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Algorithmic unsolvability of the triviality problem for
multidimensional knots

Alexander Nabutovsky and Shmuel Weinberger*

Abstract. We prove that for any fixed n ^ 3 there is no algorithm deciding whether or not a given knot

/: S" -> U"+ 2 is trivial. Some related results are also presented.

The classical resuit of W. Haken ([H]) is that there exists an algorithm deciding
whether or not a given knot in (R3 is trivial. Our main resuit (Theorem 1 below)
establishes that this resuit is not true for multidimensional knots. Our proof is in
the same spirit as the algorithmic unsolvability of the homeomorphism problem for
manifolds of dimension >4, but there is still a subtlety that prevents us from
dealing with knots in 4-space as the discerning reader will see.

THEOREM 1. For any fixed n > 3 there is no algorithm deciding whether or not
a given knot f: S" -? Rw + 2 is trivial. Hère fis either a PL-embedding of the boundary

of the standard {n -f \)-dimensional simplex into Un + 2 or a smooth embedding of Sn

into {Rw+2 given by a {n -f 2)-dimensional vector of trigonométrie polynomials with
rational coefficients of the spherical angles.

REMARK. Formally speaking the term "algorithm" is used in this paper as a

synonym of the term "Turing machine". However, according to the Church-Turing
thesis the class of Turing computable functions coincides with the class of functions

computable in an intuitive sensé. Although this gênerai version of the Church-Turing

principle is just an empirical principle, the following more restricted version of
the Church-Turing principle can be rigorously proven: Take a programming
language such as FORTRAN, PASCAL, C, etc. Strip it of ail data type but the

integer type. (Of course, the possibility to perform arithmetic computations with
integers implies also the possibility to perform arithmetic computations with
rational and algebraic numbers.) The class of Turing computable functions coincides

with the class of functions computable by programs written in this slightly

* Both authors were partially supported by NSF grants.
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restricted version of the chosen programming language (cf. [BJ]). Therefore, when

we need to prove the existence of a certain algorithm in our paper, we demonstrate
the existence of the algorithm in an intuitive sensé making obvious the existence of
a program in one of the mentioning programming languages implementing this

algorithm.

Proof. To prove this resuit we are going to show that the halting problem for
Turing machines is many-to-one reducible to the triviality problem for multidimensional

knots. Then Theorem 1 becomes an immédiate corollary of the algorithmic
unsolvability of the halting problem.

Let G be a finitely presented group and w e G be its élément such that

(i) JÏ,(G)=Z;
(ii) H2(G)={0};
(iii) G is the normal closure of w.

M. Kervaire proved ([K]) that the conditions (i)-(iii) imply that for any n > 3 there
exists a knot/: Sn-+Sn + 2 such that its group is G.

Assume that K is a finitely presented group such that:

(a) H1(K)=H2(K)={0};
(b) There exists an élément h eK such that K/[h, K] {0}.

Then the group G K x Z and w (A, 1) e G satisfy the mentioned above conditions

(i)-(iii). (Hère 1 dénotes the generator of Z). Indeed, (i) immediately follows
from the perfectness of K, and (ii) follows from the Kûnneth formula. To prove (iii)
observe that in G Gj the normal closure of(h, 1) (A, 0) (e, —1), where e dénotes

the identity in K. Hence the image of (A, 0) in G commutes with the image in G of
any élément of G of the form (g, 0), g e K. Now the property (b) of K implies that
G is trivial, whence (iii) follows.

The property (a) guarantees that if n > 4 then K is the fundamental group of a

(n -f l)-dimensional homology sphère. In fact, one can find in [K2] a construction
of such a homology sphère In+l starting from a given finite présentation of K. A
detailed exposition of this construction can be found in the Appendix to [NI]. En+1

is constructed in [NI] as a non-singular algebraic hypersurface in W + 2. Therefore,

if K is trivial, then rw + 1 is diffeomorphic to Sw + 1. If n =3, then the Markov
modification of the classical Dehn construction (cf. [BHP]) allows one to construct
a compact four-dimensional manifold M4 such that its fundamental group is K and
its homology groups are isomorphic to corresponding homology groups of the
connected sum of several copies of S2 x S2. (This manifold can be constructed as
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a non-singular algebraic hypersurface in U5 defined as the zéro set of a polynomial
with rational coefficients.) Moreover, if Kis trivial (but the given finite présentation
of K is arbitrary) this construction yields the manifold M4 diffeomorphic to the
connected sum of several copies of S2 x S2. Also, the property (a) of A' and the

Hopf theorem imply that the Hurewicz homomorphism n2(M4) -+H2(M4) is surjec-
tive.

Now we are going to describe an algorithm constructing for a given finite
présentation of a group K with properties (a), (b) a multidimensional knot in Un + 2

such that its group is K x Z. The resulting knot will be presented in both forms
(PL- and smooth polynomial) described in the text of Theorem 1. Moreover, if K
is the trivial group, then this algorithm produces a trivial knot.

One first constructs a smooth hypersurface Xn+2 In +1 x S1 in Un + 3, if n > 4,
and M4 x S1, if n 3, using the above-mentioned Kervaire construction from [K2]
or the Markov construction described in [BHP]. If n 3 then one realizes a basis

of H2(M4) by embedded in M4 x S1 disjoint two-dimensional sphères and perforais
surgeries killing the corresponding éléments of n2(M4 x S1). Dénote the resulting
manifold by X5. (If AT is the trivial group, then the resulting manifold has the

homotopy type of S4 x S1. In this case Corollary on p. 297 of [S] implies that X5

is actually diffeomorphic to S4 x S1. If n >4 and K is the trivial group, then by
virtue of the /z-cobordism theorem In + l x S1 is also diffeomorphic to Sn + 1 x S1.)

Note that for any ^Tand n > 3 H2(Xn + 2) • • • Hn(Xn + 2) {0}. Now one realizes
the élément (A, 1) e nl(Xn+2) by an embedded smooth closed curve y and perforais
the surgery killing this élément and, thus, by virtue of (iii) the whole group
G =K x Z nx(Xn+2). Thus, the resulting manifold, which is constructed as a

hypersurface in IRW + 3, will be diffeomorphic to Sn + 2. It is easy to see (cf. [K]) that
the axis of the handle D2 x Sn attached during the last surgery will be the required
knot in the constructed Sn+2. Dénote this knot by Kn(K x Z). If K is the trivial
group, then y will be isotopic to the meridian of Xn+2 Sn + l x S1. Hence in this
case Kn(K x Z) will be trivial.

By a PL- or a semialgebraic trial and error algorithm (as in [ABB] or [NI]; see

also [BHP]) we can find a PL-homeomorphism of an appropriate triangulation of the

constructed pair (Sn+2, Kn(K x Z)) with a pair (dA n + 3, KnPL(K x Z)), where dA n +3

dénotes the boundary of the standard {n -h 3)-dimensional simplex and KnPL(K x Z)
dénotes some its PL-submanifold; or a C2-smooth semialgebraic homeomorphism of
the pair (Sn+\ Kn(K x Z)) with a pair (dBn+\ KnSm(K x Z)), where dBn + 3 dénotes

the boundary of the unit bail centered at the origin in Rn+3 and KnSM{K x Z)
dénotes some its smooth semialgebraic submanifold of codimension 2. (The relevant
définitions from semialgebraic geometry can be found in [BCR].) A priori know-
ing that KnPL(K x Z) is PL-homeomorphic with Sn (respectively, KnSm(K x Z)
is diffeomorphic with S"1), we can find by a trial and error algorithm a
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PL-homeomorphism dAn +1 -? KnPL(K x Z) (respectively, a C2-smooth semialge-
braic homeomorphism Sn -> KnSm{K x Z)). It is easy now to modify the above-de-
scribed construction in order to obtain the required knot in Un+2 (and not in Sn+2).

(In the smooth case one can use the stereographic projection and a constructive
version of the Weierstrass approximation theorem to obtain a polynomial map /.)

Now it is clear that Theorem 1 follows from the Lemma 2 below:

LEMMA 2. There exists an algorithm whichfor any given Turing machine T and
its input X constructs a finite présentation ofgroup H with the following properties: (1)
There exists an élément h eH such that H/[h, H] {e}; (2) The second homology

group of H is trivial; (3) H is trivial if and only if T eventually halts when it starts
its work with À.

Proof In many proofs of the algorithmic unsolvability of the word problem for
finitely presented groups one actually describes an algorithm constructing for a

given Turing machine T and its input k a finite présentation of a group G and a
word representing an élément w eG such that w e in G if and only if T eventually
halts, when it starts its work with the input A (cf. [R], [AC]). The Adian-Rabin
"witness" construction (cf. [M], pp. 13-14) enables one to construct a finite
présentation of a group Gw such that Gw is trivial if and only if w e in G.

Moreover, if w ^ e in G then G embeds in Gw. To get this finite présentation one
adds to the list of generators of G (denoted by xu xk) 3 new generators a, b, c

and to the list of relations of G the following (k -h 3) new relations:

a-xba=c-xb~xcbc (1)

(2)

(3)

/ 1,2,.. .,£. (4)

It is not difficult to see (and the proof is given in [M] on pp. 14-15) that the

normal closure of w in Gw is Gw. (This fact is used in [M] to demonstrate that Gw

is trivial if w =e in G.) The proof uses only the relations (l)-(4) and goes as

follows: Obviously, [w, b] belongs to the normal closure of w. Hence, (3) implies
that b belongs to the normal closure of w. Now (4) implies that for any i xt belongs
to the normal closure of w, and (1) implies that c belongs to the normal closure of
w. Now (2) implies that a belongs to the normal closure of w.

The relations (l)-(4) can be rewritten in the following équivalent form:
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[bca~\b]=cb-1 (V)

[bc2a-2b-\a]=ca-1 (2')

[c3a~39[w9b]][w9b]=b (3')

xt [a0 + »c-* + '\b], i l,2,...,fc (4')

Using (3') one can replace (T) by the following équivalent relation:

c[b, w][[w9 b]9 c3a~3][b9 bca~l] e, (1")

and then replace (2') by the following équivalent relation:

a[b9 w][[w9 b], c3a~3][b9 bca-l][bc2a~2b-\ a] e. (2")

It is obvious that Gw is perfect. Hence there exists the universal central extension
Gw of Gw (cf. [Mi], Theorem 5.7 or [Ros], Theorem 4.1.3). The universal central
extension of a perfect group with generators/i9... 9fn and relators rl,...., rm has

the following finite présentation; The set of generators is the same set fl9... ,fn.
The set of relators includes ail words [rJ9ft], j e {1,..., m}, i e {1,..., n) and, in
addition, n relators Rf{9 corresponding to the generators/, and defined as follows:

Rft is any product of powers of relators r, such that/ Rfi comml in the free group
F generated by /i ,...,/„» where comml is a product of commutators of éléments of
F. (The existence of Rfi immediately follows from the perfectness of the group. A
proof of the fact that the above-described finite présentation is, indeed, a finite
présentation of the universal central extension of the considered group is a part of
the proof of the S. Novikov theorem on the algorithmic unrecognizability of Sn for
n > 5 and can be found in the Appendix to [NI]).

In particular, if one wishes to write down such a finite présentation for Gw9 it is

possible to take the left hand side of (2") as Ra9 the product of b and the inverse

of the left hand side of (3') as Rb9 the left hand side of (1") as Rc9 the product of
xt and the inverse of the right hand side of (4') as RXi. Now the fact that the relators
Ra9 Rb9 Rc9 RXi9 i € {1, ...,&} are among the relators of Gw implies that formulae

(l)-(4) will be true also in Gw. Therefore one can prove that Gw coincides with the
normal closure of w e Gw exactly as it was done in [M] on pp. 14-15 for Gw and

weGw. Now, the perfectness of Gw implies that weGw can be represented as

a product of commutators of products of conjugates of powers of w. Hence,

Gw/[w9Gw] is trivial. It is well-known that the second homology group of the

universal central extension of a perfect group is trivial (cf. Lemma 2 in [K3] or
Corollary 4.1.18 in [Ros]). Finally note that the universal central extension of a

perfect group is trivial if and only if the group is trivial. Hence w e in G if and
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only if Gw is trivial. Thus, Gw has properties (l)-(3) introduced in the statement of
Lemma 2. So we can take H ~GW.

REMARK. An anonymous référée of this paper noticed that Lemma 2 can be

proven without using the notion of the universal central extension. Instead he

suggested to define the same group Gw as the group with the same generators as Gw9

the relations (l')-(4') and the further relations

[r,a] =[r,6] [r,c] [r,x,] e, i - 1,.. .,fc, (5')

where r runs over the set of ail relators of G. (It is not difficult to see that this finite
présentation is a simplification of the finite présentation of Gw considered above.)
One can prove that Gw [w, Gw] exactly as above. If w e in G then w freely equals
to the product of conjugates by words in the xt of the éléments r and their inverses.

By (5') w commutes with ail generators of Gw in Gw. Therefore Gw [w, Gw] {e}.
It was shown in [M] that if w ^e in G, then G embeds into Gw. Since G^ is a

quotient of G^, the group Gw is not trivial in this case. It remains to prove that
H2{GW) 0. The référée has indicated a direct argument (similar to the proof of
Lemma 2.2 in [N3]) showing that this is, indeed, the case.

It is known that in the smooth category there exist non-trivial knots in
codimensions >2. However, the work of J. Levine [L] (see also [Hf]) implies the

algorithmic solvability of the triviality problem for smooth knots of codimension
>3. However, we shall see elsewhere that the gênerai embeddability problem in
dimension >2 is algorithmically unsolvable even for simply connected manifolds
(and for reasons not related with fundamental groups).

Theorem 1 can be used to obtain some information about the geometry of the

space of trivial (in either PL or the smooth category) «-dimensional knots in Rn+2

(or Sn + 2) for any n > 3. Hère is an example of such application. Let for any n,
N Knotn(N) dénote the space of ail piecewise-linear maps/of Sn (regarded as the

boundary of the standard n -f 1-dimensional simplex) to R" + 2, made of not more
than N linear pièces. Let TrivKnotn(N) czKnotn(N) dénote the subset of Knotn(N)
formed by ail maps / such that f(Sn) has the trivial knot type. Obviously,
TrivKnotn(N) is the union of a family of connected components of Knotn(N). We

regard TrivKnotn(Ni) and Knotn(Nx) as subsets of, correspondingly, TrivKnotn(N2)
and Knotn{N2) for any N2>Nl. We will demonstrate below that for any n >. 3 and
ail sufficiently large N TrivKnotn(N) is disconnected. Still, it is easy to see that
TrivKnotn(N) can hâve only finitely many connected components. Hence for any
«, N there exists M >N such that TrivKnotn(N) is comprised in a connected

component of TrivKnotn{M). (Indeed, we can choose a représentative/ from every
connected component of TrivKnotn{N). For every pair Ujft{Sn) and^(Sn) can be
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connectée by an isotopy which can be approximated by an isotopy passing through
piecewise-linear maps of Sn into IRW + 2 made of not more than MtJ linear pièces

for some number MtJ. One can now take msixlJMlJ for M.) Now for a fixed n

consider the minimal of such numbers M as a fonction of N. Dénote this function
by Trn(N).

THEOREM 3. Let n >3 be any fixed number. The function Trn(N) cannot be

majorized by any Turing computable function of N.

Sketch of the proof Assume that Trn{N) can be majorized by a Turing
computable function of TV. Now it is not difficult to construct an algorithm deciding
whether or not a given PL-knot in Un+2 is trivial, thus obtaining a contradiction
with Theorem 1. The idea is that for any kKnotn(k) can be regarded as a

semi-algebraic set in an Euclidean space of a sufficiently large dimension. The

possibility to compute an upper bound 9n(N) for Trn(N) enables one to replace the

triviality problem for PL-knots by the équivalent problem of recognizing whether

or not a given point in Knotn(N) c= Knotn(Q(N)), where TV is a given number,
belongs to the same connected component of Knotn(0n(N)) as the point, corre-
sponding to the standard unknotted embedding of Sn into Un + 2. But it is well-
known that the problem of recognizing whether or not two given points are in the

same connected component of a given semi-algebraic set is algorithmically solvable

(cf. [BCR]). D

REMARK. The statement that TrivKnotn{N) is disconnected is obviously
équivalent to the inequality Trn(N) > TV. Hence Theorem 3 implies that for any
n>3 and for an infinité set of values of N TrivKnotn(N) is disconnected. Moreover,
using Lemma 6 of [N4] instead of the mère algorithmic unsolvability of the halting
problem for Turing machines in the foundation of the proof of Theorem 3 one can

prove that not only Trn cannot be majorized by any Turing computable function,
but that for any Turing computable function 0 and any n > 3 Trn(N) > 0(N) for ail
sufficiently large TV. As a corollary, we see that for any TV >3for ail sufficiently large
TV TrivKnotn(N) is disconnected. (It is quite plausible, however, that TrivKnotx(N)
and TrivKnot2(N) are also disconnected for ail sufficiently large TV, and that this
statement admits a constructive proof.)

The methods of [N3] show that for n ;> 3 the number of connected components
of TrivKnotn(N) grows at least exponentially with TV. In fact for any recursive
function / the rank of the image of H0(TrivKnotn(N)) in H0(TrivKnotn(f(N)))
grows exponentially.

Other results about non-computability in geometry and its applications in the

spirit of Theorem 3 can be found in [N0]-[N5], [ABB], [G, section 5.C].
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