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Formal language theory and the geometry of 3-manifolds

MARTIN R. BRIDSON AND ROBERT H. GILMAN

Abstract. Automatic groups were introduced in connection with geometric problems, in particular with
the study of fundamental groups of 3-manifolds. In this article the class of automatic groups is extended
to include the fundamental group of every compact 3-manifold which satisfies Thurston’s geometrization
conjecture. Toward this end, the class €, of asynchronously «/-combable groups is introduced and
studied, where o7 is an arbitrary full abstract family of languages. For example & may be the family of
regular languages Reg, context-free languages CF, or indexed languages Ind. The class € p,, consists of
precisely those groups which are asynchronously automatic. It is proved that €,,, contains all of the
above fundamental groups, but that €, does not. Indeed a virtually nilpotent group belongs to € if
and only if it is virtually abelian.

Introduction

In the last several years there has been a remarkable interplay between topology,
geometry, group theory, and the theory of formal languages. Thurston’s work on
the classification problem has shown that the topology of 3-dimensional manifolds
is inextricably linked with the study of rigid geometries; in a series of essays
Gromov introduced powerful geometric techniques into combinatorial group
theory; and the work of Epstein et al. [E+], and earlier that of Muller and Schupp
[MS] showed that the geometry of the Cayley graph of a group is intimately
connected with the properties of associated formal languages. In this article we
focus on a point of intersection of these three bodies of knowledge: normal forms
for 3-manifold groups. We shall give upper and lower bounds on the logical
complexity of the languages associated to geometrically efficient normal forms for
elements in the fundamental group of any compact 3-manifold that satisfies
Thurston’s geometrization conjecture.

Before stating our results we describe something of the context in which they are
set. A choice of generators for a finitely generated group G may be thought of as
a map u: X — G which extends to a surjective monoid homomorphism u: Z* -» G,
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where 2 is a finite set and 2* is the free monoid on X. Let I' denote the
corresponding Cayley graph. I' can be viewed as a metric space with each edge
isometric to the unit interval, and words in 2* can be thought of as edge-paths in
I’ beginning at the identity. A combing of G is a selection for each g € G of one such
path ending at g. Thus a combing is just a geometric way of looking at a set of
normal forms for G. A reasonable measure of our understanding of the geometry
of G is the extent to which we are able to construct efficient combings of it. Ideally
we would like to construct a combing which has a simple description as a formal
language (i.e., subset of X*) and is such that the routes to nearby points are
uniformly close (the fellow-traveller property).

Much of the motivation for approaching combinatorial group theory via
combings comes from the desire to understand the fundamental groups of compact
3-manifolds. The fundamental groups of 2-manifolds are completely understood,
and requiring a finitely presented group to be the fundamental group of a compact
4-manifold is a vacuous condition. A natural challenge arises in dimension three.
The work of Thurston shows that it would be rather misleading to describe the class
of 3-manifold groups as being given by a purely topological condition. Indeed, the
existence of natural geometric structures for 3-manifolds makes the task of under-
standing the geometry and complexity of the optimal normal forms for all 3-mani-
fold groups seem enticingly approachable. On the other hand, because of the
dominant role which the fundamental group plays in 3-manifold topology (see [H]),
seeking to understand all 3-manifold groups is much like trying to classify all
compact 3-manifolds. Such a classification is clearly beyond the reach of present
knowledge, but the situation is by no means hopeless and conjecturally the structure
of the solution is beautifully simple.

Thurston’s geometrization conjecture asserts that the interior of each compo-
nent in the prime/toral decomposition of a compact 3-manifold ([K], [M], [JS], [TD
can be modelled on one of the eight 3-dimensional geometries ([S], [T2]). This
conjecture has been proved in many cases, for example in the case where the
fundamental group of the manifold contains Z? (see [CJ], [G]), and in the case
where the given manifold contains an incompressible surface (see [Mo], [T1]). We
shall continue the present discussion under the hypothesis that Thurston’s conjec-
ture is true and use the adjective ‘geometrizable’ to emphasize this assumption.
However, we should emphasize that the validity of our results does not depend
upon this conjecture, although it certainly serves to motivate them.

Recall that a group is automatic [E+] if it admits a combing which satisfies the
fellow-traveller property and forms a regular language — the simplest type of
language in the Chomsky hierarchy (see [HU}). The drive to understand 3-manifold
groups motivated much of the early development of automatic group theory,
beginning with the seminal work of Cannon on the algorithmic structure of
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Kleinian groups [C] and culminating in the Epstein—Thurston classification of
those compact geometrizable 3-manifolds whose fundamental groups are automatic
[E+]. The upshot of this classification, much of which was worked out indepen-
dently by Shapiro [Sha], is that the fundamental group of a compact geometrizable
3-manifold M is automatic if and only if none of the factors in the prime
decomposition of M is a closed manifold modelled on one of the geometries Nil or
Sol. Furthermore, Epstein and Holt [E+] showed that the fundamental group of a
closed Nil manifold is not even asynchronously automatic. (This term refers to a
generalization of an automatic group in which one allows monotone reparametriza-
tion of paths when defining the fellow-traveller property — see Section 2.) Brady has
shown that the fundamental group of a closed So/ manifold is not asynchronously
automatic [Br].

These results lead us naturally to the task of expanding the theory of automatic
groups to include the fundamental groups of closed Nil and So/ manifolds. The first
step in this direction was taken in [B2], where it was shown that the fundamental
group of every compact geometrizable 3-manifold M admits a combing that
satisfies the asynchronous fellow-traveller property. This result shows that there
exist normal forms which allow one to navigate effectively in n; M (or, equivalently,
in M ) but leaves unanswered the deeper question of how difficult it is to generate
a list of the preferred routes.

In the present article we answer this last question by obtaining upper and lower
bounds on the logical complexity of the geometrically efficient combings admitted
by the fundamental groups of all compact geometrizable 3-manifolds. In order to
obtain these bounds we consider two generalizations of automatic group theory. On
the one hand, we prove that the widely-suggested strategy of enlarging the class of
languages considered to include all context-free languages does not give rise to a
theory rich enough to embrace the fundamental groups of closed Nil manifolds. On
the other hand, we prove that allowing a slightly larger class of languages, the
so-called indexed languages (see Section 1) does give rise to a class of groups that
includes the fundamental group of every compact geometrizable 3-manifold (or,
more generally, 3-orbifold.)

THEOREM A. Let G be a virtually nilpotent group and let u: X* -» I be a
choice of finite generating set for G. Suppose that L < X* is a combing of G that
satisfies the asynchronous fellow-traveller property. If L is a context-free language
then G is virtually abelian.

COROLLARY. Let M be a closed 3-manifold modelled on the geometry Nil and
let L be a combing of n, M. If L satisfies the asynchronous fellow-traveller property
then L is not context-free.
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THEOREM B. Let M be a compact 3-manifold which satisfies the geometrization
conjecture, and let u. X* -» n, M be a choice of generators. Then, there exists a
combing L = X* which satisfies the asynchronous fellow-traveller property and is an
indexed language.

This paper is organized as follows. In Section 1 we review elements of the theory
of formal languages and prove some structural results for context-free languages of
polynomial growth. In Section 2 we define the notion of an asynchronous .&/-comb-
ing for an arbitrary full abstract family of languages .«/. This definition generalizes
the notion of an asynchronous automatic structure. After establishing some basic
properties of such combings we concentrate on the case where & is the class of
context-free languages. In this setting, a study of the structure of quasiconvex
subgroups (Definition 2.11) enables us to prove that the combing which the
fundamental group of a compact nonpositively curved 3-manifold M inherits from
the geometry of the universal cover can be uniformly approximated by a context-
free combing if and only if n, M is hyperbolic in the sense of Gromov [G].

It is in Section 3 that we prove Theorem B. We first show that the combings of
torus bundle groups constructed in [B2] are not context-free; our proof highlights
precisely the subtlety which renders context-free languages inadequate in this
setting. Having isolated this difficulty we then show that it can be resolved by the
use of indexed languages.

In Section 4 we prove Theorem A. The proof begins with the observation that
since virtually nilpotent groups have polynomial growth, so do all of their comb-
ings; hence we are able to apply the structural results of Section 1. The geometry
which these results force on combings can be detected in abelian quotients of
nilpotent groups, and we prove Theorem A by exploiting the resulting tension
between the geometry of these quotients and the behaviour of commutator relations
in nilpotent groups.

Section 1: Formal languages

In this section we develop some results about formal languages, i.e., subsets of
finitely generated free monoids, which we will require later. See Hopcroft and
Ullman [HU] for an introduction to formal language theory.

For any set X~ denote by X* the free monoid over X. For our purposes 2 will
always be finite. The elements of Z* are words in the letters 2; the length of a word
w is denoted |w|. The identity element of X* is the empty word &, and multiplication
of words is by concatenation. Given L < 2*, we let L* denote the submonoid of Z*
generated by L. In this case of singleton sets we usually omit the brackets: a*
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instead of {a}*. If L, M = Z*, then LM = {w |w =xy, x € L, y € M} is the product
of L and M. If L = X*, then X is called an alphabet for L, and L is called a
language over X.

We will use regular, context-free, indexed, and bounded languages. A bounded
language is by definition a subset of w¥w¥ - - - w* for some choice of words w;. It
is clear that bounded languages have polynomial growth; i.e., the number of words
of length at most &k in a bounded language is bounded above by a polynomial in k.

LEMMA 1.1. [GS] The class of bounded languages contains all finite languages
and is closed under union and product.

Proof. Clearly every singleton {w} is bounded, so the second assertion implies
the first. If L, cw¥fw¥---w¥ and L,cv¥v¥ - v}k, then L,L, and L, UL, are
both sublanguages of w¥w¥ - - - wkov¥v¥ - vk, O

The three other language classes form an increasing hierarchy. We consider
these classes simultaneously as instances of a full abstract family of languages. A
full AFL is a class of languages which contains a nonempty language and is closed
under the operations listed in Lemma 1.2(i) below (see [HU, Chapter 11] for more
details).

LEMMA 1.2. Let o be a full AFL.

(1) o/ is closed under homomorphism (i.e., image under homomorphism of the
ambient free monoid to another finitely generated free monoid), inverse
homomorphism (likewise), intersection with regular sets, union, product, and
generation of submonoid.

(ii) </ contains all regular languages.

(ii1) If L, and L, are both in </, then the language L consisting of € and all words

W =u, - u, with successive u, chosen alternately from L, and L, is also
in .

(iv) The classes of regular, context-free, and indexed languages are each a full
AFL.

Proof. Part (i) is true by definition; for (ii) see [HU] and for (iv) [HU] and [A].
Finally, the language L in (iii) can be constructed from L, and L, by the operations
given in (i): L = (L, L,)* (L, Ly)*L, v(L,L)*U(L,L,)*L,. O

Regular, context-free and indexed languages are generated by corresponding
types of grammars (see [HU]). Briefly, an indexed grammar has disjoint finite sets
N, X, F of nonterminals, terminals, and indices respectively. The language (over X)
generated by the grammar is obtained by beginning with a designated start symbol
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S € N, and performing substitutions. The allowed substitutions are determined by a
finite set of productions, and the grammar is completely described by N, X, F, S,
and the set of productions. Productions of three types are allowed:

(1) 4 -a(2) A - Bf(3) Af - a, where 4 and B are nonterminals, a € (N U 2)*,
and f is an index. Roughly speaking, the corresponding substitutions consist of
replacing the lefthand side of a production by the righthand side. This procedure
generates words in (N U X U F)*. The words in 2* which can be derived in this way
are the language generated by the grammar.

Words in (NuZX UF)* are called sentential forms. To apply a production of
type (1) to a sentential form f one finds an occurrence of A4 in f and substitutes o
for A. The string of indices  (possibly the empty string) following the occurrence
of A4 is repeated after each nonterminal in «. In case (2) one simply substitutes Bf
for 4. Finally in case (3) one finds an occurrence of Af followed by a string of
indices J, substitutes o for Af, and repeats & after each nonterminal in a. An
example of an indexed grammar occurs after Lemma 3.15.

A context-free grammar is the same as an indexed grammar except that there
are no indices, and a regular grammar is a context-free grammar in which all
productions have a righthand side consisting of an element of X u{e} possibly
followed by a single nonterminal.

The next result gives a property of context free languages which does not hold
for indexed languages (as can be deduced from Corollary 3.4 and the proof of
Theorem 2.17). This property is crucial for the proof of Theorem A in Section 4.
We remark in passing that the following proof actually shows that a context free
language is bounded if it has subexponential growth.

PROPOSITION 1.3. If L < X* is a context free language of polynomial growth,
then L is bounded.

Proof. The proof is by induction on the number of nonterminals in a context-
free grammar generating L. For any derivation of w € L from S there will be a last
occurrence of S, say: S > aSB 5w. That is, S does not appear in the derivation
«SB 5w except for the initial term. It follows that w = xyz with

* * %
o—X S—y =z

We claim that there are words ¢ and u such that if any w € L is decomposed as
above, then x € t* and z e u*. Consider any two instances

(n s ‘:’alsﬁl :’xlylzl

(2 S 5 % SB, 3*x2y222.
The first part of (2), S > a,Sp,, may be used to expand the S in the middle of (1)
and vice versa. By iterating this process, one sees that every word in the submonoid
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{x;, x,}* occurs as a prefix of some word in L, and consequently that the number
of words of length k in {x,, x,}* is bounded above by a polynomial in k. In
particular for some m the 2" words of length m over {r,s} cannot all remain
distinct when the substitutions » = x,;x, and s = x,x; are made. It follows that
X1X, = X,X;. By [Lo, Section 1.3], every word x’ in a free monoid determines a
unique word ¢ = #(x') such that x’ is a power of ¢ and ¢ is not a proper power.
Furthermore, if x'x” = x"x’ then #(x") = t(x"). Consequently, in the present setting
we deduce that x, and x, are both powers of ¢ = t(x,) = #(x,), whence ¢ is a word
with the desired properties. A similar argument on suffixes instead of prefixes yields
the desired word w.

Now let L’ be the sublanguage of L consisting of words y with derivations S 5 y
such that the only occurrence of S in the derivation is the visible one. By the
preceding argument L < t*L'u*, and so it suffices to show that L’ is bounded. If S
is the only nonterminal in the grammar for L, then L’ is finite hence bounded by
Lemma 1.1. Otherwise for each nonterminal 4 # S let L, be the language whose
grammar is obtained by deleting S from the grammar for L and taking A4 as the
start symbol. By the induction hypothesis L, is bounded. A derivation of y € L’
must begin with a production S — o such that « = Z, - - - Z,, where each Z, is either
a terminal or a nonterminal not equal to S. It follows that y =y, - - - y, with y, € L,
if Z, is a nonterminal and y; = Z, if Z, is a terminal. Thus y lies in a product of »n
bounded languages determined by S —«, and L’ lies in the union of the products
determined by all the productions S — « with S not occurring in «. L" is bounded
by Lemma 1.1. O

LEMMA 1.4. Any bounded language L < X* is a finite union of bounded
languages L, such that for each A there exists an integer r (depending on 1) and a
choice of words v,g,...,v,, €Z* and u,,, ..., u;, € Z* with

L, = {v o vy - - 3,0, l (ny,...,n)eS,},

where S, = N" is empty if r =0 (in which case L, = {v,,}) and otherwise there exist
r-tuples in S, whose smallest entry is arbitrarily large.

Proof. By hypothesis L = w¥ - - w for some words w; € Z*. Consider subsets
J<={1,2,...,n} such that the exponents of all w; with j € J can be made simulta-
neously arbitrarily large by elements of L. The proof is by induction on the number
of such subsets.

If there are no such subsets, then L is finite and is the union of a finite number
of languages L, each consisting of a single word v;,. Otherwise, pick a subset J
maximal with respect to inclusion. By maximality, there exists an integer M such
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that for any w =wf! - - - wy» € L, if the exponents e; with j € J are all greater than
M, then all of the other exponents are less than or equal to M.
Let L’ be the set of all w e L which can be written as

—_ €y ... €
w=wf wen

with ¢, > M for all jeJ and ¢; <M for all j¢J. By induction L — L' has the
required decomposition, so it only remains to show that L’ can be written as a
union of finitely many sublanguages of the desired form. Clearly L’ is a union of
languages L” such that the exponents e;, j ¢ J are fixed for each L”. If some L" is
such that all of the exponents ¢;, j € J can be made simultaneously arbitrarily large
by choosing suitable w e L”, then L” is of the desired form with the {w; |jeJ}
playing the role of the u;, in the statement of the lemma, and the remaining w;’s
being multiplied together to form the v,,’s. Otherwise the induction hypothesis
applies to L". d

Section 2: .o/-combings of groups

In this section we review and extend some basic results concerning combings of
groups, with particular emphasis on the preservation of linguistic and geometric
structure by such operations as change of generators, passing to a commensurable
group, and the formation of free products, all of which are operations which we
shall need to invoke in our study of normal forms for 3-manifold groups. We shall
also consider subgroups which are quasiconvex with respect to a given combing (see
Definition 2.11). Our main results in this direction (Theorems 2.15 and 2.17) allow
us to extend the results of [B3] and thus show that the relationship of context-free
combings to the study of spaces of nonpositive curvature is much the same as that
of regular combings.

DEFINITION 2.1. A choice of generators for a group G is a surjective monoid
homomorphism u: 2* - G, where 2 * is the free monoid over the alphabet (set) X.
We assume that X is equipped with an involutory permutation written a —»a~"' such
that u(a ') = (u(a)) ~'. Elements of X are called letters and elements of X* words.

Convention. All groups are understood to be finitely generated and all alphabets
finite unless otherwise noted.

We denote letters in 2 by @, b, ..., words in 2* by u, v, w, . . ., and elements of
G by g, h, .. .. We shall also use the symbol ¢ to denote the empty word in 2*. The
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involutory permutation of Definition 2.1 extends uniquely to a permutation
w — w1 of 2* satisfying the condition (wv) "' =v~'w~!, and u(w ") = (u(w)) ~! for
all w € 2*. When there is no risk of ambiguity, we shall write w rather than u(w) for
the image in G of a word w, and more generally X for the image of a set of words
X. The length of w will be denoted |w|.

Any choice of generators determines a left invariant word metric on G.

DEFINITION 2.2. d,(g, k) = min{|w| | w € £*, u(w) = g ~'h}.

According to the context, we may write d;, dg, or just d rather than d,. If
H < G is a subgroup of finite index in G, then for any word metrics d; on G and
dy on H there exists a positive constant ¢ such that for all h, h'e H

(1)) (h', B) <dg(h', h) < cdg(h', h). (2.1)

When discussing geometric properties of G it is natural to view words in Z* as
paths in G in the following sense.

DEFINITION 2.3. A discrete path in a set X is an eventually constant map
p: N —= X. The collection of all discrete paths in X is denoted 2(X).

If u:X*—>» G is a choice of generators, then any word w=a, - a,eX*
determines a discrete path in G, beginning at 1 € G, obtained by defining p,,(¢) to be
the image in G of the prefix of length ¢ in w if # <|w|, and to be constant at w
thereafter. Henceforth we shall identify w with p,, and often talk of words as
discrete paths in G. For any metric space (X, d) one natural notion of the distance
between two discrete paths p and ¢q is max, {d(p(i), q(i))}, which records the
maximum separation of points (‘fellow-travellers’) traversing the two paths at unit
speed. However, for our purposes it is more useful to consider the asynchronous
analogue of this notion. In other words when measuring the distance between
points traversing the paths under consideration we allow these points to stop for a
while whenever this helps them to stay close to their fellow-traveller. The appropri-
ate technical device to encode this idea is the set of monotone reparametrizations

R ={p:N->N|p(0) =0; p(rn + 1) € {p(n), p(n) + 1} for all n; p unbounded}.

DEFINITION 2.4. Given a metric space (X, d), the distance between two
discrete paths p, ¢ € (X)) is defined to be:

’

pPER

Dyx(p, q) = min {15133‘ {d(p(p(m)), a(p’ (M) }}.
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In the case of the metric space (G, d,) we may write D, or Dy, or even just D, for
Dg.

LEMMA 2.5. The following conditions hold.

(1) For any metric space (X, d), Dy is a pseudometric on P(X); and if d and d'
are Lipschitz equivalent metrics on X, then the induced pseudometrics D, and

v on P(X) are Lipschitz equivalent.

(i1) Consider u:2* — G, and suppose that v: A* —-» G is another choice of
generators. If 1: 2* - A* is a monoid homomorphism with u =vo 1, then
there is a constant k such that D ,(1(w), 1(v)) < kDz(w, v) for all v,w e Z*.

(iii) If H is a subgroup of finite index in G then for any choice of word metrics on
H and G there exists a constant C such that

(1/C)Dg(p, 9) < Dy(p, 9) < CDs(p, 9)

for all p, q € P(H).

Proof. For the triangle inequality in part (i) one needs to observe first that if
P1, P2 € R, then there are p, p' € Z such that p, o p =p, o p’, and second that if
Dy (p, q) is realized by reparametrizations p o p, and q ° p,, then for any p € Z it is
also realized by pop, o p and go p, < p.

Part (ii1) follows from (i) and equation (2.1). For part (ii), let k' bound the
lengths |t(a)|, a € Z. The path p,,, is obtained from p,, by inserting subpaths of
d,-length at most k' O

DEFINITION 2.6. Let u: 2* - G be a choice of generators, d the induced
metric on G, and D the induced pseudometric on 2* < £(G). Recall that a full AFL
is a class of languages satisfying certain conditions discussed in Section 1. Let L be
a language over Z.

(i) If D(w, v) <k, then w and v are called asynchronous k-fellow-travellers.
(i1) L is said to satisfy the asynchronous fellow-traveller property if there exists
a constant k such that D(w, v) <k for all w, v e L with d(w, v) < 1.

(iii) L is called a combing if it projects bijectively to G.

(iv) L is said to be an asynchronous .&/-combing if it satisfies conditions (ii) and
(iii) and belongs to the full AFL «/.

Example. In the above terminology, the asynchronous automatic groups of
[E+] are precisely those which admit an asynchronous regular combing [BGSS,
Theorem 7.3 and Lemma 7.2(1)].

LEMMA 2.7. If G admits an asynchronous sf-combing with respect to one choice
of generators, then it admits such a combing with respect to any choice of generators.
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More precisely, if L is an asynchronous sf-combing with respect to the choice of
generators u: X* —» G, and v: A* - G is another choice of generators, then for any
monoid homomorphism t:X* — A* such that pu=vot, (L) is an asynchronous
ol -combing.

Proof. Let L, =(L). It is clear that L, is a combing of G. Since full AFL’s are
closed under homomorphism, L, is in 7. Finally, L, is asynchronously bounded by
Lemma 2.5(ii). O

LEMMA 28. If L < Z* is an asynchronous s/-combing of G and L, = XZ* is
obtained from L by replacing one word w € L with any other v € Z* such that v = w,
then L, is an asynchronous sf-combing of G.

Proof. 1t is clear that L, is a combing of G. Since the transition from L to L,
can be accomplished by intersection and union with regular sets, Lemma 1.2
ensures that L, is in /. As L, is a combing, there are only finitely many u € L, with
d(u,v) <1. Thus it suffices to increase the constant k in the fellow-traveller
property for L by adding max{D(u,v) |d(#, #) <1} to it. If k' is the resulting
constant then L, satisfies the asynchronous fellow-traveller property with constant
k' O

PROPOSITION 2.9. If G, and G, both have an asynchronous s/ -combing then so
too does the free product G, * G,.

Proof. Recall that every non-identity element g € G, * G, can be expressed
uniquely as a product g, - - - g, of non-identity elements chosen alternately from G,
and G,. Thus the language L consisting of all words w = u, - - - u, with successive u;
chosen alternately from L, and L, is a combing of G, * G,. Lemma 1.2 implies that
L is in /. The proof that L has the asynchronous fellow-traveller property is
straightforward and standard, c¢f., [E+], [AB, Sec. 10], [B2]. O

Our next objective is to establish the relationship between the existence of
asynchronous «/-combings for subgroups and their existence for the ambient

group.

PROPOSITION 2.10. Let H be a subgroup of finite index in G. If H admits an
asynchronous sf/-combing, then so too does G.

Proof. Let L;,; < X* be an asynchronous &/-combing of H. Fix coset represen-
tatives 1 =g,,..., g, with G=|) Hg, and append corresponding new symbols
by,...,b,, (and their formal inverses) to X to obtain XZ;. Extend X} —» H to 2%
by b, g;. By Lemma 1.2, the language L:=|), {wb,|we Ly} lies in o. L is
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obviously a combing of G, so it only remains to establish the asynchronous
fellow-traveller property.

Let K be the maximum of the constants appearing in equation (2.1) and Lemma
2.5(iii). By hypothesis there is a constant K’ such that Dg,(u,, u,) < K’ for all
Uy, uy€ Ly with dy(u,, ;) <1. If w b, wb;e L with dz(w,b;, w,b;) <1, then
dz(wy, w;) < 3. Thus dg(w;, w,) <3K, and the triangle inequality for D, yields
Dy(wy, w,) <3KK'. Hence Dg(w,, w,) <3K?K' and Dg(w,b;, w,b;) <3K?K' + 2.

]

We shall see that in the framework of &/-combings the passage to subgroups of
finite index is a more delicate matter than the preceding argument for finite
extensions. However, the arguments involved are more potent in that they apply
not only to subgroups of finite index but also to a rich variety of subgroups that
satisfy the following geometric condition introduced by Gromov [G, Sec. 7.3].

DEFINITION 2.11. If X is a metric space and S is a subset of 2(X), then a
subset Y < X is said to be S-quasiconvex if there exists a constant k such that the
image of every path p € S whose endpoints lie in Y is entirely contained in the
k-neighborhood of Y. In particular, if L is a combing of a finitely generated group
G and H < G is a subgroup, then H is L-quasiconvex if there exists a constant k
such that for every w e L with w € H and every prefix # of w there is an element
h € H with d(i, h) <k.

Example. If H is a subgroup of finite index in G, then H is quasiconvex with
respect to any subset L < X*, since every point of G lies within a uniformly
bounded distance of H.

We shall need the following notion of compatibility for sets of paths in #(G),
particularly as applied to languages L < 2* < 2(G).

DEFINITION 2.12. Let X be a metric space. We define a relation among
subsets S, S’ € Z(X) by saying that S <XS’ if there is a constant K such that for
every p € S one can find p’ € S’ with the same endpoints as p and Dy(p, p’) < K.
Two subsets S, S’ € 2(X) are said to be compatible if S<S' and §'<S.

In the case that the metric space is a group with a word metric, Lemma 2.5(ii)
guarantees that the validity of S <X S’ does not depend on the particular word
metric chosen. Thus we may speak of compatible subsets of 2(G) without reference
to a particular word metric. Compatibility has the following properties, whose
proofs are trivial.
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LEMMA 2.13.

() If S, S < P(X) are compatible, then a subset Y < X is S-quasiconvex if and
only if it is S’-quasiconvex.

(1) Suppose u: X —-» G and p,: £, » G are choices of generators. If L € X* <
P(G) and L, < XF < P(G) are compatible subsets of P(G), then L satisfies
the asynchronous fellow-traveller property if and only if L, does.

The usefulness of the notion of quasiconvexity to the study of .&/-combings is
largely a consequence of the following result, which has been widely used in the case
where o is the class of regular languages.

LEMMA 2.14. Let u: X* — G be a choice of generators for G and let o be a full
AFL. Suppose that L < X* belongs to of and that the subgroup H < u(L) is
L-quasiconvex. Then there exist a finite subset Xy < X*, a language Ly = X% (where
2% is the submonoid of X* generated by Xy), a constant k >0, and a bijection
y: Lu~'(H) — Ly such that

(i) 2, freely generates the submonoid X%.
(i1) The restriction of u to X% is a choice of generators for H.

(ii1) Considered as a language over Xy, Ly belongs to <.

(iv) For all we L nu~'(H), p(y(w)) = w(w) and Dg(y(w), w) < k.
In particular L ~u~'(H) and Ly are compatible subsets of P(G).

From Lemma 2.14 and Lemma 2.13 we obtain:

THEOREM 2.15. If G admits an </-combing L, and H < G is an L-quasiconvex
subgroup, then H admits an <f/-combing Ly with the property that a subgroup K =< H
is L-quasiconvex if and only if it is Ly-quasiconvex. Further, if L satisfies the
asynchronous fellow-traveller property, then so too does L.

Combining Lemma 2.14 with Proposition 2.10 we have:

THEOREM 2.16. Let G be a finitely generated group, let H = G be a subgroup
of finite index, and let </ be a full AFL. Then, G admits an asynchronous of-combing
if and only if H admits an asynchronous sf-combing.

Proof of Lemma 2.14. The key idea of the proof is to use the quasiconvexity of
H to construct a certain finite subgraph I'y of the Schreier diagram I'; for G/H.
Recall that I'gy is the directed labelled graph with vertex set G/H and edges
Hx - Hy whenever a € X with Hxa = Hy. In particular for each such edge there is
an inverse edge Hy“—_-; Hyx. It follows from this definition that for every w € £* and
vertex Hx there is exactly one path in I'g,, with label w that begins at Hx. Further
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the labels of paths which both begin and end at H are precisely those words in Z*
which represent elements of H. Here path means edge-path in a graph as opposed
to discrete path in a metric space.

We first construct a map y: 2* — 2* whose restriction to Ly:==L nu~'(H) will
have the properties stated in the lemma. For each vertex Hx fix a path in I';/y of
minimum length from H to Hx. Let p(Hx) be the label of this path, and notice that
p(H) = ¢, the empty word. Notice also that all of these paths are simple, in the sense
that they do not pass through any vertex twice. Any word w =a, - - - @, € 2* is the
label of a unique path from H. In this path each g; is the label of an edge from some
Hx;_, to Hx;. Let y: 2* - X* be the map that sends w to the word obtained by
replacing each of its letters @; by the word p(Hx;_,)a;p(Hx;)~'. If w € u~'(H), then
Hx,= Hx, = H. Consequently y(w) is obtained from w by interpolating words
p(Hx,;)p(Hx,) ~! whence u(y(w)) = u(w). In particular the first assertion of (iv) holds.

Our next goal is to construct the set 2,;. X, will be a subset of 4, the collection
of all words p(Hx)ap(Hxa)~'. Notice that 4 is closed under the taking of inverses.
We claim that 4 freely generates a submonoid of X*. If not, then two distinct
products of elements from 4 would be equal in 2*; and consequently one of the
elements would be a proper prefix in 2* of a second. However, it follows from the
choice of the words p(Hx) that this cannot happen.

We now give each edge Hx 5 Hy of ', the additional label p(Hx)ap(Hy) '€
A. Thus a directed edge-path which was originally labelled by w € 2* now has
y(w) € 4* as a second label, and the image of y in 4* is just the set of A-labels of
paths beginning at H. Furthermore, the monoid homomorphism =n:A4* — 2*
defined by n(p(Hx)ap(Hy) ') = a satisfies n(y(w)) = w. Thus y: Z* — 4* is injective.

Because H is L-quasiconvex there is a constant &k such that for every w € L, and
every prefix v of w there exists h € H with d(v, h) <k. Consequently p(Hv) has
length at most k. Thus if we define I'; to be the finite subgraph of I';,;; determined
by all vertices Hv with p(Hv) of length at most k, then every w € L, is the X-label
of a path in I'; that begins and ends at H. Let X, be the subset of 4 consisting of
those elements which occur as 4-labels of edges in I'y. Since Iy is finite, X is too;
and because 4 is a set of free generators, 2 is too. Thus (i) holds. By construction,
2y is closed under inverse; and for each 4 € H there exists w € L, with 7 = u(w) =
u(y(w)). It follows that y maps X% onto H and (ii) holds.

Let R be the set of all Z-labels of paths in I'y from H to H, and let R, be the
corresponding set of A-labels. Because I' is finite, R and R are regular subsets of
Z* and X'} respectively. It follows from the definitions of y and = that the
restrictions of y to R and n to Ry are inverse maps. Further we know by the
construction of I'y that L= Rn L. Hence Lye &/ by Lemma 1.2.

Define L, = y(L,). From the preceding paragraph y maps L, bijectively to L,
and Ly = Ry nng'(L,) where ny is the restriction of = to £%. Lemma 1.2 yields
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Ly e o/. Thus (iii) holds. The last part of (iv) follows from the fact that y(w)
is obtained from w by interpolating words p(Hx)p(Hx) ' for some vertices Hx
in I,. O

Next we apply the preceding results to the study of context free combings of
virtually abelian groups, thus generalizing {AB, 9.1].

Two groups are said to be commensurable if they contain isomorphic subgroups
of finite index. In the statement of the next theorem, two subgroups of a group G
are said to be strictly commensurable if they contain a common subgroup H of finite
index. Notice that in the following statement we place no restriction on the
geometry of the language L, in particular it is not required to satisfy any
fellow-traveller property.

THEOREM 2.17. Let G be a virtually abelian group. For every context free
combing L of G there exist among the strict commensurability classes of subgroups of
G only finitely many which contain an L-quasiconvex subgroup.

Proof. For the duration of this proof ‘commensurability’ will mean strict
commensurability. Let 4 be an abelian subgroup of finite index in G. It suffices to
show that there exist among the commensurability classes of subgroups of 4 only
finitely many which contain an L-quasiconvex subgroup. Furthermore, by Theorem
2.15, we may assume that G = A4, i.e., that G is abelian.

Fix a choice of generators u: X* -» G and a context-free combing L < X*.
Because it maps bijectively onto an abelian group, L must have polynomial growth,
whence by Proposition 1.3 it is a bounded language. That is, there exists an integer
m and words wy, ..., w, € 2* such that

*o% ... %
Lcwiw} W

We shall show that every L-quasiconvex subgroup of G is commensurable with
the subgroup generated by a subset of {w;|1<i<m}. Suppose that H = G is
L-quasiconvex, and let k£ be as in Definition 2.11. Let ¢ be the number of words in
I * of length at most k. Suppose that 4 € H is represented by w{ - - - wir € L. Given
i, >c, we let v =wi - wj-] and consider the sequence of prefixes vw/, 0 <r <i,
By quasiconvexity there is for each r an element /4, € H and a word u, € Z* of length
at most k such that u(vwju,)=h,. But i;>c, so u, =u, for some r, s with
0<r <s <c. Since G is abelian, it follows that w;~" represents an element of H.

Let K be the subgroup of H generated by its intersections with the finitely many
cyclic subgroups <{w, . The word w;~" of the last paragraph represents an element
of K. It follows that because G is abelian, the image in G of {wi - - - wir | i, < c for
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all 1 <j <m} contains a set of coset representatives for K in H. Thus K has finite
index in H. On the other hand, K is of finite index in the subgroup generated by
those w; for which {w,>nH # 1. a

The results of [B3] demonstrate the incompatibility of regular combings with
many combings that arise in the study of manifolds of nonpositive curvature. We
recall briefly how the latter combings are defined (see [B3] or [AB] for more
details). If a group G acts properly and cocompactly by isometries on a 1-connected
geodesic metric space X of nonpositive curvature, then one can map G to X by
fixing a basepoint x,€ X and making the identification g — g - x,. Every pair of
points in X is joined by a unique geodesic, and one can uniformly approximate
these geodesics by discrete paths in G to obtain a combing ¢(X) of G. It is not
difficult to show that, up to compatibility, ¢(X) is independent of the choice of x,
and the chosen approximation of geodesics. One can also show that o(X) satisfies
the asynchronous fellow-traveller property; this is a reflection of the convexity of
the metric in spaces of nonpositive curvature.

[B3] contains several results comparing the behaviour of ¢(X) to that of regular
combings. The arguments presented there can be extended directly to the case of
context-free combings by casting Theorems 2.17 and 2.15 above in the roles of [AB,
9.1] and [B3, 2.2] respectively. We record two such results.

THEOREM 2.18. Let M be a closed real-analytic manifold of nonpositive
curvature. The associated combing a(M) of n,M is compatible with a context-free
combing if and only if n, M is word-hyperbolic (in the sense of Gromov [G)).

For the following result we do not assume that M satisfies Thurston’s geo-
metrization conjecture.

THEOREM 2.19. Let M be a closed 3-manifold of nonpositive curvature. The
associated combing (M) of m, M is compatible with  a context-free combing if and
only if m, M is word-hyperbolic.

Section 3: Indexed combings of 3-manifold groups

In this section we shall prove Theorem B by showing that if a group occurs as
the fundamental group of a compact geometrizable 3-dimensional manifold or
orbifold, then it admits an asynchronous indexed combing. More generally, we
show that any group which is commensurable with a free product of automatic
groups and finite extensions of semidirect products of the form Z2>>< Z admits an
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asynchronous indexed combing. The need to introduce indexed combings arises
from an inadequacy of context free combings as demonstrated by the results in the
next section. The root of this inadequacy can be traced to the fact that the normal
forms for groups G = 7" > Z constructed in [B2] are never context free.

First we recall the definition of these combings. Every element g € G can be
written uniquely as g = ¢t™x, where ¢ is a generator for the righthand factor in the
given semidirect product decomposition and x lies in the lefthand factor. We
identify the lefthand factor with the integer lattice in Euclidean n-space and choose
generators u: X, > 7" with X, ={e;,e;' |i=1,...,n} and {u(e,), ..., u(e,)} the
standard basis (rectangular coordinates) for Z" = E*. For each x € Z" we let ¢,
denote the Euclidean straight line segment joining the origin to x, and we choose
any 7y, €2 such that when viewed as a path in Z"< E” this word satisfies
DEn(fx, Vi) < \/r;, where fx is the restriction of the path 7, (parametrized by arc
length) to the integer points of its domain. The following result is proved in [B2,
Sections 2 and 3].

THEOREM 3.1. Ly:={t"y, |meZ,xeZ"} = (Z,u{t,t7'})* is a combing with
the asynchronous fellow-traveller property.

COROLLARY 3.2. L, is not a context free language.

Proof. If L, were a context free language, then its image under the monoid
projection (X2, u {t,t7'})* » 2} would also be context free (Lemma 1.2). But as
this image is precisely L,:={y, | x € Z"}, a combing of Z" with respect to which
every cyclic subgroup is quasiconvex, Theorem 2.17 implies that L, is not context
free. O

We now turn our attention to the task of obtaining an upper bound on the
complexity of the language L, in the case of relevance to 3-manifolds, n = 2. The
following result contrasts sharply with Theorem 2.15.

THEOREM 3.3. View Z2 as the integer lattice in the Euclidean plane 2, and let
u: 2, —» 7% be the choice of generators defined above. There exists an asynchronous
indexed combing L = X% such that for all we L, DEz(f ws Dw) < \/i where p,, is the
discrete path in 7* corresponding to w.

The proof of this theorem is deferred until the end of the section.

COROLLARY 3.4. For every choice of generators u: Z* —-» Z* there exists an
asynchronous indexed combing L < X* with respect to which every cyclic subgroup of
Z? is quasiconvex.
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Proof. 1t is immediate that every cyclic subgroup is quasiconvex with respect to
the combing L of Theorem 3.3. If v: A —» 72 is another choice of generators, let
1: 2% — A* be a monoid homomorphism such that u =v o 7. By Lemma 2.7, 7(L) is
an asynchronous indexed combing of Z2. It is straightforward to check that L and
7(L) are compatible subsets of 2(Z?), in the sense of Definition 2.11. Hence by
Lemma 2.13 we are done. O

COROLLARY 3.5. Every semidirect product of the form G = 7% >a Z admits an
asynchronous indexed combing.

Proof. Let L be the indexed combing yielded by Theorem 3.3. By Theorem 3.1
Ly:={t*u(t~")*}L is an asynchronous combing of G, and by Lemma 1.2 L, is an
indexed language over {z,17'} U Z,. O

COROLLARY 3.6. Every group G which is commensurable with a free product
of asynchronously automatic groups and finite extensions of semidirect products of the
form 7% > Z admits an asynchronous indexed combing.

Proof. Asynchronously automatic groups are precisely those which admit asyn-
chronous regular combings [E+], [BGSS, Theorem 7.3 and Lemma 7.2(1)], so the
preceding corollary together with Proposition 2.9 and Corollary 2.16 yields the
desired conclusion. O

The results of Epstein and Thurston [E+, Chapter 12] imply that the funda-
mental group of any compact orientable 3-manifold that satisfies Thurston’s
geometrization conjecture is the free product of an automatic group and (possibly)
finite extensions of semidirect products of the form Z?>< Z (the latter being the
fundamental groups of closed Nil and So/ manifolds). One can remove the
hypothesis of orientability at the expense of passing to a subgroup of index at most
two. Indeed, by passing to subgroups of higher index one can generalize this result
to include orbifolds. Thus Corollary 3.6 completes the proof of Theorem B.

Proof of Theorem 3.3. We begin by reducing to the first quadrant 2=
{(m,n) |[m >0,n>0}. Let X ={a,b}, and define pu:Z*->7> by ua) =(1,0),
u(d) = (0, 1).

LEMMA 3.7. It suffices to find L, < {a, b}* such that:
(i) u maps L, bijectively to 2,
(i) if wo € L,, then the distance in the plane from w to the line segment from the
origin to wv is less than 1;
(iii) L, is an indexed language.
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Proof. If woe L, and w = (x, y), then x +y = |w|. In particular the Euclidean
distance from (0, 0) to w is a monotonically increasing function of |w|. It follows
from this observation together with (ii) that D[Ez(iw, Dw) < \/E for all we L,. One
can rotate 2 into the other quadrants to obtain languages L,, L;, L, which satisfy
corresponding conditions. For example, L, is obtained by replacing b by a~! and a
by b in every word in L,. The language L = L,vL,uL,uL,u{e} is indexed by
Lemma 1.2. O

It remains to find L, satisfying conditions (i) to (iii). We make 2 into a graph
by adding horizontal and vertical edges of unit length directed from initial vertices
(i, j) to terminal ones (i + 1,j) or (i,j + 1). Fix (m, n) € 2 and consider the closed
line segment #(m, n*) in the plane from (0, 0) to (m, n*) where n ™ is chosen slightly
larger than » but small enough to ensure that

/(m,n*) does not contain any lattice points except (0, 0), and
there are no lattice points in the interior of the triangle
with vertices (0, 0), (m, n), (m,n™). (3.1)

Notice that condition (3.1) guarantees that the sequence of edges which intersect
/(m,n*) depends only on (m,n) and not on the particular choice of n*. In
particular the sequence of edges intersected is unchanged if £(m, n*) is replaced by
£(m, n,) for any n, strictly between n and n*.

DEFINITION 3.8. For (m, n) € 2 and £(m, n*) chosen as above, the sequence
formed by recording (in order) an h for each horizontal edge intersected by
¢/(m,n*) and a v for each vertical edge is called the crossing sequence «(m, n).

Example. k(2,3) = hvhhv.

LEMMA 3.9. The following conditions hold for all (m, n) € 2:

(1) The first edge intersected by {(m, n™) will be vertical with initial vertex (1, 0)
if m > n and will be horizontal with initial point (0, 1) if m <n.

(ii) The last edge intersected by £(m, n*) will always be vertical with initial point
(m, n), and if n >0, the penultimate edge will always be horizontal.

(iii) If £(m, n*) intersects two edges in succession and the second edge is vertical,
then the initial point of the second edge is obtained from the initial point of
the first edge by increasing the x-coordinate by 1. If the second edge is
horizontal, the y-coordinate is increased by 1.

Proof. The first two assertions are clear. A pair of successive edges intersected
by £(m, n*) forms two sides of a square. The first edge is one of the two (closed)
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sides of the square that contain the vertex closest to the origin, and the second edge
contains the vertex farthest from the origin. It follows by consideration of the
posible cases that initial points of successive edges are related as in (iii). O

For each (m,n) € 2 consider the path y(m,n) in Z? starting at (0,0) and
proceeding through the initial points of all edges intersected by £(m, n*). Let L, be
the language over X consisting of all the paths y(m, n) for (m, n) € 2. Since the last
initial point is always (m, n), condition (i) of Lemma 3.7 holds. By condition (3.1)
each (closed) edge which intersects £(m, n*) also intersects the line from (0, 0) to
(m, n). Consequently condition (ii) of Lemma 3.7 is valid also. It follows in a
straightforward way from Lemma 3.9 that y(m, n) is obtained by replacing v by a
and A by b in k(m, n). Thus the next theorem completes the proof of Theorem 3.3.

THEOREM 3.10. The set {x(m,n) |(m,n) € 2} is an indexed language.

The proof of Theorem 3.10 is divided into a number of lemmas. Fix (m, n) € 2
and choose n* and #(m,n*) as above. Let s be the slope of /(m, n*). Note that
s > 0. The points on #(m, n*) whose x-coordinate is a positive integer are

(1,9),(2,2s),...,(m, ms).
Thus the vertical edges intersected by £(m, n™) have initial points

(L Ls D, (2,125 )), ..., (m,ms )

where | x | denotes the greatest integer less than or equal to x. All the remaining
edges are horizontal. It follows from Lemma 3.9 that the sequence of initial points
of edges intersected by £(m,n*) is

0,1),(0,2),...,00,Ls D, (1, LsD, (L, s+ 1), ...,(1, [ 2s])
(2,125 ]), (2,1 25 ]+ 1),...,(m, | ms])

where it is understood that the sum of the x and y coordinates increases by 1 at
each step. In particular if | s |=0, then the sequence begins with (1, [s_]); and if
|s |]=|2s | then the sequence is ..., (1, s]), (2,1 2s])),....

LEMMA 3.11. For any s greater than but sufficiently close to nim:

(i) K(m, n) = htlphl251-Lslpp3s1=12sy . . . plmsi=Lon—Dsly,

(i) If n >0, then w(m, n) = p\VsIhpl2/s1=Llisippl3lsi=2Islp . . . plals == Dislpy,
(iii) If n =0, then k(m, n) = v™.
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Proof. The first assertion follows from the preceding analysis of the vertical
edges intersected by £(m, n*). For the second part one uses Lemma 3.9 to analyze
the horizontal edges intersected by £(m, n*). The last assertion is clear from the
definition of k. O

First we apply Lemma 3.11 to the case in which «(m, n) begins with 4. In this
case n >m, and k(m,n) =hv--- with | s |>1. The other blocks of A’s have
lengths | ks |—|(k —1)s] for 1 <k <m. Application of the estimate x —1 <
|x]<x yields s —1 <|ks|—|(k—1)s]<s+1. Thus the ‘h-blocks’ have length
Ls ] or s |+ 1, where by ‘h-block’ we mean a maximal subword of the form A°.
Consequently the following definition makes sense.

DEFINITION 3.12. If k(m, n) = h'v - - - with i >0, define H(x(m, n)) to be the
sequence obtained by removing i A’s from each A-block of x(m, n).

LEMMA 3.13.

(i) If x(m, n) begins with h, then H(x(m,n)) begins with v and H(x(m, n)) =
k(m,n —m|n/m]).

(i) If k(m, n) begins with v, then H~'(x(m, n)) consists of all sequences obtained
by choosing a positive integer k and replacing each v in k(m, n) by h*v.

Proof. The first part of (i) is clear. For the second pick s greater than but close
enough to n/m to compute x(m, n) by Lemma 3.11. We may assume that s is close
enough so that | s |=|n/m |. Decrease s if necessary to make ¢t =s —| s | close
enough to n/m —| n/m ] to compute k(m,n —m|nfmJ). As |kt |—|(k -1t ]=
Lks |—[(k —1)s | —|s ], Lemma 3.11(i) yields the rest of (1).

Consider k(m, n) as in (ii); in particular n <m lest k(m, n) begin with h. By
Definition 3.12 every member of H ~'(kx(m, n)) has the desired form. To show that
H~'(x(m, n)) contains every sequence promised by (ii), observe that by Lemma
3.11(i) x(m, n + km) = h*v - - if k > 1. By (i) H(x(m, n + km)) = k(m, n). O

Now we apply Lemma 3.11 to the case in which k(m, n) begins with v and
contains an A; that is, the case 1 <n <m.

DEFINITION 3.14. If x(m,n) =v'h-- with i >0, define V(k(m,n)) be the
sequence obtained by removing i v’s from each v-block of x(m, n) except the last
(which is of length 1).

The proof of the following lemma is entirely similar to that of Lemma 3.13.
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LEMMA 3.15.

(1) If k(m,n) =v'h - - - with i >0, then V(x(m, n)) begins with h and V(x(m, n)) =
k(m — n| mn ], n) unless m is a multiple of n in which case V(x(m, n)) = k(n, n).

(i) If x(m,n) =h - - -, then V~'(x(m, n)) consists of all sequences obtained by
choosing a positive integer k and replacing each h in x(m, n) by v*h.

We can combine H and V to form a reduction operator which by repeated
application reduces any crossing sequence k(m, n) containing 4’s and v’s to a power of
v (by a computation equivalent to the Euclidean algorithm). The inverse of this
reduction operator generates all crossing sequences by starting with the sequences v*,
k >0 and alternately replacing all v’s by A'v and all A’s by v/h. The generation
procedure can be described by an indexed grammar. Consider the indexed grammar
with terminals A, v, nonterminals S, 7, U, V, H, index symbols p, g, r, and start symbol
S. The productions are

S—->Tpor Up T—-Tqor Tror Ug U->VUorV
Hp - h Hq-H Hr - VH
Vp-v Vp - HV Vr - V.

For example, a derivation of the crossing sequence (2, 3) = hvhhv is

S—>Tp—->Tqp — Trqp - Uqrqp — Vqrqp — HrqpVrqp —
VapHqpVrqp — VgpHqpVqp — HpVpHqpVqp — HpVpHpVap —
HpVpHpHpVp —hVpHpHpVp — hvHpHpVp — hvhHpVp — hvhhVp — hohho.

First we will show that for any derivation S 5w e {h, v}*, wis a crossing sequence.
The derivation must begin S 5 Uxp where x is some word over {g, r} and either x = ¢
or x begins with ¢g. The word x encodes the sequence of replacements mentioned above.
The next step in the derivation will be Uxp — Vxp or Uxp — VxpUxp. Since every U
must be replaced by a ¥ in order to reach w, there is no loss of generality in assuming
that the derivation begins S = (Vxp)™ for some m > 1. Now the two lemmas below
complete the proof of Theorem 3.10.

DEFINITION 3.16. & is the set of sentential forms « such that:

(1) There are no terminals in «, and each nonterminal is either a ¥ or an H.

(2) The nonterminals spell out a crossing sequence (if each V is replaced by v
and H by h).

(3) Every nonterminal is followed by the same index word xp with x € {q, r}*;
and if |x| > 0, then x begins with g or r according to whether o begins with
V or H.
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LEMMA 3.17. If « 5w and a is a sentential form in the set F defined above,
then w is a crossing sequence.

Proof. We argue by induction on |x|. If |x| =0, then the only productions
applicable are Vp -v and Hp —h, and Definition 3.16(2) implies that w is a
crossing sequence. Otherwise either ‘

(1) a begins with ¥ and x = ¢'x’ where i # 0 and x' = ¢ or x’ begins with r; or

(2) « begins with H and x = r'x’ where i # 0 and x’ =¢ or x’ begins with g.
These cases are similar, and we consider just the first. The only productions
applicable are Vg - HV, Hq — H. As these productions must be applied to each
factor Vxp or Hxp respectively at some point in the derivation, we may as well
apply them to all factors at the same time to obtain o« > a’ 5 w where «' is obtained
from a by replacing each ¥ by H'V and each x by x’. By Lemma 3.13 (Lemma 3.15
in the other case), o' € &, and w is a crossing sequence by induction. O

LEMMA 3.18. Every crossing sequence is derivable from S.

Proof. Clearly every crossing sequence of the form v’ is derivable from S. By
Lemmas 3.13 and 3.15 it suffices to show that
(1) IfS 3w =v---and w'is obtained from w by replacing each v in w with A’v,
then S > w’; and
(2) f SS5w=~h--- and w' is obtained from w by replacing each % in w with
v’h, then S S w'.
We will prove the first assertion; the second is proved similarly. First, if w = v’, then
S5 (Vgip)' S (HpY Vp)' 5 (Wv)! = w'. Otherwise w = v'h - - -, and by the argument
used in the proof of Lemma 3.17

SEWxp)y"Sa=Hrp--- Ba'=VipHp--- Sw.
In particular x = - - r'p. It follows that

S5 (Vag'p)" S Hr'glp - S VigpHe'p - 5 (Hp')Vp)'Hp - Sw'. O

Section 4: Bounded combings of nilpotent groups
This section is entirely devoted to the proof of the following theorem.

THEOREM A. Let G be a virtually nilpotent group and let u: Z* —» G be a
choice of finite generating set for G. Suppose that the language L < Z* is a combing
of G that satisfies the asynchronous fellow-traveller property. If L is a context-free
language, then G is virtually abelian.
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By Theorem 2.16 we may assume that G is nilpotent. Since finitely generated
nilpotent groups have polynomial growth [W] and L is a combing, L must also have
polynomial growth. In light of Proposition 1.3 we see that Theorem A is a special
case of the following result, the geometry of which is explained in [BG].

THEOREM 4.1. Let G be a nilpotent group and let u: Z* - G be a choice of
generators for G. Suppose that L = X* satisfies the asynchronous fellow-traveller
property and that p|; is surjective. If L is a bounded language then G is virtually abelian.

LEMMA 4.2. Let G be a finitely generated nilpotent group.

(1) Every subgroup of G is finitely generated and nilpotent.

(2) The set of torsion elements of G is a finite normal subgroup.

(3) For any integer n > 1, the subgroup of G generated by all n-th powers of
elements of G is of finite index in G.

(4) If G is of class two (i.e., if the commutator subgroup lies in the center), then
for any g € G the map h —[g, h]:=g ~'h~'gh is a group homomorphism from
G to the commutator subgroup.

Proof. These properties are well known and can be proved by induction on the
nilpotence class [Ha]. O

LEMMA 4.3. Let G be a finitely generated torsion free nilpotent group.

(1) The central quotient G|Z(G) is torsion free.

(2) For any g € G and integer m # 0 the centralizers C(g) and C(g™) are equal.

(3) If g € G — {1} then the set of all roots of g in G generates a cyclic subgroup.

(4) Suppose g,, g, € G and each g; has no proper roots in G. If hg"h~"' = g% for
some positive integers m, n, then hg,h=' = g,.

(5) If G is virtually abelian,. then it is abelian.

Proof. Part (1) is [Ba, Corollary 2.11]. For (2) one simply casts C(g™) in the
role of G in part (1) and observes that if the inclusion C(g) = C(g™) were strict then
g would not be in the centre of C(g™), whereas g™ is. (3) follows easily, because (2)
implies that all of the roots of g lic in the centre of C(g), which is a finitely
generated abelian group. (4) follows easily from (3). Finally, if G were virtually
abelian, it would have a normal abelian subgroup A of finite index n. Thus g”e€ 4
for all g € G whence 4 < Z(G) by (2). Now (1) yields 4 =G. 1

LEMMA 4.4. A finitely generated nilpotent group H is either virtually abelian or
has a quotient G such that:

(1) G is torsion free.

(2) G/Z(G) is free abelian of rank at least two.

(3) If he G — Z(G) then C(h) is a normal subgroup of finite index in G.
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(4) Suppose g,, g, € G and each g; has no proper roots in G. If hgTh~' = g% for
some positive integers m, n with m # 0 # n, then C(g,) = C(g,).

(5) For any choice of generators p: X* —» G there is a constant P such that for all
weX* if w¢ Z(G) then d(1, w") > n/P.

Proof. Assume H is nilpotent but not virtually abelian. By standard arguments
one can show that H modulo its torsion subgroup 7 is not virtually abelian. Thus
we assume H that is torsion free. By Lemma 4.3 H/Z(H) is torsion free, and if it
is virtually abelian then it is abelian. This observation applies equally to the
successive quotients of H by terms in its ascending central series. Let Z, be the last
term in the ascending central series such that H/Z, is not abelian (i.e., H=2Z,_,)
and define G = H/Z,. Notice that G is not virtually abelian but G/Z(G) is; in other
words G has class 2. G/Z(G) is torsion free and hence a free abelian group. If
G/Z(G) were cyclic, then G would be abelian. Thus (1) and (2) hold. It follows
from (2) that all centralizers in G are normal subgroups. If g € G — Z(G) then its
centralizer could not have finite index n in G or else A" € C(g) for all A € G would
imply g € Z(G) by Lemma 4.3(2). (3) implies (4) because C(g,) and C(g,) are
conjugate (Lemma 4.3(4)) and normal.

Finally, if v: A* - A is any set of free generators for the free abelian group A4,
then d, is the restriction of the corresponding #,-norm on the real vector space with
basis A, and hence d,(1, v(w")) >n for any w € A* with v(w) # 1. Thus, by (2.1),
any choice of generators affords a constant P such that d (1, v(w”)) > n/P. Setting
A = G|Z(G) now yields (5). O

Proof of Theorem 4.1. Suppose G and L are as in the statement of Theorem 4.1,
and assume that G is not virtually abelian. We will argue by contradiction. Observe
that the hypothesis of Theorem 4.1 is valid in all quotients, thus we may assume
that G satisfies the conclusions of Lemma 4.4. Because L is a bounded language,
Lemma 1.4 allows us to write it as the union of finitely many sublanguages L, of
the form

LA. = {W l w = v).,OuZ,ll U).,l e u;j,rrvl,r |(nl’ seey nr) € SA}, (4.1)

where r is an integer depending on A and either r =0 and S, is empty or S; = N
contains r-tuples whose smallest entry is arbitrarily large.

Now we make some changes in L; which do not alter the image of L, in G. Nor
do these changes alter the fact that L, is bounded, or the fact that S, contains
r-tuples with all entries arbitrarily large (we say nothing about whether L; remains
context free). If a word u,; has a trivial image in G, we delete it from (4.1); and
otherwise if u,; has proper roots in G, we invoke Lemma 4.3 to replace u,; by a
word whose image in G is a root of u,; but has no proper roots itself. In other
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words, without loss of generality we may assume that every u,; occurring in (4.1)
has nontrivial image in G and that each u,; projects to an element of G with no
proper roots in G.

In what follows, when referring to w € L; we shall assume that it is decomposed
as in formula (4.1). Two words u,;, u,; ,  in that decomposition may have the same
or different images in G/Z(G). We shall focus our attention on some L, < L with
the maximal number of sequences u,;, u; ;. " - - 4;;,; such that u;; and u,;, , have
distinct and nontrivial images in G/Z(G) and all intervening u’s lie in Z(G). There
must be such sequences because otherwise (4.1) and the fact that L projects onto G
would force G/Z(G) to be a union of a finite number of cyclic subgroups contrary
to Lemma 4.4(2).

The intuition behind the somewhat strange sequences considered above is as
follows. Given a word w for which all of the exponents #n; in (4.1) are large, one can
imagine this as a path in the Cayley graph of G/Z(G) consisting of a sequence of
long straight segments (corresponding to iterates of those u,; which project non-
trivially) joined by short segments (corresponding to the v, ;). If two successive u, ;
were to have the same non-trivial image in G/Z(G) then a distant observer would
see no ‘corner’ between the corresponding straight segments, and the above notion
of maximality among the sublanguages L; is based (roughly speaking, but not
exactly) on counting the number of perceivable corners in this sense.

For convenience we assume that the sublanguage L, which is maximal with
respect to the above count of special subsequences u, ;, u;;, " - - u;;, is given by
4 =0, and we fix r to be the corresponding integer from (4.1). Let r’ denote the
maximum index for which u,, has a nontrivial image in G/Z(G).

Before proceeding to the proof of Theorem 4.1 we pause to outline our strategy.
Our argument shall proceed by judicious choices of 4,

w=uvoui'v; - -u,v, €Ly, and x =y,z7y,---zty €L, (4.2)

(where the factorisations are as in (4.1) but with the notation simplified slightly),
the exponents n; will be large and the images of w and x will be a controlled
distance Q apart in G. The idea of the proof is to make the paths in G determined
by w and x close over a distance which is very large compared to Q; so close in fact
that certain subwords are forced to be conjugate. We then show that these
conjugacy relations force the images of these paths in G = G/C(u,) to be uniformly
close (independent of Q) and taking Q to be large yields a contradiction.

More precisely, the hypothesis that L satisfies the asynchronous fellow-traveller
property will yield a bound on D(w, x) (a bound which depends on Q), and we shall
use this bound to show that subwords u” of w with &; ¢ Z(G) have a substantial
overlap with subwords z7* of x. By this we mean that large segments of the
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subwords u and zp* correspond under the distance minimizing monotone
reparametrizations used in the definition of D(w, x). In other words, if w is written
as w = w,u’w, and x as x = x,z7’x,, then for integers i lying in a large interval we
have d(wluj, x,z;) < D(w, x) + K’, where the constant K’ depends only on L. We
shall choose w so as to ensure that this interval is long enough to allow a
word-difference argument of the type found in [E+], which forces a power of u; to
be conjugate in G to a power of z,. We shall then use the control over conjugation
relations yielded by Lemma 4.2(4) and Lemma 4.4(4) to obtain an estimate on the
distance between the images of w and x in G, and this estimate will contradict the
choice of Q.

In order to implement this line of attack on Theorem 4.1 we must first dispense
with some preparatory technicalities. Consider G=G C(u,) with the generators
obtained by projecting the generators X of G, and let d denote the corresponding
word metric. It is important to note that d is invariant with respect to the natural
left action of G on G. We will abuse notation to the extent of allowmg d(g, h) to
stand for the distance between the images of g, # € G in G. Clearly d(g, h)y <d(h, g),
and for any positive integer Q the ball of radius Q around 1 € G projects onto the
ball of the same radius around 1€ G.

The following is an immediate consequence of Lemma 4.3(4):

LEMMA 4.5. There exists a constant A such that if h="u,"h =u,;" for any
positive integers m, n, any A, and any u;; occurring in (4.1), then d(1, h) < A.

In what follows we shall need the following additional constants B, X, P, Q, S,
which we record here for the convenience of the reader.
B :=max; |UA,ou,1,1UA,1 T u).,rvﬂ.,ri'
If w,, w, € L with d(w;, w,) <1 then D(w,, w,) < K.
If we X* with w ¢ Z(G), then d(1, w™) >n/P.
Q:=A+2B+1.
=|z].

The constant K exists because L satisfies the asynchronous fellow-traveller property,

and P comes from Lemma 4.4.
Proceeding with the proof of Theorem 4.1, we now fix w € L, with all exponents

n; satisfying

n; > P(B*S2X+5 1 2B + 20K). (4.3)
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Because G is infinite (Lemma 4.4(3)), we can choose x €L with d(w, X) =
d(w x) = Q. We assume that w and x are decomposed as in equation (4.2) and
henceforth use the notation established there.

LEMMA 4.6. There is a partial map o:{1,...,r}—>{1,...,s} such that
(1) the domain of o is all j with u; ¢ Z(G);

(2) o is nondecreasing ;

(3) u; is conjugate in G to z,;, for all j in the domain of o.

Proof. By the triangle inequality for D we have that D;(w, x) < QK. Consider
a subword u; of w from the decomposition (4.2) such that u; ¢ Z(G), and write
w = wyw,w; with w, = u}?. It follows from the definition of the pseudometric D that
x factors as x = x, x,x; with d(w,, x;) < D(w, x) < KQ and d(w,w,, x,x,) < OK.

The last two inequalities imply that d(1, x,) > d(1, w,) —2KQ > n;/P —2KQ >
B2S2k+E 4 2B. As no subword y, or z, is longer than B, it must be that x, involves
at least BS2X+2 + 2 subwords y, and z, from (4.2). It follows that x, itself contains
a subword consisting of a product of at least BS?%*® of the y, and z,. Since the
definition of B implies that the parameter s of (4.2) is no greater than B, one such
z, must occur to a power at least S2¥*2 In other words x, = x,z7%xs with
m;, > S2K+8 for some k. We define o(j) = k. This definition yields the first two
assertions of Lemma 4.5.

Now, it follows from the monotonicity of the reparametrizations in the defini-
tion of D that the image in G of each word x,x,z%;,, 0 <m < S2¥+2 is a distance
at most QK from the image of some word of the form w,u;u’, where ' is an initial
segment of u; and »n depends in a monotonically nondecreasing fashion on m.
Consequently the image in G of x;x,z5; is a distance at most QK + B from the
image of w,u;. For each x,x,zy; we fix a shortest path in the Cayley graph
realizing this distance. The word labelling this path has length at most QK + B, and
there are fewer than S2X+# possibilities for such a label. Thus two of these paths
have the same label.

Let us suppose that the label Z; is shared by the paths connecting the images of
X, X42;, and x,x,z7% 4™ with those of w,u} and w,u}*" respectively. Since these
paths are distinct, m’ > 0, whence n’ > 0. In fact, n’ > 0 lest z,;, have trivial image
in G. Thus in G we have the equation Zu}/;' =z . It follows from Lemma
4.3(4) that u; is conjugate to z, ;). O

COROLLARY 4.7. If k > a(r’), then either z, € Z(G), or else z, has the same
image as z,,, in G/Z(G).

Proof. With the notation of Lemma 4.6, u; and z,;, have the same image in
G/Z(G). 1t follows that the number of subsequences Upjs Uiy - U4 Of the type
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governing the choice of L, which occur in w is no less than the number of such
subsequences which occur in x up to and including z,’,’. By the choice of L, there
are no more such subsequences in x. O

For the final stage of the proof we fix s’ = o(r'). Recall that u,, ¢ Z(G) but
uy; € Z(G) for all j >r'. The paths in the Cayley graph of G which occurred with
label 7, in the proof of Lemma 4.6, connect the images in G of x;x,z{ and
X1 X429 *™ with those of w,u} and w,u}*" respectively. Because u, € Z(G) < C(u,)
for all j >r’, we have:

A(wyaly W) = Awyal, Wil v a5 0,)

— g(l, u:’,r "nvr,u:.',r-;fll e vr)

SJ(L Uplp g "0 U,.)

Sd(l, Ur'vr’+l o Ur) SB (44)
Here we have used the fact that d is invariant under left translation by G.

By Lemma 4.6, z, is conjugate to u,, and hence by Lemma 4.4(4), z, € C(u(r")).
It then follows from Corollary 4.7 that z is also in C(u(r’)) for k > s’. Thus

d(x, x4z, X) = d(x,x4z:,'f, x1x4Z?sys'Z?iJf1 V)

=d(1, 20 "y 2T )
= (lays’ t ys)
<d(l,yy - y,) <B. (4.3)

Finally, as there is a path in the Cayley graph of G from x,x,z’ to w,u; with label
a = (z,X427) "'w,u” (note that & = 7,) it follows that & conjugates z, to u,. Lemma
4.5 yields:

d(x,x,z4, wu) =d(1, @) < A.

Combining mequalmes (4.4), (4.5) and (4.6) with the triangle inequality for d we
see that 0 = d(w, ¥) < A + 2B, which contradicts our choice of Q. Thus we have
successfully argued ad absurdum, and we conclude that if G satisfies the hypotheses
of Theorem 4.1 then it must be virtually abelian. U
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