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On the existence of higher dimensional Enneper's surface

Jaigyoung Choe*

Enneper's surface and the catenoid are the simplest minimal surfaces in R3 that
are complète, orientable and nonplanar. This is because a complète orientable
minimal surface has the total curvature of —4kn for some nonnegative integer k,
while k 1 for Enneper's surface and the catenoid. Enneper's surface has one end

and is a minimal immersion of R2 in R3, whereas the catenoid has two ends and is

a surface of révolution.
Not only is R3 but also in R", n > 4, the catenoid has been known to exist. It is

a minimal hypersurface which is rotationally symmetric. The higher dimensional
catenoid has been the only example that is a higher dimensional analogue of a

2-dimensional minimal surface. In this paper, however, we prove that there also

exists an «-dimensional Enneper's surface X" in R" + l for n 3,4, 5, 6, which is a

minimal immersion of Rn in Rw + 1.

For two-dimensional minimal surfaces in R3 there is the Weierstrass représentation.

This représentation makes it easy to write down an enormous number of
complète minimal surfaces in R3. Moreover, one can construct arbitrarily many
minimal submanifolds of even codimension in R2", as every complex submanifold of
R2n is minimal. But in higher dimension one does not even hâve a good way to
construct examples of complète immersed minimal hypersurfaces. Among a few
known examples are the higher dimensional catenoids, area minimizing cônes and

graphs constructed by Bombieri-De Giorgi-Giusti [BDG], minimal hypersurfaces in
R4 and R6 passing through the Clifford tori in S3 and S5 [B], minimal hypersurfaces
as leaves of a foliation arising from isoparametric hypersurfaces [FK], and F-invari-
ant minimal hypersurfaces [W].

Ail the examples above hâve been found by solving ordinary differential
équations which were induced from the partial differential équation of minimal
hypersurfaces by exploiting certain symmetry conditions. Higher dimensional
Enneper's surface I, by contrast, is constructed by solving the partial differential

équation directly as follows. First construct a compact minimal hypersurface by
finding Jenkins-Serrin's solution [JS] to the Dirichlet problem for the minimal

?Supported in part by BSRI-94-1416, GARC, KOSEF (941-0100-016-2).
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On the existence of higher dimensional Enneper's surface 557

surface équation with suitably prescribed boundary data. Second obtain a compact
Enneper type surface by reflecting the minimal hypersurface across the totally
géodésie part of its boundary. Third blow up the compact Enneper type surface by
an appropriately chosen scale to obtain a complète minimal immersion of Rw in
R"+l. In this process we hâve used the curvature estimâtes of [SSY] and [SS], and
for this reason we hâve the dimension restriction that n 3, 4, 5, 6.

Our higher dimensional Enneper's surface I satisfies some properties which are
analogous to those of classical Enneper's surface. Namely, Z" contains n mutually
orthogonal (n— l)-planes. Asymptotically, i.e., viewed from infinity, In looks like
an n -plane with multiplicity 2" — 1. On the other hand, a high dimensional analogue
of the total curvature for In Jr \A \", A being the second fundamental form, becomes

infinité. Moreover, the Gauss map is not well defined at the point at infinity of I.
Several interesting features of higher dimensional Enneper's surface are remarked in
Section 6.

We would like to thank Mike Anderson and Léon Simon for some useful
discussions.

1. Définitions and notations

(1) Let O (0,. 0), />, (1, 0,. 0), p2 (0, 1, 0,.. 0),.. ,/?„
(0,. 0, 1, 0)eR" + \ Define T to be the regular (n - l)-simplex with pu ,pn
as its vertices. Let p( (-1,. -1, e)eR" + \ 0<£<l, and define fe
(O % cT)\j(pi % êT)aR" + ]. Hère p $ S dénotes the cône from p to 5, the union
of ail line segments from p to the points of S.

(2) Define C as the «-dimensional catenoid which is rotationally symmetric about
the xn + raxis. C satisfies the équation xn +, =/(>), r (#? + ••• + xî)ï/2, where

f(r)=

(3) For each r > 0 we define

///:RII+1->R'I + I, fi,(x) rx9

and for each q g R"+1 define

xq\ R"+1 -?Rw+ \ re/(x) x-q.

(4) Let Al9 \<i<n+\9 be the hyperplane {(*,,...,*„ +,):*, 0} and let
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A_x {(*„ ,xw,0):n,</<y<w(x? + ^2) 0}, i.e., A_x is the (n - 2)-skeleton of
Ao, A+ {(xu. ..,*„+,):*, •••*„ + >0}, yl*= {(*,,. ..,xn+x):xt>0J
1, ...,w+l}, AÏ + l=An+lnA*, A»n+l=the closure of (y*n + 1~/f*), ^ + i

{(*,,.. .,xn + l):O<xn + x<e}, Aî+l {(xï9..., xn + x)\xn + x >0}. Let ^ be the

hyperplane which passes through the origin, is disjoint from the interior of A*, is

perpendicular to An + l9 and makes an angle of 6 with A, and an angle of
cp9 (n — 1) cos2 cp + cos2 0=1, with every AJ9j # /, « -f 1, and let v4w +, ^ be the hyperplane

in Rw + 1 which contains the (n — l)-plane An + xnAn + 2 and makes an angle of
0 < 9 < n with An +1. Let £ be the straight line {{xx,. xn, 0):xx • • • xw}.

(5) Define tt,, tt2 as the projections from R" + 1 onto An + l9 An + 2, respectively.
Define pl9 1 < i<n, as the rotation by 180° about the (n — l)-plane Arj + inAl and

pip 1 ^i^j^n, as the rotation by 90° about the (n— l)-plane Atc\Aj taking the

positive x,-axis to the positive x7-axis. £w + 1
is the reflection with respect to the

hyperplane An + l.
(6) For 1 < / #7 < «, let 0V f„ +1 ° pv and let Çy be the reflection with respect

to the hyperplane x, Xj. Define G to be the subgroup of O(n + 1) generated by

(7) Let Br(q) be the bail of radius r with center at q and i?r(#) its interior. Z,
is the cylinder defined by Z, {(xu xw + j):*2 + • • • -f x2n < r2}.

2. Compact Enneper type surface

The first step towards the proof of the existence of higher dimensional En-

neper's surface is to construct a compact minimal hypersurface which resembles the

fundamental région of 2-dimensional Enneper's surface (Lemma 1). Then a compact

Enneper type surface is obtained from this fundamental pièce by 180°

rotations (Lemma 2).

LEMMA 1. For each s> 0 there exists a unique n-dimensional compact minimal
hypersurface Ie in Rw + * bounded by Fe. Ie is area minimizing and stable.

Proof. The projection n2 maps Fe one-to-one onto n2(Fe) which is the boundary
of a convex domain in An + 2. By [GT, Theorem 16.8] the Dirichlet problem for the
minimal surface équation is uniquely solvable. It is well known that a minimal
graph over a convex domain is area minimizing. Hence it is stable.

LEMMA 2. 2" congruent copies of Ie can be pieced together to form a compact
smooth minimal hypersurface Ee which is invariant under the group G.
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Proof. Assume that for a, fie G,

a(dZenAn+l) P(dZtnAn + x). (1)

Note that <f)lJ(A+) A + and Çlf(A+) A + Hence

P~xa(A+) A + (2)

It follows from (1) and (2) that

*) A* and <x(dZe) 0(dZe).

Hence (j~la is the product of some <f,/s. From the invariance of ff under (lf and
the uniqueness of Ze spanning Fe9 one obtains Çlf(Zt) Zt. Therefore

(3)

Define

Clearly Ze is invariant under G. That (1) implies (3) shows that Z( consists of 2n

the number of the components of A+) copies of Zf. Note now that

pt(Ze) <f>y(Ze) for every 1 < / #y <n.

Then a standard theory of the elliptic partial differential équations states that
Zeu(/>tJ(Ze) is an analytic extension of Ze across dZ.nAn^yCsA,. Furthermore it
follows that Ze is an analytic extension of ZF across ôZrnAn+,.

3. Curvature estimâtes

Extending a compact Enneper type surface to a complète hypersurface requires
detailed estimâtes on the curvature of the surface. A lower bound of the curvature
is obtained by the maximum principle (Lemma 4) and an upper bound is derived
from stability (Lemma 5).

LEMMA 3. Let y(s) (x(s),y(s)), 0<s<a9 be a C2 curve in R2 parante-
trized by the arclength s satisfying y(0) (0,0), y'(0) (l,0), /(a) «(0,1) and
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0 < x(s) < b. Then there exists 0<so<a such that the curvature of y at y(so) is not
less than l/b.

Proof. Let Çc be the quarter circle defined by Çc(t) (b sin t,c-b cos f), 0 <
t < n/2. If c sup{c < b : Çc n y <j)}, then y lies on one side of Çd touching ÇÉ at a

point y(so)9 0 < s0 < a. Hence the curvature of y at y(s0) is larger than or equal to
that of Ce which is l/b.

LEMMA 4. For each s > 0 there exist qFeIe and a(s)>0 such that

dist(#f, Ao) < a(e) + s, \A \(qr) > —- Jim a(s) 0, (4)

where \A\ is the length of the second fundamental form of IF.

Proof. Let a(s) > 0 be the smallest number such that for any r > a(s), the
catenoid zqir)/ir(C), q(r) (r,..., r, 0)e/, is disjoint from Fe~An+l. Then one

can easily see that a(e) converges to 0 as e goes to 0. For any q{r) with r > a(e),
Tq(r)Ma(e)(C) d°es not intersect fe. Also, for sufficiently large b > 0, tqih)jua(e)(C)

cannot intersect IF. It follows from the maximum principle that

%)/Wc)^Ie=(t) for a(s) <r<b.

Hence

ïq(a(e))Ma(e)(C)n(ZF - 3Ze) (j).

Let

Since the plane curve is invariant under the reflections Çy, 7 is a principal curve
in Jg, that is, every tangent vector of 1 points along a principal direction of IF.
Therefore

\A \(q) > K(q), the curvature of 7 at q e 1. (5)

The tangent cône of ZF at the origin O is An + lnA*. Hence a tangent vector of
1 at O points along t c An +1. Moreover is tangent to pF )o( T at /?f. Hence

the angle between two tangent vectors of 1 at O and at pe is larger than 90°. Thus
there exists q e 1 at which a tangent vector of is perpendicular to t. Since ~ {/?e}
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is disjoint from rq{a{e))fia{e)(C) one can apply Lemma 3 and conclude that there exists

a point qee7 at which

K(qE)> \ (6)
(Jn - \)a(e)

Combining (5) and (6), we get (4b). Finally we can compute

dist(<?£, Ao) < I " (v^ -

which gives (4a).

DEFINITION. Fix 0 < d < 1 in such a way that for any e

dist(Zd,ôïF)>d. (7)

Define ïf%c ={qefenZd:dist(#, Ao) < c}.

LEMMA 5. Ifn<6 and Ie^c is stable, then there exists b>0 depending only on
the dimension n such that for any interior point q of Iec

\A\(q)< ^— (8)
1 '* dit(ô^)
Proof Let con + lbe the volume of a unit bail in R"+ K By Lemma 1, a{Ie) n Zec

is area minimizing for any oceG. So it is easy to show that if Br(q) is disjoint from

dlec then

Vol(dBr(q)) (n+ l)œn + xr\ oceG.

Summing up for ail distinct cc(Er) gives

r-nVol{ï^c nBr(q)) < 2"(n + l)œn+l.

Thus (8) follows from [SSY, Theorem 3] for n<5 and [SS, Theorem 3] for
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4. Blowing up

We are now in a position to blow up a compact Enneper type surface to obtain
a higher dimensional Enneper's surface. But in this process correct scaling is needed

(Lemma 6). Blowing up by correct scaling gives us a complète analytic hypersurface
(Lemma 8). It may happen that this hypersurface becomes the hyperplane. How-
ever, an eigenvalue estimate rules out this possibility (Lemma 7).

LEMMA 6. Suppose n < 6. For each £, let

c(e) max{c:i^( is stable}.

Then

lim c(e) 0. (9)

Proof. ffC is stable if and only if

f

for any smooth function / with compact support in Ilc. Hence Iec is stable for
sufficiently small c>0. So c(s)>0. Suppose there exist ô >0 and a séquence of
positive numbers e,,£2>£3, •• converging to 0 such that c(sl)>S for ail /

1,2,3,.... Then (4a) and (4c) of Lemma 4 imply that qCi lies in ^fC(f) for
sufficiently large i. And then from (4b), (4a), (8) we see that

which contradicts (4c). Therefore we get (9).

LEMMA 7. For i= !,...,«, let A%= {(*,,..., xn)eR":|jc,| <r} and A"r=?

[Jx^t^n Anrr Then on a domain D c A" the first nonzero eigenvalue âx(D) of the

Laplacian satisfies

1

¦ 4n2r2
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Proof. Define the projections nnt: R"->R" by n"(x{, xn) (jc15

0, xl+1,. xn). Then for any D' a cZ) and any i we hâve

Vol(dD')>2Vol(n'!(dD')).

However,

Vol(D')<
ISIS»

Hence from Cheeger's estimate [C] we see that

/,(D)>t inf^,

infD
2r X Vol{n"t(dD'))

4n2r2r2 '

LEMMA 8. ^5 £-^0, //i/^)^) converges to a complète minimal hypersurface I
in W + « 3, 4, 5, 6. J w distinct from the hyperplane.

Proof. Since Zf is area minimizing, one can apply the same argument as in the

proof of Lemma 5 to show that

'"|W/-dist(?,ôa(^))'

Take qeïenZd. Then

dist((?,5J;f)>4

qea(Ir), oie G. (10)

(11)

and q must belong to a(2"f) for some ces G. Observe that du(Ze) cA0\jdS,,. If
dist(#, Ao) < c(e)/2, then by Lemma 5

(12)
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If dist(#, Ao) > c(e)/2, then (10) and (11) imply that

\A\(q)<
&

(13)
1 ' min{c(£)/2, d)

So it follows from (12) and (13) that for sufficiently small s

—- on

Hence on filfl(e)(£tnZd) we hâve

2b.

Therefore fil/c(e)(ZFnZd) converges as £->0 to an analytic minimal hypersurface I
in the C2 topology. By (7) we see that the boundary of ju]/c(l)(Z(nZ(/) lies in dZd/cU),

which disappears as £->0. Thus I is complète.
We now show that I cannot be the hyperplane. Since £{%i(t) is stable and any

subset of IF properly containing 2\c(f) is unstable, the Jacobi operator A + \A^ on
IeMe) has an eigenfunction fe with the eigenvalue zéro which is positive in the

interior and zéro on the boundary of 2V,<(0. Consequently /=/ ° VT/lu) ls an

eigenfunction of the Jacobi operator on /^/^(i^^)). Let

lim fix/ciF)(IeMe)) {q€I:dist(^, Ao)<\}.
F-+0

Suppose that I is the hyperplane. I must then coincide with An +,. Viewing An +,
as Rn, we see that Zj A", as defined in the preceding lemma. jul/i(0(Z(i{()) is

close to A(e) A"nZd/c(F) in the C2 topology. Hence one can push/ forward to
obtain a smooth function fe on A(s) that vanishes on the boundary of A(e) and

satisfies

Afe + qfe 0 on A(s)

for a smooth function q with |#| <b{e), where 6(£)-^0 as e-^0. Then

^f :lfL— <

JA(f) JA(e)
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which contradicts the preceding lemma. Therefore I is not the hyperplane.

5. Existence theorem

In conclusion we prove the following theorem on the existence of higher
dimensional Enneper's surface.

THEOREM. In R" + \ n 3, 4, 5, 6, there exists a complète minimal hypersur-

face Z" called higher dimensional Enneper's surface with the following properties.
(i) I is a minimal immersion ofRn into R"+1.

(ii) Asymptotically I is the hyperplane with multiplicity 2n — 1.

(iii) I contains Ao, the union of n mutually orthogonal (n— \)-planes.

(iv) I is invariant under G.

(v) jr|^|w= oo, \A\ being the length of the second fundamental form of I.
(vi) The Gauss map for I is not well defined at the point at infinity of E.

(vii) I consists ofln congruent embedded pièces. The union oftwo adjacent pièces
is stable. More precisely, if I is one of the pièces with dE a A*, then

is a stable subset of1.

Proof (i) From the construction of IE in Lemma 1 it is clear that the interior
of Ie is diffeomorphic to the interior of O % T. Let f lim^o^iM^C^)- Then one

can see that f is embedded and diffeomorphic to /l£+1( limf_o/i1/c(e)(0 )O( T)).

Let ij/ be a diffeomorphism of A*n + X onto î. Note that

*= U «(*)•
aeG

Define \ji\ An + l ->R" + l by

j n + l, yeA*n + l.

Then one easily vérifies that $ is an immersion of R" onto IcRn + 1,

(ii) Since IE is area minimizing, we hâve for r < d

Vol(ZenBr(O))< Vol(EBnZr)<Vol(A»n + xnZr)+Vol(dZrnAFn + l).

Hence

J_ „ ._ ln-\ ne

œnr
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By the monotonicity of the volume ratio,

-J-nVol(ZenBr(0))<^ + ^, 0<r<d.

Because of the invariance of the volume ratio under scaling, we see that as

(14)

Now define the tangent cône T^ of I ai infinity by the current limit

T,» lim &(£).

Then (14) gives

e\T^O)<2^-. (15)

spt T^ lies in A++ { because I cA++l. Also

If sptTaonA*+l~dA*+lTt<j>9 then the maximum principle implies that
spt T^ =>A*+l. It follows from (15) that spt Tx A*+l. So let us suppose that

spt T^ =£ Al+ Then either

x^àAUi^t and spt T^ ~An+l * 0, (16)

or

sptroo ^J + 1. (17)

In case of (16), there exists 0 < 6 < n such that spt T^ is tangent to An +10 and lies

on one side of An +, 0. By the maximum principle one gets An + x%onA++xcz spt T^,
and so sçtT^nA*n + x^>An + xc\An_¥2, which is a contradiction. In case of (17),

assume that Ir\An + x0~ {O} ^(/> for some 0 < 6 < %. (17) requires InAn+x0 to
be compact. Then one can find a hyperplane A parallel to An + X0 such that I is

tangent to A at an interior point of I and lies on one side of A. This is impossible
by the maximum principle. So E Al + x. But then Z An+x, which contradicts
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Lemma 8. Therefore sptTO0=A* + l and it follows that the tangent cône of I at

infinity is An+l with multiplicity 2" — 1.

(iii), (iv) Thèse are obvious by Lemma 1 and Lemma 2.

(v) M. Anderson [A, Theorem 5.2] showed that if a complète «-dimensional
minimally immersed submanifold S a Rm has one end and satisfies js \A \" < oo, then
S is an «-plane. So our claim follows.

(vi) Since I •=> Ao and the (« - l)-planes of Ao intersect each other along A_u
one can see that any vector v normal to I at qeA_} must be normal to every
(« — l)-plane of Ao passing through q. It follows that v (0,. 0, a), a # 0. Hence

the Gauss map for I maps A_x to the north pôle of S". Now let I be the
embedded surface as defined in the proof of part (i) above and let ?cl be the

plane curve which is invariant under the reflections ÇlJ9 1 </#/<«. At the origin
} is tangent to the horizontal hyperplane An + l. But as goes toward the point at

infinity, it is flipped over by 180° and becomes parallel to An + l. So the Gauss map
maps onto a great semicircle Connecting the north pôle to the south pôle in Sn.

Therefore the Gauss map cannot take on a single value at the point at infinity.
(vii) It follows from Lemma 2 that 2" congruent copies of I comprise I. Since

dIF can be projected one-to-one into Alti for 0 < 9 < n/29 Ie is a graph over Al0
Therefore, as a limiting case, the interior of Ie is a graph over Al0 A( although
IF itself is not. Similarly one can show that the interior of pX^e) *s a graph over

Ar Note that Ie and pX%e) lie in the opposite sides of An + i and that

{IfkjpXEe))r\An + j cz Ao. Hence the interior of IFupX^F) is ^so a graph over At.
Therefore ZfvpXZe) is stable by [Ch, Corollary 3] and so is

6. Concluding remarks

(1) When n 2, the same construction as described above gives rise to classical

Enneper's surface. This can be verified by observing that I2 has one end and has

the total curvature of —An [O].

(2) We hâve seen that there exists «-dimensional Enneper's surface in Rn +1 for
2 < n < 6. On the other hand, our method of construction breaks down for n > 7

because the curvature estimâtes (8) and (10) are no longer valid. This is in sharp

contrast with the following famous results: J. Simons [Si] has proved that there exists

no «-dimensional entire nonlinear minimal graph in R" +l when 2 < n < 7; Bombieri-
De Giorgi-Giusti [BDG] hâve shown that there exist «-dimensional entire nonlinear

minimal graphs in Rw +1 if « > 8. Let us explain in a naive and heuristic way why
thèse dichotomies occur: The curvature estimâtes imply that low dimensional stable

minimal submanifolds are rigid; Invalidity of the curvature estimâtes in high
dimensions indicates that high dimensional stable minimal submanifolds are flexible.
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Roughly speaking, one can obtain I from A\ + x {(xx,... ,xn9 0):x, >0,
/=!,...,«} by fixing the boundary of A*n + x and bending the interior of A*n + x by
180°. When the dimension is low, the minimal submanifold I is so rigid that I can
withstand the extrême bending and thereby giving rise to the higher dimensional

Enneper's surface. However, when the dimension is high, I is so flexible that the
180° bending tears down and flattens I and then I becomes Al + x. As for minimal
graphs, one should note that graphs are obtained from the horizontal hyperplane
by mild bendings of at most 90°. But low dimensional complète stable minimal
submanifolds are too rigid to allow mild bendings and therefore hyperplanes are the

only entire minimal graphs. Moreover, high dimensional stable minimal submanifolds

are flexible enough to allow mild bendings to persist, thereby allowing
nonlinear minimal graphs to exist.

In view of thèse interprétations let us make a guess as to «-dimensional

Enneper's surface in R"+ * for n > 7. If such Enneper's surface is to exist, its
fundamental pièce should be constructed by bending A* + l by less than 180°, and
hence the support of its tangent cône at infinity should be distinct from An + l.

(3) L. Simon [S] proved that the curvature estimate of Lemma 5 also holds for
n 7 in the nonparametric case. However, with the assumption that fec is a local

graph instead of being a stable hypersurface, we had difficulty ruling out the

possibility that I1 becomes the hyperplane or I6 x R1 in the proof of Lemma 8.

(4) As for part (v) of the theorem, we recall that \ZK= —4n for the two-dimen-
sional Enneper's surface IcR3, In fact, the total curvature of I is concentrated

near the origin since \K\ takes on the maximum at the origin. On the other hand,
for higher dimensional Enneper's surface we can argue that \z \A \n is concentrated

near A__x as follows. By part (vii) of the theorem, ZvpAZ) and lupj(X), i #y, are
stable. Hence for q e I one gets the curvature estimate

\A\(q) < min{Z>/dis%, d(Zupt(î)))9 i/dist(ç, d(f uPj

q, d(fupÎf Î

This estimate indicates that \A\(q) becomes large as q approaches A_x, which also

suggests that f^MI" becomes infinité since A_x has infinité (n — 2)-dimensional
volume unless n 2.

(5) From part (vii) of the theorem we see that the higher dimensional Enneper's
surface I consists of 2"~l disjoint stable subsets. In light of [Ch, Theorem 1] it is

tempting to conjecture regarding the Morse index of I that
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(6) It is still interesting to show that indexé) îs finite This together with part
(v) of the theorem would surpnsingly contrast with Fischer-Colbne's theorem that
a complète minimal surface in R^ has finite total curvature if and only if it has finite
index [F]

(7) The higher dimensional catenoid C lies between two parallel hyperplanes. In
the proof of Lemma 4, C was used as a barner in applymg the maximum pnnciple
to Ie For this reason it seems quite probable that higher dimensional Enneper's
surface might also lie between two parallel hyperplanes
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