¥ = B3 =0.

Proof. By 5.1.5, HY(E) =bv, H_(Fix ¢). According to 6.3.1 and 6.3.2, a
homogeneous element x € H , (Eg) with bv, x # 0 is either « € H,(ER) with w o o =1
(cases (1) and (2) of the lemma, see 1.3.2) or {C, — C,), where C; c EY) are two
components from different halves of Ej (case 3)).

The last statement is a straightforward consequence of the relations 83 = g =1
and B?=1>p¢ and the existence of a nondegenerate pairing in the spectral
sequence. When HP =0 one has B}— B3 =0 if H}(E) is killed by 4> and
B% — B¥ =2 if it is killed by d>. a

6.3.5. End of the proof

By definition, 2d = ,(E) — B . According to Lemma 4.3.1, we have 2 dim 9~ =
b,(E) — b3, where b% = dim H(conj,, H,(E; Z)[Tors). Therefore,

2(d —dim 97) =[(2 - B — BT) + (B3 — BN +[2— (B2 — b))

The first term of this expression is zero if H{(E) # 0 and 2 or 4 otherwise, see 6.3.4.
Applying Lemma 3.1.1 to the exact sequences
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0—-Tors, Hy(E; Z) > H,(E; Z) ® Z[2 - (H,(E; Z)[Tors) ® Z/2 -0,
0-H,(E;Z)®Z[2—H,(E)—>Z]2-0

gives that B2 — b3 is equal to 2 if w,(E) #0 in H3(E), and it is equal to 0 or —2
otherwise. The combination B2 — b3 =0 and w,(E) # 0 in H3(E) is excluded by an
additional argument: the intersection form on H3(E) is nondegenerate, hence,
w,(E), which generates Tors, H,(E; Z/2) < H,(E), and an arbitrary element, which
generates the quotient H,(E) /(H,(E; Z) ® Z/2) and thus has a nonzero intersection
with w,(E), must either both survive to H3(E) or both disappear. Now the lemma
follows from Lemmas 6.3.3 and 6.3.4 and the (mod 2)-congruence 4.1.3(2). O

6.4. Proof of Proposition 6.2

The relation bv,[ERz] = w,(E) is given by Lemma 5.3.1.

Suppose that bv,([C,] + - - - +[C,]) = kw,(E), k € Z/2, is a relation other than
bv,[ES’] = 0 (mod w,(E)) or bv,[E@P] =0 (mod w,(F)). This means that one of the
components C; involved in the relation, say C,, belongs to E{’, and there is another
component of E{’, say D, which does not belong to the relation. Then
bv,{C, — D) is well defined, and, according to 5.3.2, bv,{C, — D) o bv,([C,] +
-+ +[C]D=1 and (bv,{C,—D>)?>=0. On the other hand, w,(E) survives to
H3 (E), and, since w,(E) is the characteristic class, one has bv,{C;, — D) o w,(E) =
(bv,{C; —D>»)?=0. This contradicts to bv,([C;]+ - +[C.]) =kw,(E) and
bvo{C = D) o bv,([Ci] +- - - +[C]) =1

7. Proof of the main results

Below, as in Section 2, E is a generalized real Enriques surface with nonempty
real part, conj: E — E is the real structure on E, and X is the double covering of F
with Enriques involution t: X - X and two real structures ", t® determined by
conj.

7.1. Proof of Theorem 2.1.1. By the hypothesis, the fundamental class of X§’
vanishes in H,(X). On the other hand, it is equal to the image of the fundamental
class of E{’ under the transfer tr: H,(E) —» H,(X), whose kernel is generated by
w,(E) (see Lemma 4.2.1). Thus, the half EY’ realizes either 0 or w,(E) in H,(E).
Since, according to Lemma 5.3.1, the union EQ’ U E realizes w,(E) in HY (E), the
half E$ realizes either w,(E) or 0. In any case at least one of the two halves realizes
zero in H¥ (E).
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Suppose that there is a component C, = E{’ of type V,; . ,. Then, according to
5.3.2, bv,[EQ]  bY,[C] = wi(C,) =1, i.e., bv,[EJ’] # 0. Furthermore, by assump-
tion there also is a component C, = E@. Then x = bv,(w,(C;) + {C, — C,)) is well
defined (see 5.3), and, due to 5.3.2, bv,[E®] o x =1, i.e., also bv,[EP] #0. This
contradiction to the previous paragraph proves the first assertion.

Let now each of the halves contain a nonorientable component C; = E{) (which,
due to the first statement, are of even genus). Pick some classes «; € H,(C;)
with bv,a; #0. Then for both (i,j)=(1,2) and (i,j) =(2,1) one has
bv,(a; + {C; — C,)) o bv,[Ef] =1, which is also a contradiction. O

1.2. Proof of Theorems 2.1.2 and 2.1.3. Let 2~ be the discriminant form of the
sublattice of conj,-skew-invariant vectors in H,(E; Z)/Tors. From Lemma 6.1 it
follows that, under the hypotheses, d —dim 2~ =2 or 4. Since the dimension is
nonnegative, d > 2.

All the congruences are derived from y(ER) = o(E) +2 Br 2~ (mod 16) given
by Lemma 4.1.3(1) (just like the other congruences known in topology of real
algebraic manifolds, cf. [Kh3], [M], and [N1]).

If d =2, then 2~ =0 and Br 2~ = 0. This gives the congruence. The fact that
E; is of type I follows from Corollary 4.1.5.

If d =3, then dim 2~ =1. Hence 2~ =(+3)> and Br 2~ = +1.

If d =4 and x(ER) = d(E) + 8 (mod 16), then Br 2~ =4 and dim 2~ = 2. The
only such form is the one given by the (2 x 2)-matrix ( 1; 5 112) (see Table 3); it
is even and Corollary 4.1.5 applies to prove that Ey is of type 1. g

7.3. Proof of Theorems 2.1.4 and 2.1.5. In addition to the lattice L =
H,(E; Z)|Tors with involution conj,, the eigenlattices L* of conj,, and their
discriminant forms 21, let us consider the sublattice M’ of L* generated by the
classes s,,...,s, €L realized by the spherical components of E; (with some

Table 3. Discriminant forms of even rank <2

Odd forms Even forms

7 Br 2~ 2" Br 2~
SHOG 2 g ¢
G- 0 (172 l{f) 0

1 12
(~Hoc-b . () 4
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orientations), and denote by N the orthogonal complement of M’ in L™*. Recall that
L and all its sublattices are even, see 4.2.3.

7.3.1. LEMMA. If M’ is not primitive in L™, then either Ey has a half {IS} of
type 1 with | =0 (mod 4), or Egx =KkS, it is of type 1, and k =0 (mod 4). If all the k
spherical components constitute one half of Ei and, besides, 2- =0 and
tk N=k — 2, then k =0 (mod 8).

Proof. Since s, s; = —26;, nonprimitiveness of M’ means that there is an x € L
such that 2x =5, + - + s,/ > 0. (We simplify the notation and assume that the
relation involves the first / components.) Pick such a relation with the smallest
possible number / of components. Then, due to 6.2 and 6.3.4, either the first /
spherical components form a half {iS} of E; of type I, or IS = Ej and Ej, is of type
I. Since [/ = —2x2, the first part of the lemma follows from the fact that L* is an
even lattice.*

Suppose that all the spherical components form together one half of E. As it
follows from the first part of the proof, no partial sum of s,, ..., s, is divisible by
2 (as otherwise the corresponding components would form a half), and the
primitive hull M” of M’ in L* is generated by M’ and an x € L such that
2x =8, + - -+ + 5. Thus, the discriminant form of M" is the nondegenerate part of
the restriction of —3(02+--- +037), 6,€Z/2, to 6,+--- + 6, =0. In particular,
dim discr M" =k — 2 and discr M" is an even form. If 2~ =0, then 2" =0and L+
is unimodular. If, in addition, rk N=k —2, then, since dim discr N =
dim discr M” = k — 2, the lattice 1N is integral and unimodular. Besides, it is even,
since so are discrM” and L*. Hence, k= —d(M')=6GN)—o(L*) =0
(mod 8). m

7.3.2. LEMMA. If M’ is primitive in L* and dimdiscr M’ +dim 2~ >
dim discr N, then either Egy has a half {IS}, or Ex=1S, where | #0 and | =24(y)
(mod 4) for some non trivial element y € 2~. If, in addition, | =k, dim 2~ =1, and
tk N=k — 1, then k =Br 2~ (mod 8).

Remark. If dim 2~ =1, then 2~ contains only one nontrivial element, and
2¢(y) = Br 2 (mod 8). In all cases y =3y_ (mod L) for some element y_e L™,
and 2¢q(y) =1y2 (mod 4).

Proof. Denote by M the primitive hull of L~ @® M’ in L. Since M and N are the
orthogonal complements of each other in the unimodular even lattice L, their

4Since the Chern classes have equivariant representatives (cf. 5.3.1), L* is even for any compact
complex (and even quasicomplex) surface with real structure.
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discriminant forms are anti-isometric. On the other hand, dim discr M’ +
dim 2~ > dim discr N = dim discr M by the hypotheses, and, hence, L~ @ M’ is
not primitive in L and the subgroup I'’ = discr M’ (see 3.3.4) is nontrivial: for some
I >0 there exists an element y_e L~ which represents a nonzero element
y ediscr M’ so that the class s=3(y_+s,+ - +s5) belongs to L. Then
s;+- - +s =s+conj,s. Thus s;+--+s, vanishes in H(L) and therefore the
element realized by the corresponding / spherical components of Eg in Il'i(H2 (E, 2))
is either 0 or w,.

Due to 6.2 and 6.3.4, either these components form a half of E, or E; = IS and
I = k. Furthermore, 2q(y) =3y2 =1(s; + - - - +5,)?=1 (mod 2).

If the additional assumptions hold, then discr M is an even discriminant form of
dimension (k — 1). Therefore, as in 7.3.1, 1N is an integral even unimodular lattice
and k —Br 2~ =6(AN) =0 (mod 8). O

In order to complete the proof, consider separately the different cases.

7.3.3. The case Ez=kS (Theorem 2.1.4). Comessatti-Severi inequality
x(Eg) <hVY(E) gives d >3+ h*%E). Hence d >3 and, if d=23, then o¢(F) =
2 — b,(E). In the latter case a calculation using 4.3.1 shows that L~ is a positive
definite lattice of rank 1 and L* is a negative definite lattice of rank 2k — 1. Hence,
dim 2~ =1 and Br 2~ = 1. By 4.1.3, this implies that kK =1 (mod 4). This congru-
ence excludes, in particular, the second choice Ez =kS, k =0 (mod 4) in Lemma
7.3.1. The theorem follows now from 7.3.1 and 7.3.2, which cover the two
possibilities for M’ and both give the same decomposition {4pS} LI {(4g + 1)S}
(with / =4q + 1 in the latter case). O

7.3.4. The case Eg = V,, L1 kS (Theorem 2.1.5). From Lemma 4.3.1(1) it follows
that rk L* =2k +d —2 and, hence, dim discr N <tk N =k +d —2. If d =0, then
L+ is a unimodular lattice and dim discr M’ > dim discr N. Hence M’ cannot be
primitive and 7.3.1 applies. Corollary 4.1.5 gives the missing information: Ey is of
type I. If d=1, then dim2~ =1 and dimdiscr N <k —1, and the statement
follows from 7.3.1 and 7.3.2. The possibility “k =0 (mod 4), EQ is of type I” for
kM =0 arises from the case when M’ is not primitive: then k =k® must be
divisible by 4. If d = 2, then 2 is one of the forms given in Table 3. 2~ =0 is the
exceptional case of Theorem 2.1.5 when k‘® may be trivial. (In fact, k@ is trivial
in this case since dim 2~ =d — 2 and, according to Lemma 6.1, E; must consist of
a single half.) In all the other cases 7.3.1 and 7.3.2 give all the values of k® (mod 4)
listed in Table 1.

The remaining case d = 3, 6 = +3 follows from Theorem 2.1.3, though, due to
6.6 and 4.1.3, in this case dim 2~ = 3, and one can also apply 7.3.2.
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Finally, to distinguish between types I, and I, in (1) and (3) it suffices to notice
that, under the hypotheses, w,(E) #0 in HY(FE) (see Lemma 6.3.3) and, hence, a
half is of type I, if and only if its fundamental class vanishes in HY (E), i.e., belongs
to the kernel of the intersection form. Using 5.3.2 one can see that the spherical half
realizes w,(E); hence, it is of type I, . O

8. Construction
8.1. General idea (see [DK1] for details)

Let X be the K3-surface obtained as the double covering of Y = Cp' x Cp!
branched over a non-singular bi-degree (4,4) curve Cc Y. Let 5s: Y > Y be the
Cartesian product of the nontrivial involutions (u: v) — ( —u; v) of the factors. If C
is s-symmetric, s lifts to two different involutions on X, commuting with the deck
translation d of X' — Y. If, besides, C contains no fixed points of s, then exactly one
of these two involutions, which we denote by 7, is fixed point free (see, e.g., [H] or
[BPV]), and, hence, the orbit space £ = X/t is an Enriques surface.

Suppose that Y is equipped with a real structure conj, commuting with s and C
is a real curve. Then s o conjy is another real structure on Y and C. We denote the
real point sets of these structures by Y® and C¥, i =1,2 (i =1 corresponding to
conjy) and call them the halves of Y and C. The involutions conj, and s o conjy lift
to four different commuting real structures (¢, t@ =10 tM, do tM and d- t®) on
X, which, in turn, descend to two real structures on E, called the expositions of E.
A choice of an exposition is determined by a choice of one of the two liftings ¢,
t® of conjy to X.

We use for Y a quadric in Cp® real in respect to the standard complex
conjugation involution and invariant in respect to the real symmetry s: Cp> — Cp?,
(x0: X1: X5 X3) = (X9: X0 —X,: —X;). Since the bi-degree of C is even, C{ sepa-
rates Y into two parts with common boundary C{; at least one of them is
non-empty unless Y{ is empty. The fixed point set X¢ of ¢ is the pull-back of one
of the parts. Thus, a choice of ¢ is equivalent to a choice of one of the two parts
of YQ’, and, since t® =10 tU, the latter determines as well the part of Y@ whose
pull-back is Fix t®: as XY’ and X are disjoint, the pull-back of a point of
Y n Y is contained in exactly one of XQ°, X@. (Note that in all the examples we
use here YN YR # &)

The branch curve C e Y is constructed by perturbing the equation f =0 of a
singular s-symmetric curve CeYto f+¢eh =0, here f and s are homogeneous real
s-symmetric polynomials of bi-degree (4, 4) and ¢ is a small real parameter. All the
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Figure 2

facts necessary to construct a perturbation and to control its topology can be found
n [DK1, Sect. 4].

8.2. The distributions of 2V, U kS

It suffices to construct the distributions {aS} L {2V, LUbS} and {V;UaS} L
{V,UbS} with (a,b) =(1, 3) (2, 2) or (3, 1) the rest is constructed in [DK1]. Let
Y be the elhpsoxd given by x2=x?+ x3 + x3 and C = C, U Cz, where Cl and C2 are
cut on Y by x3=0 and 2(x3— x3) = x3 respectively (see Figure 2(a), which
represents the two halves of Y and C. The two black dots in each figure are the
fixed points of the restriction of s to the corresponding half.) To perturb C take for
h the equation of a bi-degree (4, 4) s-symmetric real curve which intersects the two
real halves of C, at eight points (the ramification points),; all these points must be
outside of the ovals of C, and different from the fixed points of s. Then, under a
proper choice of the sign of ¢, the portions of the real part of C, which are either
inside the ovals of 6’2 or between pairs of the ramification points double, and the
rest of C, disappears (see, e.g., Figure 2(b), corresponding to {35} LI {2V, LU S}; to
obtain the other distributions note that one or both the ovals surrounding the fixed
points can be moved to the ‘left hand’ half, and the pair of small ovals can be
moved to the ‘right hand’ half). If the exposition is chosen so that X covers the
interior of the two ovals surrounding the fixed points of s, then these two ovals
produce the ¥V, components of Eg; the other pairs of symmetric ovals produce
spheres.

8.3. The distributions of 2V, L1kS

The distributions constructed here are {V,UaS} L {V,L1bS} for all (a,b)
except (0, 0), (4,0), (2, 2), and (0, 4). (The first exception is found in [DK1], the
others, in [N2], see the remark at the end of 2. 2) Let Y be the hyperboloid
x2=x?+x}—x} and C=C, uC,, where C, and G, are given, respectively, by
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Figure 3

x3=0and (2x; — x,)? = &(x + x3) for some small real ¢ > 0 (see Figure 3(a)). The
perturbative term /4 (see 8.1) is chosen so that its zero set does not intersect the right
half of C~‘1 and intersects its left half at 4(a — 1) points, a =1, 2, 3, close to the fixed
points of s. Under a proper choice of the sign of the perturbation, the right half of
C, doubles and the ramification points generate 2(a — 1) ovals which do not contain
the fixed points of s (Figure 3(b)). The exposition is chosen so that the two strips
containing the fixed points of s in Y{P are covered by X§; they produce the
components ¥V, of E,. Thus we obtain the distributions {V,aS} U {V,LI1bS}
with a = 1,2, 3 and b = 1. To construct surfaces with b =0, we replace 52 with the
curve given by (2x; — x,)* = &(x3 — x3); its right hand half is empty.

8.4. The distributions of VU V, L1kS

We construct the distributions {V;LIV,LaS}LI{bS} and {ViUaS}U
{V,UbS} with 1 <a + b <4 and a > 1; the rest is found in [DK1]. Start with a
quartic Q = Rp? with (k + 1) real components, 1 <k <3, obtained by perturbing
the union of two conics (see Figure 4, where & = 3). Pick an oval O (the lowest one
in Figure 4) and denote by L the double tangent to O and by L,, 0 < b < k, another
tangent, which together with L separates O in Rp? from b other ovals of Q.

We use the following technical result, proved at the end of this section.

8.4.1. LEMMA. The union L UL, can be perturbed to an irreducible conic K
which is still tangent to O at three points, has no other real intersection points with Q,
and such that O is in the outer part of the oval of K.

Let K be the conic given by the lemma. Consider the double cover Y of the
projective plane branched over K. Denote by § the deck translation involution, by
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Figure 4 Figure S Figure 6

K its fixed point set (which projects to K), and by Q the pull-back of Q. Due to §
(cf. 8.1), each of Y, Q and K has two real halves. Y is the hyperboloid shown in
Figure 5: Q) has a component O (the pull-back of O) with three nondegenerate
double points in K and (k — b) pairs of symmetric ovals. The other half Y is an
ellipsoid in which Q% has b pairs of ovals disjoint from K@. Now (7Y, s) is obtained
from (Y, 5) by the following real §-symmetric birational transformation: blow up the
singular points of Q and then blow down the transforms of K and the two
generatrices G,, G, of Y through the smgular point of Q whose i image in Rp? is close
to the tangency point of L, and O. Let C be the transform of Q (Figure 6). Clearly,
C(‘) consists of a large oval O (the transform of O) surrounding (k — b) pairs of
symmetric ovals and three isolated double points: the image of K, fixed under s, and
the image of G,, G,, symmetric to each other. The other half consists of b pairs of
ovals and an isolated double point, the image of K. All the ovals but O are not nested
and do not surround the singular points of C. Finally, perturb Ctoa nonsingular
symmetric curve C (see 4.3.1 in [DK1]); the fixed double point, which produces the
V, component of Ey, can be made to pop up in either side, and the two symmetric
double points may either form a pair of symmetric ovals or disappear. Thus, we
obtain {VU V, Uk —b +06)S} U {bS} and {V5 LI (k —b + 6)S} LI {V, LUbS} with
0=0,1.

Proof of Lemma 8.4.1. Given an imaginary point u € Q, define an involution p,
of a Zariski open subset of the symmetric power S°Q in the following way: for a
generic triple (x;, X,, x;) € S*Q there is a unique conic through u, i, x,, x,, x5; it
intersects Q at three more points y,, y,, 3, and we let p,(x,, X, X3) = (yy, V2, V3)-
Clearly, the above conic is tangent to Q at x,, x,, x5 if and only if (x;, x,, x;) is a
fixed point of p,.

Denote by q,, a,, a; the three tangency points of L UL, and Q, and by v one of
the two imaginary intersection points of L, and Q. Then the graph I', of p,
intersects the diagonal 4 = S°Q x $3Q at a =(a,, a,, a;) x (a,, a,, a;) transver-
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sally. (Note that S3Q is smooth at this point.) Indeed, let p,, p, be the two
projections S*Q x S3Q — S3Q, and let e; be some real generators of the tangent
spaces 7,0, which we regard as basis vectors of T, ,,.,,)S°Q. Then T,4 is
spanned by pfe, +p¥e, i=1,2,3, and 7,I, is spanned by pte, +ap¥e,
i=1,2,3, with some real a; < 0. (To see that, one can move one point at a time;
then the conic is still reducible, and it is easy to estimate the tangent vectors.) Thus,
for any other point v’ close to v the graph of p, also has a unique (and hence real)
intersection point with A4 close to a, i.e., there is a real conic K through v’ tangent
to Q at three real points close to a,, a,, a;. If the line (v'7’) is not tangent to Q, this
conic is irreducible. Finally, to control the topology (actually, to choose one of the
two possible real directions of the perturbation), just note that K has no real
intersection points with (v'0’); hence, this line lies outside of the oval of K, and if
v’ is chosen so that (v'0’) intersects O at two real points, then O is also out-
side. O

Remark. The involution p, is similar to that in [GH, Sect. 7], where it is used
for a similar purpose. It also seems possible to apply Shustin’s approach [Sh].

Appendix A. Kalinin’s intersection form
A.l. The local case

Kalinin’s spectral sequence and, in particular, Viro homomorphisms admit an
obvious relative version. We make use of such a version to do some calculations in
a neighborhood of the fixed point set. Then, in the next subsection, we apply the
result obtained to prove Theorem 5.2.3.

A.l.1. LEMMA. Let v be an m-dimensional vector bundle over a finite cell
complex F, and let T and 0T be the associated disk and sphere bundles, respectively,
supplied with the antipodal involution. Then the homology filtration F* associated
with Kalinin’s spectral sequence of (T, dT) is given by F™"*? =w(v)~'nH,,(F),
where w(v) =1 + w;(v) + wy(v) + - - - is the total Stiefel-Whitney class of v.

Proof. Given a topological space Y with involution ¢: Y — Y and an integer k,
0 <k < oo, denote by Y, the twisted product

- (A12) Y, =Y x S*{(y, ) ~(cy, g9},

where g: S*¥ — S* is the antipodal involution on the standard sphere S*. It is clear
(see, e.g., [D]) that T, and (0T), are, respectively, the disk and the sphere bundles
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associated with v ® n over F, = F x Rp*, where n is the tautological linear bundle
over Rp*. Let h; € H,(Rp*) be the generators. (We let A, =0 for i <0 or i >k.)
According to [D], a sufficient condition for a class X x;, x; € H,(F), to belong to %,
is that the image of X x;®h,_,_; in H, ,(T,, dT,) under the inclusion map
H, (F,) - H, (T, dT,) should vanish. (In [D] the absolute case is considered, but
the proof transfers literally to the relative case.) The inclusion map H  (F,) -
H, (T, 0T,) is equal to the composition of the multiplication by w,,(v®n) =
X w;(v) ® k™" and Thom isomorphism, and spelling out the product w,,(v ® ) N
X x;®h,_,_,; and taking into account the coefficients of those of 4; which are not
identically zero in H,(Rp?) shows that the above sufficient condition is equivalent
to wv)nZx,eH,,_,(F), ie, Zx,ew(v)"'nH,,_,(F). A priori, the subgroup
obtained is only a portion of #9, but comparing the dimensions shows that, in fact,
these two subgroups coincide. O

A.1.3. COROLLARY. Let F, v, T, and 0T be as in Lemma A.1.1, and let
th: H,, (T, 0T) - H (F) be the Thom isomorphism. Then for any class a € H,(F)
one has bv,, ,,(w'(v)na) =th™' a.

Proof. The result is actually proved for the case when F is a g-dimensional
polyhedron with H, (F) =Z/2, and a is the generator of H,(F): in this case
w~!(v) na is the only nontrivial element in #9*™, th~'a is the only nontrivial
element in H, (T, 0T), and bv,, ,,: #*" - H, (T, 0T) is an isomorphism. In
general, one can find a singular g-dimensional polyhedron f: P — F with H_(P)
generated by a single element [P] so that a = £ [P]. The result follows then from the
naturality of bv, and th. O

A.2. Proof of Theorem 5.2.3

A.2.1. LEMMA. Let Y, c, and F be as above. Denote by Dy: H¥(Y) - H (Y)
and Dp: H*(F) - H ,(F) the Poincaré duality maps in Y and F respectively, and by
D.: HX(F) - H (F) the map o+« n(w~'(v) n[F]). Then:

(1) D, induces isomorphisms %y _, — F¥;

(2) given x € &, one has bv" ~#(D3' bv,x) =D;'x mod %y _,_;.

Proof. From the naturality of Kalinin’s spectral sequence and Corollary A.1.3
it follows that the only nontrivial element of #% is w~!(v)n[F] and, hence,
[Y] =bvy(w~'(v) n[F]). Thus, D, is the multiplication by the generator of F#7;
hence, it maps %, _, to #”. Furthermore, D, is an isomorphism (as composition of
Poincaré duality and multiplication by an invertible element), and comparing the
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dimensions shows that so is its restriction to %y_,—%”. (Recall that
dim %, _, = dim #? due to 5.2.2 and duality between H¥ and H.)
It follows that D, bv¥~9(D3' bv, x) € %, and one has:

bv, (D, bvV (D3 bv, x)) = D3' bv, x n[Y] =bv, x;
since Ker bv, = #7*1, this gives D, bv¥ "?(D3' bv, x) =x mod F#7+'. O

Proof of Theorem 5.2.3. By the definition, w(v) n(a°b) =D 'anbeFy_,n
Fic FP*9-N and a direct calculation using Lemma A.2.1(2) shows that
bV, ,-mD:'anb) =D3' bv,anbv, b =bv,ao by, b. O

Mention also the following immediate consequence of A.1.1 and A.1.3:

A.2.2. PROPOSITION. Let Y, ¢, F, and v be as in Theorem 5.2.3. Pick a
component F; c F of dimension (N — m), and denote by in;: F; — Y the inclusion. Then
FInH (F,) cw '(v)nH,,_,.(F), and for any class a € 9 one has in; bv,a =
[w(v) Nadl, _ . |r, where in' is the inverse Hopf homomorphism and ['], _,, stands for the
(g — m)-dimensional component of a nonhomogeneous homology class.

Proof. The first statement follows from the naturality of the filtration and
Lemma A.l1.1 applied to V|F,.- To prove the second one just note that in} is the
composition of the relativization homomorphism H,(Y) — H (T, 6T;) and Thom
isomorphism H (T;, 0T;) —» H,_,,(F;), and apply Corollary A.2.1. O

Appendix B. ‘Generalized Enriques surfaces’ with w,(E) =0

In this section we assume that E satisfies all the axioms of generalized Enriques
surfaces (see 1.2) except the requirement w,(E) #0, i.e., E is the orbit space of a
generalized K3-surface X by a fixed point free holomorphic involution 7: X — X,
and w,(E) = 0. These surfaces are closely related to symmetric curves of bi-degree
(4k + 2,4k + 2) on real quadrics (cf. Introduction). We only state the results,
parallel to those of Section 2; proofs are found in [DK2]. (The proofs require some
properties of the action of the Steenrod algebra in Kalinin’s spectral sequence,
which are also studied in [DK2].)

As in the case w, # 0, the components of E, may be of one of the types S,, V,,
or T, (see 1.3). Note that Ey has no components of type V,, ., as for such a
component C; one would have [C;]?> = 1. We say that Eg or EY is of type I if its
fundamental class belongs to the image of Tors, H,(E; Z) in H,(E).
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B.1.1. THEOREM (cf. Theorem 2.1.2). If Ey is nonorientable, then Eg consists
of a single half and the restriction Xg— Eg of the projection X — E is the orientation
double covering (i.e., there is no components of type T,). Besides, E is an (M —d)-
surface, d > 2, and

(1) if d =2, then y(Eg) = o(E) (mod 16) and Ey is of type 1,

(2) if d =3, then y(ER) =o(E) +2 (mod 16);

(3) if d =4 and y(Eg) =o(E) + 8 (mod 16), then Ey is of type I

B.1.2. THEOREM (cf. Theorems 2.1.2 and 2.1.3). If E is an (M — d)-surface
with orientable real part and either Ey is trivially covered by Xy (i.e., there is no
components of type T,) or Ey consists of a single half, then d > 2 and

(1) if d =2, then y(Eg) = o(E) (mod 16) and Ey is of type 1,

(2) if d =3, then y(Eg) = o(E) +2 (mod 16);

(3) if d =4 and y(Eg) =od(E) + 8 (mod 16), then Ey is of type 1.

B.1.3. THEOREM (cf. Theorem 2.1.4). Let E be an (M — 3)-surface with
Ep=kS. Then Ey={4pS}L1{(4q +1)S}, both the halves being nonempty unless
k =1 (mod 8).

B.1.4. THEOREM (cf. Theorem 2.1.5). Let Ey =T, LIkS. Suppose that E is an
(M — d)-surface and y(Eg) = o(E) + 26 (mod 16). Then for the values of (d, d) listed
in Table 1 in 2.1 one has Ey = {V,, LUkMS} LI {kPS}, where k® (mod 4) takes one
of the values given in the table; furthermore, k® # 0 with the possible exception of the
cased =2,6 =0, Eg is of type 1. Besides, there are the following additional prohibitions:

(1) if d =0, then both the halves (as well as Ey itself) are of type 1;

(2) if d =0, then k' #0 unless k =0 (mod 8);

(3) ifd =1 and kP =0, then either k = & (mod 8), or k =0 (mod 4) and EQ is

of type 1.
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Added in proof. The proof of Theorem 2.1.4 has a gap: in 7.3.2 one needs to eliminate
the case k =/ with both E{’ and E@ nonempty. It is eliminated by the following
lemma: if Eg is orientable, both the halves are nonempty, and [EQ’] = x + conj,, x with
x € H,(E), then x*>=0 mod 2. (This implies that if in 7.3.2 both the halves are
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nonempty the relation [E{’] = x + conj, x holds not only in H,(E) but also in
H,(E; Z) and, hence, s, + - - - + 5; can be taken to represent one of the halves.) To
prove the lemma apply the Pontrjagin square: P[E}’] = 2P(x) + 2(x o conj, x). Then
pick an s € H,(E; Z) so that [Eg] =s 4 conj, s: such an element exists in H,(FE)
as w, vanishes in H3=HY, and it lifts to H,(E; Z) since, due to the Arnol’d
lemma, s*=so[Eg] —soconj,s=0mod2. Due to the Arnol'd lemma
again, x o conj, x = x o (1 4 conj,)s = (x + conj, x) o s =50 [ER’]. Thus, x o conj, x
equals 3(s + conj, s) o [EQ] = 3[Eg] © [EY] = 3[EP]? reduced mod 2 and 2x2 mod 4
equals 2P(x) = P[EYP] —[EQ])* = 0. O
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