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Rationality of the moduli variety of curves of genus 3

P. KATSYLO

Abstract. We prove that the moduli variety of curves of genus 3 is rational.

§0. Introduction

Let g >2 be a natural number. Consider the moduli variety M, of curves of
genus g. Recall that M, is an irreducible quasiprojective variety of dimension
dim M, =3g—3 [5, 11]. For g > 23 the variety M, is not unirational [6]. If g < 13
then M, is unirational [1, 3, 13] and for g =2, 4, 5, 6 it is known that M, is rational
[4, 9, 14, 15]. The aim of this paper is to prove the following result.

MAIN THEOREM. The moduli variety M, is rational.

The group SL; acts canonically on the space S*C** of ternary forms of degree
4. It is known [12] that

C(M,) ~ C(P(S*C*))Ls. (0.1)

As usual, C(X) denotes the field of rational functions on the variety X.

For n > 0 denote by V(n) the space of forms of degree » in the variables z,, z,.
The group SL, acts canonically on V(n) and PSL, on V(2d). For A=
(g, /2, /45 #6) € C* considers the homogeneous PSL,-morphism of degree 2

0,: V)@ V()@ V(4) - V(4),
Js Hho+far 26¥e(fss f5) + 24a0a(fs, fo) + A2 (fas fa) + 240f4 fo-
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508 P. KATSYLO

Here y; denotes ith transvectant. Recall that y; is the bilinear SL,-mapping

Y. V(d) x V(dy) - V(d, + d, — 2i),

'ﬁi(hhhz):(dl_i)(dz_i) Y (*1)[(]:) ki 0'h,

d!'d)! o< i) 0z 0z 0z 0z

where i <min{d,, d,}. Consider 6;!(0) for i,#0. It is obvious that the element
1€ V(0) = C belongs to ¢;'(0) and that the tangent space to J;'(0) at the point 1
coincides with V' (8) @ V(0). It follows that 1 is a regular point of the subvariety
071(0). Therefore, a unique 10-dimensional irreducible component U, of the
subvariety 6;'(0) contains 1. It is shown in [10] that we have the following
isomorphism of fields

C(P(S*C*) 8 2 C(U_ g b s —18) T2 0.2)
THEOREM 0.1. For all ie(C\0)* the field C(U, PS> * ©* ~ C(P U, )P\= is ratio-
nal.

(For a closed homogeneous subvariety U of a vector space V' we denote by PU
the corresponding closed subvariety of the projective space PV.)

Clearly, our Main Theorem is a consequence of (0.1), (0.2) and Theorem 0.1.
We will prove Theorem 0.1 in 1-6.

This paper is organized as follows. In §1 we reduce Theorem 0.1 to the special
case where A= (1, 6¢,1,6), £#0. Then we fix a basis e,, ..., e, ay, a;,...,as of
the space V(8)® V(0)® V(4) and describe the mapping J; explicitly in terms of
coordinates. In §2 we recall some facts about (G, G')-sections. In §3 we construct a
(PSL,, N(H))-section PX? of the variety PU, where H is a finite subgroup defined
in §2, and obtain isomorphisms

C(PU,)™t2 = C(PXM™ =~ C(PX, )™

where X, = —)}"7 In §4 we construct a 6-dimensional variety Y, and a regular action
of N(H) on Y, such that

C(PX, )N(H) g C( Y/: )N(I{)

where the subgroup H < N(H) acts trivially on Y. In §§5 and 6 we construct a
birational N(H)-isomorphism of Y; with R x N, where R is a 3-dimensional linear
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space, /N is isomorphic to P?, and the action of N(H) on R x N is the direct product
of a linear representation on R and a projective representation on N. Thus

C(Y, )N ~ C(R x N)NH,
This finishes the proof since the field C(R x N)¥ is rational by the ‘“Noname
Lemma” and Castlenuovo’s Theorem (see [2], [7]).
§1. Reduction to a special case

We first note that it is sufficient to prove Theorem 0.1 for 4 = (1, 6¢, 1, 6) where
¢ # 0. Indeed, suppose that 6ug = Ag, tapis = As, 6613 = Ay, pops = Ay. Then

PU i girigie = PUnserey: o +Ja+ 1) > pofo + tafa + psfs (1.1)
is a PSL,-isomorphism and so
c(P U(/to.,iz,z‘,,,z(s))PSLz > C(PU 601672

Thus it remains to prove Theorem 0.1 for A= (1, 6¢, 1, 6) where ¢# 0.
For further use we want to explicitly calculate the map J, for 4= (1, 6¢, 1, 6).
Fix the following basis in the space V(8)® V(0)® V(4):

e, = 28(z%z% — z%29), e, =56(z]z, + 2323 — 2325 — 2,2)),
ey =56(z]z, — z3z3 — z3z5 + z,z}), e, =125%—1z8,

es=8(z]zy — 7z7z3 + 72325 — z,23), ee =8(z]z, + 7z7z3 + 72325 + z,23),
e, =28+ 28, es = 28(z7z3 + z1z9),

eq = 70z1z3, ap=1,

a, =z{+z3, a, = 62323,

ay=z{— 13 ay=4(ziz, — 2,23),

as=4(ziz, + z,23).
Let (x,s)=(xy,..., Xy, S, 51, - . ., 85) be the corresponding coordinates. We find

9, (x, 8) = Q,(x, 5)(z1 + 23) + Os(x, 5)62323 + Qs(x, s)(z7 — z3)
+ Q4(x, $)4ziz, — 2,23) + Qs(x, $)4(z3z, + 2,23)
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where

Ql(x, S)=

QZ(xs S) =

Qs(x, 5) =

Q4(x’ §)=

QS(x5 S) =

and

P. KATSYLO

qi(x) + 2x48, + 12x55, + 2x55, + &(125,5,) + 25,5,
+ 48x,85, — 48x5385 — 2x,5; + 16x5s,

— 16x¢55 + e(— 1253 — 1252),

g>(x) + dxgs, + 12x45, + £(257 — 653) + 25,5,
— 4,55 + 16X,5, + 163555 — 1655,

— 16x455 + &(— 253 — 452 + 452),

q3(x) + 2x,8, + 12x,5, + 64x,55 + 64x55,

— 2X783 + 2x983 + &(125,5; — 245,55) + 25,53,
qa(x) + 4xss;, + 12x,8, — 12x55, + 12x,5,

— 8x,85 — 16x35; + 8x35, — 8xy5,

+ &(— 65,5, — 65,5, + 65355) + 25054,

qs(x) + 4dxes, + 12x38, + 12x45, — 1253,

+ 8x, 54 — 16x,5; — 8xg855 — 8x4585

+ &(65,55 — 65,55 — 6538,) + 25055,

gy(x) = —192x2 — 192x,x, + 384x2 — 192x2 — 192x, x5 + 384x2

— 12x, x4 + 12x,x5 + 180x5x5,

g,(x) = 64x2 — 192x3x5 — 128x3 — 64x2 + 192x, x5+ 128x3

—2x2 4+ 16x3 4+ 2x2 — 16x2 — 50x32,

gs(x) = 96x5x5 — 672x3x5 — 672x,%5 + 1248x,x;

12x, x5 + 12x,x5 + 180x, x4,

qs(x) = 6x4x¢ + 42x3x, + 84x, x4 + 156x, x;

- 6x5x7 - 42x2x7 cn 24x5.x8 - 264x2x8 -+ 30x5.XQ - 30x2x9,

gs(x) = —6x4x5 — 42x,%, + 84x,x5 + 156x, x,

+ 6x¢Xx; + 42X3x5 + 24x6x5 — 264x3x5 — 20x6X9 + 30x3X,.

(1.2)
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§2. (G, G')-sections

In this part we recall some facts about (G, G')-sections. Let G be a linear
algebraic group, X an irreducible quasiprojective variety with a regular action of G,
and let G’ = G a subgroup of G.

DEFINITION 2.1. An irreducible subvariety X' = X is called (G, G’)-section of
X iff

1) G- X=X,

2 G- X=X,

B3) (G- x)nX'=G"-x"for all x'e X,
If X" is (G, G')-section of X then the map f+ f], clearly induces an isomorphism
C(X)¢ S C(Xx)°.

Let X’ be (G, G')-section of X, Y an irreducible quasiprojective variety, with a
regular action of G, F: Y— X a dominant G-morphism, and Y’ < Y an irreducible
component of F~'(X’). Then one easily proves the following result.

PROPOSITION 2.2. Suppose that G' - Y' =Y’ and F(Y’) is dense in X'. Then Y’
is (G, G")-section of Y.

EXAMPLE 2.3. Let G be a reductive linear algebraic group, G:X a linear
representation, and let H < G be the stationary subgroup of general position of the
representation G:X. There exists an open nonempty G-invariant subset X° such
that G, is conjugate to H for all xe X°. Moreover,

XN = XN X'={xe X" |G.,=H}
is (G, N(H))-section of X where N(H) is the normalizer of the subgroup H in G.

EXAMPLE 2.4. Consider the linear representation of PSL, on V(4). It is
known that the stationary subgroup of general position of this representation is
H={e, w, p, wp} where

It can easily be checked that N(H) = {z, ¢) where

r=(0ul 0), a=——1——(93 67), 0 = exp(2mi/8).

0 0 \/505()5




512 P. KATSYLO
We have N(H) ~ S, and N(H)/H ~ S;. It follows from Example 2.3 that
(V@) = {fe V(4" |(PSL,),= H}

is a (PSL,, N(H))-section of V(4).

§3. A special section

In this part we construct a (PSL,, N(H))-section PX? of the variety PU; (see the
definition of N(H) in §2).

For convenience we first write down explicitly the actions of H and N(H) on the
space V(8)® V(0)® V(4):

w - (x, S) - ("‘xl, .xZ, —X3, "‘X4, x5, ~-‘x6, X7, xg, X9, So, Sl’ S2, "-S3, 34, "TSS),

p - (x,8)=(x), —X3, —X3, X4, — X5, — X, X7, Xg5 X9, S0, 515 $25 53, — 54, —$5),

[ (-xa S) = (__xla __ix3a ~"‘i-x29 X4 —ix6a _i-x5a X7, —Xgs X9, So» — 1, 52,

—S3s iS5, iS4), (31)

i . [ .
o (x,8)=|4x;, ~2 Xy, ix5, —8x, —3 X4, —IXs,

1 7 35 1 1 5 1 1 3
§x7+§x3+—§—x9, -—§x7—§x8+§x9,§x7—§x8+§x9,

1 1 1 ]
Sos ———s,—gs,—s,———s2,2s5,—l-s,—is4 .
270 2727 2 27

From this we get
(V)@ V(0)® V(4)" = (e, ey, €9, ay, ay, 4y )
and
(V(8)@ V(0)® V(4" = (5e, + e, ay ).
The decomposition of the N(H)-module V(8)® V(0)® V(4) is as follows:

V)@ V(0)® V(4) = (e, ey, €3> D ey, €5, €5) D<eg, Te; — €
@D (Se; +ey) ®<ay) ®<ay, ay) DLas, ay, as).



Rationality of the moduli variety of curves of genus 3 513

Let p: V(8)® V(0)® V(4)— V(4) be the projection f; + fy + f, +— f4. First we con-
struct a (PSL,, N(H))-section X9 of the variety U; by applying Proposition 2.2 to
the PSL,-morphism p|,, and a (PSL,, N(H))-section (V(4)#)° of V(4) (see Example
2.4).

LEMMA 3.1. 5e;,+ ey U..

Proof. Consider the plane <ay, 5¢;+eg> < V(8) @ V(0)® V(4). We have N(H).
0,(x,8)=0,(N(H) " (x,5))=9;(x,s) for all (x, s) e <ay, Se; + ey (see (3.1)). There-
fore, J;({ay, S5e;+e,)) = V(AN = {0} and <a,, Se,+ e, = 671(0). Note also
that a,€ U; and that q, is a regular point of 43 '(0). It follows that {a,, 5¢, +e;) <
U, and hence Se; +ey€ U,. O

Consider X, = p“(V(~4)”)r\5;‘(0). From §1 and (3.1) above we obtain the
following equations for X, = V(8)® V(0) @ V(4):

S3 =84 =85 = O,
q1(x) + 2x58, + 12xg5, + 2x95, + &(125,5,) + 25,5, =0,

g>(x) + dxgs; + 12x95, + £(253 — 652) + 2505, = 0,

g3(x) + 2x45, + 12x,5, =0, (3.2)

qa(x) + 4xss, + 12x,8, — 12x55, + 12x,5, =0,
qs(X) '+" 4x6S1 + IZX3S1 + 12x652 - 12.X3S2 - O.

LEMMA 3.2

(1) S5e;+ ey is a regular point of the subvariety X,, dim T5e7+e9(/‘7,{) =T7. _

(2) Exactly one irreducible component, denoted by X,, of the subvariety X,
contains Se, + ey and dim X; =17.

3) NH) X, =X,.

Proof. The proof of (1) is by direct calculations and statement (2) is a

consequence of (1).

For (3) we remark that N(H) - X = X . (see above), that N(H) - (5e; +¢ey) =
Se, + ey, and that 5e, + e, is a regular point of the subvariety X,. Hence we see that
NH) X,=X,. O

It follows from Lemma 3.2 that X, is an irreducible component of the
subvariety p~ ' (V(4)")nU,. We set

X3 ={(x, 5)e X; | p(x, 5) e (V(@™)’} = X;np~ (VD))
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Since N(H) - X;=X;, N(H) - (V(®")° = (V(4)*")°, we see that N(H) - X9= X9 It
follows from Lemma 3.2 that X9 is a nonempty open subset of X; and that p(X9)
is dense in (V(4)")°. This and Proposition 2.2 imply that XY is a (PSL,, N(H))-sec-
tion of U,.

Now, consider the subsets PX?< PX,cPU,. It follows from the previous
paragraph that PX9 is a (PSL,, N(H))-section of PU;. Hence

C(PU,)PSt2 > C(PXDND ~ C(P X, )N,

Our goal now is to prove the rationality of C(PX,;)"*’. Note that PX, is uniquely
defined by the following conditions (see Lemma 3.2):

(1) Se;+e,ePX,,

(2) PX; is an irreducilZle component of PX,,

(3) The subvariety PX, c P(V(8) @ V(0)® V(4)) is defined by the equations
(3.2).

§4. Some special representations

In this part we define a linear representation of N(H) on R, a projective
representation of N(H) on P%, and a 6-dimensional irreducible N(H)-invariant
closed subvariety Y, = R x P® such that C(PX,)V ~C(Y,)M* where H acts
trivially on Y.

Define a linear representation of N(H) on R= C? in the following way:

T'(rlar25r3)=(—_r],r37r2)7 0..(rlar2’r3)=(—2r3srl/2> _rz)-

projective representation of N(H) on P? in the following way:

T y=01:=ys: =Y2:y7i —Ve VoY1t~V iVi2)s
_ 1 1 7 35 1 1 5 1
o y=\1g¥ Tl —yagmtayst e gy ystgye gy

1 3 1 3 1 1
“5)’8+§)’93YI05 ""2')’11 “5)’1255)’11 —5}’12 .



Rationality of the moduli variety of curves of genus 3 515

Clearly, the subgroup H < N(H) acts trivially on R x P?. Define the open N(H)-in-
variant subset P¥ = {je P®|y,y,y; #0} and set

M ={(x,5)e V®)® V(0)® V(4) | 53=54=155=0, x, 3,5 # 0}.

We see that N(H) - M'=M’, and that M= M’ is a linear subspace of
V(8) @ V(0) ® V(4). Define the morphism n: PM’ - R x P¥ by

X4 Xs Xg\ [XoX3 X3X; X1X3
x, )= —,—,—|, : : 1 X7 Xg i Xgi 8ol 818, |
Xy Xy X3 X1 X2 X3

It can easily be checked that = is an N(H)-morphism and that the fibers of = are
H-orbits. Note that PX; =« PX;, =« PM. Put

X, =X,nM', X,=X,nM'.

LEMMA 4.1. X, # . More precisely,

x%=13i(5¢; + ey) + 5(4e, — ie, + e3) e X,

Proof. Consider the subgroup (¢ = {0, 02, 6> =1} =« N(H). We have

V(8)<6> = <5€7 + €9, 864 — ieS — €¢, 4e] — iez ~} 33>,

V(4)<a> = <2(?-"11 - Zg) + 4(2?22 + 2123) + 41‘(2%32 - 212%»-
It follows from above that

0. (0, (5e, + eg) + a,(8e, — ies — eg) + a3(de; — ie, + €3))

= q(ay, aa, 23 )2z — 23) + Mzizy + 2,23) + 4i(z7z, — 2,23)). 4.1)
Direct calculations give us
q(ay, %y, a3) = 48(50, 005 + i3 — 13ia3). 4.2)

From (4.1) and (4.2) it follows that x°, 5e, + e, € V(8)¢”> n X, and that V(8)<”> n X,
is irreducible. On the other hand S5e, + e, is a regular point of X, (Lemma 3.2).
Hence V(8)<”> N X, < X, and so x%°e X. O
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From Lemma 4.1 it follows that X, is an open nonempty N(H)-invariant subset
of X;. Thus we get an isomorphism

C(PX,)V ~ C(PX, )N, (4.3)

Notice that PX’, is an irreducible component of PX " and that x%ePX e
We have an isomorphism

C(PX' )M ~ C(rn(PX))ND, 4.4)
Notice that n(PX",) is an irreducible component of n(Pf %), and

7(x% = ((0, 0, 0), (—5/4:20: —20:65:0:13:0:0:0)) e 7(PX},).

It is not hard to obtain from (3.2) that the equations of the subvariety n([P’X’ R
R x P?¥ are given by

0=(—192r% —192r; + 384)y,y, + (— 192r3 — 192r, + 384)y, y;
+ (= 12r)y,p3 + 12y,y5 + 180y5y9 + 2y,y11 + 12y5¥15
+ 2poy11 + e(12y1112) + 10915

0 = (64r2 — 192r, — 128)y,y, + (—64r2 + 192r, + 128)p,
+(=2r2 +16)y,y; + 2y2 — 16y2 — 50y2 + 4ys 11 + 1299715
+ &2y, = 6y72) + 2p10)125

0 = (96r,r; — 672r, — 6721, + 1248)y, 45)
— 12y, + (12r))ys + 180ys + 21, y;, + 12,5,

0 = (6r,ry+42r, + 84r; + 156)y, + (—6r, — 42)y, + (24r, — 264)y5
+ (30r, — 30)ys + (4r, + 12)y,, + (= 12r, + 12)y,5,

0= (—6r,r,—42r, + 84r, + 156)y, + (6r, + 42)y, + (24r; — 264)y;
4+ (—30r; + 30)yo + (4r; + 12)y,, + (12r; — 12)y,,.

Denote by Y,{ < R x P?® the subvariety defined by the equations (4.5). The closure
Y; of n(PX ’) in R x P? is a union of some irreducible components of Y .- We see
that N(H) - Y,l == YA, N(H)-Y,=Y,, and Y, is an irreducible component of the
subvariety Y,. Thus
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C(r(PX, )N ~ C(Y, )N, (4.6)
From (4.3), (4.4), and (4.6) we obtain an isomorphism
C(PX, YN ~ C(Y, )N,

Our goal now is to prove the rationality of C(Y,). Note that the following
conditions hold for Y;:

(1) 7(xeY,,
(2) Y, is an irreducible component of Y,
(3) the equations of the subvariety Y, = R x P? are (4.5).

§5. Proof of rationality

In this section we prove the rationality of C(Y,)¥*, Define

n: )7',-_—+R, (r,y)rr,
B: Y, 5P (r,7)— 7

We have n(n(F)) =0. It follows from (4.5) that #(»~'(r)) is an intersection of 2
quadrices and 3 hyperplanes in P5.

LEMMA 5.1. #~Y0) is irreducible and 3-dimensional.

Proof. The variety f(n7'(0)) is the intersection of a 5-dimensional linear
subspace L, of P® and 2 quadrices. Consider the restriction of these 2 quadrices to

L,. One can calculate that
(1) some linear combination of these restrictions of the quadrices has maximal

rank,
(2) the rank of all nontrivial linear combinations of these restrictions of the

quadrices is >3.
From (1) it follows that 8(»~'(0)) has no irreducible component of degree 1. From
(2) it follows that dim(f(r~'(0)) = 3 and that f(n~'(0)) has no irreducible compo-
nent of degree 2. Therefore, 7 '(0) ~ f(n~'(0)) is irreducible and 3-dimensional.
Set

R’ ={re R |n~'(r) is irreducible and 3-dimensional}.
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From Lemma 5.1 it follows that R’ is an open nonempty N(H)-invariant subset of
R, that O e R’, and that #~'(R’) is an open nonempty N(H)-invariant subset of Y.
Hence
C(Y, )M = C(n~ (RN,
Let us prove now the rationality of C(y~'(R"))V. Consider the bundle
n],-1(R):n""(R)-> R
This bundle has the N(H)-section

r—(r,u'(r)), u'(r)y=0:0:0:0:0:0:1:0:0).

LEMMA 5.2. There exists an open nonempty N(H)-invariant subset R" = R such
that

(1) R">0,

(2) the bundle n|,-1gH: 17 '(R") > R" has the N(H)-section

rr,u"(r)=,ui(r): - :ug(r))

where u3(r) =ug(r)=uo(r)=0 for reR",
3) u'(0)=(—5/4:20: -20:65:0:13:0:0:0).

The proof will be given in §6.

By (4.5) and Lemma 5.2 it follows that

'), u"(r)> < By~ Y(r)) for re R’ nR".
Set

N={jeP¥ |y, =y, =ys=y,+Tys = y10="0},
N(r)=<u'(r),u"(r),(1:0:0:0:---),(0:1:0:0:--"),
0:0:1:0:---)> P8, reR'nR".

We have N(H)- N=N and g - N(r) = N(g ' r) for ge N(H).
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LEMMA 5.3. There exists an open N(H)-invariant subset R” < (R'nR") con-
taining 0 such that

(1) dim N(r) =4 and

2) Nr)nN=

for all re R".
Proof. From Lemma 5.2 we get dim N(0)=4 and N(0)AN =, and the
lemma follows. O
For re R" let
7, P > N

be the projection of P® to N from N(r).

LEMMA 5.4. There exists an open N(H)-invariant subset R"" = R" containing 0
such that y,(f(n"(r))) = N for re R".

Proof. It can easily be checked that y,(f(#~'(0))) = N. From this the lemma
follows. O

Clearly, we have an isomorphism
Cln~ 'RV = T~ (RN,

It remains to prove the rationality of C(y~'(R")M*. First recall the following
fact.

LEMMA 5.5. Let X < P" be an intersection of a S-dimensional linear subspace
and two quadrices, and let M,, M, = P" be linear subspaces. Suppose that X is
irreducible, dim X =3, M\\nM,= &, dim M, =n—4, dim M, =3, M, n X contains
a line, and p,(X) = M,, where p, is the projection of P" to M, from M,; then p,| is
a birational isomorphism of X and M,.

Proof. Let L = M, X be the line. For a point u€ M, in general position the
intersection of any of the quadrices and the plane {L, u) splits into two lines where
the line L is one of the component. Therefore, Xn<{L, u) is the union of L and
some point u’ where (p,|y) (1) = {u’}. It follows that p,|, is a birational isomor-
phism. O

From Lemmas 5.4 and 5.5 it follows that
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Velpo=10m: B~ () > N

is a birational isomorphism for all re R". Therefore,
r:n~'(R™)->R"xN,  (r,7)—(r0)

is a birational N(H)-isomorphism which defines an isomorphism of fields
Cln~ (R™)V™ = C(R" x NYN*.
The rationality of the field
C(R" x Ny ~ C(R x N)N®

is now a consequence of “Noname Lemma” and Castelnuovo’s Theorem [2], [7].

§6. Proof of Lemma 5.2

In this section we give a proof of Lemma 5.2.

Let X, = P(V(8) ® V(0) ® V(4)) be the projectivization of PSL, - (z}, z]z,, z8z3>
and let X, =« P(V(8) ® V(0) @D V'(4)) be the projectivization of PSL, - (Se; + e, ). It
is obvious that X, and X, are irreducible, dim X, = dim X, = 3, and that fe X, iff f
has a root of multiplicity >6 (as an element of F/(8)). It is also clear that
0,({z}, 2125, 2925)) = 0 and that the differential d(d;|,s)|.¢.2 is surjective. This

implies that X, is an irreducible component of P(5;'(0)n ¥ (8)). Note also that

deg X, =16

(see [16]).

Since J;(5e;+e) =0 and the differential d(d,|ys))|s.,+., iS surjective, we
see that X, is an irreducible component of P(J;'(0) ~ ¥ (8)). Since the stabilizer of
Se; + e, in PSL, coincides with N(H) and 5e, + e, has distinct roots, we have

8:7-6

= 14.
IN(H)|

deg X, =

From the considerations above we obtain the following result.
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LEMMA 6.1. P(6:'(0)n V() = X, U X,.
For re R define
L(r)={(x, 5) | 30y = Py Xy, Xy == Py, K == ¥y X3}
We shall describe L(r)n X, and L(r)n X,. Set

LO={(7,—S_)|x,=x2=x3=x4=x5=x6=0},

Ly(r)={(x,8) | x; #£0, Xy = 1, x,, X, = X3 = x5 = x4 = 0},
L,(r)= {(7,—_9—)|x27é0, Xs=T3Xp, X; = X3 = X4 = X¢g = 0},
L3(r)={m|x3;ﬁ0,x6=r3x3,xl=x2=x4=x5=0},

L(r)=A{(x,s) l XXy # 0, X5 = 13X, Xg = ryX3, X1 = Xq4= 0},

Ez(") = {(x, s) I X1%3 #0, X4 =7r,X;, Xg = 13X3, X, = X5 = 0},

ll;(r) = {(x, s) l X1 %, #0, X4 =11 X1, Xs =13X,, X3 = Xg =0},

L%r)= {(x,s) I X1 X3%3 7# 0, X4 =711X), X5 = IX5, X6 = '3 X3}.
The linear subspace L(r) is the disjoint union of the subsets L,, L°(r), L;(r), f,.(r),
i=1,2,3. For ge N(H), re R we have

g-Lr=LE-r), g-LA)=L%gr), g Ly=L,

g Lj(r) = LK(g)(j)(g ) r)a

where k: N(H)— S; is the homomorphism given by

1 2 3 1 2 3
"(”=(1 3 2)’ "(")z(z 3 1)‘

LEMMA 6.2. There exist an open nonempty N(H)-invariant subset R" < R
containing 0 such that L(r)nP(d7'(0)n V(8)) consists of 32 points of multiplicity 1
Sor all re R” which satisfy the following conditions:

(1) LrnX,=, 1<j<3,1<1<2;

(2) Lyn X, =, |Lyn X, =4;

3) ILi(rnX|=2,1<j<3,1<I<2;

4) |L°(r)n X,|= 12, |L%(r)n X,|=4.
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Proof. Set

R®={re R |96r,r;, — 672r, — 672r, + 1248 %0,
61,75 + 427, + 84r; + 156 # 0, — 67,1, — 42, + 84r, + 156 # 0}.

From (1.2) it follows that L,(r)nP(d;'(0)nV(8)) = & for reR% 1< <3. It is
sufficient to prove that

(@) |L%0)nP(57'(0)n V(8))| = 16,

(b) LyonX, =, |[LonX,| =4, |[Li(nX,|=2 (1<j<3,1<I<2) for reR.
Equation (a) can be proved by straightforward calculations.

Let us prove (b). Consider fe (L,(r)uLy,)nPV(8). If (a:b) is a root of f of
multiplicity m, then so is (a: —b). It follows that if (a:b) is a root of f of multiplicity
>6, then (a¢:b) = (1:0) or (a:b) = (0:1). Supposef_e L,; then neither (1:0) nor (0:1)
is a root of f of multiplicity >6. Therefore,

LOlezg. (6.1)
Suppose fe L,(r)nX,. If (1:0) is a root of f of multiplicity >6, then f=

—e,—rie,+re,+e. If (0:1) is a root of f of multiplicity >6, then f=
e, + rie, + rie; + eg. It follows that

IL.(r)nX,|=2. (6.2)

Direct calculations give us

LonP(3;'(0)nV(8)) = {Se; + e, 15¢, + Seg — e }. (6.3)
Taking into account (6.1) and (6.3) we obtain

Ly X,| = 4.
Direct calculations give us

L,(r)nP(5:'(0)n V(8))

={+(e, +r,e)+re, +ey, +(ae, +rae)+ (90 — 5r)e, — 5rie5 + 6ey}, (6.4)

where a? = 25(r? — 36). Using (6.2) and (6.4), we get
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ILi(r)n X,| = 2.

We have
g-Li(r)y=L,(c"r), o Ly(r)=Liy(o r), g Liy(ry=L,(c r).

For 2 <j<3,1</<2, we obtain
ILi(r)nX)|=|(e'" " Lr)n(c' 7 X)|=|Li(e" 7 r)nX|=2. d

COROLLARY. L%r)n X, is an H-orbit for re R".

Proof. 1t is clear that the stabilizer of any xe L%r) in the group H is trivial.
Therefore, any H-invariant finite subset of L°(r) of 4 points is an H-orbit. Hence,
L°%r)n X, is an H-orbit. O

Proof of Lemma 5.2. Set
(r, u"(r)) = (X5 LO(r)).

Statements (1) and (2) of Lemma 5.2 follow from Lemma 6.2 and its Corollary.

Let us prove statement (3) of Lemma 5.2. It can easily be checked that x° has
no root of multiplicity >6 (as an element of V(8)). From Lemma 6.1 it follows that
x%eX,. We get

u'(0) = u"(m(x%) = n(x°) = (—5/4:20: —20:65:0:13:0:0:0). O
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