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Unknotting tunnels in two-bridge knot and link complements

CoLIN C. ADAMS AND ALAN W. REID

Abstract. We give a complete classification of the unknotting tunnels in 2-bridge link complements,
proving that only the upper and lower tunnels are unknotting tunnels. Moreover, we show that the only
strongly parabolic tunnels in 2-cusped hyperbolic 3-manifolds are exactly the upper and lower tunnels in
2-bridge knot and link complements. From this, it follows that the upper and lower tunnels in 2-bridge
knot and link complements must be isotopic to geodesics of length at most In(4), where length is
measured relative to maximal cusps. Moreover, the four dual unknotting tunnels in a 2-bridge knot
complement, which together with the upper and lower tunnels form the set of all known unknotting
tunnels for these knots, must each be homotopic to a geodesic of length at most 6In(2).

Section 1. Introduction

Given a compact 3-manifold with one or two torus boundary components, we
say that a properly embedded arc is an unknotting tunnel if the complement of a
regular neighborhood of the arc is a genus two handlebody. Note that if a manifold
has an unknotting tunnel, its fundamental group can be given by a presentation
with two generators and one relator. Given an arc in the 3-sphere that begins and
ends on a given knot or link and such that its interior avoids the knot or link, we
call the arc an unknotting tunnel for the knot or link if the restriction of the arc to
the exterior of the knot or link is an unknotting tunnel.

Recently, there has been considerable effort expended on the determination of
the unknotting tunnels for various classes of knots and links. In particular, in [5],
Boileau, Rost and Zieschang completely classified the unknotting tunnels for torus
knots. In [3], Bleiler and Moriah distinguished two types of unknotting tunnels for
two-bridge knots, called the upper and lower tunnels and determined when they
were equivalent. In [6], Kobayashi discovered additional unknotting tunnels for
two-bridge knots and classified them up to homeomorphism. In [8], a complete
determination of non-simple knots with unknotting tunnels was given, together
with a classification of their tunnels. Moreover, Morimoto and Sakuma determined
exactly which of the known unknotting tunnels for two-bridge knots are isotopic.

First author supported by NSF Grant DMS-93028943, second author supported by the Royal
Society.
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In this paper, we use geometric techniques to give a complete classification up
to isotopy of the unknotting tunnels for two-bridge links, showing that the upper
and lower tunnels are all of the tunnels that occur. Note that in our usage of the
word link, we do not include knots. It was recently announced by Martin Kuhn
that he also has such a classification utilizing algebraic arguments.

Building on the work in [1] and [2], we also investigate parabolic tunnels. In [2],
it was shown that a hyperbolic 3-manifold generated by two parabolic elements
must be a 2-bridge knot or link. In [1], it was shown that an unknotting tunnel in
a hyperbolic 3-manifold with two cusps must be isotopic to a vertical geodesic with
length at most In(4) relative to a pair of canonical cusps.

A parabolic tunnel is an unknotting tunnel in the compact core of a cusped finite
volume hyperbolic 3-manifold M with one or two cusps such that the fundamental
group of the complementary handlebody is generated by two elements which
correspond to parabolic isometries in the fundamental group of M. We say that a
parabolic tunnel is strongly parabolic if the fundamental group of the complemen-
tary handlebody is generated by two elements, each of which can be freely
homotoped to the boundary of M without passing through the tunnel. These loops
will again correspond to parabolic isometries in the fundamental group of M.

We prove that strongly parabolic tunnels in hyperbolic 3-manifolds are exactly
the upper and lower tunnels of 2-bridge knot and link complements, up to isotopy.
We use this to show that the upper and lower tunnels must each be isotopic to a
geodesic arc that has length at most In(4) with respect to the canonical cusps for the
manifold.

In the case of a 2-bridge knot, there are four (not always distinct) additional
unknotting tunnels other than the upper and lower tunnel that are known to occur,
called dual tunnels (cf. [6] and [8]). We prove that such a dual tunnel must be
homotopic to a geodesic with length at most 6In(2) relative to a maximal cusp.

All of the manifolds in this paper are orientable. We give orientations to tunnels
and utilize a~! to denote the tunnel o with the opposite orientation. Given a
horoball in the upper-half-plane model of hyperbolic 3-space, its center is its point
of tangency with the boundary plane and its hyperbolic radius is infinite.

Section 2. Unknotting tunnels in 2-bridge link complements

A 2-bridge knot or link can be drawn in a 4-plat projection, which is a
projection with two maxima at the top and two minima at the bottom and a braid
ciescending from the four strands that come out of the two maxima down to the
four strands that come out of the two minima. The upper tunnel is a horizontal arc
that begins on the one maximum and ends on the other and intersects the knot or
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link only in its endpoints. The lower tunnel is a similar arc that connects the
minima. One can easily check that both of these tunnels are unknotting tunnels,
and an explicit argument appears at the beginning of the proof of Lemma 3.1. We
will prove that in the case of a 2-bridge link, these are the only unknotting tunnels.
By a 2-braid, we mean a knot or link that can be put in the form of a closed-braid
with braid index two. In particular, this makes it a (p, 2)-torus knot or link.

THEOREM 2.1. Up toisotopy, a two-bridge link with two components that is not a
2-braid has two unknotting tunnels, which are the upper and lower tunnels. Up to isotopy,
a two-bridge link with two components that is a 2-braid has one unknotting tunnel.

Proof. Let o be an unknotting tunnel in a two-bridge link complement, where the
link complement is not a 2-braid. By [7], the link complement is hyperbolic. Clearly,
the link must have exactly two components, and « must begin on one link component
and end on the other. The complement of a regular neighborhood of « in the link
exterior is a handlebody. There is an involution of the handlebody sending each of
the curves in a spine for a handlebody to its inverse. The attaching curve for the
neighborhood of « on the surface of the handlebody will be sent to itself with the
same orientation by the involution, and therefore, the involution extends to the
neighborhood of the tunnel, fixing the tunnel pointwise and giving an involution of
the link complement. Since the manifold is Haken and hyperbolic, the axes of the
involution will correspond to elliptic axes of order two in the universal cover H>. The
unknotting tunnel lifts to a set of such axes in H>. Hence an unknotting tunnel is
isotopic to a geodesic with both ends going out the cusps, and any unknotting tunnel
must occur as a subset of the axes that correspond to a strong involution. Note that
the axis of a strong involution on a 2-component link is comprised of four arcs, each
of which has its endpoints on the link.

Every two-bridge knot or link has a tri-symmetric projection (cf. [3]) as in Figure
1. This follows from the fact that any rational number can be represented as a
continued fraction with all coefficients even, the number of coefficients being even
for a knot and odd for a link. (See [9].) The knot or link projection coming from
that continued fraction representation given by [2b,, 2b,,...,2b,] can then be
rearranged into the tri-symmetric projection.

A 2-component 2-bridge link has orientation preserving symmetry group Z, + Z,.
(See [4].) The symmetry group is evident in the tri-symmetric projection. In particular,
one sees that there is a single strong involution corresponding to a 180° rotation about
the horizontal line in the figure, together with two other obvious involutions that are
not strong, corresponding to 180° rotations about the vertical line and about the line
that is perpendicular to the page and that passes through the figure at the center.

Hence, the only possible unknotting tunnels are the four arcs that make up the
axis corresponding to the single strong involution, each arc of which begins and
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Figure 1

ends on the link. The arc at the center and the outermost arc (which in the figure
appears as two infinite rays) are exactly the upper and lower tunnels, both of which
are unknotting tunnels. We would like to eliminate the remaining two arcs as
possibilities for unknotting tunnels.

Let m, and m, be the two axes of the strong involution that are not the upper or
lower tunnel. Suppose for the sake of contradiction that one of them is an
unknotting tunnel. Denote it by « and denote the other remaining axis by f. Let
M = S% — N(L). The strong involution corresponding to a can be extended to all of
S3. Taking the quotient of S* by this involution yields S>. Let p be the quotient
map. The neighborhood of each component of L is taken to a ball by p. Since the
complement of N(xu L) is a handlebody, the complement of p(N(a U L)) in p(S?)
must be a ball W, and the three axes of the strong involution in the handlebody
must project to three unknotted unlinked arcs in the ball. Hence the image of § in
W must be unknotted. However, in order for p(f) to be unknotted in W, it must be
the case that the knot p(x U L U ) is unknotted in S>. However, if L has tri-sym-
metric representation coming from the continued fraction [2b,, 2b,, ..., 2b,], (so
there are 2b, crossings at the center, b, crossings to the left and right of that, b,
crossings above and below that, etc., n even), then p(a U L U f) is the two-bridge
knot given by [bg, 4b,, b, 4b5, ..., b,] and is therefore nontrivial (see Figure 2).
Hence, a cannot be an unknotting tunnel.

Note that in the case of a 2-braid link, it is known that there is exactly one
unknotting tunnel, corresponding to both the upper and lower tunnels, as in this
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case, they are isotopic. For any other 2-bridge link, the upper and lower tunnels are
known to be distinct up to isotopy (cf. Thm. 5.2 of [8] for example). O

In [3] and/or [8], the authors determine exactly when the upper and lower
tunnels are equivalent, in the sense that there is a homeomorphism of S taking the
link back to itself and the one unknotting tunnel to the other.

3. Strongly parabolic tunnels

LEMMA 3.1. The upper and lower tunnels in a 2-bridge knot or link complement
that is not a 2-braid are strongly parabolic.

Proof. From [7], using the work of Thurston, a two-bridge knot or link is
hyperbolic if and only if it is not a 2-braid. One example will suffice to prove the
lemma. In Figure 3, the two loops shown at the right are freely isotopic to the
boundary of a regular neighborhood of the knot. The tunnel o at left is an upper
tunnel (however, we have turned the knot on its side to save space). Hence, a
regular neighborhood of the resulting graph can be unknotted. In particular, we can
shrink the tunnel to a vertex (leaving the neighborhood of the graph unaffected),
and then untwist the first sequence of crossings on the left. We can then untwist the
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remaining sequences of crossings, one sequence at a time, moving left to right, by
untwisting either the two uppermost strands or the two middle strands. At all stages
of the unknotting of the graph, the two loops at right are unaffected. After
unknotting, they form a pair of generators for the complementary handlebody.
Hence, before unknotting, they form a pair of parabolic generators for the link
complement. Thus, this unknotting tunnel is strongly parabolic. W

It was proved in [2] that a parabolic tunnel can only occur in a two-bridge knot
or link complement. We will prove:

THEOREM 3.2. An unknotting tunnel o in the compact core M' of a finite
volume hyperbolic 3-manifold M is strongly parabolic if and only if o is either the
upper or lower tunnel and M is a 2-bridge knot or link complement that is not a
2-braid. Such a strongly parabolic tunnel is isotopic to a geodesic arc with length at
most In(4) relative to the canonical cusps.

Proof. The existence of a strongly parabolic tunnel implies that the fundamental
group of M is generated by a pair of parabolic elements. By Theorem 3.3 of [2], this
implies that M is the complement of a 2-bridge knot or link in the 3-sphere that is
not a 2-braid.

If M is the complement of a 2-bridge link that is not a 2-braid, Corollary 4.8 of
[1] immediately implies that a is isotopic to a geodesic arc with length at most In(4)
relative to the canonical cusps. Moreover we have already proved that « must be an
upper or lower tunnel. Hence we can restrict M to be the exterior of a 2-bridge knot
that is not a 2-braid.

Let ¢ and 4 be two parabolic elements of the fundamental group of M that
generate the fundamental group of the handlebody H, and such that representative
loops in H can be homotoped to the boundary of M through H. Then, we will show
that there exists a choice of representative loops ¢’ and d’ such that a regular
neighborhood of their union is a handlebody, call it H’, and dH’ is isotopic to 0H
through H. We argue as follows. If F is a free group generated by elements a and
b, any automorphism of F is a product of automorphisms of two types, the first of
which fixes one generator and sends the other generator to its inverse, and the
second of which fixes one generator and sends the other to a product of the two
generators. Hence, we can move from any one pair of generators to any other by
a sequence of such operations. Let e and f be the two loops that form the spine of
H. Applying an appropriate sequence of these operations, we can obtain ¢’ and d'.
However, if at any stage, we have a pair of loops that represent a pair of generators
of the fundamental group of H, such that the boundary of a regular neighborhood
of the pairs is isotopic through H to dH, then the same holds true after we apply
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one of these two operations to those elements of the fundamental group. The first
operation does not change H', while an unwinding of part of H' as in Figure 4
shows that the second operation preserves the fact that dH’ is isotopic to dH
through H.

Hence, « serves as a tunnel for the handlebody H'. However, since ¢’ and d’ are
parabolic, there exist three nontrivial involutions of M, one switching ¢’ and d’, one
switching ¢’ and ¢'~! and d’ and d'~' and one switching ¢’ and d'~'. This follows
from the fact that if we have a fundamental group generated by two parabolic
isometries with distinct fixed points, be they ¢’ and d’ or ¢’ and d'~!, we can choose
a geodesic such that conjugation by the order two elliptic isometry about that
geodesic switches the two parabolics. This elliptic isometry projects to an involution
on the corresponding manifold. Similarly, conjugation by the order two elliptic
isometry about the geodesic that has endpoints at the fixed points of the two
parabolics sends the group to itself by sending each of the generating parabolics to
its inverse. This elliptic isometry also projects to an involution of the manifold.

Each of these three involutions sends H’ to itself and extends to the manifold,
hence it must send a neighborhood of a to itself. Since it must send the two disks
on dN(a) UOM back to themselves, it must send o to a or to a~'. At least one of
the three must send the attaching curve for the 2-handle back to itself with the same
orientation, since any one involution is the product of the other two. Hence, one of
the three fixes a, up to isotopy. In particular, this means that a is a subset of the
axis of a strong involution.

However, if we place the knot K into a tri-symmetric projection, then there are
two obvious axes for strong involutions, and since there are exactly two strong
involutions for a 2-bridge knot (cf. [4]), these are all of the possibilities. Each of
these axes in S? is cut into two arcs by the knot. Two of the resulting four arcs are
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the upper and lower tunnels. We will show that the remaining two arcs cannot be
unknotting tunnels, thereby proving that a strongly parabolic tunnel must be either
the upper or lower tunnel.

Let m be one of these two arcs and let g be the strong involution axis within
which it lies. Suppose that m is an unknotting tunnel. Then the quotient of S by
the strong involution yields S3. Let p be the quotient map. The axis g intersects
each of the two handlebodies N(Kum) and S°> — N(Kum) in an arc, and each
handlebody is preserved by the strong involution. Hence, p(N(Kum)) and
p(S? — N(K um)) are each solid tori. This implies that p(K L m) must be unknotted
in S°. However, if K is given by [2b,, 2b,, . . ., 2b,] with n odd, then p(K um) will
be given by [b,, 4b,, b,, 4b,, . .., 4b,] or [4b,, b,, 4b,, b,, . . ., b,] depending on the
strong involution. Neither of the resulting knots are trivial, therefore showing that
the only strongly parabolic tunnels are the upper and lower tunnels.

We now return to the three involutions, one of which fixes «. It can be lifted to
an elliptic isometry x that rotates about a geodesic lift of «, which for convenience
we can choose to be a geodesic with endpoints at 0 and oo. The other two
isometries then can be lifted to rotations, call them y and z, about a pair of
geodesics that intersect this lift of a, such that all three are perpendicular. Hence the
other two isometries must both send o to o~

Let g be an isometry in the fundamental group that takes the horoball centered
at 0 to the horoball centered at co. Then goy and goz are lifts of the two
involutions, each of which fixes oo. At least one of the pair must be a parabolic
isometry, as x is an elliptic isometry fixing co, and if all three were elliptic fixing oo,
we could not have the product of two giving the third.

Let r be this parabolic isometry. Since it projects to an involution of the
manifold, 7> must be a parabolic isometry in n,(M) so that it projects to the
identity isometry of M. Since r must send the lift of a« with endpoints at 0 and o
to a lift of «~!, with one endpoint at oo, and since r is realized as a Euclidean
translation, the two endpoints of a on the cusp boundary must be equally spaced on
the cusp boundary. That is to say, there are two shortest paths on the cusp
boundary to get from one to the other. Since every parabolic isometry that projects
to an isometry of the manifold moves points in a canonical cusp a distance of at
least one, the two endpoints of a occurring in the cusp must be a distance apart on
the cusp boundary of at least 1. The argument given in the proof of Corollary 4.8
of [1] applies in this new situation to give a bound on the length of that part of «
that is outside the canonical cusp, as follows.
~ The lift of the canonical cusp and the unknotting tunnel must give a connected
graph in H3, thinking of the horoballs as vertices. The fact that the boundary of the
handlebody that is complementary to a neighborhood of a is compressible implies
that the graph is not a tree. Choosing a cycle in the graph and picking the point at
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oo appropriately, we know that there is a smallest horoball H in the cycle. Since it
is attached by lifts of « to two other horoballs, each of which is at least as large as
it is, and since we can choose H such that one of its neighbors is larger than it is,
we know that the two endpoints of the lifts of « are a distance less than 2e ~*/2 apart
on the surface of H, where x is the length of that part of a outside of the canonical
cusp. However, then 1 <2e~*2 giving us x < In(4). O

Section 4. Dual tunnels

In [6], it was shown that there are up to four other unknotting tunnels in
addition to the upper and lower tunnel for a 2-bridge knot. In [8], these tunnels
were described as dual to the upper and lower tunnels. We now show that these
additional unknotting tunnels are homotopic to geodesics, which have a universal
bound on their length.

COROLLARY 4.1. Let K be a two-bridge knot that is not a 2-braid. Then the
dual tunnels to the upper and lower tunnels are themselves homotopic to geodesics of
length less than 6In(2).

Proof. Let t and t' be the upper or lower tunnels in either order, already
isotoped to be geodesics in the hyperbolic structure on S* — K. Choose N(K) to be
a neighborhood of K that is a cusp in the hyperbolic structure on S* — K. If d is a
dual tunnel to ¢, then by definition of d for a two-bridge knot, there is a disk D in
S? — N(K) with embedded interior such that its boundary is made up of six arcs,
the first of which runs the length of ¢, the next of which follows a meridian around
the boundary of the neighborhood of the knot, then next of which runs the length
of t in the opposite direction, the next of which runs along dN(K), the next of which
runs the length of d, and the last of which runs along N(K) to where we started.
The disk D lifts to a disk D’ in H>. The two arcs on dD that run along ¢ lift to arcs
within a pair of geodesics in H?, where those geodesics share an endpoint at the end
corresponding to the meridian. The three arcs on JD that lie on dN(K) lift to paths
in three horospheres centered at the three endpoints of the geodesics. The arc
corresponding to d must lift to an arc that is homotopic to the geodesic d’
connecting the two remaining endpoints of the first two edges.

We will now obtain an upper bound on the length of the geodesic d’ relative to
a maximal cusp. By Theorem 2.2 and Corollary 3.5 of [2], the meridian curve can
be isotoped to a loop in the boundary of the maximal cusp of length strictly less
than 2. We have already seen above that ¢t must be a geodesic of length less than
In(4). Choosing the ideal triangle in H? that corresponds to D’ so that the vertex
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associated to the meridian is at {00} in the upper half space model, we can normalize
so that the horoball H_, centered at {co} has boundary plane at Euclidean height 1.
Then the horoballs at the other two vertices, call them H, and H,, each have a
Euclidean diameter strictly greater than 1/4, and their centers are a Euclidean
distance apart that is strictly less than 2. By reflecting in a geodesic with one endpoint
at the center of H, and its highest point directly above the center of H,, we will fix
H, and send H, to a horoball centered at oo with Euclidean height at most 16. Hence
the geodesic with endpoints at the centers of H, and H, will be sent to a vertical
geodesic with length relative to the maximal cusp strictly less than 6In(2). O

Although the expectation is that the four dual tunnels will all be isotopic to
geodesics, we have no proof of this. However, in the case that the upper or lower
tunnel has length 0, we can show that two of the four dual tunnels are isotopic to
geodesics, which we do below. In fact, it is conjectured that for a two-bridge
knot, either the upper or lower tunnel always does have length 0. This has been
checked for two-bridge knots of low crossing number using the computer program
SNAPPEA (cf. [10)).

LEMMA 4.2. Let t and t' be the upper and lower tunnels in either order and let
d be a dual tunnel to t'. If t has length 0, then d is isotopic to a geodesic.

Proof. As in the preceding proof, since d is dual to ', d is isotopic through a disk
D in S3 — N(K) to a curve c that runs along ¢, then along a meridian around the
boundary of the cusp and then back along ¢. Since we can assume ¢ is geodesic by
Theorem 3.1, we can lift ¢ to a curve in H? such that the two arcs of ¢ that run along
t lift to geodesic arcs on geodesics that share an endpoint at infinity. These two
geodesics define an ideal triangle in H>. Let f* be the third edge and f its projection
to the manifold. If the projection of the ideal triangle to M is embedded, then we
can isotope ¢ through this embedded triangle to f, thereby showing that d is isotopic
to a geodesic. In fact, it’s enough to show that no other lift of f intersects the original
ideal triangle in H*. Place the vertex of the triangle corresponding to the two lifts
of t at {oo} and take the horoball centered at that point, denoted H,,, to be the set
of all points in and above the plane of Euclidean height 1. Then the two horoballs
at the other ends of the lifts of # must each be tangent to this one and therefore have
a Euclidean diameter of 1. Since the parabolic isometry corresponds to a meridian
of a 2-bridge knot, we know that its Euclidean translation distance y satisfies 1 <y <2
from [2]. Let f” be another lift of £. Then there is a second ideal triangle and set of
three horoballs at the vertices of this ideal triangle that correspond to /. We wish
to show that f” cannot intersect the ideal triangle corresponding to f’. However, the
horoball H, prevents any of the three horoballs corresponding to f” from having
Euclidean diameter greater than 1. Looking down from oo, if the centers of the two
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horoballs at the end of f* form two opposite corners of a square and the centers of
the two horoballs at the end of f” form the remaining two corners, then f’ and f”
will intersect. This situation can occur only when y = 2. Note that in this case the
third horoball corresponding to f” is tangent to all four of the balls centered at the
vertices of the square. If y < 2, then there will not be room for the horoballs at the
end of f”, and f” will not reach high enough to intersect the ideal triangle of f".
In fact, even the intersection when y = 2 cannot occur, as if it did, there would
have to be a covering translation sending the one lift f’ of f to the other f”. But any
such covering translation would be forced to fix the point of intersection between
them, as that point is equidistant from the two horoballs at the end of each
geodesic. This contradicts the fact that a covering translation can fix no points of
H?, O
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