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Fenchel type theorems for submanifolds of S”

REMI LANGEVIN and HAROLD ROSENBERG

We dedicate this paper to the memory of Nicolaas Kuiper

The total curvature of compact hypersurfaces M of R” (,, |K]) is related to the
topology of M and to the manner in which M is embedded in R”. K is the Gauss-
Kronecker curvature of M, i.e., the determinant of the second fundamental form.

For curves C in R3?, the theorems of Fenchel and Fary-Milnor, state the total
curvature of C is at least 2z (with equality precisely for convex planar curves) and
if C is knotted in R? then [ |k| > 4r, [Fe], [Fa], [M,], [M,].

Chern and Lashof observed the total curvature of M* = R" is

‘ j |, ),
pn—1

where ¢ is a constant depending only on » and k, P" ' is the projective space of
lines / through the origin in R” and |u|(M, /) is the number of critical points of the
projection of M to /. Since this projection is a Morse function for almost all /, they
obtained ¢f as a minoration of the total curvature, f the sum of the betti numbers
of M[C-L].

In particular for surfaces in R? one has

f K| > 2n(2g + 2),
M

g the genus of M. If a torus is knotted in R?, then the total curvature is at least
twice as large, i.e., 16m [L-R]. Results of this type for knotted surfaces of higher
genus in R? have been obtained by Kuiper and Meeks [K-M].

In this paper we establish results of this nature for submanifolds of $”. For
surfaces in S, it is not sufficient to consider [,, |[K|, where K is the extrinsic curvature
of M (consider the boundary of a small tubular neighborhood of a geodesic. Any
two points of M differ by an isometry of S* so the intrinsic curvature of M is
constant; it is zero by Gauss-Bonnet. So |K| =1 and |, |K] is the area of M). In fact,

594



Fenchel type theorems for submanifolds 595

for curves C in S?, it’s easy to see that [ (|k,|+1)>2=n, and equality holds
precisely when C'is a geodesic; k, the geodesic curvature of C. However for surfaces
M in S3, it is still not enough to consider [, (|K|+ 1). One must add to |K|+1, a
function A, (x) = the average of the absolute values of the normal curvatures to M
at x. Then one has the desired results:

C(M) = J (co K| + €17y (x) + co) = 27(28 +2),

for certain constants c¢,, ¢,, ¢,, and g the genus of M. Moreover, if M is knotted in
S3, then C(M) > 2n(2g + 4).

The function [, /4, has an interesting geometric interpretation. It is the total
number of folds of M. We call this the 1-length of M. It is a one dimensional
measure of M; for M in R?® and tM the homothety of M by ¢, one has
L,(tM)=tL,(M). In general, for M a p dimensional submanifold of R” or §”, we
introduce i-length of M for every i < p. We then study the behaviour of i-length
through projections and intersections obtaining local and cinematic-type formulae.

Notice that A,(x) is not (except if M is convex) the first symmetric function of
curvature g, of M at x. Chern and Slavsky have studied [,, o,, for M in R" and
proved cinematic formulae for these functions [Ch], [SI].

The 2-length of M = S?, L,(M), is the area of M, L,(M) is the total curvature
of M. We define L,(M) as follows. Let X be a geodesic 2-sphere of S* with x a
conjugate point of X (i.e., dist(x, 2) = 7/2). Let p: §* — {x, —x} — 2 be the projec-
tion along the geodesics starting at x. Denote by y, the critical values of p/M.
Define

1
Li(M)=— lys| dZ,
T~ JG4,3)

where G(4, 3) is the Grassmann manifold of 3-planes through the origin of R,
identified with the space of geodesic 2-spheres of S°.
We prove L,(M)=n? [, h,. Also we establish

1

Lo(M) = m G(4.2)

'yll dl9

where /e G(4, 2) is a geodesic of S> and |y| is the number of critical points of the
projection of M to [/ (along the geodesic spheres orthogonal to /).

Now one uses the cinematic formulae to relate L,(M)+ L,(M)+ L,(M) to the
critical points of a Morse function on M. For this, we construct an “adapted”
singular foliation of S°.
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The theory is much simpler for curves on S?; we indicate the argument here.

Let /e G(3,2) denote a geodesic of S? and for each yeP? (y=a pair of
antipodal points of S2), let #(y) be the foliation of S? (singular at y) by geodesics
passing through y.

We have

1
[ Il=3 [ e 700 a5
C P2

where |u|(C, #(y)) denotes the number of contact points of C and Z(y). Also

1 1
- #(Cnl dl=—f<J # le)d,
ZJ;EGG,Z) ) 2n vy \Jle #() ( )) ¥

where |C| denotes the length of C. Hence

c]=

1 1
f (lkgl+1)=-2-j [M(C, f(y))+—j #(Cnl) dl] dy.
c y T Jie #(»)

Now for y e P2, if C intersects every le #(y), then C intersects every such / in at
least two points and

J #(CAl)>2n
le F(»)

If C is disjoint from /e # (y), then a moments thought shows there are at least
two points of contact of C with #(p). Thus |u|(C, F(»)) = 2; so [ (k.| + 1) > 2x.
This illustrates the integral geometric technique but for curves the result is not
interesting since the last inequality is just an application of Fenchel’s theorem for
curves in R® = (k= ./k2+ 1 is the curvature of C in R’).

For surfaces in S° the argument requires the introduction of a foliation adapted
to a flag of geodesic spheres.

We remark that this notion of length has been applied in oceanography [J-L].

I. The length functions for submanifolds of R” and their cinematic formulae
“Let M be a p-dimensional submanifold of R” and let & be a i+ 1 dimensional

linear subspace of R” (we will denote by G(n, i + 1) the Grassmann manifold of all
such /). The critical points of the orthogonal projection p, of M to h will be denoted
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by I',(M) (or I'), if there is no ambiguity) and we denote the set of critical values
Ofph by Vns OF '})(M, h)

When p > i, for almost every he G(n, i + 1), I', is almost everywhere an i-dimen-
sional submanifold of M and for almost every xe I',, T.(I",) and h* are transverse
in T.(M), so y, is a hypersurface of 4 in a neighborhood of p,(x).

We define the i-length functional as:

L(M)=c J IVhIdh,

G(n,i+ 1)

where |y,| denotes the volume of y, (when i=0, y, is a finite set and [p,| is the
number of points in y,), and the constant ¢ is chosen so that if M is the boundary
of an e-tubular neighborhood of an i-dimensional submanifold C of an affine p + 1
dimensional subspace of R”, then lim,_, L,(M) = |C|.

If tM denotes a homothety of M by ¢ > 0, then clearly

L,(tM) = t'L,(M).

The constant ¢ occurring in the definition of L, is 1/2|P,_,|, since a sphere of
any dimension > 1 satisfies |y,| = 2 for every line /e G(n, 1). We will see shortly that
Ly(M) is the total curvature of M.

Here are some examples of 1-lengths of surfaces in R*:

1
Lon=2 |l

G(3,2)

If M is a round cylinder of height A, then y, is (for almost all #) two parallel
segments of length A|cos 6| where 6 is the angle between the axis of M and the
plane 4. Hence L,(M) = 4. If M is a sphere of radius R, y, is a circle of radius R
and L,(M)=4R.

I.1. The local formulae
We define extrinsic curvature functions 4, on M” — R”, and we prove L,(M) =

¢ [ s hi(x) dx, where ¢ = c(n, p, i).
Let us begin by L, and L, of a surface M in R’. We know that

1
Ly(M) = 4n f |V1| dl,
P
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where |y,| is the number of critical points of the projection of M to /.

Let ¢: M — E be the map ¢(x) = (/(x), py(x)), where /(x) is the line through
the origin parallel to the normal line to M at x, p,,(x) is the orthogonal projection
of x to I(x), and E is the tautological line bundle over P,. Let N= ¢(M) and H be
the horizontal plane field of the Riemannian fibration 7n: E— P,.

Clearly n¢ is the Gauss map of M with |Jac(ng)| =|K(x)
curvature of M at x; so

, K the Gauss

|K(x)| = |Jac ¢ (x)| |Jac ppy

b

where Jac py,, is the Jacobian of the orthogonal projection (in E) of Ty, N to
H¢(.Y) - H(X).
Hence

L |y, | dl = j Jac(py)| = J [Jac(¢)| Jac pyy | dx = f |K(x)| dx.

The first equality is a special case of the coarea formula and the second is a change
of variables. Hence

1
Lo(M) = pym J |K(x)| dx.

This formula for the total curvature of M is the basis of the Chern-Lashof
theorem and easily generalises to R” [C-L].

For future calculations it is useful to introduce the following notation. Let
p: E— B be a Riemannian fibration and N < E a submanifold transverse to the
fibers F(y)=p~!(y), ye B. Let H be the horizontal plane field of the fibration. At
x€N, T.(N) is the orthogonal sum 7 . (NnF,)+ V(x) where V(x) is a subspace
transverse to the fibers of dimension that of H(x). Denote by Jac py,, the Jacobian
of the orthogonal projection of V(x) to H(x). Then the coarea formula yields:

f |JacpH(x)|dx=J |IF(>) " N| dy,
N B

and more generally, if ¢: M — E is an immersion transverse to the fibers, N =
¢ (M), then

J\ IJaC ¢I lJanH(X)l = J\ ,JanH(x)| dx = Jv !F(y)f\Nl dy.
M N B
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Now we derive the local formula for a surface M in R>. Let / be a line in the
tangent space to xe M, and let {k(x, l)[ be the module of the normal curvature of
M at x in the direction /; i.e., k(x, /) is the curvature of the plane curve Mn(v. @),
v, the normal line to M at x.

We define

1

hi(x)=
l Vol(Py) Je, 7, (s

lk(x, l)[ dl.

When M is convex at x, h,(x) is the mean curvature of M at x.
PROPOSITION 1.2. For M a surface in R?,

L,(M) =% j h(x) dx.

Proof. Let m: E=E3,2)>G(3,2)=G be the tautological line bundle,
E={heG,xeh}.
Let ¢: P,(M)— E be the map

¢(x, 1) =(h=1", py(x)),

and let ¢(P,(M)) = N. We know that

J lyhldh=J Jac ¢| [Jac py|,
G P (M)

so we compute the Jacobians.

Let / be a line through x in T (M), v, denote the line normal to M at x, h = [+
the subspace of R? orthogonal to / and W the orthogonal to v, in A; cf. Figure 1.

We choose a basis of T, ,(P,(M)) as follows:

— U, is a unit vector tangent to the circle fiber of P,(M) at x,

— U, is a horizontal lift of a unit vector tangent to I, at x,

— U, is a horizontal lift of a unit vector tangent to (/@ v,)~ M at x.

Also, let U, be a horizontal lift (in E) of a unit vector tangent to y, at y.

The volume of the parallelepiped generated by the first three vectors is |cos 6|
where 6 is the angle between 7.7, and h.

The image d¢p(U}-) is the vector +cos(@)U,. The vector dp(U,) and d¢(U,) are
projected by the differential dn of the projection n: E(3,2)—» G(3,2) on two
orthogonal vectors of T,4,)G(3,2); the first unitary and the second of norm
|k (x, D).
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Hence

[Jac ¢ (x)| [Jac py| = [k(x, )],
and 1.2 follows by integrating over the fibers of P,(M).

Remark. A different proof of this can be found in [L-S] based on a Meusnier
formula.

Now we define the functions 4,(x) when M < R” is a hypersurface. Let /= /' be
an i-dimensional subspace of T,(M), and let v(x) be the normal line to M at x.
Denote by |K|(x, /) the absolute value of the Gauss-Kronecker curvature at x of the
hypersurface M N (/@ v(x)) of /@ v(x). Then we define

Yh

Figure 1
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1
ho(x) =
(%) VdGm—mgxhnMﬂm“J”ﬂ

where G(T M, i) is the i-dimensional subspaces of T .(M).
Now 1.2 generalizes to R”.

PROPOSITION 1.3. The functions h, _;(x) localize the functions L,(M); more
precisely,

J~ hn—i(x) = CLI(M)a

where the constant ¢ depends only on the dimensions.

Proof. Let G be the bundle over M whose fibers are the spaces G(T, M, /), / an
n — 1 — i dimensional subspace of T .M, and let E= E(n,i+ 1) > G(n, i + 1) be the
tautological bundle.

Define ¢: G— E by

¢(x, 1) = (h=1", p,(x)).

Notice that the dimension of G(M,n—1—i) is equal to the dimension of
N= UhEG(n,i+l) Yo which is in +n+ iz —i—1.
Now the proof proceeds as in 1.2; we leave the details to the reader.

1.4. The cinematic formulae

We will show that the p-length of a submanifold M <R” is equal to the
(p — i)-length of the sections of M by affine subspaces of codimension i (up to a
constant only depending on dimensions; we will denote such constants by ¢ here).

The idea is to use the Cauchy formula and a projection in cascade.

Let D denote the flag of all pairs (4, L) where geG,, ., and L is an affine
subspace of h of codimension i.

When L is transverse to y,, the points of y,n L are the critical points of the
projection of MN(L@h™) to the vector subspace / determined by L. Let H =
L@®h*; H is an affine subspace of codimension i in R".

Since y(MnH, )= y,n L, we have

WA=CI ly(M~H, ).
LeAhp+1—10)
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Hence

L,(M)=c j (J ly(MnH, l)|>.
Gnp+ 1) \Jahp+1—0

Notice that D can be thought of as {He A(n,n—1i),le G(H,p+ 1 —i)}, hence
D is a Riemannian fibration over 4(n, n — i) with fiber G(H, p + 1 —i).
Now

¢ L,_(MnH)= /(M H, D),

GHp+1—1i)

hence one has the cinematic formula;

L,(M)= cf L,_.(Mn~H).

A(nn — i)

II. Surfaces in 3

In this section we will define the length functionals of surfaces in S* and
establish the local and cinematic-type formulae. There are technical difficulties that
arise here (in contrast to R?®) due to the fact that the distortion of the projection in
S? to a geodesic sphere depends on the point.

We begin with L,(M) (=the area of M) and the spherical Cauchy-Crofton
formula [Sa].

THEOREM 11.1. For M a compact surface in S>,

Li(M) =1 j M| dl

G(4.2)

where | is a great circle of S* (which we can think of as a 2-plane through the origin
of R*), |M | is the number of points of M.

Proof. Consider the map ¢: P(TS*/M)— G(4,2), ¢(x,L)=1 where [ is the
great circle whose tangent at x is L
- Write the tangent space to G(4, 2) at /, as an orthogonal sum:

1,,6(4,2)=T,{/xel} ®T, {112, .},
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where 2, is the geodesic 2-sphere at x orthogonal to /.
Write T, ,,(PTS?*/M)= V@& H where V is the tangent space to the fiber and
H=V*. Then

where p, . is the orthogonal projection of T.M to T,(2,,)=L*. Then
f |Jacd¢|=f lcos £ (L*, T M)|=r.
LeP(TS3/M) Py

Since

f -0 = j ],
G(4,2) G(4.,2)

we have

f ln M| ==|M|.
G(4.2)

Now we discuss L,(M). Let a=(x, —x)e G(4, 1), be a pair of antipodal points
of §3 which are not on M. This point a determines a projection p;: M — X where
X is the geodesic 2-sphere of S conjugate to a (i.e. dist (x, 2') = 7/2). By definition
ps(y) is the point of X which is the intersection with X of the geodesic of S?
through @ and y. Let I's be the critical points of py and y, the critical values.

DEFINITION. L,(M)=(1/27%) [gas |vs| dZ.

The constant is chosen so that the 1-length of an ¢ tubular neighborhood of a
curve C tends to the length of C as ¢— 0. This choice will be justified once we have
established the cinematic formulae for L.

Now just as in R® we define an extrinsic function s, on M. Let k(x, /) be the
geodesic curvature at x of the curve 2;,n M in X, where 2, is the geodesic 2-sphere

at x tangent to / and v, = T, (M)*. Then define

1
() =~ L . ke (x, )| dl.
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THEOREM 11.2. For M a compact surface in S>,

1
LI(M)=—7EJ hy.
M

Proof. For xe M, let 2, be the geodesic 2-sphere tangent to M at x. Let P be
the bundle over M with fiber the projective space P,:

P=1{(x,a)la=(y, —y), ye2.}.

Denote by 2'* the geodesic 2-sphere conjugate to the pair a = (y, —y), and let
E=E@4,3)—- G4, 3) = G be the tautological bundle:

E={(Z, y)/2 a geodesic 2-sphere, ye 2'}.
Then define ¢: P— E by:

¢(xa a)= (Z:‘a Pz (x))

By construction N = ¢(P) is the union of the critical values y5; N=|)s 75 (cf.
Figure 2; the polar curve I ; is the set of critical points of the orthogonal projection
on X, and the critical values I is in ps(I'5)).

Then

f lys|dZ =f [Jac ¢| [Yac py|,
G43 P

so we must calculate the Jacobians.

To do this we decompose T, ., P and TN.

As y varies on X, 2} spans a sphere S(2) contained in G.

Let F be the 3-dimensional orthogonal complement of Ty, in TN, at the point
u= (2%, Prs)- Write F=F, @ F, (at x), where F| is the lift of T>.(S(2)) to Fand
F, is the orthogonal complement of F, in F. So TN=F, @ F, ® Ty;, at x. Let H,
be the horizontal lift to H(E) of T;.(S(2)), and let H, be H in H(E).

Now define a splitting of T, ,,P, non orthogonal in general, as follows. Write
T.M=T.Is,+ L, where L is the line tangent to the circle / joining x to y (this is
not orthogonal in general). Let A4, and A, be the horizontal lifts to P of 7T.I" o3 and
L respectively.

We shall see that the matrix of p, o d¢ is then:
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Y3

PE(X)

Figure 2

*k

o *
0 Id *
0 0 k(x, L)sin 4|

here « is the Jacobian of the projection of I'y on y, and 6 is the arclength on /
between x and y. This matrix is computed with respect to the basis vectors
{thy, T, 2, hy} of the domain and the basis vectors {Ty;, H,, H,} of the range.
We calculate the matrix of p, < d¢ on H, @ H,; identifying H, ® H, with TG.

By definition of Iy, d¢(h,) < Tys.
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The coefficient « satisfies: «|sin 6| = «,, where «, is the Jacobian of the projec-
tion of I'y on y; , when the geodesic sphere X, is orthogonal to / at x. This follows
from lemma II.3, which we prove shortly.

By definition of T.(S(2)), dp(T,,)2.) is of the form:

*
Id|
0

It remains to determine the component of d(p - ¢)(h,) on H,. For that, we
follow a point on the circle tangent at ¢, where ¢ is a point moving on the curve
C of intersection of M with the geodesic sphere at x containing / and the normal
geodesic circle to M at x (cf. Figure 3). Figure 3 shows the analogous map for a
curve on S the length of the arc of the evolute (image of the arc d/ between x and

Figure 3
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¢) is k(x)|sin @], up to first order, where @ is the arc length along / between x and
y (since k(x) =deo/ds).

The same analysis applies in S one gets k(x, /)|sin 6.

The decomposition of TP is not orthogonal; the volume of the parallelepiped
generated by h;, T, ,Z, and h, is a,.

The volume density on P(Z,) is |sin 8 df A dp| where (6, ¢) are polar coordi-
nates at x on the space P(2,) of pairs of antipodal points on 2.

Hence

J [Jac ¢| [Jac py | = f J oolk (x, 1)| |sin 8] |dO A dy|
# M Py

%o

= nj hi(x) dx.

To complete the proof of theorem I1.2 we now prove Lemma II.3.

LEMMA I1.3. Let C(t) be a curve on a surface M embedded in R3. Assume C(t)
is not in the kernel of y at C(t), y the Gauss map of M. Then the characteristic line
of the envelope of the family of tangent planes to M along C(t) is dy(C)*.

Proof. The equations of the envelope are:
<X— X, '})(X)> = Oa
(X —x,dy(C)>=0.

As an immediate corollary of this lemma we have: if K(x) # 0 (so dy(x) is non
singular), all the curves C through x (C on M), such that the characteristic line
through x of the envelope of the family of planes T, M is a given line D, are
tangent at x to the line 4 such that dy(4)=D

The analogous result in S?, using envelopes of geodesic spheres tangent to M
along a curve, follows from the following remark concerning cones in R, over
M <= S3 and C(t) a curve on M. Then the envelope of the family T, (Z ), contains
the 2-plane (dy(C(t)))*, (orthogonal in T, Z to dy(C(r))) whenever C(z) is not
contained in Ker dp. This remark is clear since the equations of the 2-plane are as
before:

X = C(1), y(C@))> =0

(X — C(1), dy(C(1))y = 0.
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We finish this section with a discussion of L,(M). By definition:

1

Ly(M) = 2 Vol(G(4, 2)) G(4.2)

lyll dla

where |y,| is the number of critical points of the projection of M to the geodesic /;
the projection along the (singular) foliation (/) of geodesic 2-spheres orthogonal
to /. Notice that |y,| is the number of points of contact of M and % (/), for almost
all /. The constant is chosen so that Ly(0B(x, ¢)) =1, for e—0.

THEOREM 11.4. Let M be a surface in S* and K(x) be the extrinsic Gauss
curvature of M at x. Then

1
Lo(M) =~ JM IK(x)).

Proof. Let E= E(4,2)— G(4, 2) = G be the tautological fibration and let P(M)
be the bundle over M of the geodesic 2-spheres tangent to M. Define ¢: P — E by:

¢ (x,y) = (y, ! is orthogonal to 2, at y).

Here X, is the geodesic sphere tangent to M at x. Let N= ¢(P) and H be the
horizontal field of the bundle E—- G.

Take a basis of T, ,,P composed of a unitary frame tangent to 2, at y and two
horizontal unit vectors that project to two unitary vectors tangent to the principal
directions to M at x. Then it is clear that the proof of 11.4 follows from Lemma II.5

below.
First we define the 0-length of a curve C on S%

1

Lo(C) = ;‘; J\G(:;,Z) l'yll dl

Then we have:

LEMMA 11.5. Let k, be the geodesic curvature of a curve C = S*. Then

1
L(C) =5~ L ks |
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Proof. Let E= E(3,2)— G(3, 2) = G be the tautological fibration and P(C) the
bundle over C with fibers the geodesic circles of S? tangent to C. Define ¢: P(C) -
E by

¢ (x,y)=(y, [ is orthogonal to X _ at y).

Here 2, is the geodesic circle tangent to C at x. We have

[Jac py| = |cos d(x, y)| k|,

so integrating on the fibers of P(C) we have

J lk,| = Co * Ly(C).

Since

lim j |kg| =2m,
=0 JoB(x,y)

we see that C, = 2.
Now we derive a cinematic-type formula satisfied by L,(M).

THEOREM 11.6. Let M be a surface in S>. Then

1

LI(M)=“' LO(MﬁZ).
T JG4.3)

The constant is obtained by considering small spheres S,. Then L,(S,)~ 4t and
IG(4.2) Lo(Sth) ~ 471:[.

Proof. By definition,

1
L(M) =7 L(4 &

The Cauchy-Crofton formula in S? says:

1
pel=5 [ ol
G(3.,2)
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The inverse image of the orthogonal projection onto 2 of the great circle /is a
sphere 2,. The points of y;n/ are the critical points of the orthogonal projection
of 2,n M onto [. Hence

1 1
L(M)=— /| =— 2,NnM, P),
1 (M) 472 JVG(“) .Lo,z) I)’zm l a2 JD(4,3,2) |ﬂ|( N /)

where P, is the (singular) foliation of X, by geodesics orthogonal to /. Here
D = D4, 3, 2) is the space of flags (2, /), 2 o/ Themap D — D, (Z o) (Ic?2),
is an isometry of D. Hence

1 1
G(4,3) G(4,3)

which completes the proof of II.6.

II1. The Fenchel theorem for surfaces in S°

Let D=D(4,3, 2, 1) be the space of flags 4 =(y =/ < X)) where y is a pair of
antipodal points of a geodesic / contained in a geodesic sphere X of S3. Given 4,
let #(y) be the foliation (singular) of X2 by the geodesics of X2 passing through y
and let # (/) be the foliation of S* by the geodesic spheres of S containing /.

For M a compact surface in S* we define the geometry of M with respect to 4,

by

Geom(M, 4) = #(In M) + [u[(M A Z, F)) + |u|(M, F(1)),

where |u|(M 2, #(y)) is the number of points of contact of MY and #(y), and
|u|(M, #(1)) the number of contact points of M and # (/). If M is transvere to 4
(i.e. y¢ M and / and 2 are transverse to M) and if M2 is in general position with
respect to #(y), M in general position with respect to 4, then Geom(M, 4) is well
defined. This holds for almost every 4 € D.

Hence we can define the geometry of M:

1

VolD) |, Geom(M, 4).

Geom(M) =
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Figure 4

THEOREM II1.1. Geom(M) >2g + 2, g the genus of M, and if M is knotted in
S? Geom(M) >2g + 4. (M oriented).

Proof. It suffices to prove the inequalities for Geom(M, 4) whenever M is
transverse to 4 and in general position with respect to #(y) and % (/). To do this
we shall construct a foliation # = Z(t) of S® — B(x, t) for t > 0 small, xe y, B(x, t)
the r-ball of S? centered at x, satisfying:

— Geom(M, 4) = |u|(M, F)

— & 1is smoothly equivalent to a foliation of R? by parallel planes,

— M is in general position with respect to %.

Then the standard Morse theory applies and the theorem follows.

Let 1 > 0 be chosen so that B(x, ¢) is disjoint from M. Let 2, be one of the
hemispheres of 2 bounded by [, 2 =2,02,, 2 ,n2,=1/ Let % be a one-dimen-
sional foliation of X', — B(x, t) as in Figure 4). Notice that / is a leaf of A (actually
I — B(x, t)). We require the leaves of % to be geodesics of X, through y, outisde of
a small tubular neighborhood of / in 2.

This foliation of 2, has a “Reeb-type” component near an arc x =/, of / going
from —x to 0B(x, t) (the left side of / in Figure 4). Notice that if C is a curve on
2, transverse to /;, then the foliation # can be constructed so that #(Cn/,) = the
number of contact points of C and the Reeb-type component of #. It suffices to
construct # so the Reeb-type component is close enough to /;.

Similarly, define a foliation % of 2, — B(x, ), with the Reeb type component of
% close to the other arc of /, i.e. /[ —[;; cf. Figure 4.

Now define Z (¢); the trace of #(¢) on 2 will be A U%; e=t.

Each leaf « of % bounds a 2-disk in 2, (more precisely, each leaf of 4, together
with an arc on B(x, ¢) "2, joining the extremities of a, bounds a disk in 2,). Let
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a, be a leaf of # as indicated in Figure 4, and consider the leaves of « of & inside
the disk of 2, bounded by «,. Let D(«) be the disk of X, bounded by «. Let F(«)
be a 2-disk in S* which is a thickened D(«); imagine F(«) as a thin pancake over
D(a). F(x) is orthogonal to X, and F(a)n X, = a. In S3, 2 separates S°* into two
balls B, and B,, and F(«) intersects each ball in a 2-disk close to D(«).

Choose the D(«), « inside D(a,), so that the | ), F(«) foliate a part of S3, and
all the F(«) are sufficiently flat so the foliated set is close to D(«). (One can do this
by pushing one’s thumb into S3 — B(x, ¢), starting at a € dB(x, ¢) to create the Reeb
component. One keeps on pushing almost until x. The thumb starts out as a very
thin thumb and then spreads out as a thin pancake till «,.)

Let (/) be the geodesic 2-sphere of S* containing /, which is orthogonal to ¥
along / (in the ball B, for example, if one imagines 2, as the upper hemisphere, then
2 ()N B, is the equatorial plane). Now foliate the region of S° — B(x, ¢) between
F(a,) and 2 (/) — B(x, [) by “blowing out” F(«;) to 2 (/). More precisely, the region
in question is topologically F(«;) x [0, 1]. One puts the product foliation in the
region. However one does this so all the leaves outside a small tubular neighbor-
hood of 2, are leaves of #(/), i.e. they coincide with geodesic spheres containing /,
outside of a tubular neighborhood of 2.

This defines Z (¢) on half of S — B(x, ¢). To extend to the other half, one does
the same thing we just did, blowing down to the foliation by thin pancakes close to
the foliation % of X,. In fact, if § is the geodesic of S* through y and orthogonal
to 2, then one extends % (¢) by rotating #(¢) by n around f.

By construction, all the leaves of % (¢), outside a tubular neighborhood of 2,
are parts of the geodesic spheres of # (/). Now if M is a surface in S3, transverse
to2,y¢ M (ie. x¢ Mand —x¢ M) and M in general position with respect to % (y)
and #(/), then constructing & (¢) so that the tubular neighborhoods of / (to define
%) and of Z, are small, one sees that Geom(M, 4) = |u|(M, Z#(¢)). A moments
inspection shows # (¢) is equivalent to a parallel foliation of R?. This completes the
proof of Theorem III.1.

THEOREM 111.2. Let M be a compact surface in S*. Then Geom(M) is a linear
combination of Ly(M), L,(M) and L,(M):

Geom(M) = n°Ly(M) + 4n°L, (M) + 272 Vol G(4, 2)Ly(M).

Proof. We have

J |lmM{=n2f [nM|=n’L,(M) bylLl.
D G.2)
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Also
j Mz, F(y)=n u(MnZ, F(y))
D Jp@3n
=1 drLo(MnZX)=4n’L,(M) by II.6.
JG(4.3)
Finally

L (M, # (1) = ﬂzj (M, 7 (1)

G(4.2)

=272 Vol(G(4, 2))L,(M) by definition of Ly(M).

COROLLARY III1.3.

Geom(M) = j

M

7® + 2y (x) + g Vol G(4, 2)|K(x)|.

Proof. This follows immediately from Theorem III.2 and the local formulae.

IV. Geometry of M"~ ' §”

Let D=D(n,n—1,...,1) be the space of flags 4 =(2°c Xl - - c2"=8")
each X’ and i-dimensional geodesic sphere of S”. Define #(i,i+2) to be the
(singular) foliation of X'*2 by geodesic i+ 1 spheres that contain X’ Denote
MAnZX'*2by M, when M is in general position with respect to 4 (we subsequently
assume this).

We define the geometry of M with respect to 4.

Geom(M, 4) = |MnZ'|+ Y |u|(M;, F(i-2,i)).
i=2

As in the proof of III.1 one has:

THEOREM IV.1. Let M"~' < 8" be in general position with respect to the flag
A. Then there is an ¢ > 0 and foliation F = F(4) of S" — B(x, ¢), x€ X°, satisfying:
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~ Geom(M, 4) = |u|(M, F), and
— % is smoothly equivalent to a foliation of R" by parallel hyperplanes.

THEOREM 1V.2. Geom(M) is a linear combination of L,(M), L,(M),...,
L, (M),

n—1

Geom(M)=J Geom(M, 4)= ) ¢, L;(M),
D i=0

where ¢, ..., c,_, are dimension constants.

COROLLARY 1V.3. For M"~'< 8", one has

n—1

Z c,L;(M) > B (M),

i=0

B(M) the sum of the Betti numbers of M.

V. The geometry of submanifolds M — S” of arbitrary codimension

Similar results can be obtained in higher codimension. The construction of the
foliation associated to a complete flag is unchanged. Therefore we can extend the
results obtained in R” (see [C-L], [Fe], [L-R]).

THEOREM V.1. Let V be a compact manifold immersed in S". Then

Geom(V) =) B,

where the B; are the Betti numbers of V.
If V is the sphere S” and is embedded, the condition

Geom(V) <4

implies that V is an unknotted sphere (topologically and differentiably for p =1, all n;
p=2n=4p=>5n=p+2).
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The integral geometric construction requires one more step. For example, in the
codimension 2 case (V" ?<S8"""'), we need to consider the “quasi flag space”
Dn,n—2,n—1,n—2) of
{hckol dimh)=n-2,dimtk)=n—1,dim(/) =n—2}.
Notice that the dimension of the fiber bundle D on V

D={xeV,h,ck>ol dimk)=n—1,dim(/) =n— 2},

where A, is the vector space spanned by the geodesic sphere tangent at x to V, is
2(n — 2), the same as that of the Grassmann manifold G(n, n — 2).

THEOREM V.2. 4 curve C embedded in S* satisfies

.
lkg|+1=2n
C

m™

k| +1>4n
C

Y

if C is knotted, and more precisely
J k.| + 1 > 2n - (bridge number of C).
C

The first result was already proved by Banchoff [Ba]; the two others extend
results of Fenchel, Fary and Milnor [Fe], [Fa], [M,], [M,]; and Sunday [Su].
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