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On the existence of higher dimensional Enneper’s surface

JAIGYOUNG CHOE*

Enneper’s surface and the catenoid are the simplest minimal surfaces in R? that
are complete, orientable and nonplanar. This is because a complete orientable
minimal surface has the total curvature of —4kn for some nonnegative integer k,
while k =1 for Enneper’s surface and the catenoid. Enneper’s surface has one end
and is a minimal immersion of R? in R3, whereas the catenoid has two ends and is
a surface of revolution.

Not only is R? but also in R”, n > 4, the catenoid has been known to exist. It is
a minimal hypersurface which is rotationally symmetric. The higher dimensional
catenoid has been the only example that is a higher dimensional analogue of a
2-dimensional minimal surface. In this paper, however, we prove that there also
exists an n-dimensional Enneper’s surface Z” in R"*! for n =3, 4, 5, 6, which is a
minimal immersion of R” in R" 1,

For two-dimensional minimal surfaces in R? there is the Weierstrass representa-
tion. This representation makes it easy to write down an enormous number of
complete minimal surfaces in R®. Moreover, one can construct arbitrarily many
minimal submanifolds of even codimension in R?", as every complex submanifold of
R?" is minimal. But in higher dimension one does not even have a good way to
construct examples of complete immersed minimal hypersurfaces. Among a few
known examples are the higher dimensional catenoids, area minimizing cones and
graphs constructed by Bombieri-De Giorgi-Giusti [BDG], minimal hypersurfaces in
R* and R® passing through the Clifford tori in S* and S° [B], minimal hypersurfaces
as leaves of a foliation arising from isoparametric hypersurfaces [FK], and F-invari-
ant minimal hypersurfaces [W].

All the examples above have been found by solving ordinary differential
equations which were induced from the partial differential equation of minimal
hypersurfaces by exploiting certain symmetry conditions. Higher dimensional En-
neper’s surface 2, by contrast, is constructed by solving the partial differential
equation directly as follows. First construct a compact minimal hypersurface by
finding Jenkins-Serrin’s solution [JS] to the Dirichlet problem for the minimal

*Supported in part by BSRI-94-1416, GARC, KOSEF (941-0100-016-2).
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surface equation with suitably prescribed boundary data. Second obtain a compact
Enneper type surface by reflecting the minimal hypersurface across the totally
geodesic part of its boundary. Third blow up the compact Enneper type surface by
an appropriately chosen scale to obtain a complete minimal immersion of R” in
R"*! In this process we have used the curvature estimates of [SSY] and [SS], and
for this reason we have the dimension restriction that n =3, 4, 5, 6.

Our higher dimensional Enneper’s surface X satisfies some properties which are
analogous to those of classical Enneper’s surface. Namely, 2” contains n mutually
orthogonal (n — 1)-planes. Asymptotically, i.e., viewed from infinity, 2" looks like
an n-plane with multiplicity 2” — 1. On the other hand, a high dimensional analogue
of the total curvature for X" [, |4|", 4 being the second fundamental form, becomes
infinite. Moreover, the Gauss map is not well defined at the point at infinity of 2.
Several interesting features of higher dimensional Enneper’s surface are remarked in
Section 6.

We would like to thank Mike Anderson and Leon Simon for some useful
discussions.

1. Definitions and notations

(1) Let 0=(,...,0, p,=(1,0,...,0), p,=(,1,0,...,0),...,p,=
0,...,0,1,0)eR"*!. Define T to be the regular (n — 1)-simplex with p,,...,p,
as its vertices. Let p,=(—1,...,—1,¢)eR""!, 0<e<]1, and define I',=
(O X ¢T)u(p, X éT)cR"*!. Here p X S denotes the cone from p to S, the union
of all line segments from p to the points of S.

(2) Define C as the n-dimensional catenoid which is rotationally symmetric about
the x, , ,-axis. C satisfies the equation x,,, =f(r), r=(x?+ -+ x2)!2, where

firy= J [12 =1 — 1)1 db,
1

(3) For each r >0 we define

u R SRHL u,(x)=rx,
and for each ge R"*! define

t, R SR 7,(x)=x—g.

(4) Let 4,, 1<i<n+1, be the hyperplane {(x,,...,x,,,):x;=0} and let
A, s=4x1, ..., Xpi1): X+ +x,=0}, Ag={(xy,...,%,,0):x, " x,=0},
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A_y={(x, .., %, O oo, (X2 +x2) =0}, ie., A_ is the (n — 2)-skeleton of

Ao, A+={(x1,...,xn+1)2x1"'x,,+1>0}, A*———{(xl,...,xn+])2xi20,i=
l,...,n+1}, A} =4, ,nA* A}, =the closure of (A, ~A¥), A:, =
{(xla s ’xn+l):osxn+l SG}, A:-{-l = {(xl" .. 9xn+1):xn+l ZO} Let Ai,(} be the

hyperplane which passes through the origin, is disjoint from the interior of A*, is
perpendicular to 4,,,, and makes an angle of ¢ with 4, and an angle of
@, (n — 1) cos? ¢ + cos® 0 = 1, with every 4, j #i,n+ 1, and let 4, , , , be the hyper-
plane in R” *! which contains the (n — 1)-plane 4, ., ~ 4, . , and makes an angle of
0< 6@ <nwith 4,,,. Let £ be the straight line {(x,,...,x,,0):x;="---=x,}.

(5) Define n,, n, as the projections from R"*! onto A4, ,, 4, ,, respectively.
Define p,, 1 <i<n, as the rotation by 180° about the (n — 1)-plane 4, ,n 4; and
pi» 1 <i#j<n, as the rotation by 90° about the (» — 1)-plane A4,n 4, taking the
positive x;-axis to the positive x;-axis. ¢, ,; is the reflection with respect to the
hyperplane 4, . ,.

(6) For 1 <i#j<n,let p,=¢, ., °p,and let £, be the reflection with respect
to the hyperplane x; = x;. Define G to be the subgroup of O(n + 1) generated by
(Bis Edr2inrmn o

(7) Let B,(g) be the ball of radius r with center at g and B, (q) its interior. Z,
is the cylinder defined by Z, = {(x;, ..., x,,):x7+ "+ +x2<r?}.

2. Compact Enneper type surface

The first step towards the proof of the existence of higher dimensional En-
neper’s surface is to construct a compact minimal hypersurface which resembles the
fundamental region of 2-dimensional Enneper’s surface (Lemma 1). Then a com-
pact Enneper type surface is obtained from this fundamental piece by 180°
rotations (Lemma 2).

LEMMA 1. For each ¢> 0 there exists a unique n-dimensional compact minimal
hypersurface X, in R"* ! bounded by I',. X, is area minimizing and stable.

Proof. The projection n, maps I, one-to-one onto 7,(/I",) which is the boundary
of a convex domain in 4, . ,. By [GT, Theorem 16.8] the Dirichlet problem for the
minimal surface equation is uniquely solvable. It is well known that a minimal
graph over a convex domain is area minimizing. Hence it is stable.

LEMMA 2. 2" congruent copies of X, can be pieced together to form a compact
smooth minimal hypersurface X, which is invariant under the group G.
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Proof. Assume that for a, feG,
a(02,nA,,.,)=p02.nA4,,,). (1)
Note that ¢;(A4*)= A" and {,;(A4%)= A". Hence
B la(AT)=A47. (2)
It follows from (1) and (2) that
pla(A*)=A* and «(6X,)= B(0ZX,).

Hence '« is the product of some ¢,’s. From the invariance of I", under ¢, and
the uniqueness of X, spanning I',, one obtains £,(2,) = Z,. Therefore

a(2,)=F(Z,) (3)

Define

Z= ).

2eG

Clearly X, is invariant under G. That (1) implies (3) shows that £, consists of 2"
(=the number of the components of A%) copies of X,. Note now that

pi(2)=¢,(Z,) forevery 1 <i#j<n.

Then a standard theory of the elliptic partial differential equations states that
2.0¢,(2,) is an analytic extension of X, across 2,.n A, N A, Furthermore it
follows that X, is an analytic extension of X, across 0X,n 4, ;.

3. Curvature estimates

Extending a compact Enneper type surface to a complete hypersurface requires
detailed estimates on the curvature of the surface. A lower bound of the curvature
is obtained by the maximum principle (Lemma 4) and an upper bound is derived
from stability (Lemma 5).

LEMMA 3. Let y(s) = (x(s), y(s)), 0<s<a, be a C* curve in R? parame-
trized by the arclength s satisfying y(0)=(0,0), y'(0)=(1,0), y(@)=(0, 1) and
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0 <x(s) <b. Then there exists 0 < s, < a such that the curvature of y at y(s,) is not
less than 1/b.

Proof. Let {_ be the quarter circle defined by {.(t)=(bsint,c—bcost), 0 <
t<m/2. If c=sup{c<b:{.ny=¢}, then y lies on one side of {; touching {; at a
point y(s,), 0 < s, < a. Hence the curvature of y at y(s,) is larger than or equal to
that of (. which is 1/b.

LEMMA 4. For each ¢ >0 there exist q.€ s . and a(g) > 0 such that

dist(q, Ao) <a(®)+6  |A)g)>——, lima(s) =0, @
na(e) e—0

where |A| is the length of the second fundamental form of X..

Proof. Let a(e) >0 be the smallest number such that for any r>a(e), the
catenoid 7,4, (C), q(r)=(r,...,r,0)€?, is disjoint from I',~ A4, ,,. Then one
can easily see that a(e) converges to 0 as ¢ goes to 0. For any ¢(r) with r > a(e),
T,nMa»(C) does not intersect I',. Also, for sufficiently large b >0, 7 4)4.,(C)
cannot intersect 2,. It follows from the maximum principle that

Tnlae(C)NZ,=¢  fora(e)<r<b.
Hence

TaenMae(C)N(Z . ~02,) = ¢.
Let

{=1{qeZX, m(q)el}.

Since the plane curve ¢ is invariant under the reflections ¢ i / is a principal curve
in 2, that is, every tangent vector of ¢ points along a principal direction of ..
Therefore

|4 (@) = x(q), the curvature of £ at ge/. (5)

The tangent cone of X, at the origin O is 4, ., A* Hence a tangent vector of
¢/ at O points along ¢ < A,,,. Moreover ¢ is tangent to p, X T at p,. Hence
the angle between two tangent vectors of ¢ at O and at p, is larger than 90°. Thus
there exists g €/ at which a tangent vector of # is perpendicular to #. Since £ ~ {p,}
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is disjoint from 7.,y H,(C) one can apply Lemma 3 and conclude that there exists
a point ¢g.€¢ at which

1
&) =~ . 6
K(q)>(ﬁ—1)a(a) (6)

Combining (5) and (6), we get (4b). Finally we can compute

dist(q,, 4,) < B (\/E — 1%a(e)® + gz]l/z’

which gives (4a).

DEFINITION. Fix 0 <d <1 in such a way that for any ¢

dist(Z,, 02,) > d. )
Define 2., = {ge £.nZ,:dist(q, 4,) < c}.

LEMMA 5. If n<6 and z ec 1S stable, then there exists b >0 depending only on
the dimension n such that for any interior point q of 2,

®)

Alg) < o
K@) dist(q, 02,.)

Proof. Let w, ., ; be the volume of a unit ball in R"*!. By Lemma 1, «(Z,)n b3 sc
is area minimizing for any a € G. So it is easy to show that if B,(g) is disjoint from
62,:8,‘_, then

Vol(Z,.na(Z,)nB,(q)) < Vol(0B,(q)) = (n+ Dw, . ,r",  a€G.
Summing up for all distinct a(Z,) gives
r="Vol(Z,.nB,(q)) <2(n+ Dw, ;.

Thus (8) follows from [SSY, Theorem 3] for n <5 and [SS, Theorem 3] for
n==6.
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4. Blowing up

We are now in a position to blow up a compact Enneper type surface to obtain
a higher dimensional Enneper’s surface. But in this process correct scaling is needed
(Lemma 6). Blowing up by correct scaling gives us a complete analytic hypersurface
(Lemma 8). It may happen that this hypersurface becomes the hyperplane. How-
ever, an eigenvalue estimate rules out this possibility (Lemma 7).

LEMMA 6. Suppose n < 6. For each ¢, let
c(e) = max{c :fm. is stable}.
Then

lim c(¢) =0. )

t—0

Proof. )fm, is stable if and only if

[, te—tapr=o

for any smooth function f with compact support in 2 e Hence )fm. is stable for
sufficiently small ¢ > 0. So ¢(¢) > 0. Suppose there exist 6 >0 and a sequence of
positive numbers ¢, &, &, ... converging to 0 such that c(g) > for all i=
1,2,3,.... Then (4a) and (4c) of Lemma 4 imply that g, lies in fgl,(.(m for
sufficiently large i. And then from (4b), (4a), (8) we see that

<l4|(q,

na(e;) )$5—a(8i)—8i’

which contradicts (4c). Therefore we get (9).

LEMMA 7. For i=1,...,n, let A7,={(x,...,x,)eR"|x;|<r} and A" =
\Ui<i<n AL Then on a domain D < A? the first nonzero eigenvalue i,(D) of the
Laplacian satisfies

A 1
A,(D)Zw.
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Proof. Define the projections n7:R"—R” by n7(x;,..., %)=, ..., X _1,
0,x;41,...5%,). Then for any D'« =D and any i we have

Vol(dD') = 2Vol(r" (8D")).

However,

Vol(DY< ¥ Vol(D'nA")<2r Y  Vol(n"(8D")).
1

<i<gn l<i<n

Hence from Cheeger’s estimate [C] we see that

) 17. Vol(éD'")
AI(D)_>_4|:me;ch Vol(D’):,
r 2 T 2
= Y Vol(n?(éD")
1. Ny<i<n 1
Z Z lnfD'c =D = 4n2r2 .
2r Y  Vol(r}(éD'))
L l<i<n ]

LEMMA 8. As ¢—-0, y, /C(g)(f .) converges to a complete minimal hypersurface X
in R"*', n=3,4,5,6. X is distinct from the hyperplane.

Proof. Since X, is area minimizing, one can apply the same argument as in the
proof of Lemma 5 to show that

b
z G.
IA](q)sdist(q, 52’ gea(Z,), ae (10)
Take qemeZd. Then
dist(q, 62,) > d, (11)

and g must belong to a(Z2,) for some a e G. Observe that da(Z,) c Aqudl,. If
dist(q, 4,) < c(¢)/2, then by Lemma 5

2b
|4)(9) < @ (12)
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If dist(g, 4,) > c(¢)/2, then (10) and (11) imply that

b

A < ez (13)

So it follows from (12) and (13) that for sufficiently small ¢
2b ~
sup|d| < — o r.nZ,

Hence on g, /‘,(g)().:std) we have
sup|4| < 2b.

Therefore y, /(.(s)(f N Z,) converges as ¢— 0 to an analytic minimal hypersurface 2
in the C? topology. By (7) we see that the boundary of u, /(.(,,,(f NZ,) liesin 0Z,,,,,
which disappears as e— 0. Thus 2 is complete.
We now show that 2 cannot be the hyperplane. Since s sc(e 18 stable and any
subset of E . properly containing z ~c(») 18 unstable, the Jacobi operator 4 + |4 " on
2.« has an eigenfunction f, with the elgenvalue zero which is posntlve in the
interior and zero on the boundary of Z“((, Consequently f.=Ff.o o Ul 1S an
eigenfunction of the Jacobi operator on g /‘(E)(ZM(C)) Let

Z,=1lim g, oo () = {g € Z:dist(g, 4,) < 1}.
Suppose that 2 is the hyperplane. 2 must then coincide with 4, ,. Viewing 4, ,
as R”, we see that 2, = A%, as defined in the preceding lemma. P (2 cecwy) is
close to A(e)=A{nZ,,, in the C* topology. Hence one can push f, forward to

obtain a smooth function f, on A(¢) that vanishes on the boundary of A(¢) and
satisfies

Aji+qﬁ=0 on A(e)

for a smooth function ¢ with |g| < b(¢), where b(e) >0 as ¢—0. Then

[ v | o
) _ 4@

/e f3

A(g) A(&)

A(A(e)) <

<b(e),



On the existence of higher dimensional Enneper’s surface - 565

which contradicts the preceding lemma. Therefore 2 is not the hyperplane.

5. Existence theorem

In conclusion we prove the following theorem on the existence of higher
dimensional Enneper’s surface.

THEOREM. In R**!, n=3,4, 5,6, there exists a complete minimal hypersur-
face X" called higher dimensional Enneper’s surface with the following properties.
(1) 2 is a minimal immersion of R" into R**1,
(ii) Asymptotically X is the hyperplane with multiplicity 2" — 1.
(iii) 2 contains A, the union of n mutually orthogonal (n — 1)-planes.
(iv) 2 is invariant under G.
) I}:lAl" = 00,
(vi) The Gauss map for X is not well defined at the point at infinity of Z.
(vii) 2 consists of 2" congruent embedded pieces. The union of two adjacent pieces
is stable. More precisely, if S is one of the pieces with 02 < A*, then
Zup-(Z) is a stable subset of 2.

Proof. (i) From the construction of X, in Lemma 1 it is clear that the interior
of X, is diffeomorphic to the interior of O ¥ T. Let £ =lim,_, ox, 1ee(2¢). Then one
can see that ' is embedded and dlffeomorphlc to Ay (=lim,_op (0 X T)).
Let ¥ be a diffeomorphism of A}, ; onto ~. Note that

= «2).

xe G
Define ¢: 4, ,—»R"*' by
Jx)=a() fx=al), xed,,,, yedi,,.

Then one easily verifies that i is an immersion of R” onto 2 < R"™ b
(ii) Since X, is area minimizing, we have for r <d

Vol(X,nB,(0)) < Vol(2,nZ,) < Vol(A! . ,nZ,)+ Vol(0Z,n 4, ).
Hence

2"—1 neg
+—.
,

1,,, Vol(2£,n B,(0)) <

n
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By the monotonicity of the volume ratio,

2"~ 1+~’§ O<r<d.

lr Vol(Z,N B,(0)) <

n

Because of the invariance of the volume ratio under scaling, we see that as ¢—0

2"—1
2"’

Vol(Z'nB (0) < 0<r<oo. (14)

}1

Now define the tangent cone T, of z at infinity by the current limit
T, =lim u,(2).
-0
Then (14) gives

2" —1

n <
0" (T, 0)<—;

(15)

spt T, lies in A}, because .fc:A,T+1. Also
spt(0T . ) = dA} , .

If sptT,.nA2, ,~0A4),,# ¢, then the maximum principle implies that
spt T, © A7, . It follows from (15) that spt T, = A”_ ,. So let us suppose that
spt T, # A., ,. Then either

Spt ToonAz+l~aA:+l=¢ and Spt TOONAn+l7é¢s (16)
or
sptTo =4, 4. (17)

In case of (16), there exists 0 < 8 <z such that spt T, is tangent to A4, , , and lies
on one side of 4, , , ,. By the maximum principle one gets 4, ., ,n A}, ,cspt T, ,
and so spt T, nA%, ,>A4,,,nA4,,,, which is a contradiction. In case of (17),
assume that Z'nA,,+,,,~ {0} # ¢ for some 0 < 0 < n. (17) requires EmAH,(, to
be compact. Then one can find a hyperplane A parallel to 4, ,, such that S is
tangent to A at an interior point of  and lies on one side of A. This is impossible
by the maximum principle. So 3= A}, . But then 2= A, ,, which contradicts
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Lemma 8. Therefore spt T, = A/, , and it follows that the tangent cone of Z at
infinity is A, ., with multiplicity 2" — 1.

(iii), (iv) These are obvious by Lemma 1 and Lemma 2.

(v) M. Anderson [A, Theorem 5.2] showed that if a complete n-dimensional
minimally immersed submanifold S = R has one end and satisfies [s|4|" < oo, then
S is an n-plane. So our claim follows.

(vi) Since 2 > A4, and the (n — 1)-planes of A, intersect each other along 4_,,
one can see that any vector v normal to 2 at ge A_, must be normal to every
(n — 1)-plane of A, passing through q. It follows that v = (0, ..., 0, a), @ # 0. Hence
the Gauss map for 2 maps A_, to the north pole of S”. Now let 2 be the
embedded surface as defined in the proof of part (i) above and let /<X be the
plane curve which is invariant under the reflections £, 1 <i#j<n. At the origin
/ is tangent to the horizontal hyperplane 4, . But as / goes toward the point at
infinity, it is flipped over by 180° and becomes parallel to A4, , ;. So the Gauss map
maps / onto a great semicircle connecting the north pole to the south pole in S”.
Therefore the Gauss map cannot take on a single value at the point at infinity.

(vii) It follows from Lemma 2 that 2" congruent copies of z comprise 2. Since
02, can be projected one-to-one into A4,, for 0 <@ <n/2, 2, 1s a graph over 4,
Therefore, as a limiting case, the interior of 2, is a graph over 4,, = A, although
X, itself is not. Similarly one can show that the interior of p,(Z,) is a graph over
A;. Note that 2, and p,(Z,) lie in the opposite sides of A,,, and that
(Z.,upi(Z)nA,., <A, Hence the interior of Z,up;(Z,) is also a grgph over A;.
Therefore X, u p,(Z,) is stable by [Ch, Corollary 3] and so is Zu p:i(2).

6. Concluding remarks

(1) When n = 2, the same construction as described above gives rise to classical
Enneper’s surface. This can be verified by observing that Z2 has one end and has
the total curvature of —4r [O].

(2) We have seen that there exists n-dimensional Enneper’s surface in R” +1 for
2 <n < 6. On the other hand, our method of construction breaks down for n>7
because the curvature estimates (8) and (10) are no longer valid. This is in sharp
contrast with the following famous results: J. Simons [Si] has proved that there exists
no n-dimensional entire nonlinear minimal graph in R”*! when 2 < n < 7; Bombieri-
De Giorgi-Giusti [BDG] have shown that there exist #-dimensional entire nonlinear
minimal graphs in R”*! if n > 8. Let us explain in a naive and heuristic way why
these dichotomies occur: The curvature estimates imply that low dimensional stable
minimal submanifolds are rigid; Invalidity of the curvature estimates in high
dimensions indicates that high dimensional stable minimal submanifolds are flexible.
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Roughly speaking, one can obtain * from A? =40y, .5 x,,0):x,20,
i=1,...,n} by fixing the boundary of A}, , and bending the interior of A} ., by
180°. When the dimension is low, the minimal submanifold X is so rigid that  can
withstand the extreme bending and thereby giving rise to the higher dimensional
Enneper’s surface. However, when the dimension is high, Y is so flexible that the
180° bending tears down and flattens  and then 2 becomes A° +1- As for minimal
graphs, one should note that graphs are obtained from the horizontal hyperplane
by mild bendings of at most 90°. But low dimensional complete stable minimal
submanifolds are too rigid to allow mild bendings and therefore hyperplanes are the
only entire minimal graphs. Moreover, high dimensional stable minimal submani-
folds are flexible enough to allow mild bendings to persist, thereby allowing
nonlinear minimal graphs to exist.

In view of these interpretations let us make a guess as to n-dimensional
Enneper’s surface in R”*! for n>7. If such Enneper’s surface is to exist, its
fundamental piece should be constructed by bending A} ., by less than 180°, and
hence the support of its tangent cone at infinity should be distinct from 4, ,.

(3) L. Simon [S] proved that the curvature estimate of Lemma 5 also holds for
n =17 in the nonparametric case. However, with the assumption that > «c 15 a local
graph instead of being a stable hypersurface, we had difficulty ruling out the
possibility that X7 becomes the hyperplane or 2¢ x R! in the proof of Lemma 8.

(4) As for part (v) of the theorem, we recall that j K= —4nr for the two-dimen-
sional Enneper’s surface 2 = R®. In fact, the total curvature of X is concentrated
near the origin since K| takes on the maximum at the origin. On the other hand,
for higher dimensional Enneper’s surface we can argue that [;|4|" is concentrated
near A_, as follows. By part (vii) of the theorem, Zu p,-()f ) and Ju p; (f ), i # ], are
stable. Hence for g€ 2 one gets the curvature estimate

|4)(g) < min{b/dist(g, (Z L p,(2))), b/dist(q, O(Z v p;(2)))}
< /2b/dist(g, (2 U p,(2)) NB(Z U p,(2))
= \/§b /dist(gq, 4_,).
This estimate indicates that |4|(g) becomes large as g approaches 4 _,, which also
suggests that [;|4|" becomes infinite since 4_, has infinite (n — 2)-dimensional
volume unless n = 2.
(5) From part (vii) of the theorem we see that the higher dimensional Enneper’s

surface X consists of 2"~ ! disjoint stable subsets. In light of [Ch, Theorem 1] it is
tempting to conjecture regarding the Morse index of 2 that

index(2)=2""1!—1.
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(6) It is still interesting to show that index(2') is finite. This together with part

(v) of

the theorem would surprisingly contrast with Fischer-Colbrie’s theorem that

a complete minimal surface in R? has finite total curvature if and only if it has finite

index

[F].

(7) The higher dimensional catenoid C lies between two parallel hyperplanes. In
the proof of Lemma 4, C was used as a barrier in applying the maximum principle

to 2,.

For this reason it seems quite probable that higher dimensional Enneper’s

surface might also lie between two parallel hyperplanes.
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