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Algorithmic unsolvability of the triviality problem for
multidimensional knots

ALEXANDER NABUTOVSKY AND SHMUEL WEINBERGER¥*

Abstract. We prove that for any fixed #n > 3 there is no algorithm deciding whether or not a given knot
f: S" > R"+2 is trivial. Some related results are also presented.

The classical result of W. Haken ([H]) is that there exists an algorithm deciding
whether or not a given knot in R? is trivial. Our main result (Theorem 1 below)
establishes that this result is not true for multidimensional knots. OQur proof is in
the same spirit as the algorithmic unsolvability of the homeomorphism problem for
manifolds of dimension >4, but there is still a subtlety that prevents us from
dealing with knots in 4-space as the discerning reader will see.

THEOREM 1. For any fixed n >3 there is no algorithm deciding whether or not
a given knot f: S” — R"*2 is trivial. Here f is either a PL-embedding of the boundary
of the standard (n + 1)-dimensional simplex into R"*? or a smooth embedding of S™
into R"*2 given by a (n + 2)-dimensional vector of trigonometric polynomials with
rational coefficients of the spherical angles.

REMARK. Formally speaking the term “algorithm” is used in this paper as a
synonym of the term “Turing machine”. However, according to the Church-Turing
thesis the class of Turing computable functions coincides with the class of functions
computable in an intuitive sense. Although this general version of the Church-Tur-
ing principle is just an empirical principle, the following more restricted version of
the Church-Turing principle can be rigorously proven: Take a programming
language such as FORTRAN, PASCAL, C, etc. Strip it of all data type but the
integer type. (Of course, the possibility to perform arithmetic computations with
integers implies also the possibility to perform arithmetic computations with
rational and algebraic numbers.) The class of Turing computable functions coin-
cides with the class of functions computable by programs written in this slightly
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restricted version of the chosen programming language (cf. [BJ]). Therefore, when
we need to prove the existence of a certain algorithm in our paper, we demonstrate
the existence of the algorithm in an intuitive sense making obvious the existence of
a program in one of the mentioning programming languages implementing this
algorithm.

Proof. To prove this result we are going to show that the halting problem for
Turing machines is many-to-one reducible to the triviality problem for multidimen-
sional knots. Then Theorem 1 becomes an immediate corollary of the algorithmic
unsolvability of the halting problem.

Let G be a finitely presented group and w € G be its element such that

() H,(G) =7,
(i) H,(G) = {0};
(iti) G is the normal closure of w.

M. Kervaire proved ([K]) that the conditions (i) —(iii) imply that for any n > 3 there
exists a knot f: S” - S"*2 such that its group is G.
Assume that K is a finitely presented group such that:

(a) Hy(K) = Hy(K) ={0};
(b) There exists an element & € K such that K/[h, K] = {0}.

Then the group G =K x Z and w = (h, 1) € G satisfy the mentioned above condi-
tions (i)—(iii). (Here 1 denotes the generator of Z). Indeed, (i) immediately follows
from the perfectness of K, and (ii) follows from the Kiinneth formula. To prove (iii)
observe that in G =G [the normal closure of (h, 1) (h, 0) = (e, —1), where e denotes
the identity in K. Hence the image of (4, 0) in G commutes with the image in G of
any element of G of the form (g, 0), g € K. Now the property (b) of K implies that
G is trivial, whence (iii) follows.

The property (a) guarantees that if n >4 then K is the fundamental group of a
(n + 1)-dimensional homology sphere. In fact, one can find in [K2] a construction
of such a homology sphere X"*! starting from a given finite presentation of K. A
detailed exposition of this construction can be found in the Appendix to [N1]. Z"+!
is constructed in [N1] as a non-singular algebraic hypersurface in R**2, Therefore,
if K is trivial, then X"*! is diffeomorphic to S"*!. If n =3, then the Markov
modification of the classical Dehn construction (cf. [BHP]) allows one to construct
a compact four-dimensional manifold M* such that its fundamental group is K and
its homology groups are isomorphic to corresponding homology groups of the
connected sum of several copies of $? x S2. (This manifold can be constructed as
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a non-singular algebraic hypersurface in R® defined as the zero set of a polynomial
with rational coefficients.) Moreover, if X is trivial (but the given finite presentation
of K is arbitrary) this construction yields the manifold M* diffeomorphic to the
connected sum of several copies of S x S°. Also, the property (a) of K and the
Hopf theorem imply that the Hurewicz homomorphism =, (M*) — H,(M?) is surjec-
tive.

Now we are going to describe an algorithm constructing for a given finite
presentation of a group K with properties (a), (b) a multidimensional knot in R"*?2
such that its group is K x Z. The resulting knot will be presented in both forms
(PL- and smooth polynomial) described in the text of Theorem 1. Moreover, if K
is the trivial group, then this algorithm produces a trivial knot.

One first constructs a smooth hypersurface X" *2=2"*! x §'in R"*3, if n > 4,
and M* x S, if n = 3, using the above-mentioned Kervaire construction from [K2]
or the Markov construction described in [BHP]. If n = 3 then one realizes a basis
of H,(M*) by embedded in M* x S! disjoint two-dimensional spheres and performs
surgeries killing the corresponding elements of n,(M* x S'). Denote the resulting
manifold by X°. (If K is the trivial group, then the resulting manifold has the
homotopy type of S* x S'. In this case Corollary on p. 297 of [S] implies that X*
is actually diffeomorphic to S* x S!. If n >4 and K is the trivial group, then by
virtue of the A-cobordism theorem X"*! x §! is also diffeomorphic to $”*! x S'.)
Note that for any Kand n >3 H,(X"*?) =- - - = H,(X"*?) = {0}. Now one realizes
the element (h, 1) € n; (X" *2) by an embedded smooth closed curve y and performs
the surgery killing this element and, thus, by virtue of (iii) the whole group
G =K x Z = m;(X"*?). Thus, the resulting manifold, which is constructed as a
hypersurface in R**3, will be diffeomorphic to $”*2. It is easy to see (cf. [K]) that
the axis of the handle D? x S™ attached during the last surgery will be the required
knot in the constructed S”*2. Denote this knot by Kn(K x Z). If K is the trivial
group, then y will be isotopic to the meridian of X”*+? = S"*+! x S'. Hence in this
case Kn(K x Z) will be trivial.

By a PL- or a semialgebraic trial and error algorithm (as in [ABB] or [N1]; see
also [BHP]) we can find a PL-homeomorphism of an appropriate triangulation of the
constructed pair (8”2, Kn(K x Z)) with a pair (64" *3, KnPL(K x Z)), where 64" +3
denotes the boundary of the standard (n + 3)-dimensional simplex and KnPL(K x Z)
denotes some its PL-submanifold; or a C2-smooth semialgebraic homeomorphism of
the pair (S”*2, Kn(K x Z)) with a pair (0B"*3, KnSm(K x Z)), where dB™* 3 denotes
the boundary of the unit ball centered at the origin in R**? and KnSM(K x Z)
denotes some its smooth semialgebraic submanifold of codimension 2. (The relevant
definitions from semialgebraic geometry can be found in [BCR].) A priori know-
ing that KnPL(K x Z) is PL-homeomorphic with S” (respectively, KnSm(K x Z)
is diffeomorphic with S”), we can find by a trial and error algorithm a



Algorithmic unsolvability of the triviality problem for multidimensional knots 429

PL-homeomorphism 84"*!— KnPL(K x Z) (respectively, a C2-smooth semialge-

braic homeomorphism S” — KnSm(K x Z)). It is easy now to modify the above-de-

scribed construction in order to obtain the required knot in R**2 (and not in S**?2).

(In the smooth case one can use the stereographic projection and a constructive

version of the Weierstrass approximation theorem to obtain a polynomial map f)
Now it is clear that Theorem 1 follows from the Lemma 2 below:

LEMMA 2. There exists an algorithm which for any given Turing machine T and
its input A constructs a finite presentation of group H with the following properties: (1)
There exists an element h e H such that H|[h, H] = {e}; (2) The second homology
group of H is trivial; (3) H is trivial if and only if T eventually halts when it starts
its work with A.

Proof. In many proofs of the algorithmic unsolvability of the word problem for
finitely presented groups one actually describes an algorithm constructing for a
given Turing machine 7 and its input A a finite presentation of a group G and a
word representing an element w € G such that w = e in G if and only if T eventually
halts, when it starts its work with the input A (cf. [R], [AC]). The Adian-Rabin
“witness” construction (cf. [M], pp. 13-14) enables one to construct a finite
presentation of a group G, such that G, is trivial if and only if w=e in G.
Moreover, if w # e in G then G embeds in G,,.. To get this finite presentation one
adds to the list of generators of G (denoted by x,, ..., x;) 3 new generators a, b, ¢
and to the list of relations of G the following (k + 3) new relations:

a~'ba=c'b~'chbc (1)
a~2b~'aba? = c~*bh'cbc? (2)
a3[w, bla® = ¢ 3bc? ()
a-C+dxbaB+D = c-G+dpcG+d  j_1 2 k. (4)

It is not difficult to see (and the proof is given in [M] on pp. 14—15) that the
normal closure of w in G, is G,.. (This fact is used in [M] to demonstrate that G,,
is trivial if w =e in G.) The proof uses only the relations (1)-(4) and goes as
follows: Obviously, [w, b] belongs to the normal closure of w. Hence, (3) implies
that b belongs to the normal closure of w. Now (4) implies that for any i x; belongs
to the normal closure of w, and (1) implies that ¢ belongs to the normal closure of
w. Now (2) implies that a belongs to the normal closure of w.

The relations (1) -(4) can be rewritten in the following equivalent form:
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[bca=!, bl =cb! (1)
[bc2a=2b"", a] =ca™! (2)
[c*a=3, [w, bll[w, b] = b (3)
x; =[a®+2c=C+d b,  i=1,2,... k. (4)

Using (3’) one can replace (1") by the following equivalent relation:

c[b, willw, b}, c*a=3[b, bca='] = e, (1"
and then replace (2') by the following equivalent relation:

alb, wl[[w, b, c2a=3|[b, bca~'[bc’a=%b !, a] =e. (2"

It is obvious that G, is perfect. Hence there exists the universal central extension
G, of G, (cf. [Mi], Theorem 5.7 or [Ros], Theorem 4.1.3). The universal central

extension of a perfect group with generators f, ..., f, and relators r;, .. .., r,, has
the following finite presentation; The set of generators is the same set f;,...,f,.
The set of relators includes all words [r;, f;], je{l,...,m}, ie{l,...,n} and, in

addition, n relators R, corresponding to the generators f;, and defined as follows:
R, is any product of powers of relators r; such that f; = R, comm; in the free group
F generated by f, . . ., f,, where comm, 1s a product of commutators of elements of
F. (The existence of Rf,- immediately follows from the perfectness of the group. A
proof of the fact that the above-described finite presentation is, indeed, a finite
presentation of the universal central extension of the considered group is a part of
the proof of the S. Novikov theorem on the algorithmic unrecognizability of S” for
n >5 and can be found in the Appendix to [N1]).

In particular, if one wishes to write down such a finite presentation for G,, it is
possible to take the left hand side of (2”) as R,, the product of b and the inverse
of the left hand side of (3") as R,, the left hand side of (1”) as R,, the product of
x; and the inverse of the right hand side of (4') as R, . Now the fact that the relators
Ry, Ry, R, R,,i€{l,... k} are among the relators of G, implies that formulae
(1)-(4) will be true also in G,,. Therefore one can prove that G, coincides with the
normal closure of w € G, exactly as it was done in [M] on pp. 14-15 for G, and
w e G,. Now, the perfectness of G, implies that w € G, can be represented as
a product of commutators of products of conjugates of powers of w. Hence,
G, /lw, G,] is trivial. It is well-known that the second homology group of the
universal central extension of a perfect group is trivial (cf. Lemma 2 in [K3] or
Corollary 4.1.18 in [Ros]). Finally note that the universal central extension of a
perfect group is trivial if and only if the group is trivial. Hence w =e in G if and
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only if G, is trivial. Thus, G, has properties (1)—(3) introduced in the statement of
Lemma 2. So we can take H =G,,. O

REMARK. An anonymous referee of this paper noticed that Lemma 2 can be
proven without using the notion of the universal central extension. Instead he
suggested to define the same group G, as the group with the same generators as G,,,
the relations (1')—(4’) and the further relations

[r,al =[r, b] =[r, c] =[r, x;,] =e, i=1,...,k, (5)

where r runs over the set of all relators of G. (It is not difficult to see that this finite
presentation is a simplification of the finite presentation of G, considered above.)
One can prove that G, = [w, G,] exactly as above. If w = e in G then w freely equals
to the product of conjugates by words in the x; of the elements r and their inverses.
By (5') w commutes with all generators of G,, in G,,. Therefore G,, = [w, G,] = {e}.
It was shown in [M] that if w # e in G, then G embeds into G,. Since G, is a
quotient of G,, the group G, is not trivial in this case. It remains to prove that
H,(G,) = 0. The referee has indicated a direct argument (similar to the proof of
Lemma 2.2 in [N3]) showing that this is, indeed, the case.

It is known that in the smooth category there exist non-trivial knots in
codimensions >2. However, the work of J. Levine [L] (see also [Hf]) implies the
algorithmic solvability of the triviality problem for smooth knots of codimension
>3. However, we shall see elsewhere that the general embeddability problem in
dimension >2 is algorithmically unsolvable even for simply connected manifolds
(and for reasons not related with fundamental groups).

Theorem 1 can be used to obtain some information about the geometry of the
space of trivial (in either PL or the smooth category) n-dimensional knots in R”*?
(or $”*?) for any n > 3. Here is an example of such application. Let for any n,
N Knot,(N) denote the space of all piecewise-linear maps f of S” (regarded as the
boundary of the standard n + 1-dimensional simplex) to R”*2, made of not more
than N linear pieces. Let TrivKnot,(N) < Knot,(N) denote the subset of Knot,(N)
formed by all maps f such that f(S”) has the trivial knot type. Obviously,
TrivKnot,(N) is the union of a family of connected components of Knot,(N). We
regard TrivKnot,(N,) and Knot,(N,) as subsets of, correspondingly, TrivKnot,(N,)
and Knot,(N,) for any N, > N,. We will demonstrate below that for any n > 3 and
all sufficiently large N TrivKnot,(N) is disconnected. Still, it is easy to see that
TrivKnot,(N) can have only finitely many connected components. Hence for any
n, N there exists M > N such that TrivKnot,(N) is comprised in a connected
component of TrivKnot,(M). (Indeed, we can choose a representative f; from every
connected component of TrivKnot,(N). For every pair i, j f;(S™) and f;(S") can be
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connected by an isotopy which can be approximated by an isotopy passing through
piecewise-linear maps of S” into R**? made of not more than M,; linear pieces
for some number M,;. One can now take max; ; M, for M.) Now for a fixed n
consider the minimal of such numbers M as a function of N. Denote this function
by Tr,(N).

THEOREM 3. Let n >3 be any fixed number. The function Tr,(N) cannot be
majorized by any Turing computable function of N.

Sketch of the proof. Assume that 7r,(N) can be majorized by a Turing
computable function of N. Now it is not difficult to construct an algorithm deciding
whether or not a given PL-knot in R"*?2 is trivial, thus obtaining a contradiction
with Theorem 1. The idea is that for any k Knot,(k) can be regarded as a
semi-algebraic set in an Euclidean space of a sufficiently large dimension. The
possibility to compute an upper bound 6,(N) for T7,(N) enables one to replace the
triviality problem for PL-knots by the equivalent problem of recognizing whether
or not a given point in Knot,(N) < Knot,(6(N)), where N is a given number,
belongs to the same connected component of Knot,(6,(N)) as the point, corre-
sponding to the standard unknotted embedding of S” into R**2 But it is well-
known that the problem of recognizing whether or not two given points are in the
same connected component of a given semi-algebraic set is algorithmically solvable
(cf. [BCR)). O

REMARK. The statement that 7rivKnot,(N) is disconnected is obviously
equivalent to the inequality 77,(N) > N. Hence Theorem 3 implies that for any
n > 3 and for an infinite set of values of N TrivKnot,(N) is disconnected. Moreover,
using Lemma 6 of [N4] instead of the mere algorithmic unsolvability of the halting
problem for Turing machines in the foundation of the proof of Theorem 3 one can
prove that not only 7r, cannot be majorized by any Turing computable function,
but that for any Turing computable function 6 and any n >3 T7r,(N) > 6(N) for all
sufficiently large N. As a corollary, we see that for any N > 3 for all sufficiently large
N TrivKnot,(N) is disconnected. (It is quite plausible, however, that TrivKnot,(N)
and TrivKnot,(N) are also disconnected for all sufficiently large N, and that this
statement admits a constructive proof.)

The methods of [ N3] show that for n > 3 the number of connected components
of TrivKnot,(N) grows at least exponentially with N. In fact for any recursive
function f the rank of the image of H,(TrivKnot,(N)) in Hy(TrivKnot,( f(N)))
grows exponentially.

Other results about non-computability in geometry and its applications in the
spirit of Theorem 3 can be found in [NO]-[N5], [ABB], [G, section 5.C].
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