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Une nouvelle propriété de stabilité du pléthysme

PiERRE-LOUIS MONTAGARD

Introduction

On peut définir briévement le pléthysme comme la composition de deux repré-
sentations irréductibles du groupe linéaire. Nous donnerons dans la section Rappels
une définition plus précise, mais nous pouvons déja donner quelques exemples.
Pour cela, fixons un espace vectoriel complexe de dimension finie V. Pour tout
entier n, la n-iéme puissance symétrique de V, noté S,V est une représentation
irréductible du groupe linéaire sur V:GI(V). De méme, pour tout entier k, inférieur
a la dimension de V, la k-iéme puissance extéricure de V, noté A%V est également
une représentation irréductible de G/(V). Des exemples typiques de pléthysme sont
obtenus, en appliquant deux fois les opérations puissance symétrique ou puissance
extérieure. Ainsi des espaces comme S,(A*V), AX(A°V), AX(S,V) ou S,(S,V) sont
des pléthysmes. Ces espaces sont des représentations de G/(V'), mais ne sont pas
irréductibles en général. La décomposition de ces représentations en somme de
représentations irréductibles est encore inconnue, sauf dans des cas trés particuliers.
Pourtant I'intérét de ces décompositions apparait trés clairement si on s’intéresse au
probléme suivant de la théorie classique des invariants: considérons l’algebre des
polynomes sur I’espace des p-formes homogénes sur V, il s’agit de trouver un
systéme générateur de la sous-algebre des polynomes invariants pour I’action du
groupe spécial linéaire.

En 1992, Michel Brion [2] a démontré certaines propriétés de croissance et de
stabilité du pléthysme, généralisant des résultats partiels de S. H. Weintraub [16], de
C. Carré et J. Y. Thibon [4]. Certaines de ces propriétés ont été également obtenues
de maniére indépendante par L. Manivel dans [13]. Ces propriétés ont des consé-
quences intéressantes sur le pléthysme et sur la décomposition du produit tensoriel
de deux représentations irréductibles du groupe des permutations; elles permettent
d’exprimer des conditions nécessaires pour qu’une composante simple apparaisse
dans un pléthysme.

Une des propriétés montrées par Brion peut s’énoncer ainsi (nous renvoyons le
lecteur a la section suivante pour les notations): pour tout couple (v, u) de poids
dominant d’un groupe algébrique réductif connexe G, pour toute partition = d’un
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476 PIERRE-LOUIS MONTAGARD

entier p quelconque, la multiplicité du G-module simple de poids dominant u + nv
dans le G-module S, ., V, est une fonction croissante de I’entier positif n, ou 7 + n
désigne la partition (n; + n, n,, 75, ... ). De plus cette fonction est constante dés
que n est plus grand qu’une fonction explicite de n et de pv — u. Enfin, la valeur
asymptotique peut s’exprimer en terme de multiplicité dans un L-module, ou L est
un groupe réductif de dimension inférieure 4 la dimension de G. Nous allons ici
étendre ces résultats en étudiant la multiplicité du G-module simple de poids
dominant u +ni dans S,.,,V, lorsque n croit vers l'infini, avec 4 un poids
dominant de G fixé et 0 une partition quelconque. Il apparait dans cette généralisa-
tion un phénomene nouveau: la multiplicité est toujours croissante mais ne se
stabilise pas toujours. Nous donnerons cependant un critére combinatoire de
stabilité.

Le principal résultat de ce travail est ’obtention, lorsque ce critére de stabilité
est vérifié, de conditions nécessaires pour qu’une représentation irréductible ap-
paraisse dans un pléthysme (voir le corollaire 3.2 et les propositions 4.1, 4.2 et 4.4).
Ces conditions nécessaires sont sous la forme d’inégalités linéaires dans les parts des
partitions définissant le pléthysme. De plus si I’égalité est vérifiée, nous donnons une
expression de la multiplicite.

L. Manivel, dans un travail parali¢le et indépendant voir [14] a montré des
résultats similaires. On indiquera tout le long de cette étude les interactions entre
ces deux approches.

Ce travail est la majeure partie d’une thése [15] dirigé par Michel Brion. Qu’il
soit ici remercié pour tous ses precieux conseils et encouragements.

Hanspeter Kraft a accepté de rapporter sur cette these; je le remercie pour son
intérét pour mes résultats et pour sa lecture attentive.

JFai fréquemment utilis¢é pour calculer des décompositions de pléthysme le
programme informatique Symmetrica. Je remercie A. Lascoux qui m’a transmis ce
programme ainsi que C. Carré qui a écrit la partie du programme permettant de
calculer des pléthysmes.

Notations

Le corps de base des variétés et des espaces vectoriels sera toujours C, le corps
des nombres complexes. Si V est un espace vectoriel nous noterons V'V son dual et
P(V) I'espace projectif associé. Si v € V, nous noterons v sa classe dans P(}'). Dans
un groupe algébrique réductif connexe G d’élément neutre e, nous noterons B un
sous-groupe de Borel et T un tore maximal de B. Nous noterons Z(7") le groupe des
caractéres de T et Ex(T) =R ®, E(T) ou R est le corps des nombres réels. Dans
Z(T) on a le semi-groupe des poids dominants de G. Pour un tel poids 4 nous
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noterons V; un G-module simple de plus grand poids 4 et v, € V; un vecteur de
poids A. Le sous-groupe d’isotropie de la droite /; = C - v, est alors un sous-groupe
parabolique P de G. Rappelons qu’il existe un unique sous-groupe parabolique P_
opposé a P et contenant 7. Alors L = P n P_ est un sous-groupe de Lévi de P et
P_. Enfin nous noterons P (resp. P*) le radical unipotent de P (resp. de P_), de
sorte que I'on a: P~ P*>a L et P_~P* > L. Si G = GI(V) nous choisirons pour
T le sous-groupe des matrices diagonales inversibles. Nous appellerons ¢; I’élément
de EZ(T) défini comme suit:

& T - C

diag(a,, a5, ..., a;) — a;.

Sauf mention expresse du contraire, nous choisirons pour sous-groupe de Borel
de GI(V) le groupe des matrices triangulaires supérieures. Le point final d’une
démonstration s’il ne coincide pas avec le début d’une nouvelle section, sera
noté: [.

Rappels

Nous allons ici rappeler quelques notions sur les représentations du groupe Z,
(les permutations d’un ensemble a r éléments) et du groupe linéaire GI(V).

DEFINITION 0.1. On appellera partition de r, une suite décroissante finie
d’entiers positifs: © = (n,, 7, ..., ®,...) telle que T, n; =r. On notera || =r le
poids de 7 et /() sa longueur c’est & dire le plus grand i tel que =; soit non nul.

REMARQUE 0.1. Par convention, nous identifierons deux partitions qui ne
différent que par un certain nombre de termes nuls et la plupart du temps nous
ignorerons ces termes nuls, ainsi on a: (4, 2,0,0) = (4, 2). Les partitions seront
également notées en regroupant les termes égaux. Ainsi la partition 7 =
(51152 - - - I%), avec [, > I, ; designera la partition:

TC=(l1,...,lj,\12,...,l%,...,lp,...,lp.

a, fois  a, fois a, fois

Si © est notée comme ci-dessus, nous appellerons les sauts de n, la suite des entiers:
G —=livh <i<p»> AVEC lp+1 =0.
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Ces partitions de r permettent de décrire toutes les représentations irréductibles
de Z,: on construit une correspondance bijective entre les partitions de r et les
classes d’isomorphisme des représentations irréductibles du groupe X, (Voir [7]
Chap. 4). Nous noterons [r] la représentation associée a la partition .

EXEMPLE 0.1. Si © est la partition formée d’une seule part égale a r, la
représentation associée est la représentation triviale. Si 7 est la partition formée de
r parts égales a un, c’est a dire © = (1”), la représentation associée est la représenta-
tion alternée.

Nous allons maintenant définir pour toute partition 7 un foncteur covariant sur
la catégorie des espaces vectoriels complexes: le foncteur de Schur.

DEFINITION 0.2. Soit ¥ un espace vectoriel, = une partition de r, nous
noterons V' ®” le produit tensoriel de r copies de V. Le groupe X, agit sur ¥'®" par
permutation des facteurs. Le foncteur de Schur est défini sur les objets par:
VeSS, V(e ®[n])>.

REMARQUE 0.2. La définition de ce foncteur sur les ficches se déduit directe-
ment de sa définition sur les objets. En effet, soit U et W, deux espaces vectoriels
et f une application linéaire de U dans W. On en déduit une application linéaire
X, -équivariante f®" de U®" dans W®” et donc une application linéaire de S, U dans
S, W. On veérifie facilement que toutes les propriétés d’un foncteur sont réalisées.

On déduit de cette remarque que le groupe GI(V) agit linéairement sur S, V. Le
théoréme suivant, dii 2 Schur, précise la nature du G-module S, V.

THEOREME 0.1. (i) L’espace vectoriel S,V est nul si, et seulement si, la
longueur de m est strictement supérieure a d =dim V.

(i) L’ensemble {n |l(n) <dim V} est en bijection avec les classes d’isomor-
phisme des représentations irréductibles, polynomiales, de dimension finie, de GI(V).

(iii) Le GI(V)-module simple S,V, s’il est non nul, est de poids dominant:

=" + Mr&+ " + Mye,.

Pour une preuve voir par exemple [7] chap. 6. Nous identifierons, grace au point
(iii), les poids dominants des représentations polynomiales de GI(V) avec les
partitions.

EXEMPLE 0.2. Reprenons les représentations explicitées précédemment, i.e. la
représentation triviale, notée [(r)] et la représentation alternée, notée [(17)]. Les
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foncteurs associés sont bien connus: S,V est isomorphe a la r-iéme puissance
symétrique de V, que nous noterons plus simplement S,V et S, est isomorphe a
/\'V la r-iéme puissance extérieure de V.

Le pléthysme est défini par la composition de deux foncteurs de Schur. Si # et
v sont deux partitions, alors S,(S, V) est un GI/(V)-module qui n’est pas irréductible
en général. Le probléme du pléthysme est donc de décomposer ce module. On peut
généraliser cette définition: soit G un groupe algébrique réductif connexe, soit ¥, un
G-module simple, on cherche a décomposer le G-module S, V,.

1. Reésultats préliminaires
1.1. Filtrations

Nous commencerons par énoncer le théoréme de Borel-Weil qui identifie les
représentations irréductibles de G et les espaces de sections globales de fibrés en
droites sur la variété des drapeaux de G.

THEOREME 1.1. Soit G un groupe algébrique réductif connexe. Pour tout
caractéere y de T, notons &L, (resp. L) le fibré en droites associé sur I’espace
homogéne G|B (resp. G|B_). Le G-module I'(G|B, ¥,) (resp. I'(G|B_, %)) est
isomorphe a V', si —y est dominant, (resp. a V, si x est dominant). Sinon les deux
fibrés considérés n’ont pas de section globale non nulle.

Pour une preuve voir par exemple [1] chap. 5 ou [7] chap 23.

PROPOSITION 1.1. Soit A, u deux poids dominants de G, soit P le sous-groupe
parabolique de G associé a A, P_ le sous-groupe opposé, soit L=PnP_, le
sous-groupe de Lévi commun a P et P_, soit X =PP_[P_ la cellule ouverte de
Pespace homogéne G|P_ et soit W, un L-module simple de poids dominant pu. On
considére W, comme un P-module par Paction triviale de P* sur W,. Soit 1, la
représentation de dimension un de P et de poids —nA, alors les P-modules
[y ® Vi, lorsque n décrit Pensemble des entiers naturels, forment une filtration
croissante du P-module C[X]® W,. Ce que nous noterons:

U 05i®@Vu,, ~CIX]I®W,.
n=0

Avant de démontrer cette proposition nous allons énoncer deux lemmes. Pré-
cisons que par la suite nous identifierons les fibrés sur une variété avec les faisceaux
localement libres sur cette méme variéteé.
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LEMME 1.1. Soit ¢ I’application naturelle de G|B_ dans G|P_, soit #, le fibré
homogeéne sur G|P_ défini par: M; =G *p_W,, on a les assertions suivantes:

(i) On a un isomorphisme de P-modules: I'(X, #;) ~C[X]®@ W,.

(i) On a un isomorphisme de fibrés sur G|P_: ¢4 (L) ~ M.

Preuve du lemme 1.1. La varieté X est P-isomorphe a la variét¢ PP_[P_= P/L.
Le fibre 4, restreint 4 X est donc isomorphe a P *, W,. Comme la représentation
W, de L s’étend a une représentation de P, on a un P-isomorphisme: P x, W, ~
P|L x W,, voir [11], ce qui implique le point (i).

Pour le point (ii), remarquons d’abord que I’application ¢ est lisse et propre,
donc ¢4 (&) est un G-fibré vectoriel. 11 suffit donc de montrer que les deux fibrés
o« (Z;) et A, ont méme fibre au point eP_. Par définition, on a D’égalité:
0« (L;)eP_)=T(p~'(eP_), £;). Dautre part ¢ '(eP_) est égale & P_/B_=
L/(LnB_) et donc:

£

ﬂftp_l(eP_) =L ¥LnB_ CI»"

On en déduit: @4 (&L, )(eP_) = I'(p~'(eP_), Z;)=I(L/(LNB_),L*;.5 C,)=
W,, ce qui conclut la preuve du lemme 1. OJ

Le théoréme de Borel-Weil implique que I'(G/P_, #;) ~ V,. Donc il existe une
section globale s € I'(G/P_, ¥;) semi-invariante par P et s est unique a un scalaire
prés. On note Z(s) = G/P_ le schéma des zéros de s.

LEMME 1.2. On a l’egalité: G|P_\Z(s) = X.

Preuve du lemme 1.2. Soit vY, eV un vecteur propre de P_ tel que:
(v, vY,;> #0. Celui-ci nous permet de définir un plongement fermé:

G/P_ - P(VY)
gP_ — gvY,.

Si x e P(VY)\Z(s), alors x =vY,; + w, pour un w € V. Décomposons w en vecteurs
propres du tore: w =X, ,w;_,, ou les o; sont des sommes non nulles de racines
simples. L’ensemble {o, |i € I} est dans un demi-espace ouvert de Zg(T), il existe
donc un sous-groupe a un parameétre: u: C* — T tel que pour tout x € P(V ) \Z(s),
on ait: lim,_, u(?) - x =9Y,. Donc G/P_\Z(s) contient une unique orbite fermeée de
. T: le point fixe eP_.

D’autre part X est égale a 'orbite de P passant par le point eP_. Comme
G|P_\Z(s) contient eP_ et est stable par P, on a: X <« G/P_\Z(s) comme ouvert.
Supposons que cette inclusion soit stricte, alors le fermé (G/P_\Z(s))\X contient
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une orbite fermée de 7" qui ne peut étre que le point eP_, mais celui-ci appartient
aX. O

Preuve de la proposition 1.1. D’aprés le théoréme de Borel-Weil et le point (ii)
du lemme 1.1, on a les G-isomorphismes suivants:

Virew 2T(G[B_, L0, ) ~T(GIP_, 9 (L34 ) ~T(GIP_, M, )

Rappelons que .#,,; . , est le faisceau des sections de G *»_ W,,; . ,. Puisque 4 est un
caractére de P_, on a un isomorphisme de P_-modules: W,; ., ~/,, ® W,. On en
déduit 'isomorphisme: 4, , , ~ %, ® # ;. D’apres [9], chap. 2, lemma 5.14, I’en-
semble I'(G/P_\Z(s), #,) est filtré par les espaces vectoriels: C-s"@I'(G/P_,
L @M ). De plus, cette filtration est compatible avec I'action de P. On a donc
les P-isomorphismes suivants:

[(G|P_\Z(s), M) ~ ntyo C s "®I(GIP_, %, ®@H)~ ng)o Iy ® Vg e

Pour finir, remarquons que I'(G/P_\Z(s), #;) = I'(X, # ) d’apres le lemme 1.2 et
que I'(X, A ;) ~C[X]® W, d’aprés le point (i) du lemme 1.1.

1.2. Sous-espaces stables par B, sous-groupes paraboliques associés

Soit p: G — G = GI(V,) une représentation irréductible de G de poids dominant
v et soit 0 une partition telle que /(6) < dim V,. A partir d’'un drapeau de V, stable
par B, nous allons construire des vecteurs de poids dominants dans S;V,. Nous
noterons 6 sous la forme 0 =I5 --I% avec I;>1,,,>0, b;=X]_,a, pour
1<j<k, by=0, b, ., =d=dim(V,). Soit # un drapeau de V, stable par B:

y:0=V0CVIC"'CVkCVk+]=Vv

tel que dim V; = b,. Remarquons qu’un tel drapeau existe toujours a cause du théo-
réme de Lie, mais qu’en général il n’est pas unique. Soit e, . . ., e, une base de V,,
formée de vecteurs propres du tore maximal 7 de G et telle que pour tout i les vec-
teurse,, .. ., e, forment une base de V;. Soit vz € S; _,,(A? V) ®S,,_1,(\? V) ®
- @8, (\* V,) le vecteur défini par:

ve=(ey A A ) T2@(ey A A €)@ - @ey A Ay )k

Remarquons que vg ne dépend que de & et non de la base (e;). Le drapeau & étant
stable par B, il en est de méme de la droite C - vz qui définit donc un certain poids
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dominant A de G. Choisissons pour sous-groupe de Borel BdeGle sous-groupe des
matrices triangulaires supérieures relativement a la base (e¢;), << 4. Alors B laisse
stable le drapeau & et la droite C - v,z est I'unique droite stable par B dans S, V,
On a donc construit un vecteur vs dans Sy V, de poids dominant 4 pour G et de
poids dominant 6 pour G.

REMARQUE 1.1. Les composantes du pléthysme S, V, obtenues de cette fagon
seront appelées des composantes principales, en suivant la terminologie introduite
par L. Manivel [14]. On ne peut pas obtenir de cette mani€re toutes les composantes
d’un pléthysme. Par exemple dans S, V,, la seule composante principale est celle de
poids dominant nv.

Soit P (resp. ﬁ) le sous- groupe parabolique de G (resp. de é) associé au poids
domlnant A de G (resp. 0 de G) Comme vg €SV, est a la fois vecteur propre pour
Bet B, le morphisme p envoie P dans P. Le groupe P agit dans la grosse cellule X
de G/P Comme p envoie P dans P, on a une action de P dans X. Nous allons
calculer I’algébre des invariants: C[X ]¥“. Nous noterons L un sous-groupe de Levi
de P et % l'algebre de Lie de P,

PROPOSITION 1.2. On a un L-isomorphisme: C[)? 17 ~ C[%|Lie P“].

Avant de démontrer cette proposition, nous allons énoncer deux lemmes préli-
minaires.

LEMME 1.3. Le morphisme p envoie injectivement P* dans P

Preuve du lemme 1.3. Pour montrer que p(P*) c P* il suffit de montrer que:
(dp).(Lie P*) < Lie P*= .

Soit W, le sous-espace de V, de base (e;),, _,<;<s- Nous identifierons chaque W,
avec le quotient V;_/V;. On a les L-isomorphismes suivants:

k

U ~ @k  hom(W}, W) = @ hom(W, 1, V,[(W;,1®- - @ Wi)).
i<i<j<k+ j=

D’autre part on a une application:

k
V:LieG-%= @ hom(W,,,V,[(W;,,® - - ®W,,,))

Jj=1
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ou les y; sont définis par:

‘/’j: I/Vj+1_" Vv/(I'Vj+1®' @ W)
w i (dp) . (Y)w.

Le noyau de ¥ est égal a:

ker ¥ = {Y e Lie G, (dp) (Y)W, =« W; D" - - @ Wy.,),
pour j=2,3,...,k+1}.

On en déduit que les ¢léments de ker ¥ laissent stable le drapeau:

Oc(V,[(W,® - @W, ) <=V, [(W:D - - ®W;, 1))
c (VW) e V.

On a donc I’égalité: ker ¥ = Lie P_. L’application induite par ¥ sur Lie G/Lie P_ =
Lie P* est injective et est égale a (dp. )i p«» donc p(P)* = P*. De plus Papplication
pip« €st injective, car son noyau est un sous-groupe fini, mais P* est un groupe
unipotent. a

Pour tout groupe algébrique G, nous noterons G* son radical unipotent.

LEMME 1.4. Soit Q un groupe algébrique affine et P un sous-groupe fermé de Q
tel que: P* < QY, il existe alors un isomorphisme: Lie Q*[Lie P* ~ Q"|P" équivariant
pour laction de tout sous-groupe de Lévi de P.

Preuve du lemme 1.4. Soit P = P*L, une décomposition de Lévi de P et
Q0 = 0“M une décomposition de Lévi de Q telle que L = M. On définit une suite
croissante de sous-groupes de Q* par: U; = P* et U; = Ngu(U;_;). Comme Q* est
un groupe unipotent, il existe un n tel que U, = Q% D’autre part chaque U, est
normalisé par L. Il existe donc des sous-espaces S; de Lie Q* stables pour I’action
adjointe de L et tels que:

Lie P“= S, et Lie U;= @ S,.
=1

J

On définit alors I’application:

@:8; x - xS, >0 P

(x29 sy xn) — exp(xn) T exp(xz)P“.

I1 est clair que ¢ est L-équivariante. Puisque S, x - - - x S, ~ Lie Q*“/Lie P¥, il suffit
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de montrer que ¢ est un isomorphisme. Mais comme Q%/P* est un espace affine, il
suffit de vérifier que ¢ est injective.

Soient (x5, ...,x,) et (¥y,,...,y,) dans S, x - - - x S, tels que ¢o(x,,...,x,) =
O(Y2s-.-,Y,), Le. exp(x,) - exp(x,)P*=-exp(y,) - exp(y,)P* Alors, comme
XyyeuusXy_y €t Yo, ...,¥,_; sont dans Lie U,_,, on a: exp(x,) =exp(y,)U,_,.

Comme U, _, est normal dans Q% on a le diagramme suivant:

Lie Q“ — Lie 0%/Lie U

exp l 1 exp
Qu —_— Qu/ Un-l
Ce diagramme étant commutatif, on a: exp(y,)U,_, =exp(y, + Lie U,_,), donc
x,€y,+Lie U,_,. Mais x, et y, sont dans S, et donc x, =y,. On termine la
preuve par récurrence descendante sur n. O

Preuve de la proposition 1.2. Le sous-groupe de Lévi L de P étant fixé, on peut
ChOlSlI‘ L tel que p(L) = L-1somorphlsme (et donc un L-isomorphisme): X~ P* ou
L agit dans P par conjugaison. Donc C[X]P“ est L- 1somorphe a C[P“]P Mais
d’apres le lemme 1.3, p envoie injectivement P* dans P“ on a donc un L-isomor-
phisme:

CLP™ = C[P¥/PY,

Enfin 13“/P“ est L-isomorphe a Lie P*/Lie P* d’apres le lemme 1.4. O

2. Une propriété de stabilité du pléthysme
2.1. L’énconcé du théoréme

Rappelons les notations de la section précédente. Nous avons appelé # un
drapeau de V, stable par B:

F.0=VycV,c---cV,cV, =V,

Ce drapeau induit un vecteur vz de poids dominant 6 pour G = GI(V), et de poids
. dominant 4 pour G. Nous avons pos¢ W, =V, / _y pour 1 <i<k+1, de sorte
que la grosse cellule # de I’espace homogéne G /P est isomorphe a:

U~ @  hom(W,, W)).

I<i<j<sk+1
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Nous noterons % _ la grosse cellule de ’espace homogene C?/l3 On a:

U_.~ @  hom(W, W)).
l<i<j<k+1
Soit r un entier supérieur ou égal a b,, nous subdiviserons I'intervalle des entiers
compris entre 1 et r par les intervalles J(i) =[b,_+1,...,b;] (1<i<k) et
Jk+1)=[b,+1,...,r]. Pour n =(n,, ..., n,) une partition, nous noterons 7
la partition formée des parts de n, d’indice appartenant a J(i). Si / est un entier
quelconque, nous noterons 7n_, la partition (m,,...,7w) et m,, la partition
(7415 Ty n, ... ). Par exemple, pour k =2, b, =2, b,=4etn=(6,5,3,3,2,1) on
a: Moo =1,0y =(6,3), 1,0 =(3,3), To0=m,3 =(2,1).

THEOREME 2.1. Soient u, v deux poids dominants de G, soit m une partition
telle que l(n) <dim V,. Soit 0 la partition et A le poids dominant défini comme
ci-dessus. On a les assertions suivantes:

(1) La multiplicité de V,  ,; dans S, ,,V, est une fonction croissante de n.

(i1) La limite quand n tend vers linfini de cette multiplicité est égale a la

multiplicité du L-module simple de poids u dans le module:

k+1
( X S, W,-)@S,(%_/Lie pv)
i=1

ou L est le sous-groupe de Lévi du groupe parabolique associé a A et ou S,
désigne ’algébre symétrique.

(ii1) Si toute fonction réguliere sur % _[Lie P* invariante par L est constante,
alors cette limite est finie.

(iv) Réciproquement s’il existe des fonctions réguliéres et non constantes sur
U _|Lie P“ invariantes par L alors, ou bien la multiplicité est toujours égale
a zéro, ou bien la limite est infinie.

(v) S’il existe une forme linéaire f sur Ex(T) strictement positive sur les poids de
U, alors cette multiplicité se stabilise deés que:

k
n > sup {(lq —-lq+])_1D;1(f(|TC|V —.u) - 'Z:l Di|n>bi|>_D0|n]}

1<g9g<k

oul ., =0, Dy=f(v) —sup{f(x) | x poids de W,} et ou les (D;), ;< sont
des constantes positives définies par:

D, = inf{f(3) | x poids de hom(W,, ,, W)}.
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Nous démontrerons ce théoréme dans la section suivante. Nous allons d’abord faire
quelques remarques. L’existence d’un forme lin€aire strictement positive peut
s’énoncer sous différentes formes. On a, en effet, la proposition suivante qui est bien
connue:

PROPOSITION 2.1. Soient T un tore et N T-module rationnnel de dimension
finie, les assertions suivantes sont équivalentes:

(1) 1l existe une forme linéaire f sur Ex(T) strictement positive sur les poids de
N.

(ii) Les poids de N sont dans un demi-espace ouvert de Egx(T).

(i11) Il n’existe pas de combinaison linéaire a coefficients strictement positifs entre
les poids de N.

(iv) L’algébre des fonctions réguliéres et T-invariantes sur N est réduite aux
constantes.

REMARQUE 2.1. Grace a cette proposition, on voit que la condition (v) du
théoréme 2.1 est une condition suffisante de stabilité de la multiplicit¢ énoncée au
point (i) du théoréme. En effect on a les implications suivantes:

Cl#]" =C = C[%/Lie P*]" =C = C[%/Lie P¥]*=C.

A priori cette condition n’est pas nécessaire, mais on peut remarquer que si A est
un poids dominant régulier alors:

C[%|Lie P“]" = C < C[%/Lie P*)* =C
puisque dans ce cas L =T.

REMARQUE 2.2. Bien que la condition du point (v) ne soit pas équivalente a
la condition de stabilité, dans les applications des sections suivantes, c’est celle-ci
que nous utiliserons car son expression combinatoire la rend plus maniable.

REMARQUE 2.3. 11 est facile de montrer que si k =1 et si W = W, est un
sous-espace stable par B de dimension au plus trois, alors les poids de % = hom(V,/
W, W) sont dans un demi-espace ouvert, donc la propriété de stabilité est vérifiée.
Pour ce résultat nous renvoyons le lecteur a [15]. Par contre, si W est de dimension
4, il n’y a pas toujours stabilité. Par exemple, soit G = S/(3, C), on considere la
représentation adjointe % qui se décompose: 4=7 @ @ ,.x %,. Soit He T et a,
P les deux racines simples de G. Alors le sous-espace: W =C - H®Y, @Y, DY, ;
est stable par B. Le poids dominant A associé au drapeau 0 c W < % est égal a
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2(a + B) qui est régulier, donc L = T et P*= B*. Alors les poids du 7-module:
(hom(W, ¥/ W))/Lie B*

ne sont pas dans un demi-espace ouvert puisque ce module est non nul en poids
zéro, ceci entraine la non stabilité puisque L = T (voir remarque 2.1).

2.2. Preuve du théoréme 2.1

2.2.1. Preuve des points (i), (ii) (iii) et (iv). Nous reprenons les notations des
sections précédentes. On veut appliquer la proposition 1.1 a G = GI(V,). Alors S, V,
et S,V, sont des G-modules simples de poids dominants n et 6. Le sous-groupe
parabolique P < G associé au poids 8 se décompose en:

k+1

L~J] GW,) et LieP=%= @  hom(W, W,).
i=1 1<i<j<k+1
Le L-module simple de poids 7 est isomorphe a: krl'S, i Wi D’apres la

proposition 1.1 on a un P-isomorphisme:

k+1

@: () (C 02" @5, ¥, ~CIXI® @ 5,,,, W,
Rappelons que X est la grosse cellule de é/ﬁ_, que vg est un vecteur de poids
dominant 6 pour G et de poids dominant A pour G et que P est le sous-groupe
parabolique de G qui fixe la droite C - vs. On a vu a la section 1.2 que I'image de
P par P'application p: G — G est incluse dans P, donc & est un P-morphisme. La
multiplicité de V, , ,; dans S, , 0V, est égale a la dimension du sous-espace vectoriel
de (C-v3)"® S, .oV, composé des vecteurs propres de B de poids u, sous-espace
note:

[(C-v3)"®S;sn VI
La construction par union croissante de P-modules, donc de B-modules, démontre

le point (1).
Pour le point (ii) remarquons que @ induit un isomorphisme:

_ k+1 (B)
o: 0 [(C'v})”®5n+ner]LB):[C[X]® ®1 Sn,(,.,Wi] :
n> i= M
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Nous allons maintenant calculer I'espace vectoriel de droite. Le sous-groupe de
Borel de G se décompose en B ~ P*> (BN L). Comme P* agit trivialement sur
XS, & Wi on a un isomorphisme:

k+1 (B) k+1 (BN L)
(e @ 5., =] anre @ s,,m[""

u

D’aprés la proposition 1.2, C[X]7* est L-isomorphe a C[#/Lie P“], donc isomorphe
par dualité a S, (% _/Lie P*), ce qui démontre le point (ii).

Pour les points (iii) et (iv), il suffit de remarquer que les composantes iso-
typiques de la L-algébre C[X]" sont des modules de type fini et sans torsion sur
’algebre des invariants de L, voir par exemple [10] Satz I1.3.2. Si cette algébre est
réduite aux constantes, les composantes isotypiques sont alors des espaces vectoriels
de dimension finie et toutes les multiplicités sont alors finies. Réciproquement, s’il
existe des invariants non constants, alors les multiplicités sont nulles ou infinies.

2.2.2. Preuve du point (v). Nous commencerons par énoncer un lemme montré
par M. Brion (voir [2]).

LEMME 2.1. Soit V, et V, deux G-modules simples de poids dominants 1 et u,
soit P le stabilisateur de la droite ;. Il existe un P-module Q et une suite exacte de
P-modules:

0-L®V,-»V,,,»0-0.

De plus tout poids de Q est inférieur ou égal a un poids de la forme: A + s,(u) — o
pour une racine simple a non orthogonale a A.

Preuve du point (v). Nous allons démontrer le point (v) uniquement dans le cas
ou 6 =(19. La preuve dans le cas général s’inspire de la méme idée mais elle
contient beaucoup plus de calculs. Nous renvoyons le lecteur a [15] pour une preuve
compléte.

Nous allons appliquer le lemme 2.1 a G = GI(V,) et aux représentations irré-
ductibles S, V, = A%V, et S, , (,o V,. Nous avons défini dans la section 1.2 un vecteur
vg € A°V, de poids dominant (1¢) pour G et de poids dominant 4 pour G. Soit P
(resp. P), le sous-groupe parabolique de G, (resp. de G) qui stabilise la droite
lg =C-vg. Daprés le lemme 2.1, on a une suite exacte de P-modules:

O_’l§®Sn+(na) v, ‘*Sn+((n+1)a) V,—Q—0.

Comme p(P) c P, la suite exacte ci-dessus est compatible avec l'action de P.
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Supposons maintenant que la multiplicité de V), (,41y; dans S, n41aV, soit
strictement supérieure a la multipliéité de V, ,; dans S, .o V,. Il existe alors un
vecteur w € Q de poids p + (n + 1)A. Rappelons que e, ..., e, est une base de V,
formée de vecteurs propres du tore maximal T de G. De plus le sous-groupe de
Borel B de G est le sous-groupe des matrices triangulaires supérieures inversibles
par rapport a la base (e;), <;<4- S1 on choisit comme tore maximal T de G les
matrices diagonales inversibles par rapport a cette base, alors 'image de T est dans
T et le vecteur w e QO est un vecteur propre pour T d’un certain poids x. En
identifiant Q & un sous-espace vectoriel de S, , (19 V5, ON peut écrire x = T¢_; x,¢;
ou les x; sont des entiers positifs ou nuls et les ¢; sont les poids de la représentation
standard de G = GI(V,). Comme w € Q, d’apres le lemme 2.1, y est inférieur ou égal
a un poids de la forme 0 +s,(r +nf) —a ou o est une racine simple non
orthogonale a 6. Comme 0 =(19) la seule racine non orthogonale a 6 est:
o, =&, —&,,,. Ce qui permet d’écrire:

0 + s, (n +nb) —a,
=(m+n+1,...,0,_+n+l, 7, ,n,+n+1,7,,,,...).
Rappelons que si I =(I},1,,...,I;)) et I'=(4,15,...,1I,;) sont deux poids de

GI(C?), alors I est supérieur ou égal & I' si et seulement si: |I| = |I'| et |I;| = |I;|
pour tout i tel que 1 <i <d. Le fait que y soit un poids de Q implique donc:

pour tout r <a: Y x;<|n., |+ + Dr (1)
j=1
Y X S| Meai|+ Ry + (@ =D +1) (2)
j=1

pour tout r >a: Y x;<|n. |+ (n+1)|0] (3)
j=1

x; = ||+ (n + 1)|0]. (4)

1

H‘M&

J

Rappelons que w est un vecteur propre de T de poids ¥ = X¢_, x,¢; Comme les
e; sont des vecteurs propres de T de poids inférieurs ou égaux a v, les ¢; sont de
poids v — g, ou les a; sont des sommes de racines simples de G. Le poids de w par
rapport & T peut donc s’écrire:

d
p+@m+ D= i x;(v—0;) =(r|+ @+ D0 - Y x0
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d’aprés ’équation (4). Comme 6 = (1“) ona:vgz=¢e; A" Ae, Lepoids de v, par
rapport & T est donc égal &: A =|0|v —Z?_, ;. On en déduit:

p+m+Di=p+@m+ 1)<l9|v =) O'j).
j=1
En comparant les deux expressions de u + (7 + 1)A on obtient I’égalite:
Inlv—u—Z(x —(n+ 1)o; + Z X,0;. (5
Jj=1 Jj=a+1

Nous allons maintenant exprimer I’existence d’une forme linéaire strictement
positive sur les poids de:  ~hom(V, /W, W). Pour cela nous poserons:

=min{f(0;) |1 <j <a},
M, =max{f(g;) |1 <j <a},

m, =min{f(0;) | a <j <d}.

On a évidemment M, >m,; et ’hypothése de positivité de f est équivalente a
I'inégalité: m, > M,. En ordonnant correctement les vecteurs de base du sous-espace
W, on peut supposer qu’il existe un entier ¢ compris entre 1 et a de sorte que:

xi—m+1)=>0 pour 1 <j<c

x;—m+1)<0 pour ¢ <j <a.

On peut donc minorer f(|z|v — w):

f(|rn|y —w = (ch: x; —c(n + l))ml + i x;—(a—oc)(n+ 1))M

ji=c+1

d
2 % )mz- (6)

j=a+1

D’autre part, on a I’égaliteé:

i xj——(a——c)(n+1)=|7r|+a(n+1)—i xj—.i x;—(@—c)n+1)
=|r|+c(n+1) — }: x-—ixj (D

Jj=a+1
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D’aprés 'inéquation (1) on a:
cn+1)— Y %2 —|ne|2 —|rca] =|rsa] —|n] (8)
et d’apres I'inéquation (3) on a:

d a
Y xj=|7t|+a(n+l)--zlxj
i<

j=a+1
>|r|+a(m+1) —|reg_ | —me—(@— D+ 1)
2|7t>a|_*_7l:a_’Tca+l-*—n-"1

>|n.,|+n+ 1 ©)

Finalement, en reprenant I’inégalité (6), et en tenant compte de (7), (8) et (9) on
obtient:

c

d
7l =0 = (ctn+ 1) = 5 3 )ty =)+ oty + (35 Jom— )

j=1 i=a+1
= ('n>a| — |7T|)(M1 —my) + InlMl +(l7t>a| +n + 1)(m, — M,)
> |n, . [(M,—my) + |7z|m1 + (|nsa| + 7 + D(my — M)
> |n|my + (|rs .|+ 1 + 1)(m, — M,).
La derniére inégalité est équivalente a:

n+1 S(f(lnh’ — W) — In>a|(m2 — M) — |775|m1)(m2—M1)‘]-

D’ou I'inégalité du point (v) du théoréme dans le cas ou k=1 et /;=1, en
remarquant que:

m, =min{f(y) | x poids de V,/W} —f(v)
M, =max{f(y) | x poids de W} —f(v)

d’ou m, — M, =min{f(x) | x poids de hom(V,/W, W)} = D,. De plus Dy=m, =
f(v) —max{f(x) | x poids de W}. O
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3. Application a S,(S, V)

Nous allons dans cette partie appliquer le théoréme 2.1 a la représentation S, V'
du groupe GI(V). Nous commencerons par classifier tous les sous-B-modules de
S,V, en reprenant des travaux de L. Manivel [14]. Ensuite nous montrerons
quelques propriétés de croissance et de stabilité. L’intérét de ces propriétés se situe
surtout dans leurs conséquences: le corollaire 3.1 qui est énoncé de maniére plus
générale dans l’article cité de L. Manivel et surtout le corollaire 3.2 qui explicite des
conditions nécessaires pour qu’une composante simple apparaisse dans le pléthysme
S.(S, V). Cest pourquoi nous laisserons de c6té certains calculs qui ne sont pas
nécessaires a ’obtention de ces corollaires.

3.1. Sous-espaces B-stables de S,V

Si o est une partition, nous noterons s, la longueur de la diagonale principale du
diagramme de Ferrers associ¢ a a, i.e. s, est I'unique entier positif tel que o, >s, et
o, +1 <S, + 1. Par exemple s, , =2. Nous dirons que o est une partition symeé-
trique si son diagramme de Ferrers est symétrique par rapport a la diagonale
principale, autrement dit si o, = card{s | a, > i}. Nous noterons Zar(d) I’ensemble
des partitions symétriques contenues dans le carré de coté d = dim V. Le point (i)
de la proposition suivante (dont nous laissons la preuve a titre d’exercice) décrit de
maniére trés précise les sous-B-modules de S, V.

PROPOSITION 3.1. (i) On a une bijection:

Par(d) - {W < S,V | W stable par B}

(i) La dimension de W* que nous noterons d() est égale a: d(a) = (|| + s,)/2.

(iii) Si on applique la construction de la section 1.2 au drapeau 0 c W* < S, V, on
obtient un poids dominant & de G (qui est égal au poids de la droite A*®W*) défini
par:

&=a,+1 sii<s,

= o, Sii>s,.

EXEMPLE 3.1. Soit @ =(4, 3,2, 1), alors W*< S,V a pour base les vecteurs:
e, e e, e e, e e, el e e etle poids dominant associé est égal 4 (5,4, 2, 1).
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REMARQUE 3.1. Comme I’a remarqué L. Manivel, [14] on obtient de cette
maniére toutes les composantes du pléthysme /A\*(S, V), voir [12], page 47, exercice
10.

3.2. Croissance et stabilité dans le cas symétrique

Nous allons appliquer le théoréme 2.1 a G =GI(V) et a4 la représentation
irréductible S, V. Nous allons commencer par le cas ou 6 =(1%). Dans la section
précédente on a vu que les sous-espaces stables par B de S, V sont en bijection avec
les partitions symétriques contenues dans le carré de coté d. Soit a une telle
partition, nous allons maintenant donner une description plus précise du sous-
espace W* Cette description nous permettra d’expliciter le sous-groupe parabolique
de G fixant la droite A@ W™,

Soit o une partition symétrique, il est facile de voir que a peut s’écrire:
a=fofex,---fr avec fi=Xi_,a; et f,=l0) <d=dimV. Soit 0=V,c
Vie---cV,cV,,,=Vledrapeau de V, stable par B, associé¢ aux sauts de «, i.e.
dim V; =f;. On posera f,,,=d =dim V. Pour tout entier i compris entre 1 et
p+1, posons: I(i)) ={neN|fi_,<n <f}.

Pour i compris entre 1 et p + 1, nous noterons W, = V;[/V,_, les quotients
successifs du drapeau ci-dessus. On a dim W; =a; pour 1 <i<p +1 en posant
a,,,=d—f,. Nous identifierons W, au sous-espace vectoriel de V' de base les
vecteurs (e;); . s;)- Pour décrire le sous-espace W* stable par B et associ¢ a a, nous
allons introduire la notation suivante:

Wi W,=W,@W; sii#]j
=S2W', Sll=J.

Alors on a:

wes @ W W, et SNWx D W W,
I</i<m I<lsm<p+1
I+m<p+1 l+m=>2p+2

Nous noterons % _ =hom(W?, S,V/W*) la grosse cellule associée au groupe
G = GI(S, V) et au poids dominant (14®). Rappelons que d(«) = (|| + 5,)/2. On a:
s, =f. ou c est égal 4 la partie entiére de (p + 1)/2. On en déduit: d(x) = (|| +1.)/
2. Le sous-espace W* induit un poids dominant & de GI/(¥'). On déduit de 3.1 que,
si p est impair: &=(f, + D - (fo+ D% - f», et si p est pair
E=(f, + D% (fog1+D*fee*t-- - f1*. Les sauts de & sont placés aux mémes
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endroits que les sauts de la partition «. On en déduit que le sous-groupe
parabolique associé a @ est donné par:

p+1
L~[] GI(W;,) et LieP‘~ @  hom(W, W,).
i=1

I1<i<j<p+1

En conservant ces notations nous pouvons maintenant énoncer la proposition
suivante:

PROPOSITION 3.2. Soit u et n deux partitions, o une partition symétrique, on
a les assertions suivantes:
(i) La multiplicité de S, . ,;V dans S, , ,a=,(S, V) est une fonction croissante de
n.
(ii) Cette multiplicité se stabilise dés que: n > Z2_ i 1| — |75 a0 |-
(i) La valeur asymptotique est égale & la multiplicité du TI2X! GI(W,)-module
simple Q?*+'S, W, dans:

190

S wW® S,

T <d(z)

a2 VW) ® S [(hom(W™, S, V[W*))[Lie P].

Preuve. 11 s’agit bien sur d’appliquer le théoréme 2.1. Vérifions que les poids de
U_ =hom(W*= S, V[/W*) sont dans un demi-espace ouvert. Pour cela définissons
une forme linéaire f par f(g;) =i — 1 si [ € I(i). Soit y un poids de W™, alors y peut
s’écrire: y = ¢, + ¢,. Rappelons que

we~ @ w,ow,,.

I<i<m
l+m<p+1

Donc si uel(l) et vel(m), on a: f(x) =f(e,+¢&)=I—1+m—-1<p—1. Si
X =¢&, + &, est un poids de S, V/W* alors comme '

SVIw~ @&  W,-W,
1<li<m<p+1
l+mzp+2

on a, en supposant que uel(l) et velim): f(x) =f(e, +¢&,)=l—1+m—1=>p.
Les poids de % _ sont donc dans un demi-espace ouvert. Nous allons maintenant
calculer la borne de stabilité¢ dans le cas ou k =q =1, b, =d(a). Pour cela, nous
utiliserons la forme linéaire —f qui est strictement positive sur les poids de #%.
On a:

Dy= —f(26,) — sup{—f(1) | x poids de W<} =0.
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On a également:
D, =inf{—f(y) | x poids de hom(S,V/W*, W%} = 1.
Pour finir remarquons que:

_f(2|7’5l81 — (81 + -+ pgq))

P
=l |+ 2w+ + (P = Dlp| = X ksl

i=1

Il nous reste a remarquer que le I?*! GI(W;)-module simple de poids dominant
u est isomorphe a: &) 2] S (W3)- O

Nous allons énoncer maintenant un corollaire direct de cette proposition.

COROLLAIRE 3.1. Soit « une partition symétrique, & le poids dominant associé,
alors pour tout n la multiplicité de S,;V dans S,ya»(S, V) est égale a un.

Preuve. C’est une conséquence directe de la proposition 3.2 pour u =n =0.
Dans ce cas la multiplicit¢ est constante et est égale a la multiplicit¢ du
12+ GI(W,)-module trivial dans I’espace:

S [hom(W*, S, V/W*)[Lie P*].

Mais les poids de hom(W* S, V/W*) sont dans un demi-espace ouvert, d’ou la
conclusion. O

Nous allons maintenant appliquer le théoréme 2.1 dans un cadre plus général.
D’aprés la section 3.1, un drapeau de S,V stable par B est donné par une suite de
partitions symétriques a!, a? ..., a” telle que a‘ca’*t!, c’est a4 dire telle que:
aj <ai*! pour tout j tel que 1 <j <d =dim V. Les calculs devenant trés difficiles
a mener dans le cas général, nous allons nous limiter & une famille particuliére de
drapeaux de S,V. Pour cela nous poserons pour tout i tel que 1 <i<p: a'=
(fifez, - fi)avec f,=Z%_,a et f,<d=dimV.

Nous définirons 1(i) et W, comme précédemment: I(i) = {neN|f,_, <n <f;} et
W, est égal au sous-espace vectoriel de V' de base (g;);. ;). Soit Z; le sous-espace
stable par B associé a a’. On a:

Z,= @ Ww-w,
1<li<m
l+m<i+1
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Soit & le drapeau de S,V induit par la suite des a”:
0=ZOCZICZZC...CZpCZp+l=S2V‘

Nous noterons U; =Z2,/Z,_,, pour i =1,2,...,p + 1, les quotients successifs du
drapeau &, on a alors:

U= @ WwW,-W, pourl<i<p et U, = @D W, W,
l<i<m I<l<m<p+1
I+m=i+1 l+m>p+2

Nous noterons g; o a; = dim W, W, de sorte que 'on a:

=4a;" a; S1i#]j

=a;(a;,+1)/2 sii=].
Nous poserons pour i=1,...,p:

C=d1mZ,= Z a,oam et Cp+1=dimS2V.
1<i<m
l+m<i+1

Enfin nous définirons les intervalles d’entiers: J(i) ={neN|c,_,<n <c¢}. Le
drapeau & induit un poids dominant @ de GI(S,V). On a:

e = (pdim U‘(p _ l)dim U, ., .. 1dim Up),

Soit P le sous-groupe parabolique de GI(S, V') associé au poids ©. La grosse cellule
A _ de GI(S,V)/P sera isomorphe a:

%.~ @ hom(U,U)).

1<i<j<p+1

Le drapeau & induit un poids dominant de GI(V), que nous noterons A =X &',
Nous n’allons pas calculer explicitement 4 mais nous contenter de remarquer que
les sauts de A sont placés aux mémes endroits que les sauts de la partition a”. On
en déduit que le sous-groupe parabolique associ¢ a 4 est le méme que celui associé
au poids «”, on a donc:

p+1
L~[] G(w,) et LieP*~ @  hom(W, W,).

i=1 I<i<j<p+1
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Si u est une partition quelconque, le L-module simple de poids u sera isomorphe a:
p +11 S W.
= Brgy "t . . . o, ,
Nous reprenons les notations introduites précédemment pour énoncer la propo-

sition suivante:

PROPOSITION 3.3. Soit u, n deux partitions, «', o2, . . ., «Pp partitions comme
ci-dessus et A =X &'. On a les assertions suivantes:
(i) La multiplicité de S, ,,V dans S, , ,6(S, V) est une fonction croissante de n.
(i1) Cette multiplicité se stabilise dés que: n > X?_, (|“>f.-| — |75,
(i) La valeur asymptotique est égale a la multiplicité du 112! GI(W;) module
simple @2X1S, W, dans:

KiG)

p+1
X S, U,-®S.[( @ hom(U, U,)) /Lie P“_].

i=1 1<i<j<p+1

Preuve. 11 reste a montrer que les poids de % _ sont dans un demi-espace ouvert
et a calculer la borne de stabilité. Soit f la forme linéaire définie par: f(g;) =i — 1
si [ e€I(i). Si ¢, + ¢, est un poids de:

u= & w-w,
I1<ism
I+m=i+1

avec 1<i<p, alors si uel(l) e velm), on a /[+m=i+1, donc
f(e, +¢,) =i—1. Si g, +¢, est un poids de

U= @ w-w,
l<si<sm<p+1
I+m>2p+2

alorssiuel(l) etvel(m),onal+m>p+2, donc f(e, +¢,) =p. Comme % _ est
isomorphe a @ , ;. j<p+1hom(U;, U;), f est strictement positive sur #_. Pour
calculer la borne de stabilité, nous utiliserons la forme linéaire —f strictement
positive sur %:

—f(zlnlsl — (& + a8y + 7 HgEg))

P
= lus, |+ 2ps, |+ -+ (p = Dlwy, , | = -21 [ A

Les hauteurs des sauts de 6 sont toutes égales & un ainsi que les constantes:

D; = inf{—f(y) | x poids de hom(U;,,, U;)} pouri=1,...,p.
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De plus: Dy = —f(2¢,) — sup{—f(x) | x poids de Z,} =0. D’aprés le point (v) du
théoréme 2.1, la multiplicité se stabilise dés que: n > X2_, (|u. .| —|=..,|). Ce qui
termine la preuve de la proposition 3.3. O

Nous allons maintenant énoncer un corollaire de cette proposition.

COROLLAIRE 3.2. Si le module simple S,V apparait dans S,(S,V) alors pour
tout p et pour toute suite d’entiers positifs a,,a,, ..., a,, I'inégalité suivante est
vérifiee:

p P
_2_:1 I”>a1+~--+ai|2 Z l7t>c,~l (%)

=

ou c; est defini par:

a= ) oca,
1<il<m
I+m<i+1
avec a;oa,, =aa,, sil#met a;°a,=a,(a,+ 1)/2.
De plus en cas d’égalité la multiplicité de S,V dans S,(S,V) est égale a la
multiplicité du TI2*]! GI(W,)-module simple ®P+1 S, W, dans:

(0]

p+1 )
® 5 (@ Wiow)

i=1 1<i<m
Il+m=i+1

ou (I(i)) et (J(i)) sont les intervalles d’entiers définis par:

IG) ={neN|aj+ - +a_,<n<a+ - +a;}
Ji)={n eN ey <n <c,

oua, ,=d—(a,+ - +a,) et oules W, sont des espaces vectoriels de dimension a;.

Preuve Si §, V apparait dans S,(S, V) alors d’apres la proposition précédente le
L GUW, )-module simple @ 2+!S, W, apparait dans:

FJ( )

p+1

® S U ® S [%_[Lie P“).

Soit f la forme linéaire définie précédemment, elle est constante et égale a i —1
sur les poids de W, Donc f est égale & ZfX)|u., ....,,| sur les poids de
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Xerls Sy, Wi- Sur les poids de U, (1<i<p), fest égale a i—1 et sur les
poids de U, ,,, f est supérieure ou égale a p. Comme f est strictement positive sur
les poids de 4_, f est supérieure ou égale a XZ_, ‘”>c,—| sur les poids de:
Q22! S,,, U:®S,[%_[Lie P]. Ceci montre I'inégalité (*).

En cas d’égalité la multiplicité de S,V dans S,(S, V) est égale a la multiplicité de
Qe+l S, W, dans:

M)

p+1

& S, Ui ®S[%_[Lie P“].

i=1

car la borne de stabilité du point (ii) de la proposition 2.1 est nulle. On conclut en
remarquant que le GI(V)-module:

p+1
®s%( &, W,-Wm)

i=1 1<i<m
l+m=i+1

est égal au sous-module de:

p+1

X S,,,U:®S[%_[Lie P“]
i=1
dont les poids appartiennent a ’hyperplan: = 2#_, [n>c,| N

EXEMPLE 3.2. Sip =1 on obtient I'inégalité: |y, ,| > |7, 4 1)2]- Remarquons
que Brion avait déja obtenu cette inégalité pour a =1, voir [2]. A l'aide de cette
inégalité on voit par exemple que Sy, V n’apparait pas dans Sy, (S,V). Si
Pégalité est vérifiée i.e. |u,,|=|r,| alors Brion a montré que la multiplicité de S, V'
dans S,(S,V) est égale a un si u,, =n,, et & zeéro sinon.

Si p=2 on obtient Pinégalité: |u.a |+ |lsa, a0y = |Toai@ 42| +
|sa,@, + 1y2+a,a,l- ON en déduit par exemple que la composante Ss3,2 ¥ n’ap-
parait pas dans Ss,2,(S, V), en effet on a:

I(S, 22, 1)>1|+|(59 22, 1)>21=8 et |(15, 3, 12)>1|+[(159 3’ 12)>2'=7

Ce qui contredit I'inégalité ci-dessus avec a; = a, = 1. Remarquons cependant que
les partitions u=(15,3,1%) et u=(4,2% vérifient toutes les inéquations
|tsa| = |5 a4 1y2] POUT tout a.

EXEMPLE 3.3. Si u et n vérifient Péquation: |, | + |5 2| = |7>1] + |752], alors
la multiplicité de S, ¥ dans S,(S, V) est égale au coefficient de Littlewood-Richard-

son: C’" sl —lusalusat
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En effet d’aprés le corollaire cette multiplicité est égale a la multiplicité du
GI(W,) x GI(W>) x Gl(W;)-module simple S, W, ®S,,W,®S,_,W; dans

M= Snl(SZ W) ®Sn2(Wl ® W) ®Sn>2(Wl QW@ S, W>).

ou W, et W, sont deux espaces vectoriels de dimension un et W, un espace vectoriel
de dimension dim ¥ — 2. Par la formule de Littlewood-Richardson on sait que:

e, (W@ W3 @ S, W) =~ 6; Coi7Su(S: W) ® Sp(W, ® W),
la somme étant effectuée sur toutes les partitions o et f telles que |a| + |B| = |n..,].
De plus on peut supposer que o a une seule part, car sinon S,(S, W,) est nul. On
en deéduit que:

M= C5Su sy Wi @512 W28 5 Wi,

Si la multiplicité est non nulle, alors on a le systéme d’équations suivant:

B=n:

T, + 200 =,

2m + m + Bl =1
o+ |f|=m,,.

De la premiére et quatrieme équations, on obtient que S =u., et que
o =|m,,| — |#>2|. On vérifie facilement que dans ce cas, la deuxiéme et la troisiéme
équations sont toujours vraies, d’ou I’assertion.

4. Autres applications

Les calculs présentés dans la section précédentes s’effectuent de mani€re trés
similaire pour le pléthysme S,(A42V) ainsi que pour la décomposition en GI(E) x
GI(F)-modules simples de S,(E ® F) (décomposition équivalente a la décomposi-
tion du produit tensoriel de deux représentations irréductibles du groupe
symétrique). On a dans ces deux cas une description trés précise des sous-B-
modules ce qui permet d’obtenir des propriétés de stabilité similaires au cas traité
précédemment. A cause de cette similarité, nous ne donnerons ici que les résultats
que nous estimons é&tre les plus significatifs, c’est & dire des conditions nécessaires
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d’apparition d’une composante simple dans ces pléthysmes. Nous renvoyons le
lecteur a [15] pour une présentation plus détailée.

4.1. Le cas antisymétrique

PROPOSITION 4.1. Soit p un entier positif, soit a,, a,, . . ., a, une suite d’en-
tiers positifs telle que a, > 2, alors si le module simple S,V apparait dans S,(/\* V)
on a linégalité:

P D
Z l”’>a1+"'+ai|_ Z |n>0i|20

i=1 i=1
avec

ge= ¥ ana, e a Aa,=1,
l+m<i+1
I</i<m<i+1

sil#meta Aa =a(a—1)/2.

De plus, en cas d’egalité, la multiplicité de S,V dans S,(/\* V) est égale a la
multiplicité du TI?Z ]} GI(W,)-module simple Q) ?X! S, W, dans:

190}

p+1
®Sn,(,.)< @ W,AWm)

i=1 I+m<i+1
1<i<m<i+1

ou (I()) et (J(i)) sont les intervalles d’entiers définis par:

IG)={neN|a+ " +a_,<n<a;+ - +a;}

J@)={neN|c¢_,<n<c¢}

avec a,,,=dim N\>V—(a,+- - +a,), W, un espace vectoriel de dimension a,
W AW, =W,QW, sil#met W, A W,=A*W,.

EXEMPLE 4.1. Si p =1 on obtient P'inégalité: |u.,| > |7 aq- 12| pour a > 2.
Ceci permet de montrer, par exemple, que Sg;s P n’apparait pas dans
S (N2 V).

Sip =2, on obtient 'inégalité: [, , |+ [Ma, +ap) = |Ta, @, — 2] + ey @) - 12+ ayas )
Ceci permet de montrer, par exemple, que S(312951) V n’apparait pas dans le



502 PIERRE-LOUIS MONTAGARD
pléthysme S5z 403 (/\* V) car:

(13,12,9,5,1),,] +[(13,12,9, 5, 1),,| = 16
et |(5%,4,2),,]+|(5%,4,2).5|=17

ce qui contredit I'inéquation ci-dessus pour a, = a, = 2.

4.2. Application a S,(E®F)

En appliquant le théoréme 2.1 au pléthysme S,(E ® F), nous retrouvons des
inégalités explicitées par L. Manivel dans [14].

PROPOSITION 4.2. Si le module simple S,E ® SgF apparait dans S,(E® F)
alors pour tout entier p et pour toutes suites d’entiers a,,...,a, et by,...,b,
I’inégalité suivante est vérifiée:

P P
'Zl (I“>a1+- ~+a,»| + |ﬁ>b,+- . -+b,-|) = ‘Z,l I'Y>c,-|

ou c; est défini par:

¢ = Y Y ab,,.

1<im<p+1
l+m<i+1

De plus, en cas d’égalité, la multiplicité de S,E ® SyF dans S,(E @ F) est égale a
la multiplicité du TEZ! GI(W,) x GI(W;)-module simple @*?2!'S, W,®S;, . Wi
dans:

p
®SM,.,( @D W,®Wm)

i=1 l+m=i+1
ou (I(i)), (I'(i)) et (J(i)) sont les intervalles d’entiers suivants:
I(l)={j€N]a,+ : +a_,-_»1<j_<_a1+~ - % +ai}

I'iy={jeN|bj+ - +b_,<j<b+- - +b}

J@)={neN|¢_,<n<c}
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avec a,,=dimE—(a, + - +a,), b,,,=dimF—(b,+---+b,) et W, (resp.
W) des espaces vectoriels de dimension a; (resp. de dimension b,).

EXEMPLE 4.2. Pour p =1 on obtient I'inégalité: |t .|+ |B>s| > |y>as| pour
tous entiers positifs a et b. Si a =b =1 on retrouve I'inégalité exprimée dans [8]
(corollary 2.9.20). On voit aussi dans ce cas que si 1’égalité est vérifiee, alors la
multiplicité de S,E ® SyF dans S,(E® F) (qui est égale a la multiplicit¢ de [y]
dans [«] ®[B]) est égale a la multiplicit¢ du GI(W) x GI(W')-module simple
S, W®S; W dans S, (W@ W’) ou Wet W sont deux espaces vectoriels de
dimension assez grande. Cette multiplicité est égale au coefficient de Littlewood-
Richardson C77} ;.. Ce résultat est montré par J. Dvir dans [5] et M. Brion dans
[2]. L’inégalité pour a et b quelconques a été également montrée par J. Dvir dans
[6], mais sans expression de la multiplicité en cas d’égaliteé.

Si p =2 on obtient I'inégalité suivante:

|a>a1| + !Cx>a1+azl + ':B>b,' + |ﬂ>b1+b2| = |y>a1 ~b1| + I'V>a, -by+ay ‘b2+a2-b1l°

Cette inéquation permet de montrer, par exemple, que [(6, 5, 4°)] n’apparait pas
dans [(12, 6, 1)] ®[(12, 6, 1)]. En effet on a:

2((12: 65 1)>l + (129 65 1)>2) = 16 et (6, 59 42)>1 + (6’ 57 42)>3 = 17

ce qui contredit 'inégalité ci-dessus avec a, = a, = b, = b, = 1. D’autre part, on peut
veérifier que les partitions «, f, y satisfont a toutes les inéquations possibles avec
p=1

4.3. Le cas d’un pléthysme quelconque de GI(V)

Si nous considérons une représentation quelconque de G = GI(V), nous n’avons
plus de description aussi précise de ses sous-B-modules. Nous allons nous servir
d’une famille particuliére de sous-espaces B-stables de S, V. Pour toute partition v
et pour tout entier b, nous noterons b, = dim S, C°.

PROPOSITION 4.3. Soit W < V un sous-espace vectoriel de V de dimension b et
stable par B. Alors on a les assertions suivantes:

(i) Le sous-espace Z = S,W est inclus dans S,V et est stable par B.

(ii) Le poids « de la droite \> S, W est égal a: a = |v|b,/b(1%).

Ceci va nous permettre de retrouver un résultat démontré par L. Manivel dans
[14]:
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PROPOSITION 4.4. Soit p, v, n trois partitions telles que le GI(V))-module S,V
apparait dans le pléthysme S,.(S,V), alors pour tout entier b tel que I(v) <b < dim V,
on a:

s | 2= s, |

De plus, en cas d’égalité la multiplicité de S,V dans S,(S,V) est égale a la
multiplicité du GI(W,) x GI(W,)-module simple S,_, W, ®S,_, W, dans:

S,,S,,V(Sva)®S,,>bv(Wz® S C;,,SaWI)

ajof = v — 1

ou W, est un espace vectoriel de dimension b et W, un espace vectoriel de dimension
dim V — b.

EXEMPLE 4.3. Pour illustrer cette expression de la multiplicité, regardons de
plus prés le cas suivant: Soit u, 7, v telles que v =(n) et |u,,|=|r.,| ou k=
dim S, C?> =n + 1, alors une simple application de la proposition ci-dessus montre
que la multiplicitt de S,V dans S,(S,V) est égale a la multiplicitt du
GI(W,) x GI(W5)-module simple: S, ,,W;®S,_,W, dans:

Sz k(S W) ® S (W@ W>)

avec dim W;=2. Cette condition nous permet de décomposer le pléthysme
Sz _, (S, W) (voir [3] et ses réferences). Il reste donc & décomposer S, (W, ® W).
On voit ici apparaitre le probléme étudié a la section 4.2.
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