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Une nouvelle propriété de stabilité du pléthysme

Pierre-Louis Montagard

Introduction

On peut définir brièvement le pléthysme comme la composition de deux
représentations irréductibles du groupe linéaire. Nous donnerons dans la section Rappels

une définition plus précise, mais nous pouvons déjà donner quelques exemples.
Pour cela, fixons un espace vectoriel complexe de dimension finie F. Pour tout
entier n, la w-ième puissance symétrique de F, noté SnV est une représentation
irréductible du groupe linéaire sur V:Gl(V). De même, pour tout entier k, inférieur
à la dimension de F, la fc-ième puissance extérieure de F, noté AkV est également

une représentation irréductible de Gl(V). Des exemples typiques de pléthysme sont
obtenus, en appliquant deux fois les opérations puissance symétrique ou puissance
extérieure. Ainsi des espaces comme Sn(AkV), Ak(AsV), A\SnV) ou Sn(SpV) sont
des pléthysmes. Ces espaces sont des représentations de Gl(V), mais ne sont pas
irréductibles en général. La décomposition de ces représentations en somme de

représentations irréductibles est encore inconnue, sauf dans des cas très particuliers.
Pourtant l'intérêt de ces décompositions apparaît très clairement si on s'intéresse au

problème suivant de la théorie classique des invariants: considérons l'algèbre des

polynômes sur l'espace des p -formes homogènes sur F, il s'agit de trouver un
système générateur de la sous-algèbre des polynômes invariants pour l'action du

groupe spécial linéaire.
En 1992, Michel Brion [2] a démontré certaines propriétés de croissance et de

stabilité du pléthysme, généralisant des résultats partiels de S. H. Weintraub [16], de

C. Carré et J. Y. Thibon [4]. Certaines de ces propriétés ont été également obtenues
de manière indépendante par L. Manivel dans [13]. Ces propriétés ont des

conséquences intéressantes sur le pléthysme et sur la décomposition du produit tensoriel
de deux représentations irréductibles du groupe des permutations; elles permettent
d'exprimer des conditions nécessaires pour qu'une composante simple apparaisse
dans un pléthysme.

Une des propriétés montrées par Brion peut s'énoncer ainsi (nous renvoyons le

lecteur à la section suivante pour les notations): pour tout couple (v, pi) de poids
dominant d'un groupe algébrique réductif connexe G, pour toute partition n d'un
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476 PIERRE-LOUIS MONTAGARD

entier p quelconque, la multiplicité du G-module simple de poids dominant /i + nv
dans le G-module Sn + nVv est une fonction croissante de l'entier positif n, où n + n

désigne la partition (nl +n, n2, te3,.. De plus cette fonction est constante dès

que n est plus grand qu'une fonction explicite de n et de pv — \i. Enfin, la valeur
asymptotique peut s'exprimer en terme de multiplicité dans un L -module, où L est

un groupe réductif de dimension inférieure à la dimension de G. Nous allons ici
étendre ces résultats en étudiant la multiplicité du G-module simple de poids
dominant pi+nk dans Sn + n6Vv lorsque n croît vers l'infini, avec A un poids
dominant de G fixé et 6 une partition quelconque. Il apparaît dans cette généralisation

un phénomène nouveau: la multiplicité est toujours croissante mais ne se

stabilise pas toujours. Nous donnerons cependant un critère combinatoire de

stabilité.
Le principal résultat de ce travail est l'obtention, lorsque ce critère de stabilité

est vérifié, de conditions nécessaires pour qu'une représentation irréductible
apparaisse dans un pléthysme (voir le corollaire 3.2 et les propositions 4.1, 4.2 et 4.4).
Ces conditions nécessaires sont sous la forme d'inégalités linéaires dans les parts des

partitions définissant le pléthysme. De plus si l'égalité est vérifiée, nous donnons une
expression de la multiplicité.

L. Manivel, dans un travail parallèle et indépendant voir [14] a montré des

résultats similaires. On indiquera tout le long de cette étude les interactions entre
ces deux approches.

Ce travail est la majeure partie d'une thèse [15] dirigé par Michel Brion. Qu'il
soit ici remercié pour tous ses précieux conseils et encouragements.

Hanspeter Kraft a accepté de rapporter sur cette thèse; je le remercie pour son
intérêt pour mes résultats et pour sa lecture attentive.

J'ai fréquemment utilisé pour calculer des décompositions de pléthysme le

programme informatique Symmetrica. Je remercie A. Lascoux qui m'a transmis ce

programme ainsi que C. Carré qui a écrit la partie du programme permettant de

calculer des pléthysmes.

Notations

Le corps de base des variétés et des espaces vectoriels sera toujours C, le corps
des nombres complexes. Si F est un espace vectoriel nous noterons Fv son dual et

P(V) l'espace projectif associé. Si v e F, nous noterons v sa classe dans P(V). Dans

un groupe algébrique réductif connexe G d'élément neutre e, nous noterons B un
sous-groupe de Borel et Tnn tore maximal de B. Nous noterons S(T) le groupe des

caractères de T et SR(T) R ®z S(T) où R est le corps des nombres réels. Dans

S(T) on a le semi-groupe des poids dominants de G. Pour un tel poids X nous
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noterons Vx un G-module simple de plus grand poids X et vx e Vk un vecteur de

poids X. Le sous-groupe d'isotropie de la droite lk C • vk est alors un sous-groupe
parabolique P de G. Rappelons qu'il existe un unique sous-groupe parabolique P_

opposé à P et contenant T. Alors L P r\P_ est un sous-groupe de Lévi de P et

P_. Enfin nous noterons Pu (resp. Pu_) le radical unipotent de P (resp. de P_), de

sorte que l'on a: P ^ Pu x L et P_ ca Pu_ x L. Si G Gl(V) nous choisirons pour
T le sous-groupe des matrices diagonales inversibles. Nous appellerons e, l'élément
de S(T) défini comme suit:

£,: T -? C

diag(al5fl2,.. .,ad) h-»a,.

Sauf mention expresse du contraire, nous choisirons pour sous-groupe de Borel
de Gl(V) le groupe des matrices triangulaires supérieures. Le point final d'une
démonstration s'il ne coïncide pas avec le début d'une nouvelle section, sera

noté: D.

Rappels

Nous allons ici rappeler quelques notions sur les représentations du groupe Ir
(les permutations d'un ensemble à r éléments) et du groupe linéaire Gl(V).

DÉFINITION 0.1. On appellera partition de r, une suite décroissante finie
d'entiers positifs: n (nl, n29..., nn telle que Sf nt r. On notera |tt| r le

poids de n et l{n) sa longueur c'est à dire le plus grand / tel que nt soit non nul.

REMARQUE 0.1. Par convention, nous identifierons deux partitions qui ne

diffèrent que par un certain nombre de termes nuls et la plupart du temps nous

ignorerons ces termes nuls, ainsi on a: (4, 2, 0, 0) (4, 2). Les partitions seront

également notées en regroupant les termes égaux. Ainsi la partition n

(/f/22 • • • la/\ avec lt> ll+l désignera la partition:

n =(/,,..., L, /2,..., /2,...,/_,..., /

Si n est notée comme ci-dessus, nous appellerons les sauts de k, la suite des entiers:

tt-f, + i)i£«£/M avec/p+1=0.
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Ces partitions de r permettent de décrire toutes les représentations irréductibles
de Ir: on construit une correspondance bijective entre les partitions de r et les

classes d'isomorphisme des représentations irréductibles du groupe Ir (Voir [7]
Chap. 4). Nous noterons [n] la représentation associée à la partition n.

EXEMPLE 0.1. Si n est la partition formée d'une seule part égale à r, la
représentation associée est la représentation triviale. Si n est la partition formée de

r parts égales à un, c'est à dire n (lr), la représentation associée est la représentation

alternée.

Nous allons maintenant définir pour toute partition n un foncteur covariant sur
la catégorie des espaces vectoriels complexes: le foncteur de Schur.

DÉFINITION 0.2. Soit V un espace vectoriel, n une partition de r, nous
noterons V%r le produit tensoriel de r copies de V. Le groupe Ir agit sur V®r par
permutation des facteurs. Le foncteur de Schur est défini sur les objets par:

REMARQUE 0.2. La définition de ce foncteur sur les flèches se déduit directement

de sa définition sur les objets. En effet, soit U et W, deux espaces vectoriels
et / une application linéaire de U dans W. On en déduit une application linéaire

ZV-équivariante/®' de U®r dans W®r et donc une application linéaire de SnUdans
Sn W. On vérifie facilement que toutes les propriétés d'un foncteur sont réalisées.

On déduit de cette remarque que le groupe Gl(V) agit linéairement sur Sn V. Le
théorème suivant, dû à Schur, précise la nature du G-module Sn V.

THÉORÈME 0.1. (i) L'espace vectoriel SnV est nul si, et seulement si, la
longueur de n est strictement supérieure à d dim V.

(ii) L'ensemble {n | l(n) < dim V} est en bijection avec les classes d'isomorphisme

des représentations irréductibles, polynomiales, de dimension finie, de Gl(V).
(iii) Le Gl(V)-module simple SnV, s'il est non nul, est de poids dominant:

n nxex + n2e2 + • • • + nded.

Pour une preuve voir par exemple [7] chap. 6. Nous identifierons, grâce au point
(iii), les poids dominants des représentations polynomiales de Gl(V) avec les

partitions.

EXEMPLE 0.2. Reprenons les représentations explicitées précédemment, i.e. la

représentation triviale, notée [(r)] et la représentation alternée, notée [(lr)]- Les



Une nouvelle propriété de stabilité du pléthysme 479

foncteurs associés sont bien connus: Sir) V est isomorphe à la r-ième puissance

symétrique de F, que nous noterons plus simplement Sr V et S{lr) est isomorphe à

/\r F la r-ième puissance extérieure de V.

Le pléthysme est défini par la composition de deux foncteurs de Schur. Si n et

v sont deux partitions, alors Sn(SvV) est un Gl( F)-module qui n'est pas irréductible
en général. Le problème du pléthysme est donc de décomposer ce module. On peut
généraliser cette définition: soit G un groupe algébrique réductif connexe, soit Fv un
G-module simple, on cherche à décomposer le G-module SnVv.

1. Résultats préliminaires

1.1. Filtrations

Nous commencerons par énoncer le théorème de Borel-Weil qui identifie les

représentations irréductibles de G et les espaces de sections globales de fibres en
droites sur la variété des drapeaux de G.

THÉORÈME 1.1. Soit G un groupe algébrique réductif connexe. Pour tout
caractère x de T, notons 5£\ (resp. J£~) le fibre en droites associé sur l'espace

homogène G/B (resp. G/B_). Le G-module T(G\B^y) (resp. r(GjB_,&;)) est

isomorphe à Vlx si ~x esi dominant, (resp. à Vx si x est dominant). Sinon les deux

fibres considérés n'ont pas de section globale non nulle.

Pour une preuve voir par exemple [1] chap. 5 ou [7] chap 23.

PROPOSITION 1.1. Soit A, fi deux poids dominants de G, soit P le sous-groupe
parabolique de G associé à A, P_ le sous-groupe opposé, soit L P n?_, le

sous-groupe de Lévi commun à P et P_, soit X PP_/P_ la cellule ouverte de

Vespace homogène G\P_ et soit W^ un L-module simple de poids dominant jâ. On

considère W^ comme un P-module par Vaction triviale de Pu sur W^. Soit l^k la

représentation de dimension un de P et de poids —nÀ, alors les P-modules

Ini® Vnx + ti> lorsque n décrit Vensemble des entiers naturels, forment une filtration
croissante du P-module C[X] ® W^. Ce que nous noterons:

«>0

Avant de démontrer cette proposition nous allons énoncer deux lemmes.
Précisons que par la suite nous identifierons les fibres sur une variété avec les faisceaux

localement libres sur cette même variété.
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LEMME 1.1. Soit q> Vapplication naturelle de G\B_ dans G\P_, soit M~ le fibre
homogène sur GjP_ défini par: J(~ — G*PW^ona les assertions suivantes:

(i) On a un isomorphisme de P-modules: F(X, Jt~} ^ C[X] ® W^.

(ii) On a un isomorphisme de fibres sur G\P_: (p* (<£?") ~J(~.

Preuve du lemme 1.1. La variété Zest P-isomorphe à la variété PP_/P_ PjL.
Le fibre Jt~ restreint à Zest donc isomorphe à P *LWtl. Comme la représentation
Wp de L s'étend à une représentation de P, on a un P-isomorphisme: P ^LWVLc^

P/L x W^ voir [11], ce qui implique le point (i).
Pour le point (ii), remarquons d'abord que l'application cp est lisse et propre,

donc <p* (J£?~) est un G-fibre vectoriel. Il suffit donc de montrer que les deux fibres

cp*(J?~) et Ji~ ont même fibre au point eP_. Par définition, on a l'égalité:

<P*(&ï)(eP-) =r(ç-l(eP_), $£-). D'autre part q>~\eP_) est égale à P_/B_
L/(LnB_) et donc:

On en déduit: (p* (&;)(eP_) r{cp~\eP_\ <£~) T(L\{L nB_), L *LnB_ C,)
W^ ce qui conclut la preuve du lemme 1.

Le théorème de Borel-Weil implique que T(G/P_, ££J") ^ Vk. Donc il existe une
section globale s e r(G/P_, ifJ) semi-invariante par P et s est unique à un scalaire

prés. On note Z(s) a G/P_ le schéma des zéros de s.

LEMME 1.2. On a l'égalité: G/P_\Z(s)=X.

Preuve du lemme 1.2. Soit vlxeV% un vecteur propre de P_ tel que:
(vx, vlx} #0. Celui-ci nous permet de définir un plongement fermé:

gP- i-» gvlk.

Si x e P(Vx)\Z{s\ alors x vlk + w, pour un w g Fav. Décomposons w en vecteurs

propres du tore: w =Ei6/wA_<T/, où les a, sont des sommes non nulles de racines

simples. L'ensemble {at \ i g /} est dans un demi-espace ouvert de SR(T)9 il existe

donc un sous-groupe à un paramètre: ju: C*-»Ttel que pour tout x eP(Vk)\Z(s)9
on ait: lim^o fi(t) • x vlx. Donc G/P_\Z(s) contient une unique orbite fermée de

T: le point fixe eP_.
D'autre part X est égale à l'orbite de P passant par le point eP_. Comme

G/P_\Z(s) contient ^P_ et est stable par P, ona: le G/P_\Z(.s) comme ouvert.

Supposons que cette inclusion soit stricte, alors le fermé (GIP_\Z(s))\X contient
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une orbite fermée de T qui ne peut être que le point eP_, mais celui-ci appartient
à X.

Preuve de la proposition 1.1. D'après le théorème de Borel-Weil et le point (ii)
du lemme 1.1, on a les G-isomorphismes suivants:

Rappelons que J^ni + n
est le faisceau des sections de G *P WnX + ll. Puisque k est un

caractère de ?_, ona un isomorphisme de P.-modules: Wnk + fl ^ lnX ®WIX. On en
déduit l'isomorphisme: J?~x + fl ^ <£~k®Jt~. D'après [9], chap. 2, lemma 5.14,
l'ensemble r{GjP_\Z{s),Ji~) est filtré par les espaces vectoriels: C s~n®r(GIP_,
<£~x ® Jt~). De plus, cette filtration est compatible avec Faction de P. On a donc

les P-isomorphismes suivants:

Pour finir, remarquons que r(G/P_\Z(s), J?~) F(X, Jt~) d'après le lemme 1.2 et

que r(X, J(~) ^ C[X] (g) W^ d'après le point (i) du lemme 1.1.

1.2. Sous-espaces stables par B, sous-groupes paraboliques associés

Soit p: G ->G Gl(Vv) une représentation irréductible de G de poids dominant
v et soit 6 une partition telle que 1(9) < dim Fv. A partir d'un drapeau de Vv stable

par B, nous allons construire des vecteurs de poids dominants dans SeVv. Nous
noterons 6 sous la forme 9 /f1/?2 •••/** avec /, > ll+, > 0, bJ yLJl==lal pour
1 <7 < k, b0 0, bk+ rf dim(Fv). Soit & un drapeau de Vv stable par 5:

j^:0= Foc ^cz-.-c F^c Ffc+1 Vv

tel que dim F, bt. Remarquons qu'un tel drapeau existe toujours à cause du théorème

de Lie, mais qu'en général il n'est pas unique. Soit ex,.. ed une base de Fv,

formée de vecteurs propres du tore maximal T de G et telle que pour tout / les

vecteurs el9...,ebi forment une base de Vt. Soit iv g Sh_l2(/\b* Fv)®5r/2_/3(/\*2 Fv)®
• • -®Sik(/\bk Fv) le vecteur défini par:

v^ (el a • • • a^)'!

Remarquons que v^ ne dépend que de !F et non de la base (et Le drapeau !F étant
stable par B, il en est de même de la droite C • v<? qui définit donc un certain poids
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dominant À de G. Choisissons pour sous-groupe de Borel B de G le sous-groupe des

matrices triangulaires supérieures relativement à la base (e,)i <,<</. Alors B laisse

stable le drapeau 3F et la droite C • v# est l'unique droite stable par B dans S9VV.

On a donc construit un vecteur v^ dans Se Vv de poids dominant À pour G et de

poids dominant 9 pour G.

REMARQUE 1.1. Les composantes du pléthysme Se Vv obtenues de cette façon
seront appelées des composantes principales, en suivant la terminologie introduite

par L. Manivel [ 14]. On ne peut pas obtenir de cette manière toutes les composantes
d'un pléthysme. Par exemple dans SnVv, la seule composante principale est celle de

poids dominant nv.

Soit P (resp. P) le sous-groupe parabolique de G (resp. de G) associé au poids
dominant X de G (resp. 9 de G). Comme v# g Se Vv est à la fois vecteur propre pour
B et B, le morphisme p envoie P dans P. Le groupe P agit dans la grosse cellule X
de GjP_. Comme p envoie P dans P, on a une action de P dans X. Nous allons
calculer l'algèbre des invariants: QJ?]7*. Nous noterons L un sous-groupe de Levi
de P et % l'algèbre de Lie de Pu.

PROPOSITION 1.2. On a un L-isomorphisme: Cff]7* - C[^/Lie PM].

Avant de démontrer cette proposition, nous allons énoncer deux lemmes
préliminaires.

LEMME 1.3. Le morphisme p envoie injectivement Pu dans Pu,

Preuve du lemme 1.3. Pour montrer que p(Pu) <=PW il suffit de montrer que:

(dp)e(Lk Pu) c Lie Pu %.

Soit Wt le sous-espace de Fv de base (^)^_1<y<^- Nous identifierons chaque Wt

avec le quotient Kl + 1/Kf. On a les L-isomorphismes suivants:

D'autre part on a une application:
k

© /+1, Vvj(WJ+l

j=t
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où les if/j sont définis par:

Le noyau de W est égal à:

ker Y {Y g Lie G, (dp)e(Y)Wj cW,®--® Wk+l),

pour 7 =2, 3, ..,/c + l}.

On en déduit que les éléments de ker W laissent stable le drapeau:

On a donc l'égalité: ker *F Lie P_. L'application induite par W sur Lie G/Lie P_
Lie Pu est injective et est égale à (dpe)\LiePU, donc p(P)u <= jP". De plus l'application
P\Pu est injective, car son noyau est un sous-groupe fini, mais Pu est un groupe
unipotent.

Pour tout groupe algébrique G, nous noterons G" son radical unipotent.

LEMME 1.4. Soit Q un groupe algébrique affine et P un sous-groupe fermé de Q
tel que: Pu ci Qu9 il existe alors un isomorphisme: Lie Qu/Lic Pu ca. QU\PU équivariant

pour Vaction de tout sous-groupe de Lévi de P.

Preuve du lemme 1.4. Soit P PUL, une décomposition de Lévi de P et

Q QUM une décomposition de Lévi de Q telle que L c M. On définit une suite
croissante de sous-groupes de Qu par: Ux —Pu et Ut iVg«(C//_1). Comme Qu est

un groupe unipotent, il existe un n tel que Un Qu. D'autre part chaque Ut est

normalisé par L. Il existe donc des sous-espaces St de Lie Qu stables pour l'action
adjointe de L et tels que:

i

Lie Pu Si et Lie Ut 0 Sr
y i

On définit alors l'application:

q>:S2x-- xSn-+Q»IP«

(x2,..., xn) h-> exp(xn) • • • exp(x2)P".

Il est clair que <p est L-équivariante. Puisque S2 x • • • x Sn ex Lie g"/Lie PM, il suffit
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de montrer que q> est un isomorphisme. Mais comme QujPu est un espace affine, il
suffit de vérifier que ç est injective.

Soient (x2,. xn) et (y2,. yn) dans S2 x • • • x Sn tels que (p(x2,. xn)

(piyi, - • >,yn)> i-e- exp(xw) • • • exp(x2)PM exp(yn) • • exp(j2)P". Alors, comme
x29 ...,xn_l et y29. yn_x sont dans Lie Un_u on a: exp(xw) =exp(jM)C/w_1.
Comme Un_l est normal dans Qu, on a le diagramme suivant:

Lieg" ^LieÔ^/Lie^.j
exp exp

Qu > Q«IUn_x

Ce diagramme étant commutatif, on a: exp(yn)Un_l =exp(jw + Lie Un_l)9 donc

xMGj;n + Lie Un_l. Mais xn et jw sont dans Sn et donc xn=yn. On termine la

preuve par récurrence descendante sur n.

Preuve de la proposition 1.2. Le sous-groupe de Lévi L de P étant fixé, on peut
choisir L tel que p(L) c L-isomorphisme (et donc un L-isomorphisme): X ~ Pu, où
L agit dans Pu par conjugaison. Donc CfX]7*" est L-isomorphe à C[Pu]pu. Mais
d'après le lemme 1.3, p envoie injectivement Pu dans P", on a donc un L-isomorphisme:

C[Pu]pu-C[Pu/Pu].

Enfin PM/PM est L-isomorphe à Lie PM/Lie PM d'après le lemme 1.4.

2. Une propriété de stabilité du pléthysme

2.1. Uénconcé du théorème

Rappelons les notations de la section précédente. Nous avons appelé 3F un
drapeau de Vv stable par B:

Ce drapeau induit un vecteur v# de poids dominant 6 pour G Gl(V), et de poids
dominant X pour G. Nous avons posé Wl VljVl_x pour 1 < / <& + 1, de sorte

que la grosse cellule ^U de l'espace homogène G/P_ est isomorphe à:

^- © hom(WJ9Wt).
\ <k\
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Nous noterons ÛU_ la grosse cellule de l'espace homogène G/P. On a:

Soit r un entier supérieur ou égal à bk, nous subdiviserons l'intervalle des entiers

compris entre 1 et r par les intervalles J(ï) [bt_x + 1,. bt] (\<i<k) et

J(k + 1) [bk + 1,. r]. Pour n (nu nr) une partition, nous noterons nAl)
la partition formée des parts de n, d'indice appartenant à /(/). Si / est un entier

quelconque, nous noterons 7i<, la partition (nu 7C/) et n>l la partition
(nl+ 7r/+2,... Par exemple, pour k 2, bx 2, fe2 4 et 7i (6, 5, 3, 3, 2, 1) on
a: 7T<2 7Ty(1) (6, 5), kJ{2) (3, 3), 7t>4 7r/(3) (2, 1).

THÉORÈME 2.1. Soient fi, v deux poids dominants de G, soit n une partition
telle que l(n) < dim Vv. Soit 6 la partition et X le poids dominant défini comme
ci-dessus. On a les assertions suivantes:

(i) La multiplicité de Vfi + nX dans Sn + n6Vv est une fonction croissante de n.

(ii) La limite quand n tend vers Vinfini de cette multiplicité est égale à la

multiplicité du L-module simple de poids fi dans le module:

où L est le sous-groupe de Lévi du groupe parabolique associé à X et où Sm

désigne Valgèbre symétrique.

(iii) Si toute fonction régulière sur %_ILiePu_ invariante par L est constante,
alors cette limite est finie.

(iv) Réciproquement s'il existe des fonctions régulières et non constantes sur

^_/Lie Pu_ invariantes par L alors, ou bien la multiplicité est toujours égale

à zéro, ou bien la limite est infinie.
(v) S9il existe une forme linéairef sur SR(T) strictement positive sur les poids de

aU, alors cette multiplicité se stabilise dès que:

n> sup \{lq-lq+x) 1

oùlk + l=Q9 Do =/(v) - sup{/(/) | x poids de Wx) et où les (A)i sis* sont
des constantes positives définies par:

D, inf{/(x) | x poids de hom(Wl+,, W,)}.
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Nous démontrerons ce théorème dans la section suivante. Nous allons d'abord faire
quelques remarques. L'existence d'un forme linéaire strictement positive peut
s'énoncer sous différentes formes. On a, en effet, la proposition suivante qui est bien

connue:

PROPOSITION 2.1. Soient T un tore et N T-module rationnnel de dimension

finie, les assertions suivantes sont équivalentes:

(i) // existe une forme linéaire f sur SR(T) strictement positive sur les poids de

N.

(ii) Les poids de N sont dans un demi-espace ouvert de SR(T).
(iii) // n'existe pas de combinaison linéaire à coefficients strictement positifs entre

les poids de N.

(iv) Ualgèbre des fonctions régulières et T-invariantes sur N est réduite aux
constantes.

REMARQUE 2.1. Grâce à cette proposition, on voit que la condition (v) du
théorème 2.1 est une condition suffisante de stabilité de la multiplicité énoncée au

point (i) du théorème. En effect on a les implications suivantes:

C[^r]T C => CWLie Pu]T C => C[^r/Lie PU]L C.

A priori cette condition n'est pas nécessaire, mais on peut remarquer que si X est

un poids dominant régulier alors:

CWLie ?f=Co CWLie PU]L C

puisque dans ce cas L T.

REMARQUE 2.2. Bien que la condition du point (v) ne soit pas équivalente à

la condition de stabilité, dans les applications des sections suivantes, c'est celle-ci

que nous utiliserons car son expression combinatoire la rend plus maniable.

REMARQUE 2.3. Il est facile de montrer que si k 1 et si W=WX est un

sous-espace stable par B de dimension au plus trois, alors les poids de °U hom(Kv/
W9 W) sont dans un demi-espace ouvert, donc la propriété de stabilité est vérifiée.

Pour ce résultat nous renvoyons le lecteur à [15]. Par contre, si West de dimension
4, il n'y a pas toujours stabilité. Par exemple, soit G 57(3, C), on considère la

représentation adjointe ^ qui se décompose: ^ Jr® 0ae*^a. Soit He^ et a,

P les deux racines simples de G. Alors le sous-espace: W C/f®^a®^®^a + ^

est stable par B. Le poids dominant k associé au drapeau 0 c W c ^ est égal à
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2(a + jff) qui est régulier, donc L T et Pu 5". Alors les poids du T-module:

ne sont pas dans un demi-espace ouvert puisque ce module est non nul en poids
zéro, ceci entraîne la non stabilité puisque L T (voir remarque 2.1).

2.2. Preuve du théorème 2.1

2.2.1. Preuve des points (i), (//) (iii) et (iv). Nous reprenons les notations des

sections précédentes. On veut appliquer la proposition 1.1 à G Gl(Vv). Alors SnVv

et S9VV sont des G-modules simples de poids dominants n et 9. Le sous-groupe
parabolique P c G associé au poids 9 se décompose en:

k+\
L~Y\ Gl{Wt) et Lie Pu % 0 hom(J^, Wt).

Le L-module simple de poids n est isomorphe à: ®k=\ Snjii)Wt. D'après la

proposition 1.1 on a un P-isomorphisme:

k+\

Rappelons que X est la grosse cellule de G/P_, que v^ est un vecteur de poids
dominant 9 pour G et de poids dominant X pour G et que P est le sous-groupe
parabolique de G qui fixe la droite C • v&. On a vu à la section 1.2 que l'image de

P par l'application p: G ->G est incluse dans P, donc 4> est un P-morphisme. La
multiplicité de F^+nA dans Sn+n6 Vv est égale à la dimension du sous-espace vectoriel
de (C • v£)n®SK+n6Vv composé des vecteurs propres de B de poids fi, sous-espace
noté:

La construction par union croissante de P-modules, donc de 5-modules, démontre
le point (i).

Pour le point (ii) remarquons que # induit un isomorphisme:

*:
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Nous allons maintenant calculer l'espace vectoriel de droite. Le sous-groupe de
Borel de G se décompose en B ~Pux(BnL). Comme Pu agit trivialement sur
®*~î Snj{0 Wl9 on a un isomorphisme:

* 1
'

_

D'après la proposition 1.2, CfX]7*" est L-isomorphe à C[^f/Lie P% donc isomorphe
par dualité à S9(%_/Liç Pu_), ce qui démontre le point (ii).

Pour les points (iii) et (iv), il suffit de remarquer que les composantes
isotypiques de la L -algèbre QX]7*" sont des modules de type fini et sans torsion sur
l'algèbre des invariants de L, voir par exemple [10] Satz II.3.2. Si cette algèbre est
réduite aux constantes, les composantes isotypiques sont alors des espaces vectoriels
de dimension finie et toutes les multiplicités sont alors finies. Réciproquement, s'il
existe des invariants non constants, alors les multiplicités sont nulles ou infinies.

2.2.2. Preuve du point (v). Nous commencerons par énoncer un lemme montré

par M. Brion (voir [2]).

LEMME 2.1. Soit Vx et V^ deux G-modules simples de poids dominants X et n,
soit P le stabilisateur de la droite lx. Il existe un P-module Q et une suite exacte de

P-modules:

De plus tout poids de Q est inférieur ou égal à un poids de la forme: X + sj^i) — a

pour une racine simple a non orthogonale à X.

Preuve du point (v). Nous allons démontrer le point (v) uniquement dans le cas
où 9=(la). La preuve dans le cas général s'inspire de la même idée mais elle

contient beaucoup plus de calculs. Nous renvoyons le lecteur à [15] pour une preuve
complète.

Nous allons appliquer le lemme 2.1 à G Gl(Vv) et aux représentations
irréductibles Se Vv AaVv et SK+(na> Vv. Nous avons défini dans la section 1.2 un vecteur
v<FeAaVv de poids dominant (la) pour G et de poids dominant X pour G. Soit P
(resp. P), le sous-groupe parabolique de G, (resp. de G) qui stabilise la droite
/jr C • Vp. D'après le lemme 2.1, on a une suite exacte de P-modules:

Comme p(P) a P, la suite exacte ci-dessus est compatible avec l'action de P.
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Supposons maintenant que la multiplicité de Vli + (n+l)k dans Sn + i(n+i)a)Vv soit
strictement supérieure à la multiplicité de V^ + nX dans Sn + {na)Vv. Il existe alors un
vecteur w g g de poids \i + (n + \)L Rappelons que ex,. ed est une base de Vv

formée de vecteurs propres du tore maximal T de G. De plus le sous-groupe de

Borel B de G est le sous-groupe des matrices triangulaires supérieures inversibles

par rapport à la base (et )\<l<d- Si on choisit comme tore maximal f de G les

matrices diagonales inversibles par rapport à cette base, alors l'image de T est dans

T et le vecteur w e Q est un vecteur propre pour T d'un certain poids x- En
identifiant Q à un sous-espace vectoriel de SK+i(n+ 1)fl) Fv, on peut écrire x 2f-1 *A
où les x, sont des entiers positifs ou nuls et les e, sont les poids de la représentation
standard de G G/(FV). Comme w g Q, d'après le lemme 2.1, x est inférieur ou égal
à un poids de la forme 9 + s^n + n9) — % où a est une racine simple non
orthogonale à 9. Comme 9={\a) la seule racine non orthogonale à 9 est:

aa £a — 8a+1 • Ce qui permet d'écrire:

O+saa(n+n0)-<*a

Rappelons que si I (IuI2i. Id) et F (I\, I2,. Id) sont deux poids de

G/(C*), alors 7 est supérieur où égal à 7' si et seulement si: |7| |7'| et |7<^ | > |7^ |

pour tout i tel que 1 < i < d. Le fait que x soit un poids de Q implique donc:

r

pour tout r <a\ £ xy < |7r<r| -h(« + l)r (1)

a

X *, <|TC<a-l|+rca+1+(tf-l)(fl + l) (2)
7=1

r

pour tout r > a: £ x, <|7i<r| + (« + 1)|0| (3)

7=1

Rappelons que w est un vecteur propre de T de poids x 2If= i ^^r Comme les

et sont des vecteurs propres de T de poids inférieurs ou égaux à v, les et sont de

poids v — al où les a, sont des sommes de racines simples de G. Le poids de w par
rapport à T peut donc s'écrire:
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d'après l'équation (4). Comme 6 (la), on a: tv ex a • • a efl. Le poids de % par
rapport à T est donc égal à: À |0|v -S*. xor On en déduit:

l)M0|v - £ <xA

En comparant les deux expressions de \i H- (n + l)A on obtient l'égalité:

Mv-0=f (^-(11 + 1))^+ f x^. (5)

Nous allons maintenant exprimer l'existence d'une forme linéaire strictement

positive sur les poids de: <% mhom(VJW, W). Pour cela nous poserons:

m1 mm{f{Gj) \ 1 <; < a},

m2 mm{f(<7j) \ a <j < d).

On a évidemment Ml>ml et l'hypothèse de positivité de / est équivalente à

l'inégalité: m2 > Mx. En ordonnant correctement les vecteurs de base du sous-espace
W, on peut supposer qu'il existe un entier c compris entre 1 et a de sorte que:

Xj — (n + 1) > 0 pour 1 <j < c

Xj — (n -h 1) < 0 pour c <j < a.

On peut donc minorer f(\n\v — fi):

f(\n\v -fi) > t Xj-c(n + 1)^ + t Xj-(a- c)(n + 1) )mx

+( i *,W (6)
V/ a + i /

D'autre part, on a l'égalité:

j=c+1 j=1 7=a+1

+ l)- £ *,-£*,. (7)
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D'après l'inéquation (1) on a:

c

c(h + 1)-£ ^> -\nic\> -\n^a\ \n>a\-\n\ (8)
J= 1

et d'après l'inéquation (3) on a:

d a

£ x, |n| + fl(/i + 1)- £ *j

>K>«|+* + l. (9)

Finalement, en reprenant l'inégalité (6), et en tenant compte de (7), (8) et (9) on
obtient:

> (|n>fl| - \n\)(Mi - m,) + |w|M, + (|n>fl| + n + l)(w2 - M,)

| l)(w2 —M,).

La dernière inégalité est équivalente à:

|| || - M,) - |7t|m,)(m2 - M,)-'.

D'où l'inégalité du point (v) du théorème dans le cas où k 1 et /, 1, en

remarquant que:

m2 min{/(x) | x poids de VJW} -/(v)

M, max{/(Z) | % poids de W) -/(v)

d'où m2 — Mx— min{/(x) | x poids de hom(Fv/PF, fT) }=£>,. De plus D0 mx

/(v) - max{/(x) | x poids de ÏF}. D
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3. Application à Sn(S2V)

Nous allons dans cette partie appliquer le théorème 2.1 à la représentation S2 V
du groupe Gl(V). Nous commencerons par classifier tous les sous-i?-modules de

S2V9 en reprenant des travaux de L. Manivel [14]. Ensuite nous montrerons
quelques propriétés de croissance et de stabilité. L'intérêt de ces propriétés se situe

surtout dans leurs conséquences: le corollaire 3.1 qui est énoncé de manière plus
générale dans l'article cité de L. Manivel et surtout le corollaire 3.2 qui explicite des

conditions nécessaires pour qu'une composante simple apparaisse dans le pléthysme
SK(S2V). C'est pourquoi nous laisserons de côté certains calculs qui ne sont pas
nécessaires à l'obtention de ces corollaires.

3.1. Sous-espaces B-stables de S2V

Si a est une partition, nous noterons ^a la longueur de la diagonale principale du
diagramme de Ferrers associé à a, i.e. sa est l'unique entier positif tel que a5a > 5"a et

aja+i <soc +1- Par exemple siX21) 2. Nous dirons que a est une partition
symétrique si son diagramme de Ferrers est symétrique par rapport à la diagonale
principale, autrement dit si a, =card{^ | a5 > *'}. Nous noterons 0>ar(d) l'ensemble
des partitions symétriques contenues dans le carré de côté d dim F. Le point (i)
de la proposition suivante (dont nous laissons la preuve à titre d'exercice) décrit de

manière très précise les sous-2?-modules de S2 V.

PROPOSITION 3.1. (i) On a une bijection:

0>ar(d) -> {W a S2 V \ W stable par B]

a= 0 © Cerer
1

(ii) La dimension de W* que nous noterons d{<x) est égale à: d{a) — (|a| + sJ/2.
(iii) Si on applique la construction de la section 1.2 au drapeau 0 c Wa a S2 V, on

obtient un poids dominant B. de G (qui est égal au poids de la droite Ad{a)W*) défini

par:

ôtt a, + 1 si i < sa

a, si i > sa.

EXEMPLE 3.1. Soit a (4, 3,2, 1), alors W*czS2Va pour base les vecteurs:
£?> £1 ' ^2> e\ ' e3> ei ' e4> eî> e2 ' e3 et 'e poids dominant associé est égal à (5,4, 2, 1).
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REMARQUE 3.1. Comme l'a remarqué L. Manivel, [14] on obtient de cette
manière toutes les composantes du pléthysme f\k(S2 F), voir [12], page 47, exercice
10.

3.2. Croissance et stabilité dans le cas symétrique

Nous allons appliquer le théorème 2.1 à G Gl(V) et a la représentation
irréductible S2V. Nous allons commencer par le cas où 6 (la). Dans la section
précédente on a vu que les sous-espaces stables par B de S2 F sont en bijection avec
les partitions symétriques contenues dans le carré de côté d. Soit a une telle

partition, nous allons maintenant donner une description plus précise du sous-

espace W". Cette description nous permettra d'expliciter le sous-groupe parabolique
de G fixant la droite Ad^W\

Soit a une partition symétrique, il est facile de voir que a peut s'écrire:

*=faplfaP2-i--fxp avec /, ^ 1^ et fp /(a) <</ dim F. Soit 0=Focz
Vx c • • • c Vp c Vp + l Fie drapeau de F, stable par B, associé aux sauts de a, i.e.

dim Vl=fl. On posera fp + l =d dim V. Pour tout entier i compris entre 1 et

p + 1, posons: /(i) {n eN \f,-i<n£f,}.
Pour i compris entre 1 et p + 1, nous noterons Wl VJVt_l les quotients

successifs du drapeau ci-dessus. On a dim Wt at pour 1 <i <p + 1 en posant
ap + \=d— fp. Nous identifierons Wt au sous-espace vectoriel de V de base les

vecteurs (ej)jem. Pour décrire le sous-espace W* stable par B et associé à a, nous
allons introduire la notation suivante:

Wl-WJ=Wl® Wj si i ïj
S2 Wt si i =j.

Alors on a:

W*~ © JFr*Fm et (S2F)/FFa^ © Wr Wm.
\<l<,m l</

l+ m<p+1 / +

Nous noterons ^_ =hom(JFa, S2VIWa) la grosse cellule associée au groupe
G Gl(S2 F) et au poids dominant lJ(a)). Rappelons que d(oi) (|a| + ja)/2. On a:

^a =/c où c est égal à la partie entière de (p H-1)/2. On en déduit: d(ot) (|a| +/c)/
2. Le sous-espace W* induit un poids dominant a de Gl{V). On déduit de 3.1 que,
si p est impair: & =(£ + l)ai ••• (/c + \Tcfcc-x " 'f?> et si p est pair:
a (fp + l)ai • • • (/c+1 + l)flc/^c + 1

• • -fxp. Les sauts de a sont placés aux mêmes
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endroits que les sauts de la partition a. On en déduit que le sous-groupe
parabolique associé à a est donné par:

L~Y\ Gl(Wt) et Lie PI c~ © hom(Wn W}\
i=l \<l<J<p+\

En conservant ces notations nous pouvons maintenant énoncer la proposition
suivante:

PROPOSITION 3.2. Soit n et n deux partitions, a une partition symétrique, on

a les assertions suivantes:

(i) La multiplicité de S^ + nâiV dans Sn + indw)(S2V) est une fonction croissante de

n.

(ii) Cette multiplicité se stabilise dès que: n > Xf=1 |^>/J — |ft></(a)i-

(iii) La valeur asymptotique est égale à la multiplicité du Hf+j1 Gl(Wt)-module
simple (X)f+/ S^^W, dans:

S« *«„)W" ® S* >dJS2 VI W«) ® 5J(hom( W\ S2 VI W«))/Lie P*L].

Preuve. Il s'agit bien sur d'appliquer le théorème 2.1. Vérifions que les poids de

^_ =hom(JFa, S2VIW!X) sont dans un demi-espace ouvert. Pour cela définissons

une forme linéaire /par /(fi/) —i — \ si l el{ï). Soit % un poids de Wa, alors x peut
s'écrire: x eu + £v Rappelons que

wa~ © wrwm.

Donc si w g /(/) et v e /(m), on a: /(/) =/(eM H- £y) / - 1 -h m - 1 <p - 1. Si

X eM H- fiy est un poids de S2 F/ PP alors comme

© WrWm

on a, en supposant que u g /(/) et v g /(m): /(x) =/(£„ +ev) =1 — l +m — \>p.
Les poids de ^f_ sont donc dans un demi-espace ouvert. Nous allons maintenant
calculer la borne de stabilité dans le cas où k q 1, bx rf(a). Pour cela, nous
utiliserons la forme linéaire —/ qui est strictement positive sur les poids de °U.

On a:

Do -/(2c, - sup{ -/Gt) | x poids de *P} 0.
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On a également:

Dl inf{-/(*) | x poids de hom(S2V/W\ W")} 1.

Pour finir remarquons que:

—/(2|7C|£1 - (jAxSx + ' • • + fid8d))

i l

II nous reste à remarquer que le Ilf^/ Gl(Wt)-module simple de poids dominant

^ est isomorphe à: (S)?-/ £, fH^).

Nous allons énoncer maintenant un corollaire direct de cette proposition.

COROLLAIRE 3.1. Soit a une partition symétrique, S. le poids dominant associé,

alors pour tout n la multiplicité de Sn&V dans Sin)d(<x)(S2 V) est égale à un.

Preuve. C'est une conséquence directe de la proposition 3.2 pour \i n 0.

Dans ce cas la multiplicité est constante et est égale à la multiplicité du
II? +/ Gl(Wt)-module trivial dans l'espace:

S9[hom(W\ S2 V/W^/Uq Pu_].

Mais les poids de hom( Wa, S2 Vj W") sont dans un demi-espace ouvert, d'où la
conclusion.

Nous allons maintenant appliquer le théorème 2.1 dans un cadre plus général.

D'après la section 3.1, un drapeau de S2 V stable par B est donné par une suite de

partitions symétriques a1, a2,...,ap telle que a'ca' + 1, c'est à dire telle que:
on) < aj +1 pour tout j tel que 1 <j < d dim V. Les calculs devenant très difficiles
à mener dans le cas général, nous allons nous limiter à une famille particulière de

drapeaux de S2V. Pour cela nous poserons pour tout i tel que 1 <i<p: a'

(/?!/£i ' ' 7i') avecjÇ a, et/, <</ dim V.
Nous définirons /(/) et Wt comme précédemment: /(/) {nGN|/_1<n <ft} et

Wt est égal au sous-espace vectoriel de F de base (ey)y6/(i)- Soit Zt le sous-espace
stable par B associé à a1. On a:

Z,= © WrWm.
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Soit «F le drapeau de S2 V induit par la suite des a':

0 Zo c Zx ci Z2 c: • • • c Z^ c: Zp + x ^2 K

Nous noterons Ut =Zl/Zl_l, pour z 1, 2,...,/? + 1, les quotients successifs du
drapeau ^, on a alors:

Ut= © ^• PFm pourl</</> et Up + l= © fF,- Wm.
\<l<m 1 <

l + m i+ \ l + m>p

Nous noterons ato a} — dim Wt- Wj de sorte que l'on a:

si i #y

si i=/
Nous poserons pour / 1,...,/?:

ai°am et ^+1 di

Enfin nous définirons les intervalles d'entiers: J(i) {n eN | ct_x <n <ct}. Le

drapeau 3* induit un poids dominant 0 de Gl(S2 V). On a:

)dim0 (^dun ^(/J — l)

Soit P le sous-groupe parabolique de Gl(S2 V) associé au poids 0. La grosse cellule
%_ de Gl(S2V)/P sera isomorphe à:

Le drapeau ^ induit un poids dominant de G/(F), que nous noterons A =Ia'.
Nous n'allons pas calculer explicitement X mais nous contenter de remarquer que
les sauts de k sont placés aux mêmes endroits que les sauts de la partition ap. On
en déduit que le sous-groupe parabolique associé à À est le même que celui associé

au poids ocp9 on a donc:

p

L-ïl Gl(Wt) et UePu_ * © hom(J^, Wj).
1 l^ï
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Si fi est une partition quelconque, le L-module simple de poids \x sera isomorphe à:

m
Nous reprenons les notations introduites précédemment pour énoncer la proposition

suivante:

PROPOSITION 3.3. Soit ju, n deux partitions, a1, a2,. y?p partitions comme
ci-dessus et X E a1. On a les assertions suivantes:

(i) La multiplicité de S^+^V dans Sn+ne(S2 V) est une fonction croissante de n.

(ii) Cette multiplicité se stabilise dès que: n > Ef=1 (|^>/J — |ft>cJ)-

(iii) La valeur asymptotique est égale à la multiplicité du OfJ"/ Gl(Wt) module

simple ®ï+ï S^Wt dans:

® SKJit)Ut®sï( © hom(Ul9 t/7

Preuve. Il reste à montrer que les poids de %_ sont dans un demi-espace ouvert
et à calculer la borne de stabilité. Soit/la forme linéaire définie par: /(£/) / — 1

si / e /(/). Si su + ev est un poids de:

f/i= 0 WrWm

avec 1 <i<p, alors si we/(/) et vel(m), on a / + /« ï + 1, donc

f(eu + sv) i — 1. Si su + ey est un poids de

^+i= © WrWm
1 <l<m<p+ 1

alors si w e /(/) et v e /(m), ona/ + m>/?+2, donc/(eM + ev) >p. Comme tfl_ est

isomorphe à © \^kj<p + \ hom(ï7l, Uj), /est strictement positive sur °U_. Pour
calculer la borne de stabilité, nous utiliserons la forme linéaire —/ strictement

positive sur °U:

-/(2|7r|e, - Oijfi! -f

Les hauteurs des sauts de 9 sont toutes égales à un ainsi que les constantes:

A inf{-/(x) | x poids de hom(Ul+u Ut)} pour / !,...,/?.
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De plus: Do —f(2ex) — sup{ —f(x) \ X poids de Zx) 0. D'après le point (v) du
théorème 2.1, la multiplicité se stabilise dès que: n > Zf=1 (|//>/f | — |^>CJ)- Ce qui
termine la preuve de la proposition 3.3.

Nous allons maintenant énoncer un corollaire de cette proposition.

COROLLAIRE 3.2. Si le module simple S^ V apparaît dans Sn(S2 V) alors pour
tout p et pour toute suite d'entiers positifs ax,a2,.. ,ap, l'inégalité suivante est

vérifiée:

où ct est défini par:

Cl=

avec at° am aIam si l # m et at o al #/(#/ H-1)/2.
De plus en cas d'égalité la multiplicité de S^V dans Sn(S2V) est égale à la

multiplicité du Ilf+/ Gl(W\)-module simple ®f=/ S^W, dans:

p + 1 /

où (7(0) et (/(/)) so

I(i) {neN\ax

; W,

nt les

+¦¦¦

-¦)
intervalles

Jtal_x<K

d'entiers

\<ax +

définis par:

¦¦+*.}
J(i) {« € N | ct_ i < n < ct}

où ap +1 d — {ax -f • • • H- ap) et où les Wt sont des espaces vectoriels de dimension at.

Preuve. Si S^ V apparaît dans Sn(S2 V) alors d'après la proposition précédente le

nf^/ G/(^)-module simple ®fîxl S^^W, apparaît dans:

p+\

Soit / la forme linéaire définie précédemment, elle est constante et égale à / — 1

sur les poids de Wt. Donc / est égale à: EfJY |jU>a,+ +aJ sur les poids de
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(Xjf+î1 S^Wf Sur les poids de Un (1 </</?),/ est égale à *~1 et sur les

poids de Up + l9f est supérieure ou égale à p. Comme / est strictement positive sur
les poids de <%_, f est supérieure ou égale à Sf==1|7r>cJ sur les poids de:

®pt l Snj^Ul®SJLqiJUePtL]. Ceci montre l'inégalité
'

En cas d'égalité la multiplicité de S^ V dans Sn(S2 V) est égale à la multiplicité de

g

p + l

(X) SKJit) Ut ® SJ*_/Lie Pu_].

car la borne de stabilité du point (ii) de la proposition 2.1 est nulle. On conclut en

remarquant que le Gl( V) -module:

est égal au sous-module de:

(X) S Ul®SJLV_IUePu_]
i i

dont les poids appartiennent à l'hyperplan: /= £f= x \n>Ci |.

EXEMPLE 3.2. Si/? 1 on obtient l'inégalité: \ii>a\ ^ |7r>a(a+i>/2|- Remarquons

que Brion avait déjà obtenu cette inégalité pour a 1, voir [2]. A l'aide de cette

inégalité on voit par exemple que S(19fl)F n'apparaît pas dans 5(4f23)(S2 V). Si

l'égalité est vérifiée i.e. \pi>l \ |7i>1| alors Brion a montré que la multiplicité de S^ V
dans Sn(S2V) est égale à un si fi>l n>ï et à zéro sinon.

Si p 2 on obtient l'inégalité: \fi>a]\ 4- \fi>ai +a2\ > \n>a^ai +1)/2| H-

|7r>a1(a1 + i)/2 + a,a2|- On en déduit par exemple que la composante 5r(15j3tl2)F

n'apparaît pas dans S(5a2j)(S2V), en effet on a:

K^M^I + K^U^hS et

Ce qui contredit l'inégalité ci-dessus avec ax a2 1. Remarquons cependant que
les partitions /i (15,3, l2) et /x=(4,23) vérifient toutes les inéquations
|ju>a| > \n>aia+l)/2\ pour tout a.

EXEMPLE 3.3. Si fi et n vérifient l'équation: |/i>i| + |j*>2| fc>i| + I7C>2|» alors
la multiplicité de 5MFdans Sn(S2V) est égale au coefficient de Littlewood-Richard-
son: qn>22l_ltl>2^>2.
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En effet d'après le corollaire cette multiplicité est égale à la multiplicité du
Gl(Wx) x Gl(W2) x G/(PF3)-module simple S^ Wl®Stl2W2®SM>2W3 dans

où Wx et W2 sont deux espaces vectoriels de dimension un et W3 un espace vectoriel
de dimension dim V — 2. Par la formule de Littlewood-Richardson on sait que:

>2 f
la somme étant effectuée sur toutes les partitions a et /? telles que |a| + |/?| |7t>2|.

De plus on peut supposer que a a une seule part, car sinon Sa(S2 W2) est nul. On
en déduit que:

Si la multiplicité est non nulle, alors on a le système d'équations suivant:

n2 + 2a

De la première et quatrième équations, on obtient que fi fi>2 et que
a |7c>2| — |/J>2|. On vérifie facilement que dans ce cas, la deuxième et la troisième

équations sont toujours vraies, d'où l'assertion.

4. Autres applications

Les calculs présentés dans la section précédentes s'effectuent de manière très

similaire pour le pléthysme Sn(A2V) ainsi que pour la décomposition en Gl(E) x
(//(F)-modules simples de Sy(E®F) (décomposition équivalente à la décomposition

du produit tensoriel de deux représentations irréductibles du groupe
symétrique). On a dans ces deux cas une description très précise des sous-2?-

modules ce qui permet d'obtenir des propriétés de stabilité similaires au cas traité
précédemment. A cause de cette similarité, nous ne donnerons ici que les résultats

que nous estimons être les plus significatifs, c'est à dire des conditions nécessaires
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d'apparition d'une composante simple dans ces pléthysmes. Nous renvoyons le

lecteur à [15] pour une présentation plus détailée.

4.1. Le cas antisymétrique

PROPOSITION 4.1. Soit p un entier positif, soit aua2,. ,ap une suite d'entiers

positifs telle que ax > 2, alors si le module simple SM V apparaît dans Sn(/\2 V)
on a Vinégalité:

p

1 1

avec

Ci Z al A am et al Aam= L
1 <l<m<i+ 1

si l ^m et a{ a ai at(at — l)/2.

De /?/ws, e« ow d'égalité, la multiplicité de S^V dans Sn(/\2 V) est égale à la

multiplicité du TV^l Gl(W])-module simple ®f=/ S^ Wt dans:

1 <l<m<i+ 1

où (/(/)) eJ (/(0) ^w^ les intervalles d'entiers définis par:

avec ap + l =dim/\2 V—{ax + • • -+ap), Wt un espace vectoriel de dimension an

EXEMPLE 4.1. Si p 1 on obtient l'inégalité: |ju>a| > \n>a(a_m\ pour a >2.
Ceci permet de montrer, par exemple, que S(8Jt5)V n'apparaît pas dans

Si p 2, on obtient l'inégalité: \ii>a J + \na, + flJ > \na
f (a ] _ 1)/214- |7r(fl, (fl,_ i)/2)+flia2|.

Ceci permet de montrer, par exemple, que S{nili9f5>l)V n'apparaît pas dans le
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pléthysme S(52,4,23)(A2 F) car:

|(13, 12, 9, 5, 1)>2| + |(13, 12, 9, 5, 1)>4| 16

et |(52, 4, 23)>11 + |(52, 4, 23)>5| 17

ce qui contredit l'inéquation ci-dessus pour ax a2 2.

4.2. Application à Sy(E®F)

En appliquant le théorème 2.1 au pléthysme Sy(E®F), nous retrouvons des

inégalités explicitées par L. Manivel dans [14].

PROPOSITION 4.2. Si le module simple SaE®SpF apparaît dans Sy(E®F)
alors pour tout entier p et pour toutes suites d'entiers al9.. 9ap et bl9.. 9bp

Vinégalité suivante est vérifiée:

où ct est défini par:

De plus, en cas d'égalité, la multiplicité de SxE<S>SpF dans Sy(E®F) est égale à

la multiplicité du Ilp+Î Gl(Wt) x Gl(Wt)-module simple (g)f+,1 S^W
dans:

+ m -1 -Y 1

>w (/(/)), (/'(0) ^^ (^(0) ^^^^ ^ intervalles d'entiers suivants:

I(i) {j € N | a 1 + • •
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avec ap + x=é\mE-(ax-\ +ap), bp+x =dimF- (bx + • • • +bp) et Wt (resp.
W[) des espaces vectoriels de dimension at (resp. de dimension bt).

EXEMPLE 4.2. Pour p 1 on obtient l'inégalité: |a>a| -f- \P>b\ ^ \y>ab\ pour
tous entiers positifs a et b. Si a b 1 on retrouve l'inégalité exprimée dans [8]
(corollary 2.9.20). On voit aussi dans ce cas que si l'égalité est vérifiée, alors la
multiplicité de S^E^S^F dans Sy(E®F) (qui est égale à la multiplicité de [y]
dans [a]®[/?]) est égale à la multiplicité du Gl(W) x Gl(W)-module simple

Sa>1W^Sfi>lWf dans SY>1(W® W) où W et W sont deux espaces vectoriels de
dimension assez grande. Cette multiplicité est égale au coefficient de Littlewood-
Richardson Q>11^>1. Ce résultat est montré par J. Dvir dans [5] et M. Brion dans

[2]. L'inégalité pour a et b quelconques a été également montrée par J. Dvir dans

[6], mais sans expression de la multiplicité en cas d'égalité.
Si p 2 on obtient l'inégalité suivante:

|a>a1| + |a>a1+a2| + |^>Z?1| H" |^>61+è2l — K>«1 èj + l}1^, b\+ai b2 + a2 &il*

Cette inéquation permet de montrer, par exemple, que [(6, 5, 42)] n'apparaît pas
dans [(12, 6,1)] ® [(12, 6, 1)]. En effet on a:

2((12,6,1)>1 + (12,6, 1)>2) 16 et (6, 5, 42)M+(6, 5, 42)>3 17

ce qui contredit l'inégalité ci-dessus avec ax a2 bx b2 1. D'autre part, on peut
vérifier que les partitions a, /?, y satisfont à toutes les inéquations possibles avec

4.3. Le cas d'un pléthysme quelconque de Gl(V)

Si nous considérons une représentation quelconque de G Gl(V), nous n'avons

plus de description aussi précise de ses sous-i?-modules. Nous allons nous servir
d'une famille particulière de sous-espaces 2?-stables de Sv V. Pour toute partition v

et pour tout entier b, nous noterons bv dim Sv Cb.

PROPOSITION 4.3. Soit W aVun sous-espace vectoriel de V de dimension b et
stable par B. Alors on a les assertions suivantes:

(i) Le sous-espace Z SVW est inclus dans Sv V et est stable par B.

(ii) Le poids a de la droite f\bv Sv W est égal à: oc \v\bjb(lb).

Ceci va nous permettre de retrouver un résultat démontré par L. Manivel dans

[14]:
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PROPOSITION 4.4. Soit fi9 v, n trois partitions telles que le Gl(V)-module S^V
apparaît dans le pléthysme Sn(Sv V), alors pour tout entier b tel que /(v) < b < dim V,

on a:

\li>b\>\n>b\

De plus, en cas d'égalité la multiplicité de S^ V dans Sn(Sv V) est égale à la

multiplicité du Gl{Wx) x Gl(W2) -module simple S^bWx ®Stl>bW2 dans:

S. ,b(Sv WJQS, >K
(w2® © QA W,

v \ a,|a| |v| - 1 /
où Wx est un espace vectoriel de dimension b et W2 un espace vectoriel de dimension

dim V-b.

EXEMPLE 4.3. Pour illustrer cette expression de la multiplicité, regardons de

plus près le cas suivant: Soit /z, 7c, v telles que v =(n) et |/x>2| \n>k\ où k
dim Sn C2 n -f 1, alors une simple application de la proposition ci-dessus montre

que la multiplicité de S^V dans Sn(SnV) est égale à la multiplicité du
Gl{Wx) x G/(^2)-module simple: Sitx^2)Wl®S^l>2W2 dans:

avec dim Wx 2. Cette condition nous permet de décomposer le pléthysme
Sn^k(Sn Wx) (voir [3] et ses références). Il reste donc à décomposer Sn>k( Wx ® W2).

On voit ici apparaître le problème étudié à la section 4.2.

REFERENCES

[1] D. M. Akhiezer, Lie Group Actions in Complex Analysis, Aspects of Mathematics, Vieweg-Verlag
1995.

[2] M. Brion, Stable Properties of plethysm: on two conjectures of Foulkes, Manuscripta Math. 80

(1993) 347-371.
[3] M. Brion, On the représentation theory of 5/(2), Indag. Math. 5(1) (1994) 29-36.
[4] C. Carré and J. Y. Thibon, Plethysm and vertex operators, Adv. in Appl. Math. 13 (1992)

390-403.
[5] J. Dvir, On the Kronecker product of Sn characters, J. Algebra 154 (1) (1993) 125-140.
[6] J. Dvir, A Family of Z-Bases for the Ring ofSn and Applications to the Décomposition ofKronecker

Products, Europ. J. Combinatorics 75(1994) 449-457.
[7] W. Fulton and J. Harris, Représentation Theory. A first course, Graduate texts in mathematics,

Reading in mathematics, Springer-Verlag 1989.

[8] G. James and A. Kerber, The Représentation Theory of the Symmetric Group, Encyclopedia of
mathematics and applications vol. 16, Addison Wesley 1978.

[9] R. Harsthorne, Algebraic Geometry, Graduate texts in mathematics, Springer-Verlag 1977.



Une nouvelle propriété de stabilité du pléthysme 505

[10] H Kraft, Geometnsche Methoden in der Invanantentheone, Aspekte der Mathematik, Vieweg-Ver-
lag 1985

[11] H Kraft, G-vector bundles and the linearizatwn problem In Group Actions and Invariant
Theory, Proceeding of the 1988 Montréal Conférence held August 1-6, 1988, CMS Conférence
proceeding, vol 10

[12] I G MacDonald, Symmetnc functions and Hall polynomials, Oxford mathematical monographs,
Clarendon Press 1979

[13] L Manivel, Gaussian map and Plethysm, à paraîte dans les proceedings de la conférence annuelle

Europroj, Cantania, Sicile 1993

[14] L Manivel, Application de Gauss et pléthysme 2, prepnnt Institut Founer 1994

[ 15] P L Montagard, Une propriété de stabilité du pléthysme et quelques conséquences, Thèse de

doctorat, Université Joseph Founer, Grenoble 1995, disponible sur http //www-founer ujf-greno-
ble fr/IF html

[16] S H Weintraub, Some observations on plethysms, J of Algebra 129(1990) 103-114

Pierre-Louis Montagard
Ecole Normale Supérieure de Lyon
UMPA, Unité Mixte de Recherche du CNRS
46, allée d'Italie
F-69463 Lyon
e -mail pmontaga @umpa ens-lyon fr

Received December 5, 1995



Buchanzeigen

Eckart Wiehweg, Quasi-Projective Moduli for PoJarized Manifolds, Sprmger Verlag, 1995 320 p p
Sfr 149-

Introduction - Leitfaden - Classification theory and moduli problems - Notations and conventions

- 1 Moduli problems and Hilbert schemes - 1 1 Moduli functors and moduli schemes - 1 2 Moduli of
manifolds The main results - 1 3 Properties of moduli functors - 1 4 Moduli functors for Q-Gorenstem
Schemes - 1 5 A Grothendiecks's construction of Hilbert schemes - 1 6 Hilbert schemes of canonically
polanzed schemes - 1 7 Hilbert schemes of polanzed schemes - 2 Weakly positive scheaves and
vamshing theorems - 2 1 Covenngs - 2 2 Numencally effective scheaves - 2 3 Weakly positive sheaves

- 2 4 Vamshing theorems and base change - 2 5 Examples of weakly positive sheaves - 3 D
Mumford's géométrie invariant theory - 3 1 Group actions and quotients - 3 2 Lineanzations 3 3

Stable points - 3 4 Properties of stable points - 3 5 Quotients, without stabihty entena - 4 Stabihty
and ampleness entena - 4 1 Compactifications and the Hilbert-Mumford entenon - 4 2 Weak positivity
of line bundles and stabihty - 4 3 Weak positivity of vector bundles and stabihty - 4 4 Ampleness
entena - 5 Auxihary results on locally free sheaves and divisors - 5 1 O Gabber's extension theorem

- 5 2 The construction of covenngs - 5 3 Singularises of divisors - 5 4 Singulanties of divisors in fiât
familles - 5 5 Vamshing theorems and base change, revisited - 6 Weak positivity of direct images of
sheaves - 6 1 Variation of Hodge structures - 6 2 Weakly semistable réduction - 6 3 Applications of
the extension theorem - 6 4 Powers of duahzmg sheaves - 6 5 Polanzations, twisted by Powers of
dualizing sheaves - 7 Géométrie invariant theory on Hilbert schemes - 7 1 Group actions on Hilbert
schemes - 7 2 Geometnc quotients and moduli schemes - 7 3 Methods to construct quasi-projective
moduli schemes - 7 4 Conditions for the existence of moduli schemes Case (CP) - 7 5 Conditions for
the existence of Moduli schemes Case (DP) - 76 Numencal équivalence - 8 Allowing certain
singulanties - 8 2 Singulanties of divisors - 8 3 Déformations of canonical and log terminal singulanties

- 8 4 Base change and posivity - 8 5 Moduli and canonically polanzed vaneties - 8 6 Moduli of
polanzed vaneties - 8 7 Towards moduli of canonically polanzed schemes - 9 Moduli as algebraic
spaces - 9 1 Algebraic spaces - 9 2 Quotients by équivalence relations - 9 3 Quotients in the category
of algebraic spaces - 9 4 Construction of algebraic moduli spaces - 9 5 Ample line bundles on algebraic
moduli spaces - 9 6 Proper algebraic moduli spaces for curves and surfaces - Références - Glossary of
notations - Index

Irving Kaplansky, Selected Papers and Other Writings, Sprmger Verlag 1995, 257 pp Sfr 94 50 -
Préface - Bibhography of the publications of Irving Kaplansky - Introduction by Hyman Bass -

Maximal fields with valuations - Solution of the "problème des ménages" - A contribution to von
Neumann's theory of games - Lattices of contmuous functions - Locally compact rings - Rings with
a polynomial îdentity - The Weierstrass theorem in fields with valuations - Projections m Banach

algebras - A theorem on division nngs - A theorem on nngs of operators - The structure of certain

operator algebras - A generalization of Ulm's theorems - Modules over Dedekind rings and valuation

nngs - Products of normal operators - Any orthocomplemented complète modular lattice îs a

contmuous geometry - Projective modules - The homological dimension of a quotient field -
Composition of binary quadratic forms - Adjacent prime ideals - Superalgebras - Algebraic polar
décomposition - Nilpotent éléments m Lie algebras - The euchdean algonthm - Factonal monoids -
Partially ordered sets and the Burali-Forti Paradox - Comments on prime ideals m nonassociative nngs

- Nilpotent and unipotent éléments m Rickart nngs - A theorem on graded algebras - The number of
solution ofjt3+j'3 l m the integers modp - Commutativity revisited


	Une nouvelle propriété de stabilité du pléthysme.

