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Critical point theory for perturbations of symmetric functionals

MONICA CLAPP

Abstract. Functionals which are invariant under the action of a compact transformation group G often
have many critical values. Here we consider functionals which are not G-invariant and give conditions
for them to have infinitely many critical values; including a mountain pass theorem. We apply it to prove
the existence of infinitely many solutions of a nonlinear Dirichlet problem with perturbed G-symmetries.

1. Introduction

Let V be an infinite-dimensional Hilbert space with an orthogonal action of a
compact Lie group G, let W be a finite-dimensional G-invariant linear subspace of
V and W+ be its orthogonal complement in V. Let #: V' — R be a C'-functional which
satisfies the Palais-Smale condition and the following mountain pass conditions:

(MP;) There are constants a« > 0 and p > 0 such that &(x) > « for all xe W+,
[xll = p.

(MP,) For every finite-dimensional linear subspace F to V there exists R =
R(F)> 0 such that @#(x) <0 for all xeF, |x| >R

If @ is G-invariant, i.e. @(gx) = @(x) for all xe V, ge G, these conditions, plus
a condition on the action of G on V, guarantee the existence of an unbounded
sequence of critical values. For the antipodal action of G=7/2 on V this is a
classical result of Ambrosetti and Rabinowitz [1]. The condition on the G-action
just says @#(0) <0. For G=S! this is due to Fadell, Husseini and Rabinowitz [15]
and the condition on the G-action is that @(x) <0 for every fixed point xe V¢ of
this action. For more general group actions see [10], [8], [5] and [7].

This paper is concerned with the following question: If @ is not G-invariant,
when can one ensure the existence of an unbounded sequence of critical values? One
would expect that, if @ is not too far away from being G-invariant and if the
mountain range is steep enough, then @ should still have an unbounded sequence
of critical values. More precisely, assume that VécV,c---cV,c- - is a se-
quence of finite-dimensional G-invariant linear subspaces of V and that @ satisfies
the following conditions:

(DS) There are constants y >0, u > 1, such that for all xeV, gegG,

|@(x) — ®(gx)| < y(|P(x)]'"* + 1).
570
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(MP,) There are constants f >0, 8 > u/(u — 1), j, =1, such that, for all j > j,,

sup inf{®(x): xe Vi, |x|| =p} = B/°.

r=z0

BU,) G=Z/px---xZJ/p, p prime, or G=S!x--+-xS! and there exists
m >0 such that dim V;_, —dim V° <my for all j > j,.

We will show that these conditions, together with the Palais-Smale condition
and (MP,) as above, guarantee the existence of an unbounded sequence of critical
values of @.

(BU,) can be replaced by another Borsuk-Ulam type condition introduced by
Bartsch in [5] which applies to more general groups and is quite useful in
applications, namely,

(BU,) There exists a fixed admissible representation W of G such that for all
J 2 Jo

Vi= W@ @ W (j summands).

A representation W is admissible if, for example, G is a finite solvable group acting
without fixed points on W. But the class of admissible representations is much
larger than this (see [5], [6] and Section 5 below).

Critical point results for perturbations of symmetric functionals were first
obtained by Bahri and Berestycki [2] and Struwe [25] who considered perturbations
of even functionals on a sphere. The key tool was an invariant introduced by
Krasnoselkii, without giving it a name, in his study of stable critical points of an
even functional [17] Chapter VI.

Here we generalize this invariant to arbitrary compact Lie group actions and
call it the G-capacity k(X) of the G-space X. It is dual to the G-genus [4] but it has
the following rigidity property which neither the genus nor the equivalent
Lusternik-Schnirelmann category have, namely,

(Rigidity) If x(X)= k(YY) < oo then no G-map f: X - Y which induces a homo-
topy equivalence % X%~ Y€ on the fixed point sets can be nullhomotopic.

As was noted in [2] and [25] this property is crucial for obtaining critical point
results for perturbations of symmetric functionals, because it provides information
on the noncontractibility of the level sets between the minimax values defined in
terms of the G-capacity. These minimax values are not critical values if @ is not
G-invariant, but the conditions given above will guarantee the existence of a critical

value above each minimax value.
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As an application, multiplicity results for nonlinear elliptic equations were obtained
in [2], [25] and also by Rabinowitz [21], [22] and Dong and Li [14]. Here we extend
these results as follows.

We look for solutions u= (u,, ..., u,): 2— R™ of the nonlinear Dirichlet

problem

—Adu=F, (u) + f(x), xe

u=>0, X €082, (D)
where £ is a bounded domain in R” with smooth boundary and f=
(fis ..., f,) €L, R™). We assume that F satisfies the following conditions:

(F1) F: R"—> R is a C'-function.
(F2) There are constants « >0 and 1 <s<(n+ 2)/(n— 2) if n > 3 such that

|F, ()| < a(1 + |ul).

(F3) There are constants R >0 and u>2 such that 0 < uF(u) <u - F,(u) if
lu| = R.

(F4) There exist a compact Lie group and an orthogonal action on W= R"
such that W is admissible and F: W — R is G-invariant.

If f= 0 Bartsch showed [5] that, under these conditions, (D) has infinitely many
weak solutions. Here we shall show that if s in (F2) is further restricted by

(}1-%-2)—(}1—2)s> U

o= nis—1) u—1

then (D) possesses an unbounded sequence of weak solutions in W}?(2, R™).

This last condition coincides with the one given in [2], [25], [14], [21] and [22],
for m=1 and G=Z)2.

This paper is organized as follows: In Sections 2 and 3 we define and study the
absolute and relative versions of the G-capacity respectively. In Section 4 we prove
a general critical point theorem for perturbations of symmetric functions on a
Banach manifold and apply it to obtain a critical point result for problems with
constraints.

In Section 5 we prove the mountain pass theorems mentioned above and in
Section 6 we apply them to obtain an unbounded sequence of weak solutions of
(D). Finally in Section 7 we compute upper bounds for the G-capacity which are
needed in our critical point results.

I am grateful to Antonio Ambrosetti for making me aware of some of these

questions.
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2. The G-capacity

Let G be a compact Lie group. A G-space is a topological space X with a
continuous action of G. A G-map is a continuous map f: X — Y which preserves the
G-action, i.e. f(gx) = gf(x). We denote by X°= {xe X: gx = x for all ge G} the
fixed point set of X. '

The join X * Y of two G-spaces X and Y is the quotient space of X x [0, 1] x Y
obtained by identifying (x, 0, y) with (x, 0, y’) and (x, 1, y) with (x', 1, y) for all
x,x'€X,y,y €Y. It has a natural G-action given by g(x, t, y) = (gx, t, gy).

We denote by

J,G=Gx* - - %G, n>1

n times

the n-fold join of G, J,G =0, and by

J.G= ) G”
nx1

with the weak topology, the countable join of G. These are free G-spaces and J, G
is contractible. If G = Z/2 then J,,G is (G-homeomorphic to) unit sphere S”~! in R”
with the antipodal action, and if G=S! then J,G is the unit sphere S**~! in C”
with the action given by multiplication on each coordinate.

Let Z be a topological space with the trivial G-action. Then Z xJ,G is a
G-space whose fixed-point set is exactly Z. Here Z * J,G = Z.

DEFINITION 2.1. For every G-space X we define the G-capacity k(X) of X to
be the greatest number 0 <»n < oo such that there exists a G-map ¢: Z * J,G-» X
whose restriction to the fixed point sets is a homotopy equivalence ¢¢: Z ~ X,

The G-capacity has the following easy property:

PROPOSITION 2.2. (Monotonicity) If there exists a G-map f: X — Y with f©:
X¢~ Y€ then k(X) < k(Y). O

The following proposition leads to a crucial property of the G-capacity.

PROPOSITION 2.3. Let f: X— Y be a G-map. Then, f is nullhomotopic if and
only if f can be extended to a G-map fX*xG-oY.
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Proof. Observe that X is contractible to a point in X * X”, via (x, t) — (x, t, xg).
Therefore, if f has an extension as above, f is nullhomotopic. Now assume f is
nullhomotopic and let H:X x [0, 1]— Y be a homotopy with H(x, 0) =f(x) and
H(x,1)=y,€e Y, for all xe X. Then

flx,t,g)=gH(g 'x,1), for(x,t,g)eXx[0,1]xG

gives the desired extension. O

An immediate consequence is the following:

COROLLARY 2.4. (Rigidity) If k(X)=x(Y) < o then every G-map X—Y
which induces a homotopy equivalence X° ~ Y is essential, i.e. it is not nullhomo-
topic. [

We turn now to the question of computing x(X). Given an orthogonal
representation V' of G we denote by SV the unit sphere in V.

PROPOSITION 2.5. If an orthogonal representation V of G is the orthogonal sum
V=W@® W’ of two representations of G then x(SV) > x(SW)+ x(SW").

Proof. Given G-mapso: Z xJ,,G»SWand 1. Z' x J,G—>SW withag%: Z~SW¢
and 79 Z' ~(SW')° then the G-map p:Z +J,G+xZ' xJ,G>WdW —(0,0)
given by p(x, t,y)=( —t)a(x)+ tz(y), composed with the radial retraction, is a
G-map ZxZ'%J,,,G->S(W® W’') which induces a homotopy equivalence
Z+Z ~S(Wa W) O

For an arbitrary G-space X one gets a lower bound for x (X)) as follows. We denote
by §’ the unit sphere and by B *! the unit ball in euclidean (j + 1)-space. Recall [23]
that a space X is said to be m-connected if every map /S > X, 0<j<m, has a
continuous extension over B’ *'. For example, the m-sphere S™ is (m — 1)-connected.
If X'is (m — 1)-connected and Y'is (n — 1)-connected then X * Yis (m + n)-connected.

PROPOSITION 2.6. If X is an (m — 1)-connected G-space and X° is a CW-
complex, then k(X) > (m— dim X°)/(dim G+ 1).

Proof. Let x(X)=nand 6: Z xJ,G— X be a G-map with Z=X“ If m—1>
dim X°+n dim G+ n=dim(Z * J,G) then ¢ is nullhomotopic [23] 7.6.13. Propo-
sition 2.3 gives a contradiction. O

This implies, in particular that x(SV) > (dim V' — dim V°)/(dim G + 1) for every
orthogonal representation V' of G. Equality does not hold in general, not even for
a finite group G, as the following example shows
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EXAMPLE 2.7. There is a Z/4-action on S? such that x(S?) > 4.

Proof. If Z/4 = {+1, +i} = C acts on S* = C? by scalar multiplication and on
S* = R’ by multiplication with {2 on each coordinate, {€Z/4, then the map
S* - R*\0 given by

(21, 22) > ((z) + 2))(z, — 1), lzl + 52! - |zl - le)

composed with the radial retraction gives a Z/4-map S* - S? [4). Monotonocity and
the above proposition imply x(S?) > 4. O

For some groups G upper bounds for x(X) can be given in terms of the
dimension of X. This will be done in Section 7. It will follow that

THEOREM 2.8. If V is an orthogonal representation of G with dim V° < oo then

(@) k(SV)=dim V—dim V° if G is a p-torus, ie. G=Z|px X ZJp, p a
prime, and

(b) x(SV)=3i(dim V' —dim V°) if G is a torus, ie. G=S'x -+ x S,

Proof. That the given numbers are lower bounds for x(S¥V) follows from
Proposition 2.6 if G is a p-torus, and from Proposition 2.5 if G is a torus, because
every non-trivial irreducible representation of a torus is 2-dimensional [9] II.8.5.
That they are also upper bounds follows immediately from Theorem 7.1. |

Some remarks are in order. For G = Z/2 acting without fixed points on X, the
G-capacity x(X) was introduced by Krasnoselskii [17] in his theory of stable critical
points of an even functional, and further studied by Conner and Floyd [11] who
called it the index of X. It is however not an index theory in the usual sense, since
it does not satisfy the subadditivity property. The 2-sphere of Example 2.7 is the
union of the Z/4-subsets X = S2\{+(0, 0, 1)} and Y= S*\S'. It is easy to see that
k(X)=2 and x(Y) =1, so «(S?) > x(X) + x(Y). ‘

Dual notions like the genus or the Lusternik-Schnirelmann category have the
advantage of being subadditive [10], [6] which makes them quite useful for counting
critical points. On the other hand, they do not satisfy the rigidity property: Conner
and Floyd have given an example [11] 3.14 of a nullhomotopic Z/2-map between
spaces of the same genus (or co-index). Rigidity for G = Z/2 was first proved by
Krasnoselskii [17] Chapter VL.

It follows from Theorem 7.1 that, if G is a torus or a p-torus, X =0, then
k(X) < y(X) = the G-genus of X, which is defined to be the smallest number » such
that there exist n proper closed subgroups H,,..., H, of G and a G-map X—
G/H, - -+ * G/H, [6]. But this is not true for an arbitrary group, as Example 2.7
shows. Also, equality may not hold, even for G=Z/2 [11] 3.15.
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3. The relative G-capacity

By a G-pair (X, A) we mean a G-space X together with a G-invariant subspace
A of X, and by a G-map (of pairs) f: (X, A) - (Y, B) a G-map [ X — Y which maps
A into B.

Given a pair (Z, C) on which G acts trivially, we write

Z,CO)xJ,G=(Z +J,G, C +J,G).

DEFINITION 3.1. For every G-pair (X, A) we define the relative G-capacity
K(X, A) of (X, A) to be the smallest number 0 <#n < oo such that there exists a
G-map o:(Z, C)*J,G— (X, A) whose restriction to the fixed point sets is a
homotopy equivalence (of pairs) ¢ €: (Z, C) ~ (X, 4A°).

Then the relative G-capacity satisfies

PROPOSITION 3.2. (Monotonicity) If there exists a G-map f: (X, A)— (Y, B)
whose restriction to the fixed point sets is a homotopy equivalence f°: (X, A°) ~
(YC, BO) then (X, A) < k(Y, B). O

A map f: (X, A) - (Y, B) is said to be nullhomotopic if there is a homotopy (of
pairs) H: (X x [0, 1], 4 x [0, 1]) = (Y, B) such that H(x,0)=f(x) and H(x,1)=
by € B, for all xe X. A pair (X, A) is called contractible if the identity map of (X, 4)

is nullhomotopic.
The following proposition is proved just like Proposition 2.3.

PROPOSITION 3.3. Let f: (X, A)—> (Y, B) be a G-map. Then f is nullhomotopic
if and only if it can be extended to a G-map f: (X * G, A » G) - (Y, B). 0

COROLLARY 3.4. (Rigidity) If (X, A)=«k(Y, B)< oo then every G-map
(X, A) - (Y, B) which induces a homotopy equivalence (X, A®) ~(Y°, B®) is essen-
tial (i.e. it is not nullhomotopic). O

Given an orthogonal representation V of G we denote by BV the closed unit ball
in V.

. PROPOSITION 3.5. Let V be an orthogonal representation of G with dim V¢ <
0. Then

(@) x(BV,SV)=dim V —dim V¢ if G is a p-torus, and

(b) x(BV, SV)=4(dim V —dim V°) if G is a torus.
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Proof. Every G-map o: SV° * J,G— SV which is a homotopy equivalence on
the fixed point sets has an extension 6:BVC*J,G=SV®*J,G * {0} >
SV % {0} = BV, given by 6(x, t,0) = (a(x), t, 0), which is a homotopy equivalence
on the fixed point pairs. On the other hand, every G-map (BVC, SV°) xJ,G—
(BV, SV) which is a homotopy equivalence on the fixed point pairs induces a
G-map of the quotient spaces S(V°@R)*J,G=(BVSE*J,G)/(SV°*xJ G)—
BV/SV = S(V@® R) which is a homotopy equivalence on the fixed point sets. Here
G acts trivially on R. Now apply Theorem 2.8. O

We shall now use the relative G-capacity to prove a critical point theorem for
perturbations of symmetric functions.

4. Critical points of perturbed symmetric functions

Let M be a complete C!'-Finsler manifold [20], [26] and &: M—>R be a
C'-function. @ is said to satisfy the Palais-Smale condition (PS), above a€R if

® Any sequence (x,) in M such that @(x,) = [a, b] for some b e R and such that
|d®(x,)|| =0 as n— oo has a convergent subsequence.

Given ceR, let

P={xeM:d(x)<c}.

Recall that X is said to be deformable into Y rel Z in M if there is a homotopy
H:Xx[0,1]1-M with H(x,0)=x, H(x,1)e Y, H(z,t)==z for all xeX, zeZ,

0 <t < 1. It is well known that @ has the following deformation property [20], [26]
I1.3.11.

PROPOSITION 4.1. (Deformation Lemma) Assume @ satisfies (PS),. If
d > a and if @ has no critical values in [d, c0) then M is deformable into @ rel &9 in

M. a

Let now G be a compact Lie group acting on M and let D be a fixed closed
G-invariant subset of M. Let

4,={X<c M: X is G-invariant, X > M and «(X, Xn D) >k},

Given a C'-function @: M — R which is not necessarily G-invariant, define
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d. = inf sup @(x).
xed, xeX
Observe that d, <d, ., for all k. If & satisfies (PS) and is G-invariant and if
di € R, then the values d, are critical values of @ [10] Appendix A, but this need not
be true in general. The following proposition gives conditions for the existence of
a critical value above d,.

PROPOSITION 4.2. Assume that, for some k > 1, d, has the following proper-
ties:
() @ satisfies the Palais-Smale condition (PS),, above d,.
(i) —wo <d,<a<b<d, , and the smallest G-invariant subset of M contain-
ing @ lies below b, i.e.

G[P)={gy:yeM, ®(y)<a,ge G} c d°.

(i) &(x) < d, for all xe D.
Then, if (M, D) is contractible, ® has a critical value ¢ > d,.

Proof. Since —o0<d,, 4,#0. Let X< @ be G-invariant, M°c X and
kK(X,XnD)>k. It follows from (ii) and (iii) that x(G[®9], D) < k. Therefore,
k(X, Xn D)= k(G[®], D) =k.

If @ has no critical values in (d,, o) then, by (i) and the Deformation Lem-
ma 4.1, M is deformable into ®“ rel &% So there is a (non-equivariant)
map r: (M, D) — (@4, D) with r(x) = x for all xe @“. But (M, D) is contractible.
Hence (X, Xn D) < (G[9“], D) is nullhomotopic. This contradicts the rigidity prop-
erty 3.4. a

The following theorem provides conditions for (ii) to hold.

THEOREM 4.3. Let &: M- R be a C'-function, D be a closed G-invariant
subset of M, b>0 and u:[0, c0) —[0, 00) be a continuous non-decreasing function,
u # 0, which satisfy the following properties.

(P1) @ satisfies the Palais-Smale condition (PS),,

(P2) |®(x) — D(gx)| < u(|P(x)]) for all xe M, ge G,

(P3) 0<d, < o0 and d, ., > d, + u(dy,) for infinitely many numbers k,

(P4) d(gx)<b if d(x)< —b, for all ge G, and
" (P5) &(x)<b for all xeD.

Then, if (M, D) is contractible, ® has an unbounded sequence of positive critical
values.
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Proof. First observe that, since u #0 and u is non-decreasing, property (P3)
implies that d, —» o0 as k— co. We now show that @ has a critical value ¢, > d, for
infinitely many k’s. Assume d, >b and d, ., > d, + u(d, ). Let ¢>0 be such that
dy o —e>dp+ e+ p(d, +¢). Let &(x)<d, +e Then, by (P2), if |®#(x)| <d, +e

D(gx) < |P(x)| + |P(gx) — P(x)| < di+ e+ puld+e) <di . —¢

and if @(x) < —(d, +¢)< —b, by (P4), ®(gx) <b<d, ., —¢ for all ge G. There-
fore, G[@% **] lies below d, , , —&. Now use Proposition 4.2. ]

We apply this theorem to obtain a critical point result for a problem with
constraints.

Let V' be a G-Hilbert space, i.e. a Hilbert space with an orthogonal action of G.
Let SV be the unit sphere in ¥ and @: SV—R be a C'-function. As above, let

A, ={X < SV: X is G-invariant, SV’ < X and k(X)) >k}
and let

d, = inf sup &(x).

Xed, xeX

We obtain lower bounds for these values as follows.

PROPOSITION 4.4. Let W be a G-invariant linear subspace of V such that
W= VS and k(SW) <k. Then, if 4, #0,

d, > inf{®(x): xe SW+},

where W+ is the orthogonal complement of W in V.

Proof. All we need to do is show that every G-invariant subset X of SV, such
that SV° < X and x(X) >k, intersects SW+. If this were not so, the restriction to
X of the obvious G-retraction V\W+ — SW would given a G-map X — SW which is

the identity on SV¢, hence k(X) < x(SW) <k. O

The following theorem gives sufficient conditions for the existence of infinitely
many critical values of &.

THEOREM 4.5. Let V be a G-Hilbert space and let VécV,cV,c - c
V,<- - be a sequence of finite-dimensional G-invariant linear subspaces of V. Let
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@: SV >R be a C'-function which satisfies (PS), for some a > 0. Assume further
(DS) There are constants y >0, u> 1, such that for all xe SV, ge G,

|®(x) — @(gx)| < y(|2(x)]"* + 1)
(S) There are constants >0, 0 > u/(u—1), jo =1, such that for all j > j,,
inf{@(x):xe SV} = i’

(BU) There exists m >0 such that k(SV;_,) <mj for all j = j,.
Then ® has an unbounded sequence of critical values.

Proof. We apply Theorem 4.3 above to the given @ and to D=0, u(t)=
y(t'# 4+ 1), and b > a large enough so that ¢ > y(¢'/# + 1) if t > b. These data obviously
satisfy (P1), (P2) and (P5). Assume @(x) < —b <0. Then, if &#(gx) >0 for some
ge G, d(gx) < P(gx) — P(x) < y(|P(gx)|""# + 1). Hence, by our choice of b, ®(gx) <
b. This proves (P4). Now we check (P3). Observe that (S) implies that dim V' = co.
So by 2.5, k(SV) = oo and 4, # @ for all k. In fact, x(SV;) - o as j— co. Therefore
d, < oo for all k. Now, (S), (BU) and Proposition 4.4 imply that d,,; > §;° for allj > j,.
If for some ko, > 1, d, . | <d, + y(di* + 1) for all k > k,, then there exists w > 0 such
that d, < wk**~! for all k >k, [22] (10.53)-(10.57), [2] 5.3. But then g/’ <d,, <
(wm#'# = Nyjule =1 for all sufficiently large j, which is impossible because 6 > u/(u — 1).
Finally, observe that, since dim V"= co, SV is contractible. O

(DS) is a sublinearity condition, with respect to |@(x)|, on the deviation of @
from being G-invariant. (S) is a condition on the steepness of @ on a sequence of
orthogonal directions, which depends on the deviation from symmetry (DS). (BU)
should be thought of as a Borsuk-Ulam condition which restricts the dimensions of
these orthogonal directions. It is satisfied if, for example (Theorem 2.8),

(BU,) G is a p-torus and dim V,_, <myj for all j and some fixed m.

If @ is G-invariant one can guarantee the existence of an unbounded sequence
of critical values under much weaker conditions: One needs only that @ is bounded
below on some infinite dimensional sphere SW < SV and that the group G satisfies
a weak Borsuk-Ulam condition, namley that there is no G-map from an infinite-di-
mensional into a finite dimensional G-representation sphere [8] 4.1, [6] 3.1. This is
equivalent with G being an extension of a finite p-group by a torus [6] 3.5. One can
in fact show that for these groups the G-capacity of a finite-dimensional sphere is
finite (Theorem 7.3). But condition (BU) requires much more than that: One needs
actually to be able to compute upper bounds for x(SV;). For abelian p-groups the
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computation of upper bounds for similar invariants has been carried out by Stolz
[24] for p=2 and by Meyer [18] for p prime, using quite sophisticated machinery
from algebraic topology. In the following section we shall give an alternative
Borsuk-Ulam condition (BU,) which applies to more general groups than (BU,).
Bahri and Berestycki [2] and Struwe [25], simultaneously, first noticed the
relevance of the rigidity property for proving critical point results for perturbations
of even functionals on a sphere. They applied them to prove multiplicity results for
nonlinear elliptic equations of the type —Adu=|u|~'u+f(x) in 2, u=0 on 3%,
fe L*(Q), s small enough, by turning this into a variational problem on a sphere in
H{(R2). We shall extend these results to more general symmetries in Section 6, via
a mountain pass theorem.

5. Mountain pass theorems for perturbed symmetric functionals

Let G be a compact Lie group, ¥V be a G-Hilbert space and Véc V,c---c
V,=- - be a sequence of finite-dimensional G-invariant linear subspaces of V.

For a given non-decreasing sequence of positive numbers (R;) with R,— o0 as
j— oo define

D= (Vi\Bg V),
j>1
where Bp V, = {xe ¥} |x| <R;}, and
4, ={X<c V:X is G-invariant, X > V° and x(X, X~ D) > k}.

Observe that D is a closed G-invariant subset of V. Let @:7 — R be a (non-equiv-
alent) C'-functional and

d,= inf sup &(x).

Xed, xeX

We start by giving lower bounds for these values.

PROPOSITION 5.1. If k(S(V;®R)) <k, where G acts trivially on R, then, if
Ak # $3

d.> sup inf{®(x):xeV}, |x|=p}.

OS/)<RJ+|
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Proof. Let X be a G-invariant subset of V with X> V¢ and x(X, XnD) > k.
Assume that XNnS,V;" =0 for some 0 < p <R;, |, =R. There is a G-map

(V\S, VJ' D) - (SgrV U BRV;, SgV)
which induces a homotopy equivalence (V¢ DY ~(BzVC SgV°), obtained by
projecting V\BrV radiallly onto SpV, BrV\S,V; along straight lines onto
SrV U BrV; and, finally, expanding BV if necessary so that Bz V;n D gets mapped
onto S V;. By monotonicity,

k(X, XA D) < k(V\S,V}+, D) < k(SgV U BV, SgV).

As in the proof of Proposition 3.5 one can easily show that k(Sg VU BV, SgV) <
k(S(V;®R)) < k. This gives a contradiction. OJ

We are now ready to prove our first mountain pass theorem.

THEOREM 5.2. Let V be a G-Hilbert space and Ve V,c---cV,c- - bea
sequence of finite-dimensional G-invariant linear subspaces of V. Let @: V- R be a
C'-functional which satisfies (PS), for some a > 0. Assume further

(DS) There are constants y >0, u> 1, such that for all xe V, ge G,

|®(x) — ®(gx)| < p(|(x)|'"* + 1).

(MP,) There are constants f >0, 0 > u/(u—1), j, =1, such that for all j > j,,

sup inf{@(x): xe Vi_,, ||x||=p} = Bi’.

p=z0

(MP,) For every j > 1 there exists R, > 0 such that #(x) <0 for xeV,
(BU) There exists m >0 such that K(S( 1 ®R)) <myj for all j _>_]0
Then @ has an unbounded sequence of positive critical values.

Proof. We may assume (R;) is non-decreasing and R,—» o0 as j—oo. Let
D=5, (V;\Bg V;), @ be the given function, u(f)=y(t"*+1), 1>0, and let
b > a be large enough so that ¢ > p(¢'/# + 1) if ¢ > b. This data obviously satisfy the
hypotheses (P1), (P2) and (P5) of Theorem 4.3, and (P4) and (P3) can be proved
just like in Theorem 4.5 (using Proposition 5.1). Now, D is a local ANR, hence it
is an ANR. So it has the homotopy type of a CW-complex. It follows from (MP,)
and (MP,) that dim V,— oo as j— oo hence, D is weakly contractible. Therefore D
is contractible [23] 7.6.24. And, since V is an AR, the pair (V, D) is contractible. By
Theorem 4.3, & has an unbounded sequence of critical values. O
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Some remarks are in order. (MP,) and (MP,) are mountain pass conditions.
(MP,) is the usual one, whereas (MP,) is considerably stronger than the correspon-
dong assumption for the symmetric case, which appears as (MP}) in the introduc-
tion [1], [22], [10]. (MP,) is a condition on the steepness of the mountain range
which depends on the deviation (DS) of @ from being G-invariant. The Borsuk-
Ulam condition (BU) is satisfied if, for example (Theorem 2.8),

(BU,) is a torus or a p-torus and dim V;_, —dim V' <mj, for all j>1 and
some m > 0.

In the G-invariant case this theorem holds for much more general group actions
[8], [7]). The difficulty here again lies in computing upper bounds for x(S(V,;@ R)),
see remarks at the end of Section 4. We now prove a mountain pass theorem which
involves a different BU-condition which is quite useful in applications (cf. Section
6). We start with some definitions.

A finite-dimensional orthogonal representation W of a compact Lie group G is
said to be admissible [5] if there exist a closed subgroup H of G and a normal
subgroup K of H of finite index in H with H/K solvable, W# =0 and WX 0.
Recall that a finite group S is solvable iff there exists a sequence of subgroups of S,
{e} =8, <S5, <--- <8S,=S, each one being a normal subgroup of the following
one, such that S;/S,_,=~Z/p, for some prime p,. Such a sequence is called a
resolution of S. In particular, every finite abelian group is solvable.

A typical example of an admissible representation is when the maximal torus 7’
of G acts with fixed points on W\{0} whereas the action of its normalizer N is fixed
point free, and the Weyl group W= N/T is solvable. If G is a finite solvable group,
then every representation without non-trivial fixed points is admissible. For an
equivalent definition of admissibility in terms of a Borsuk-Ulam property see [5]
and [6] 2.24.

We now state our second mountain pass theorem.

THEOREM 5.3. Let V be a G-Hilbert space with VS=0 and let V,c---c
V,c - be a sequence of finite-dimensional G-invariant linear subspaces of V. Let
@: V>R be a C'-functional which satisfies (PS), for some a> 0. Assume that this
data satisfy (DS), (MP,) and (MP,) as in Theorem 5.2, and the following Borsuk-
Ulam condition.

(BU,) There exists a fixed admissible representation W of G such that for all j > j,

VW - OW.

J times

Then ® has an unbounded sequence of critical values.
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Proof. Let H be a closed subgroup of G and K be a normal subgroup of H of
finite index in H with S= H/K solvable, W =0 and WX # 0. Then the S-spaces
VX, V¥ and the restriction @%: X R of & to V'* again satisfy (PS),, (DS), (MP)),
(MP,) and (BU). This last condition now reads

(BU,) There exists a non-trivial admissible representation W= Wk of S such
that VX= W@- - @ W (j times) for all j > j;.

Now take a resolution {e} =S, 1S, --- <15,=8 of S with §,/S;,_, =Z/p,.
Choose 1 <i<r such that WS =0 but WS-1 0. Then the Z/p,-spaces (V)5 -1,
(VF)%i-1 and the restriction of @ to (V*)%-1 satisfy all hypotheses of Theorem 5.2,
with (BU,) instead of (BU). This proves this theorem. O

If @ is G-invariant this result was proved by Bartsch [5] 2.5 under a much
weaker assumption than (MP,), namely

su%inf{tb(x):xe Vi |x|=pt—> o as j— oo.
o=

See also [7] 3.2.
The following section contains an application of Theorem 5.3.

6. A nonlinear Dirichlet problem

We look for solutions u=(u,,...,u,): @—R" of the nonlinear Dirichlet
problem.

—Adu=F,(u) + f(x), xe

u=0, x€e0Q. .

Here @2 is a bounded domain in R” with smooth boundary and f=
(fis - -, [n)€L*(R2, R™). We assume that F satisfies the following conditions:
(F1) F:R"—>R is a C'-function.
(F2) There are constants « >0 and 1 <s <(n+ 2)/(n — 2) if n >3 such that

|F, )| < 2 (1 + [u]).

If n =2 this condition can be weakened, if n =1 it can be omitted.
(F3) There are constants R>0 and x>2 such that O < uF(u) <u - F,(u) if
lu| = R.
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(F4) There exist a compact Lie group and an orthogonal action on W= R"
such that W is admissible and F: W— R is G-invariant.

If £ = 0 Bartsch has shown that, under these conditions, (6.1) has infinitely many
weak solutions [5]. Here we shall show that

THEOREM 6.2. If F satisfies the hypotheses (F1), (F2), (F3), (F4) and
feL*(Q, R™) then (6.1) possesses an unbounded sequence of weak solutions in
Wi2(R2, R™) provided that s in (F2) is further restricted by

=(n—+—2)—(n——2)s U

f n(s—1) u—1

(6.3)

It is easy to check that if s satisfies (6.3) then s < (n + 2)/(n — 2). For m =1 and
G = Z/2 this theorem was proved by P. H. Rabinowitz [21], [22] Section 10, using
a mountain pass argument. Slightly less general versions were previously proved by
Bahri and Berestycki [2], Struwe [25] and Dong and Li [14] using other arguments.
We shall apply our Mountain Pass Theorem 5.3 to prove Theorem 6.2.

Set V= W{2(R2, R™) and consider the functional

¥ (u) = j G Pulf = Fu)—f - u) d.

ue V. By the Poincaré inequality we may take |u|| = ([, ||Vu|]* dx)"/? as the norm
in V. As a consequence of (F1) and (F2) ¥ e C'(V, R) (cf. [22] Appendix B). Its
derivative at ue V is

D'I’(u)v=J Vu-Vo—F, (u)-v—f-v)dx

Q

and a critical point of ¥ is, by definition, a weak solution of (6.1).

The action of G on W=R" induces an orthogonal action on V given by
(gu)(x) = g(u(x)). Observe that ¥ is not G-invariant unless f=0.

In order to apply Theorem 5.3 we need that ¥ satisfies the deviation from
symmetry condition (DS). Unfortunately it does not. We proceed as in [22] Section
10, and replace ¥ by a new functional @ which does not satisfy (DS) and is such
that large critical values of @ are critical values of ¥, i.e. weak solutions of (6.1).

Integrating condition (F3) shows that there are constants a,, a, >0 such that

F(u) = oy [u — a,. (6.4)

Following Rabinowitz [22] 10.11, one can easily show that
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PROPOSITION 6.5. There exists a constant y, > 0 depending on |f| . 2q.gm) Such
that, if u is a critical point of ¥, then

f (F(u) + o) dx <y, (P (u)* + D', (6.6)
Q

We modify ¥ as follows. Let y € C*(R, R) be such that y(¢)=1 for <1,
¥(@)=0for t>2 and y'(¢)e(—2,0) for te(l, 2). Set

=2 (2y1(w(u)2 U f (FG) +20) dx)

and
d(u) = J G||Vu|?— F(u) — n(w)f - u) dx,

for ue V. Note that, by (6.6), n(u)=1 if u is a critical point of ¥. Hence,
D(u) = ¥Y(u).

PROPOSITION 6.7. If F satisfies (F1)—(F4) and fe L*(Q, R™) then

(a) de CY(V, R).

(b) There exists a constant y > 0 depending on | f| . 2q.rm) Such that for all g€ G,
ueV, |®u) — o(gu)| < y(|Dw)|"* + 1).

(c) There is a constant a, >0 such that, if ®(u) >a, and D®(u) =0, then
D¥Y(u)=0 and ¥(u) = &(u).

(d) There is a constant a > a, such that @ satisfies the Palais-Smale condition
(PS), above a.

Proof. (a) It follows from (F1) and (F2), as in [22] Appendix B, that ¥ is C".
Since y is smooth the same is true for #. Hence, @ is C'.

(b) If n(u) =0 then, by (F4), ®(u) = @(gu) for all ge G. So assume n(u) > 0.
Then, for all ge G,

<Wlleallullzz < vaflufu< yg( L (F(u) + ) dx>”"

U (f - gu) dx

and by the Holder and Schwarz inequalities and (6.4). And, since n(u) >0,

J (F(u) + ay) dx <4y (Y )+ D' <4y, (|¥w)|+ 1)
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hence,

<7(P@)|"*+1) forall gegG, (6.8)

J (F - gu) dx

where y, > 0 depends on ||f]|,.. Now

|@(w) — @(gu)| =|| (n(gu)f - gu—n(u)f - u)dx
v
< (fgu)dxﬁ—f(f-u)dx
Ja Q
<2M, (6.9)

where M = max{|[, (f gu) dx|, |[o (f - u) dx|}. Observe that

<|®(u)| + M.

|w<u>|s|¢<u>|+| J ) dx
Q

This, together with (6.8), gives
M < ys(| D))" + M'V* + 1)
hence,
M < y6(|@w)]" + 1),
where 7¢ >0 depends on |f| ... This, together with (6.9), proves (b).
(c) and (d) are proved by the same arguments as in [22] 10.16, for the case
m=1. ]
In order to prove Theorem 6.2 it is, therefore, enough to prove that @ has an
unbounded sequence of critical values.
We define a filtration V,cV,c---cV,c--- of V as follows. Let 0 < 4, <
Ay << 4;<--- be the eigenvalues of the problem

—Adv=Av in Q

v=0 on 0%2
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and v!,v? ..., v/,...be the corresponding eigenfunctions. They give a basis for
H}*(2). For every k> 1 let

VE={u=(,,...,u,)eV:u=1tr" t,eR,i=1,..., m}
and for each j>1 let
V,= @ v
1<k<j

Each V* is a G-invariant linear subspace of V isomorphic to W = R™ as a G-space.
So, by (F4), each V satisfies the Borsuk-Ulam condition (BU,) of Theorem 5.3. In
view of Proposition 6.7 we need only to check (MP,) and (MP,).

To prove (MP,) we only need to show that &(tu) <0 for all ueV, u#0 and ¢
large enough. But, using (6.4) and |y(u)]<1 we obtain positive constants
a3, 04, ®s, &g Such that

D(tu) < oa3t? — oy th + ost + 0tg— — 0 as t— oo
because u > 2. Finally, we show that

PROPOSITION 6.10. Therer are constants >0 and j,>1 such that, for all
j 2.].09

sup inf{@(u): ue V-, |[ul| =p} = p/°
p=0

with
0=(n+2)——(n—2)s

nis—1)

Proof. Let ue Vi, with |ju| =p. Then |u|,.<Ai;'?p. By the Gagliardo-
Nirenberg inequality [16] 1.9.3,

lullser < Bilullz:llu]' =" < BiA7p,

where v is defined by

-2
(l—v)(l——l->+—2‘i= 1 , e, v= r T ,

s+ 1 s+ 1 2

and £, > 0. So, using (F2), we get that, for positive constants f,, £, 8.,
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B () > ul — au

o= o= ||f]p2flull .
> p2(— fod VRPN — Bip —a,
Taking p = p; = (4f,) /¢~ DA+ D2E=D we obtain
®(u)=zp; — fsp;—a

= /7_/2 — Ba.

00 | ==

Since A; > f5j*" for j large enough and some 5> 0 [12], ®(u) > fj’ for all ue V;-
with |u| = p, and j sufficiently large, where f is some positive constant and

_2vs+1) (n+2)—(n—2)s

Conis—1) n(s—1) =

0

This together with (6.3), gives the mountain pass condition (MP,) of Theorem
5.3 and completes the proof of Theorem 6.2.

7. Upper bounds for the G-capacity

Recall that a G-ANR is a metrizable G-space X such that every G-map Z - X
from a closed G-subspace Z of a metrizable G-space Y can be extended to a G-map
U— X on a G-neighborhood U of Z in Y [19].

If (X,A4) is a G-pair, H*(X, A) will denote singular cohomology with Z/p-
coefficients if G=Z/p x---x Z/p is a p-torus, p prime, and with rational coeffi-
cients if G=S!x---x S' is a torus. The aim of this section is to prove the
following:

THEOREM 7.1. Let X be a compact G-ANR whose fixed point set is homeomor -
phic to the Il-sphere X¢=S' Assume HYX,pt)=0 for 0<q<I!/+1 and
HYX, X% =0 for g>n>1 Then

n—1 if Gis a p-torus

K(X)S{1

s(n—1) if Gisatorus.

For the proof we use Borel cohomology so let us recall what this is. For every
compact Lie group G, the countable join J G of G, which is usually denoted by
EG, is a contractible G-space on which G acts freely. Its orbit space BG = EG/G is
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known as the classifying space of G. Given a G-space X we write X X EG for the
orbit space of X x EG with the diagonal G-action. The projection X x EG— EG
induces a map of the orbit spaces py: X X EG — BG which is a fibration with fibre
X, called the Borel fibration. Every G-map f: X — Y induces a fibre-preserving map
X>G< EG- Y>G< EG over BG. By defining

H%(X, A)= HX(X x EG, A x EG)
G G

on every G-pair (X, A) one obtains a G-equivariant cohomology theory, called
Borel cohomology. It satisfies the homotopy invariance, excision and exactness
axioms in the G-equivariant setting [10] 4.1, [13] Chapter III. The cup-product
endows the coefficient ring H¥(pt) = H*(BG) with a graded ring structure and
induces an H¥(pt)-module structure on HE(X, A) by (w=¢ < p¥(w), for
e HY¥(X, A), we HE(pt).

For torii and p-torii of rank r, i.e. with r factors S' or Z/p respectively, the
coefficient rings are

H*(BG; Q)=Q[c,,...,c] if G is a torus
H*(BG; Z]2)=Z/2[w,, . .., w,] if G is a 2-torus
H*(BG; Z|p)=Z/plcy,...,c,]@ A[w,, ..., w,] if G is a p-torus, p > 2.

So the first two are polynomial algebras in r generators and the third one is the
tensor product of a polynomial algebra and an exterior algebra in r generators.
Since every proper subgroup H of a p-torus G of rank r is a p-torus of rank <r,
and since every proper subgroup H of a torus G of rank r is the product of a finite
group with a torus of rank r, it follows that ker(H¥(pt)=H*(BG)— H*(BH) =
H¥(G/H)) contains a polynomial element if H # G [10] 5.7. We will use this fact to
prove the following proposition.

PROPOSITION 7.2. Let X be a compact G-ANR and let A < X be a closed
G-invariant subset which is also a G-ANR with X° = A. Then, if G is a torus or a
p-torus, there exists an element o€ HE(pt), a # 0, which annihilates HE(X, A), i.e.
Ca=0 for all te HE(X, A).

Proof. Let U, be a G-invariant neighborhood of 4 which is G-deformable into
A in X rel 4 and, for every G-orbit of X\4, take a G-invariant neighborhood which
is G-deformable into that orbit [9] 6.10. Extract a finite subcovering X =
GouUwu:---ulU, Then U, j=1,...,n, is G-deformable into some homogeneous
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G-space G/H; with H;# G. Choose a polynomial element «;eker(Hg(pt)—
H¥{(G/H)). Since pUj(oc)-—() px(x;) has a preimage & eH*(X U;). This
follows from the exact H¥-sequence of the pair (X, U;). On the other hand, the
inclusion (U,, A) < (X, A) induces the zero homomorphism in H¥, so from the
exact H *-sequence of the triple (X, U,, A) we get that every (e HE(X, A) has
a preimage ¢eHE(X, U,). But the cup-product fvcxlv cr o, €
H{X,UyoU,u---0U,)=0. Hence ¢ -a; - a,=0 in Hi(X, A). Now take
a=0y A, U

Proof of Theorem 7.1. Assume first G is a p-torus and let 6: S’ xJ,,G— X be a
G-map which induces a homotopy equivalence o: S’ ~ X°. Then ¢ induces a map
of the relative Leray-Serre spectral sequences [27] XIII.7,

o: EP4— EP4

associated to the fibration pairs (X x EG, X ¢ x EG) and (S« J,,G) x EG, s x EG)
over BG. Their E,-terms are

E?Y = HP(BG; HY(X, X°))
E?Y = HP(BG; HY(S'  J,,C, S")).

Here the coefficients are local coefficients given by the action of G on (X, X°) which
induces an action of G = n,(G) = n,(BG) on HYX, X°). Similarly for (S’ * J,,G, S)
[27] VI.1.12. Therefore,

E59=0 forg</+1land g>n
P9=0 forg<l/+1landl+1<g<I+m,

The last assertion follows from the fact that S’ J,G is (m + [ — 1)-connected.
Hence, E2'*' = EP'*' for r<m, and Ef'*'=Er!*1for r>n—1.

Observe that, since H/(X°) =~ H'* (X, X°), G acts trivially on H'* (X, X°). Let
xe H/(BG) = E5'"", a #0, annihilate H%(X, X°). Then o must be zero in EZ/*!
for some ro<n—1 Assume m>n—1[. Then E"”“--E”’+l and o*(o) = O in
EZ'*' But since S’ ~ o*: EB'* '~ E2'*! This gives a contradiction. There-
fore m<n—1

The proof for G=torus is completely analogous. In this case S'*J,G is
(2m + I — 1)-connected. O

Using stable cohomotopy instead of singular cohomology one can prove, by
completely analogous arguments as in [7] 6.1, that
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THEOREM 7.3. If G is a finite p-group, p prime, and X is a compact G-ANR
whose fixed point set is a finite dimensional sphere then k(X, X¢) < .

As we mentioned before, this is not enough to apply our critical point results.
They require upper bounds for the G-capacity of finite-dimensional G-representa-
tion spheres. For abelian p-groups upper bounds for similar invariants have been
computed by Stolz [24] for p=2 and Meyer [18] for p prime using the Adams
spectral sequence.
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