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Critical point theory for perturbations of symmetric functionals

MÔNICA CLAPP

Abstract Functionals which are invariant under the action of a compact transformation group G often
hâve many critical values Hère we consider functionals which aie not G-invariant and give conditions
for them to hâve infinitely many critical values, including a mountain pass theorem We apply ît to prove
the existence of infinitely many solutions of a nonhnear Dinchlet problem with perturbed G-symmetnes

1. Introduction

Let F be an infinite-dimensional Hilbert space with an orthogonal action of a

compact Lie group G, let W be a finite-dimensional G-invariant linear subspace of
F and WL be its orthogonal complément in F. Let <P: V-* R be a C^-functional which
satisfies the Palais-Smale condition and the following mountain pass conditions:

(MP',) There are constants a > 0 and p > 0 such that #(x) ^ a for ail xe WL,

(MP2) For every finite-dimensional linear subspace F to F there exists R

R(F) > 0 such that <P(x) < 0 for ail xef, ||jc|| > R.

If # is G-invariant, i.e. <P(gx) <P(x) for ail xe F, ge G, thèse conditions, plus
a condition on the action of G on F, guarantee the existence of an unbounded

séquence of critical values. For the antipodal action of G Z/2 on F this is a

classical resuit of Ambrosetti and Rabinowitz [1]. The condition on the G-action

just says #(0) <0. For G= S1 this is due to Fadell, Husseini and Rabinowitz [15]

and the condition on the G-action is that <P(x) < 0 for every fixed point xe VG of
this action. For more gênerai group actions see [10], [8], [5] and [7].

This paper is concerned with the following question: If 0 is not G-invariant,
when can one ensure the existence of an unbounded séquence of critical values? One

would expect that, if 0 is not too far away from being G-invariant and if the

mountain range is steep enough, then # should still hâve an unbounded séquence

of critical values. More precisely, assume that VG c Vl a • • • c Vj a • • • is a

séquence of finite-dimensional G-invariant linear subspaces of F and that 0 satisfies

the following conditions:

(DS) There are constants y > 0, fi > 1, such that for ail xe F, ge G,

- <P(gx)\ £ y(\4>(x)\v* 4-1).

570
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O There are constants jS > 0, 6 > ju/(p — 1), j0 > 1, such that, for ail j ^y0,

supinf{ <*>(*): xe K/_1? \\x\\=p}ï>fij*.

(BUj) G Z/p x • • • x Z//7, p prime, or G S1 x • • • x S1 and there exists

m > 0 such that dim VJ_l — dim VG < mj for ail j >y0.

We will show that thèse conditions, together with the Palais-Smale condition
and (MP2) as above, guarantee the existence of an unbounded séquence of critical
values of <P.

(BU!) can be replaced by another Borsuk-Ulam type condition introduced by
Bartsch in [5] which applies to more gênerai groups and is quite useful in
applications, namely,

(BU2) There exists a fixed admissible représentation W of G such that for ail

j ^Jo

Vj^W®'"®W(j summands).

A représentation W is admissible if, for example, G is a finite solvable group acting
without fixed points on W. But the class of admissible représentations is much

larger than this (see [5], [6] and Section 5 below).
Critical point results for perturbations of symmetric functionals were first

obtained by Bahri and Berestycki [2] and Struwe [25] who considered perturbations
of even functionals on a sphère. The key tool was an invariant introduced by
Krasnoselkii, without giving it a name, in his study of stable critical points of an
even functional [17] Chapter VI.

Hère we generalize this invariant to arbitrary compact Lie group actions and
call it the G-capacity k(X) of the G-space X. It is dual to the G-genus [4] but it has

the following rigidity property which neither the genus nor the équivalent
Lusternik-Schnirelmann category hâve, namely,

(Rigidity) If k(X) k(Y)<co then no G-map/: X-> Y which induces a homo-

topy équivalence f°: XG ~ YG on the fixed point sets can be nullhomotopic.

As was noted in [2] and [25] this property is crucial for obtaining critical point
results for perturbations of symmetric functionals, because it provides information

on the noncontractibility of the level sets between the minimax values defined in
terms of the G-capacity. Thèse minimax values are not critical values if # is not
G-invariant, but the conditions given above will guarantee the existence of a critical
value above each minimax value.
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As an application, multiplicity results for nonlinear elliptic équations were obtained
in [2], [25] and also by Rabinowitz [21], [22] and Dong and Li [14]. Hère we extend
thèse results as follows.

We look for solutions u (uu um): Q-+Rm of the nonlinear Dirichlet
problem

-Au Fu(u)+f(x), xeQ

w 0, xedQ,
(D)

where Q is a bounded domain in Rn with smooth boundary and /=
(/!»••• >fm)EL2(Q, Rm). We assume that F satisfies the following conditions:

(FI) F: Um-+U is a C1-fonction.

(F2) There are constants a > 0 and 1 < s < (n + 2)/(« - 2) if n > 3 such that

(F3) There are constants R>0 and //>2 such that 0<^F(u)<u • Fu(u) if
|w|>i*.

(F4) There exist a compact Lie group and an orthogonal action on W=Um
such that W is admissible and F: W-+R is G-invariant.

If/= 0 Bartsch showed [5] that, under thèse conditions, (D) has infinitely many
weak solutions. Hère we shall show that if s in (F2) is further restricted by

(n + 2) - (n - 2)s /i

n(s-l) n~\

then (D) possesses an unbounded séquence of weak solutions in W1q2(Q, I

This last condition coincides with the one given in [2], [25], [14], [21] and [22],

for m 1 and G Z/2.
This paper is organized as follows: In Sections 2 and 3 we define and study the

absolute and relative versions of the G-capacity respectively. In Section 4 we prove
a gênerai critical point theorem for perturbations of symmetric functions on a

Banach manifold and apply it to obtain a critical point resuit for problems with
constraints.

In Section 5 we prove the mountain pass theorems mentioned above and in
Section 6 we apply them to obtain an unbounded séquence of weak solutions of
tD). Finally in Section 7 we compute upper bounds for the G-capacity which are
needed in our critical point results.

I am grateful to Antonio Ambrosetti for making me aware of some of thèse

questions.
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2. The G-capacity

Let G be a compact Lie group. A G-space is a topological space X with a
continuous action of G. A G-map is a continuous map/: Z-> Fwhich préserves the

G-action, i.e. f(gx) gf(x). We dénote by XG {xeX: gx x for ail geG) the

fixed point set of X.
The join X * 7 of two G-spaces X and F is the quotient space of X x [0, 1] x Y

obtained by identifying (jc, 0, y) with (x, 0, y') and (x, 1,>>) with (x\ \,y) for ail

x, x' g Jf, j, y g Y. It has a natural G-action given by g(x, t, y) (gx, t9 gy).
We dénote by

the «-fold join of G, /0G 0, and by

4^ U G"
n> 1

with the weak topology, the countable join of G. Thèse are free G-spaces and J^ G

is contractible. If G Z/2 then JnG is (G-homeomorphic to) unit sphère Sw~l in R"

with the antipodal action, and if G= S1 then JnG is the unit sphère S2""1 in CM

with the action given by multiplication on each coordinate.
Let Z be a topological space with the trivial G-action. Then Z * JnG is a

G-space whose fixed-point set is exactly Z. Hère Z * J0G Z.

DEFINITION 2.1. For every G-space X we define the G-capacity k(X) of X to
be the greatest number 0 <n < oo such that there exists a G-map a: Z * JnG->X
whose restriction to the fixed point sets is a homotopy équivalence aG: ZczXG.

The G-capacity has the following easy property:

PROPOSITION 2.2. (Monotonicity) If there exists a G-map f: X-+ Y with f°\
XG~YG then k(X)<k(Y). D

The following proposition leads to a crucial property of the G-capacity.

PROPOSITION 2.3. Let f\X-*Y be a G-map. Then, f is nullhomotopic if and

only iff can be extended to a G-map f: X * G->Y.
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Proof. Observe that X is contractible to a point in X * X\ via (x, /) h-> (x, t, x'o).

Therefore, if / has an extension as above, / is nullhomotopic. Now assume / is

nullhomotopic and let H:Xx [0, l]-> Y be a homotopy with H(x, O)=/(jc) and

H(x, l) yoe F, for ail xeX. Then

f(x, t, g) gH(g- lx, /), for (x, t,g)eXx[0,l]xG

gives the desired extension.

An immédiate conséquence is the following:

COROLLARY 2.4. (Rigidity) // k(X) k(Y) < oo then every G-map X^Y
which induces a homotopy équivalence XG ~ YG is essential, i.e. it is not nullhomotopic.

We turn now to the question of Computing k{X). Given an orthogonal
représentation F of G we dénote by SV the unit sphère in V.

PROPOSITION 2.5. Ifan orthogonal représentation V ofG is the orthogonal sum

V= w® W of two représentations of G then k(SV) > k{SW) + k(SW).

Proof. Given G-maps a: Z * JmG-+SW<ind x: Z' * JnG-*SW with cG\ Z~$WG
and rG:Zfca(SWf)G9 then the G-map p: Z *JmG * Z' */wG-> W® W -(0, 0)

given by p(x, t9y) (1 — t)a(x) + tr(y), composed with the radial retraction, is a

G-map Z * Z' * Jm + nG-*S(W® W) which induces a homotopy équivalence
G

For an arbitrary G-space Xone gets a lower bound for k(X) as foliows. We dénote

by S7 the unit sphère and by B/+1 the unit bail in euclidean (/ + l)-space. Recall [23]

that a space X is said to be m-connected if every map /: S7-*X, 0 <j< m, has a

continuous extension over W + x. For example, the m-sphère Sm is (m — l)-connected.
IfXis (m — l)-connected and Fis (n — l)-connected then X * Fis (m + «)-connected.

PROPOSITION 2.6. #* JT is a« (m - X)-connected G-space and XG is a CW-
complex, then K{X)>:{m- dim Z°)/(dim G + 1).

Proof Let k(J0 w and a: Z * /wG-> X be a G-map with Z XG.lî m-\>
dim Xg + h dim G + « dim(Z *JnG) then <r is nullhomotopic [23] 7.6.13. Proposition

2.3 gives a contradiction.

This implies, in particular that k(SV) > (dim V~ dim F^/Cdim G + 1) for every
orthogonal représentation V of G. Equality does not hold in gênerai, not even for
a finite group G, as the following example shows
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EXAMPLE 2.7. There is a Z/4-action on S2 such that k(§2) > 4.

Proof. If Z/4 {± 1, +/} c C acts on S3 cz C2 by scalar multiplication and on
§2c={R3 by multiplication with C2 on each coordinate, fe Z/4, then the map
S3 -+ R3\0 given by

(z,, z2) h+ ((z1 + z^fo - £2), |z, + £2| - |z, - £2|)

composed with the radial retraction gives a Z/4-map S3 -> S2 [4]. Monotonocity and
the above proposition imply k(S2) >4. D

For some groups G upper bounds for k(X) can be given in terms of the
dimension of X. This will be done in Section 7. It will follow that

THEOREM 2.8. If V is an orthogonal représentation of G with dim VG < 00 then

(a) k(SV) dim V~ dim FG // G is a p-torus, Le. G Z/px- • x Z//?, /> a

prime, and

(b) k(SF) |(dim F- dim Fc) if G is a torus, Le. G S1 x • • • x S1.

Proof That the given numbers are lower bounds for k(SV) foliows from
Proposition 2.6 if G is a /?-torus, and from Proposition 2.5 if G is a torus, because

every non-trivial irreducible représentation of a torus is 2-dimensional [9] II.8.5.
That they are also upper bounds follows immediately from Theorem 7.1.

Some remarks are in order. For G Z/2 acting without fixed points on X, the

G-capacity k(X) was introduced by Krasnoselskii [17] in his theory of stable critical
points of an even functional, and further studied by Conner and Floyd [11] who
called it the index of X. It is however not an index theory in the usual sensé, since

it does not satisfy the subadditivity property. The 2-sphere of Example 2.7 is the
union of the Z/4-subsets X= §2\{±(0, 0, 1)} and Y= §2\S!. It is easy to see that
k(X) 2 and k{Y) 1, so k(§2) > k{X) + k{Y).

Dual notions like the genus or the Lusternik-Schnirelmann category hâve the

advantage of being subadditive [10], [6] which makes them quite useful for counting
critical points. On the other hand, they do not satisfy the rigidity property: Conner
and Floyd hâve given an example [11] 3.14 of a nullhomotopic Z/2-map between

spaces of the same genus (or co-index). Rigidity for G Z/2 was first proved by
Krasnoselskii [17] Chapter VI.

It follows from Theorem 7.1 that, if G is a torus or a /?-torus, XG 0, then

k(X) < y(X) the G-genus of X, which is defined to be the smallest number n such

that there exist n proper closed subgroups Hl9 ...,//„ of G and a G-map X-+
G/Ht * • • • * G/Hn [6]. But this is not true for an arbitrary group, as Example 2.7

shows. Also, equality may not hold, even for G Z/2 [11] 3.15.
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3. The relative G-capacity

By a G-pair (X, A) we mean a G-space X together with a G-invariant subspace
A of X, and by a G-map {ofpairs) f: (X, A)-+(Y, B) a. G-map f: X-+ F which maps
A into B.

Given a pair (Z, C) on which G acts trivially, we write

DEFINITION 3.1. For every G-pair (X, A) we define the relative G-capacity
tc(X, A) of (X, A) to be the smallest number 0 < n < oo such that there exists a

G-map <r: (Z, C) *JnG-+(X, v4) whose restriction to the fixed point sets is a

homotopy équivalence (of pairs) oG\ (Z, C) ~ (XG, A °).

Then the relative G-capacity satisfies

PROPOSITION 3.2. (Monotonicity) If there exists a G-map f: (X, A)-+(Y, B)
whose restriction to the fixed point sets is a homotopy équivalence f°: (XG, A°)^
(YG, B°) then k(X, A)<k(Y, B). D

A map/: (X, A)-+ (Y, B) is said to be nullhomotopic if there is a homotopy (of
pairs) H: (Xx [0, 1], A x [0, 1])-(F, B) such that H(x9 0) =f(x) and H(x, 1)

b0 € B, for ail xeX. A pair (Z, ^4) is called contractible if the identity map of (X, A)
is nullhomotopic.

The following proposition is proved just like Proposition 2.3.

PROPOSITION 3.3. Letf: (X, A)-*(Y, B) be a G-map. Then fis nullhomotopic

if and only if it can be extended to a G-map f:(X*G,A * G) -~» Y, B). D

COROLLARY 3.4. (Rigidity) If k(X, A) /c(F, B) < oo then every G-map
(X9 A)-*(Y, B) which induces a homotopy équivalence (X0^0)™ (YG, B°) is essen-

tial (Le. it is not nullhomotopic).

Given an orthogonal représentation Fof G we dénote by B V the closed unit bail
in V.

PROPOSITION 3.5. Let V be an orthogonal représentation of G with dim VG <
oo. Then

(a) k(BV, SV) dim V- dim VG if G is a p-torus, and

(b) k(BV, SV) |(dim F- dim V°) if G is a torus.
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Proof. Every G-map a: SVG * JnG^SV which is a homotopy équivalence on
the fixed point sets has an extension &: BVG *JnG^ SVG * JnG * {0} -*
SV * {0} s 2?K, given by <x(;c, /, 0) ((t(x), t, 0), which is a homotopy équivalence
on the fixed point pairs. On the other hand, every G-map (BVG, SV°) */wG-+
(BV, SV) which is a homotopy équivalence on the fixed point pairs induces a

G-map of the quotient spaces S(VG®U) * JnG^(BVG * JnG)/(SVG * JnG)-+
BV/SV^ S(V®U) which is a homotopy équivalence on the fixed point sets. Hère
G acts trivially on U. Now apply Theorem 2.8.

We shall now use the relative G-capacity to prove a critical point theorem for
perturbations of symmetric functions.

4. Critical points of perturbed symmetric functions

Let M be a complète Cu-Finsler manifold [20], [26] and #:A/->R be a
C]-function. 0 is said to satisfy the Palais-Smale condition (PS)a above aeU if

• Any séquence (xn) in M such that <P(xn) c [a, è] for some èe M and such that
|| ->0 as /?-? oo has a convergent subsequence.

Given ceU, let

Recall that X is said to be deformable into Y rel Z in M if there is a homotopy

H:Xx[0,l]^M with H(x,0) x, H(x,\)eY, H(z,t) z for all xel, zeZ,
0<t <\. It is well known that <P has the following déformation property [20], [26]

II.3.11.

PROPOSITION 4.1. (Déformation Lemma) Assume <P satisfies {PS)a. If
d>a and if 0 has no critical values in [d, oo) then M is deformable into <Pd rel <Pd in

M.

Let now G be a compact Lie group acting on M and let Z) be a fixed closed

G-invariant subset of M. Let

Ak {Je M: X is G-invariant, Id Mg and tc(X, XnD) > k}.

Given a C'-function <P: A/->R which is not necessarily G-invariant, define
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dk s inf sup $(x).

Observe that dk<dk + l for ail k. If 0 satisfies (PS) and is G-invariant and if
dkeU, then the values dk are critical values of <P [10] Appendix A, but this need not
be true in gênerai. The following proposition gives conditions for the existence of
a critical value above dk.

PROPOSITION 4.2. Assume that, for some k>\, dk has the following proper-
ties:

(i) 0 satisfies the Palais-Smale condition (PS)dk above dk.

(ii) — oo<dk<a<b<dk + l and the smallest G-invariant subset of M contain-
ing <Pa lies below b, i.e.

G[<Pa] {gy:yeM, <P(y)<a,geG} a$b.

(iii) <P(x)<dkfor ail xeD.
Then, if {M, D) is contractible, <P has a critical value 0 dk.

Proof Since -oo<dk, Ak^0. Let Xc &a be G-invariant, MGaX and

k(X, Xr\D)>k. It follows from (ii) and (iii) that k(G[<P% D) < k. Therefore,
k(X, XnD) tc(G[<P% D) k.

If ^ has no critical values in (dk, 00) then, by (i) and the Déformation Lem-

ma 4.1, M is deformable into <Pa rel <Pa. So there is a (non-equivariant)
map r:(M, D)-+(<Pa, D) with r(x) x for ail xe<Pa. But (M, D) is contractible.
Hence (X, XnD) c (G[<Pa], D) is nullhomotopic. This contradicts the rigidity prop-
erty 3.4.

The following theorem provides conditions for (ii) to hold.

THEOREM 4.3. Let $:M-+R be a C]-fonction, D be a closed G-invariant
subset of M, b>0 and fi: [0, oo)-»[0, 00) be a continuous non-decreasing function,
fi^O, which satisfy the following properties.

(PI) # satisfies the Palais-Smale condition (PS)b,
(P2) \$(x) - Hgx)\ < M|*(*)|) M ail xeM,geG,
(P3) 0 < dk < 00 and dk+1> dk + /i(dk) for infinitely many numbers k,
(P4) #(gx) <b if #(jc) < -*, for ail geG, and

^
(P5) 4>(x)<b for ail xeD.
Then, if(M,D) is contractible, <P has an unbounded séquence ofpositive critical

values.
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Proof First observe that, since // ^ 0 and ju is non-decreasing, property (P3)
implies that dk^> oo as k-+ oo. We now show that # has a critical value cA > dk for
infinitely many &'s. Assume rfA > è and dk + x > dk + /*(rfÂ Let £>0 be such that

e). Let #(x)<4 + e. Then, by (P2), if |#(jc)| <dk + s,

< |#(jc)| 4-

and if #(;c) < ~(dk + g) < -6, by (P4), ^(^x) < b < dk +, - e, for ail geG. There-
fore, G[#^ + f] lies below dk+]—e. Now use Proposition 4.2.

We apply this theorem to obtain a critical point resuit for a problem with
constraints.

Let V be a (j-Hilbert space, i.e. a Hilbert space with an orthogonal action of G.

Let SV be the unit sphère in V and #: SF-> R be a C^-function. As above, let

Ak {Zc 5F: X is G-invariant, SVG a X and k{X) > k)

and let

<4= inf sup ^(x).
JfeJ^ ici

We obtain lower bounds for thèse values as follows.

PROPOSITION 4.4. Let W be a G-invariant linear subspace of V such that
and k(SW) < k. Then, if Ak # 0,

where W± is the orthogonal complément of W in V.

Proof Ail we need to do is show that every G-invariant subset X of SV, such

that SVG a X and k{X) > A:, intersects SWX. If this were not so, the restriction to
A"of the obvious G-retraction V\W± -+ SW would given a G-map X-+SWwhich is

the identity on SVG, hence k(X) < k{SW) < k.

The following theorem gives sufficient conditions for the existence of infinitely

many critical values of <P.

THEOREM 4.5. Let V be a G-Hilbert space and let VG a Vx a V2 c • • • c
Vj cz • • - be a séquence of finite-dimensional G-invariant linear subspaces of F. Let
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<P: SV-+M be a Cl-fonction which satisfies (PS)a for some a>0. Assume further
(DS) There are constants y > 0, ju > 1, such that for ail xeSV, geG,

\0(x)-<P(gx)\<y(\<P(x)\^+l)

(S) There are constants /? > 0, 0 > ju/({t - 1), j0 > 1, such that for ail j >j0,

mf^ixy.xeSV^i} >pf.

(BU) There exists m > 0 such that k(SVj_1) < mj for allj>j0.
Then 0 has an unbounded séquence of critical values.

Proof We apply Theorem 4.3 above to the given 0 and to Z) 0, fi(t)
y(tl/M + 1), and b > a large enough so that t > y(tl/f" + 1) if t > b. Thèse data obviously
satisfy (PI), (P2) and (P5). Assume <P(x) < -b<0. Then, if &(gx)>0 for some

g 6 G, <P(gx) < <P(gx) - <P(x) < y(\<P(gx)\l/v -h 1). Hence, by our choice of b, <P(gx) <
b. This proves (P4). Now we check (P3). Observe that (S) implies that dim V= ce.
So by 2.5, k(SV) oo and Ak ^ 0 for ail k. In fact, k(SVj) -> oo asy -? oo. Therefore

dk<oo for ail k. Now, (S), (BU) and Proposition 4.4 imply that dmj > fij0 for ally >j0.
If for some ko>l,dk+l<dk + y(dlk/M -f 1) for ail k>k0, then there exists co > 0 such

that dk<œk^-1 for ail À:>&0 [22] (10.53)-(10.57), [2] 5.3. But then fif <dmj<
(comM/M ~ l)jM/M ~l for ail sufficiently largey, which is impossible because 6 >///(//— 1).

Finally, observe that, since dim V= oo, SV is contractible.

(DS) is a sublinearity condition, with respect to |#(x)|, on the déviation of $
from being G-invariant. (S) is a condition on the steepness of 0 on a séquence of
orthogonal directions, which dépends on the déviation from symmetry (DS). (BU)
should be thought of as a Borsuk-Ulam condition which restricts the dimensions of
thèse orthogonal directions. It is satisfied if, for example (Theorem 2.8),

(BU^ G1 is a p-torns and dim VJ_l <mj for ail j and some fixed m.

If 0 is (/-invariant one can guarantee the existence of an unbounded séquence
of critical values under much weaker conditions: One needs only that $ is bounded
below on some infinité dimensional sphère SWaSV and that the group G satisfies

a weak Borsuk-Ulam condition, namley that there is no G-map from an infinite-di-
mensional into a finite dimensional G-representation sphère [8] 4.1, [6] 3.1. This is

équivalent with G being an extension of a finite /?-group by a torus [6] 3.5. One can
in fact show that for thèse groups the G-capacity of a finite-dimensional sphère is

finite (Theorem 7.3). But condition (BU) requires much more than that: One needs

actually to be able to compute upper bounds for k(SVj). For abelian /?-groups the



Cntical point theory for perturbations of symmetnc functionals 581

computation of upper bounds for similar invariants has been carried out by Stolz
[24] for p 2 and by Meyer [18] for p prime, using quite sophisticated machinery
from algebraic topology. In the following section we shall give an alternative
Borsuk-Ulam condition (BU2) which applies to more gênerai groups than (BU!).

Bahri and Berestycki [2] and Struwe [25], simultaneously, first noticed the
relevance of the rigidity property for proving critical point results for perturbations
of even functionals on a sphère. They applied them to prove multiplicity results for
nonlinear elliptic équations of the type —du=\u\s~lu-\-f(x) in Q9 w 0 on dQ,

feL2(Q), s small enough, by turning this into a variational problem on a sphère in
Hl0(Q). We shall extend thèse results to more gênerai symmetries in Section 6, via
a mountain pass theorem.

5. Mountain pass theorems for perturbed symmetric functionals

Let G be a compact Lie group, V be a G-Hilbert space and VG a Vx c • • • cz

Vj c • • • be a séquence of finite-dimensional G-invariant linear subspaces of V.

For a given non-decreasing séquence of positive numbers (Rj) with i?y->oo as

j —? oo define

/>= (J (Ky\**,ry),

where BRVj={xeVj: ||x || < Ry}, and

Ak se {le V:X is G-invariant, X=> VG and k(X, XnD) > k).

Observe that D is a closed G-invariant subset of V. Let &: V-+M be a (non-equiv-
alent) C^functional and

dk inf sup <P(x).
XeAk xeX

We start by giving lower bounds for thèse values.

PROPOSITION 5.1. IfK(S(Vj@R))<k9 where G acts trivially on R, then, if

dk> sup inî{<P{x)\xe Vf, \x\ =/?}.
0<R
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Proof. Let X be a G-invariant subset of F with XzdVg and k(X, XnD) > k.
Assume that XnSp Vf- 0 for some 0 < p < RJ+, R. There is a G-map

which induces a homotopy équivalence (FG, Z>G) ~ (BRVG, SRV°), obtained by
projecting V\BRV radiallly onto SRV, BRV\SpVj- along straight Unes onto

SrVkjBrVj and, finally, expanding BR Vj if necessary so that BRVynD gets mapped
onto SRVj. By monotonicity,

k(X9 XnD) < K(V\SpVy\ D) < k(SrVkjBrVj9 SrV).

As in the proof of Proposition 3.5 one can easily show that k(Sr Vu BRVr SRV) <
k(S{Vj® R)) <k. This gives a contradiction.

We are now ready to prove our first mountain pass theorem.

THEOREM 5.2. Let V be a G-Hilbert space and VG c Vx a • • • c Vy ci • • • be a

séquence offinite-dimensional G-invariant linear subspaces of V. Let <P\ V-+R be a

C]-functional which satisfies (PS)a for some a>0. Assume further
(DS) There are constants y > 0, /u > 1, such that for ail xeV, ge G,

\<P(x)~<P(gx)\<y(\<P(x)\^+l).

(MPj There are constants P > 0, 6 > /u/(n — 1), j0 > 1, 5wc/z ^a/ /or a// y >y0,

ceF/i.,, llxll p} >/?/.

(MP2) For everyj > 1 r/zere exists Rj>0 such that &(x) < Ofor x e Vp \\x \\ > Ry.

(BU) There exists m > 0 such that k{S(Vj_, © R)) < m/ for ail j >j0.
Then <P has an unbounded séquence of positive critical values.

Proof We may assume (R;) is non-decreasing and Rj-+oo as y->oo. Let

d=[Jj>\(Vj\brjv,)^ $ be the given function, fi(t) y(tl/fl+l)9 t>0, and let
b > a be large enough so that t > y(tl/M + 1) if t > b. This data obviously satisfy the

hypothèses (PI), (P2) and (P5) of Theorem 4.3, and (P4) and (P3) can be proved
just like in Theorem 4.5 (using Proposition 5.1). Now, D is a local ANR, hence it
is an ANR. So it has the homotopy type of a CW-complex. It follows from (MP,)
and (MP2) that dim K7-> oo asy-> oo hence, D is weakly contractible. Therefore D
is contractible [23] 7.6.24. And, since Fis an AR, the pair (F, D) is contractible. By
Theorem 4.3, 0 has an unbounded séquence of critical values.
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Some remarks are in order. (MP^ and (MP2) are mountain pass conditions.

(MP2) is the usual one, whereas (MP^ is considerably stronger than the correspon-
dong assumption for the symmetric case, which appears as (MP\ in the introduction

[1], [22], [10]. (MP,) is a condition on the steepness of the mountain range
which dépends on the déviation (DS) of # from being G-invariant. The Borsuk-
Ulam condition (BU) is satisfied if, for example (Theorem 2.8),

(BU!) is a torus or a /7-torus and dim VJ_l — dim VG <mj, for ail j> 1 and

some m > 0.

In the G-invariant case this theorem holds for much more gênerai group actions

[8], [7]. The difficulty hère again lies in Computing upper bounds for k(S(Vj®U)),
see remarks at the end of Section 4. We now prove a mountain pass theorem which
involves a différent BU-condition which is quite useful in applications (cf. Section

6). We start with some définitions.
A finite-dimensional orthogonal représentation W of a compact Lie group G is

said to be admissible [5] if there exist a closed subgroup H of G and a normal
subgroup K of H of finite index in H with H/K solvable, WH 0 and WK # 0.

Recall that a finite group S is solvable iff there exists a séquence of subgroups of S,

{e} So <Sl O • • • <\Sr S, each one being a normal subgroup of the following
one, such that SJSl_l^Z/pl for some prime pr Such a séquence is called a

resolution of S. In particular, every finite abelian group is solvable.

A typical example of an admissible représentation is when the maximal torus T
of G acts with fixed points on W\{0} whereas the action of its normalizer N is fixed

point free, and the Weyl group W= N/T is solvable. If G is a finite solvable group,
then every représentation without non-trivial fixed points is admissible. For an
équivalent définition of admissibility in terms of a Borsuk-Ulam property see [5]
and [6] 2.24.

We now state our second mountain pass theorem.

THEOREM 5.3. Let V be a G-Hilbert space with VG 0 and let Vl c • • • c
VjCi - • - be a séquence of finite-dimensional G-invariant linear subspaces of V. Let
<P: V^U be a C]-functional which satisfies (PS)a for some a>0. Assume that this

data satisfy (DS), (MP^ and (MP2) as in Theorem 5.2, and the following Borsuk-
Ulam condition.

(BU2) There exists a fixed admissible représentation W of G such that for allj >j0

V, s W® ' ; ' © Wt.

j times

Then <P has an unbounded séquence of critical values.
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Proof. Let H be a closed subgroup of G and K be a normal subgroup of // of
finite index in // with S H/K solvable, WH 0 and JF* # 0. Then the 5-spaces
F* Ff and the restriction <PK: VK^>Roï<Pio Vk again satisfy (PS),,, (DS), (MP,),
(MP2) and (BU). This last condition now reads

(BU2) There exists a non-trivial admissible représentation W= WK of S such

that Vf s W® --®W(j times) for ail j >j0.
Now take a resolution {e} So < S, • • • <5r 5 of 5 with £,/£,_, ^ Z//7,.

Choose 1 <i<r such that Ws> 0 but PF^-' ^0. Then the Z//?rspaces (K*)5'-1,
(F^)5'-1 and the restriction of 0 to (VK)S'~^ satisfy ail hypothèses of Theorem 5.2,

with (BU!) instead of (BU). This proves this theorem.

If 0 is G-invariant this resuit was proved by Bartsch [5] 2.5 under a much
weaker assumption than (MP,), namely

sup inf{#(x): xe Vfi_u \\x\\ =/?}-» oo asy-> oo.
?^0

See also [7] 3.2.

The following section contains an application of Theorem 5.3.

6. A nonlinear Dirichlet problem

We look for solutions u (uu um)\ Q^Um of the nonlinear Dirichlet
problem.

xeQ

« 0, xedQ. (61)

Hère Q is a bounded domain in U" with smooth boundary and /=
(Aj • • • ^fm)EL2(Qi Um). We assume that F satisfîes the following conditions:

(FI) F: Um-^U is a C!-function.
(F2) There are constants a > 0 and 1 < s < (n + 2)/(« - 2) if n > 3 such that

If n 2 this condition can be weakened, if « 1 it can be omitted.
(F3) There are constants R>0 and //>2 such that 0<juF(u)<u • Fu(u) if
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(F4) There exist a compact Lie group and an orthogonal action on W— Um

such that W is admissible and F: W^> U is G-invariant.

If/= 0 Bartsch has shown that, under thèse conditions, (6.1) has infinitely many
weak solutions [5]. Hère we shall show that

THEOREM 6.2. If F satisfies the hypothèses (FI), (F2), (F3), (F4) and

feL2(Q, Um) then (6.1) possesses an unbounded séquence of weak solutions in

Wlo2(Q, Um) provided that s in (F2) is further restricted by

> »9 >n(s-\) [i-\
It is easy to check that if s satisfies (6.3) then s < (n 4- 2)/(n — 2). For m — 1 and

G Z/2 this theorem was proved by P. H. Rabinowitz [21], [22] Section 10, using
a mountain pass argument. Slightly less gênerai versions were previously proved by
Bahri and Berestycki [2], Struwe [25] and Dong and Li [14] using other arguments.
We shall apply our Mountain Pass Theorem 5.3 to prove Theorem 6.2.

Set V= Wlo2(Q, Rm) and consider the functional

V(u) f (\\\Vuf-F{u)-f'u)dx,

ueV. By the Poincaré inequality we may take ||w|| {\Q ||Pw||2rfx)1/2 as the norm
in V. As a conséquence of (FI) and (F2) *FeCx{V, U) (cf. [22] Appendix B). Its
derivative at u e V is

DxF(u)v=\ (Vw Fv-Fu(u)-v-f-v)dx
Q

and a critical point of *P is, by définition, a weak solution of (6.1).
The action of G on W= Um induces an orthogonal action on V given by

(gu)(x) g(u(x)). Observe that W is not G-invariant unless/=0.
In order to apply Theorem 5.3 we need that !P satisfies the déviation from

symmetry condition (DS). Unfortunately it does not. We proceed as in [22] Section

10, and replace ÎP by a new functional <P which does not satisfy (DS) and is such

that large critical values of <P are critical values of ÎP, i.e. weak solutions of (6.1).

Integrating condition (F3) shows that there are constants a,, a2>0 such that

F{u)>ax\uY-oi2. (6.4)

Following Rabinowitz [22] 10.11, one can easily show that
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PROPOSITION 6 5 There exists a constant yi>0 depending on \f\Li{Q Rm) such

that, ifuisa cntical point of ÎP, then

[ (F(u) + a2) dx < yx{Y{u)2 + l)1'2 (6 6)

We modify 5P as follows Let /eC°°([R, R) be such that /(0=l for /<1,
0 for t>2 and /'(0e(-2,0) for te(1,2) Set

and

for ueV Note that, by (6 6), rj{u)=\ if w îs a cntical point of *F Hence,

PROPOSITION 6 7 If F satisfies (F1)-(F4) andfeL2(Q, Um) then

(a) ^eCJ(FJ)
(b) TTjere exists a constant y > 0 depending on ||/||£,2(fl Rm) such that for ail ge G,

u e F, |*(«) - #fei<)| < yd^Cn)!1^ + 1)

(c) There is a constant a0 > 0 ^mc/z ^«^, if <P(u)>a0 and D<P(u) 0,

(d) There is a constant a>a0 such that 0 satisfies the Palais-Smale condition

(PS)a above a

Proof (a) It follows from (FI) and (F2), as in [22] Appendix B, that W is C1

Since x 1S smooth the same is true for rj Hence, 0 is C1

(b) If rj(u) 0 then, by (F4), <P(u) <P(gu) for ail ge G So assume //(w) > 0

Then, for ail geG9

I F(u) + a2) dx

and by the Holder and Schwarz mequahties and (6 4) And, since rj(u) > 0,

(F(u) + a2) û6c < 4y,(F(w)2 + l)11
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hence,

(F - gu) dx <y4(\¥(u)\l/»+\) for ail ge G,

where y4 > 0 dépends on \\f\\L2. Now

\<P(u)-<P{gu)\ (rj(gu)f ' gu - rj(u)f • u) dx

(f'gu)dx (f-u)dx

<2M,

where M max{|J^ (f'gu) dx\, \jQ (f- u) dx\}. Observe that

I (f-u)dx <\<P(u)\

This, together with (6.8), gives

hence,

(6.8)

(6.9)

where y6>0 dépends on ||/||L2. This, together with (6.9), proves (b).

(c) and (d) are proved by the same arguments as in [22] 10.16, for the case

m=\.

In order to prove Theorem 6.2 it is, therefore, enough to prove that # has an
unbounded séquence of critical values.

We define a filtration Vx c V2 c • • • c V} c • • • of F as follows. Let 0 < Xx <
x2 <•••</,,<••• be the eigenvalues of the problem

— Av Âv in Q

v 0 on dQ
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and v1, v2,. v7,. be the corresponding eigenfunctions. They give a basis for
Hlo2(Q). For every k > 1 let

Vk s {u (m, um e V: u, ttvk, tt e U, i 1,.. m}

and for each j > 1 let

Vj= © V.
1 k

Each F^ is a (/-invariant linear subspace of Fisomorphic to W= Um as a G-space.

So, by (F4), each V3 satisfies the Borsuk-Ulam condition (BU2) of Theorem 5.3. In
view of Proposition 6.7 we need only to check (MPj) and (MP2).

To prove (MP2) we only need to show that <P(tu) < 0 for ail ue K, u # 0 and t

large enough. But, using (6.4) and \rj(u)\ < 1 we obtain positive constants

a3, a4, a5, a6 such that

0(tu) <a3t2 — <x4tM + a5t + oc6-+ — oo as /->oo

because // > 2. Finally, we show that

PROPOSITION 6.10. Therer are constants f]>0 andjo>\ such that, for ail

sup inf{#(w): u e Vf_ u || u || /?} > yff/61

with

(n + 2)-(n-2)s

Proof. Let ueVf_x with ||w||=/?. Then \u\Li<Àjxl2p. By the Gagliardo-
Nirenberg inequality [16] 1.9.3,

where v is defined by

v 1 n n-2- —,,e.v —--^,
and f}x > 0. So, using (F2), we get that, for positive constants /?2, /?3, /?4,
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Taking p P] (4fi2)~1/<4- 'U** +1)/2<> ~ '> we obtain

Since i, > /?5y2/" for y large enough and some fis > 0 [12], #(w) > pj" for ail m e Vf_,
with I m || — Pj and y sufficiently large, where /? is some positive constant and

2v(s+\)Jn + 2)-(n-2)s
(l) (l)

This together with (6.3), gives the mountain pass condition (MP,) of Theorem
5.3 and complètes the proof of Theorem 6.2.

7. Upper bounds for the C-capacity

Recall that a G-ANR is a metrizable G-space X such that every G-map Z-+X
from a closed G-subspace Z of a metrizable G-space Y can be extended to a G-map

[/^lona G-neighborhood U of Z in F [19].

If (Z, ^4) is a G-pair, H*(X, A) will dénote singular cohomology with Z//?-
coefficients if G Z/p x • • • x Z//? is a /7-torus, /? prime, and with rational coefficients

if G §1x--x§1 is a torus. The aim of this section is to prove the

following:

THEOREM 7.1. Let X be a compact G-ANR whose fixedpoint set is homeomor-

phic to the l-sphere XG s S7. Assume H«(X, pt) 0 for 0<q<l+\ and

0forq>n>L Then

f«-/ ifGisap-torus^ J-||(W_/) if Gis a torus.

For the proof we use Borel cohomology so let us recall what this is. For every

compact Lie group G, the countable join J^ G of G, which is usually denoted by
EG, is a contractible G-space on which G acts freely. Its orbit space BG EG/G is
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known as the classifying space of G Given a G-space X we wnte XxEG for the
G

orbit space of Xx EG with the diagonal G-action The projection Xx EG-+EG
induces a map of the orbit spaces px Xx EG^BG which îs a fibration with fibre

G

X, called the Borel fibration Every G-map/ X-> Fmduces a fibre-preserving map
XxEG-> YxEG over BG By defining

H%(X, A) 7/*(X x £G, ,4 x

on every G-pair (X, A) one obtains a G-equivanant cohomology theory, called
Borel cohomology It satisfies the homotopy invariance, excision and exactness

axioms in the G-equivanant setting [10] 4 1, [13] Chapter III The cup-product
endows the coefficient ring H%(pt) — H*(BG) with a graded ring structure and
induces an HG(pt)-module structure on HG(X, A) by Çco Ç w/?£(&>), for

For torn and /?-torn of rank r, î e with r factors S1 or Z/p respectively, the
coefficient rings are

H*(BG, Q) Q[c, cr ] if G îs a torus

H*(BG, Z/2) Z/2[w,, wr] if G is a 2-torus

H*(BG, Z/p) Z/p[cl9 cr]®/f[wl5 wr] if G is a/7-torus,/? >2

So the first two are polynomial algebras in r generators and the third one is the

tensor product of a polynomial algebra and an extenor algebra in r generators
Since every proper subgroup H of a p -torus G of rank r is a /? -torus of rank <r,
and smce every proper subgroup H of a torus G of rank r is the product of a finite

group with a torus of rank r, it follows that ker(HG(pt) H*(BG)-*H*(BH)
HG(G/H)) contains a polynomial élément if H # G [10] 5 7 We will use this fact to

prove the followmg proposition

PROPOSITION 7 2 Let X be a compact G-ANR and let AaX be a closed

G-invanant subset which is also a G-ANR with XG c A Then, if G is a torus or a

p-torus, there exists an élément (xeH%(pt), a#0, which annihilâtes HG(X9 A), le

Proof Let Uo be a G-invanant neighborhood of A which is G-deformable into
A în XtcI A and, for every G-orbit of X\A, take a G-invanant neighborhood which

is G-deformable into that orbit [9] 6 10 Extract a finite subcovenng X
xkj KjUn Then UJ9j 1, w, is G-deformable into some homogeneous
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G-space G/Hj with Hy^G. Choose a polynomial élément ayeker(i/£(/?O->
H*(G/H)). Since /?*(o/) 0, />$(«,) has a preimage àjeHl(X, t/y). This
follows from the exact //g-sequence of the pair (X, Uj). On the other hand, the
inclusion (Uo, A) a (X, A) induces the zéro homomorphism in H%, so from the

exact i/£-sequence of the triple (X, Uo, A) we get that every ÇeH%(X, A) has

a preimage ÇeH%(X, Uo). But the cup-product <f w a, w • • • wawe
//S(X, [/Oul/Iu"'u[/J 0. Hence f • û^ •••«„ in H%(X,A). Now take

a ocl - • • an.

Proofof Theorem 7.1. Assume first G is a /?-torus and let <j: S7 * JmG-±X be a

G-map which induces a homotopy équivalence c: S7^ XG. Then <r induces a map
of the relative Leray-Serre spectral séquences [27] XIII.7,

associated to the fibration pairs (Xx EG, XGx EG) and ((S7 *JmG)x EG, S1 x EG)
G G G G

over BG. Their ^-terms are

£* Hp(BG\ H%X, XG))

^(Sz * /WC, S7)).

Hère the coefficients are local coefficients given by the action of G on (X, X°) which
induces an action of G no(G) nx{BG) on Hq(X, XG). Similarly for (S7 * JmG, S7)

[27] VI. 1.12. Therefore,

Ep2q 0 for q<l+\
Ép2q 0 for^</+l and/+l <q<l + m.

The last assertion follows from the fact that S7 * JmG is (m +1— l)-connected.
Hence, Ép2J+l Éprl+i for r<m, and E^l+l E^+1 for r>n-l.

Observe that, since Hl(XG) s Hl+ l(X, X% G acts trivially on Hl+ \X, XG). Let

aeHp(BG) È^/+1,a^0, annihilate H%(X9 X% Then a must be zéro in Epr^l
for some ro<n-l. Assume m>n-l Then Ép2J+l =Épr*+l and <r*(a) 0 in

^/+1. But since S7- XG, a*: Ep2l+l ^Ép2l+X. This gives a contradiction. Therefore

m<n — l.

The proof for G torus is completely analogous. In this case S1 * JmG is

(2m H- / - l)-connected.

Using stable cohomotopy instead of singular cohomology one can prove, by
completely analogous arguments as in [7] 6.1, that
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THEOREM 7 3 If G is a finite p-group, p prime, and X is a compact G-ANR
whose fixed point set is a finite dimensional sphère then k(X, X°) < oo

As we mentioned before, this is not enough to apply our cntical point results

They require upper bounds for the G-capacity of finite-dimensional (/-représentation

sphères For abehan /?-groups upper bounds for similar invariants hâve been

computed by Stolz [24] for p 2 and Meyer [18] for p prime using the Adams
spectral séquence
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