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Local structure of the moduli space of vector bundles over curves

YVES LAszLo*

0. Introduction

Let X be a smooth, projective and connected curve (over an algebraically closed
field of characteristic zero) of genus g(X) > 2. Let x be a (closed) point of X and
SUx(r, d) the moduli space of semi-stable vector bundles on X of rank r > 2 and
determinant (O(dx). As usual, the geometric points of SUx(r, d) correspond to
polystable bundles, namely direct sums E = @E, where E,; is stable of slope
H(E;) =d|r (and ®; det(E,) = O(dx)).

DEFINITION. The number of stable summands in the preceding sum is called
the length of the polystable bundle E.

The singular locus of SUx(r, d) consists exactly of the non stable points (except
if r =g(X) =2 and d even). In this case, SUx(r, d) =P? [N-R1]). In particular,
except in the exceptional case above, SUx(r, d) is smooth if and only if r and d are
relatively prime. General facts about the action of reductive groups ensure that
SUx(r, d) is Cohen-Macaulay [E-H], normal and that the singularities are rational
[B]. The principal aim of this paper is to give additional information about the
singularities, essentially the description of the completion of the local ring at a
singular point of SUx(r, d) and to compute the multiplicity and the tangent cones
at those singular points E which are not too bad, i.e. /(E) =2 (or equivalently
Aut(E) =G,, x G,,). Further, we give a complete description in the rank 2 case
(corollaries III1.2 and II1.3 and theorem IV.4).

As recalled with some details (following a request of the referee), Narasimhan
and Ramanan [N-R2] have a long time ago discovered the link between the rank 2
vector bundles on a canonical curve X of genus 3 and the geometry of the Kummer
variety x(X) of JX. The crucial point is that SUx(2) is in this case canonically
isomorphic to the so called Coble quartic.c We get the local form of this

* The author was partially supported by the European Science Project “Geometry of Algebraic
Varieties”, Contract no. SCI-0398-C(A).
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374 YVES LASZLO

quartic and prove that the x(X) is schematically defined by 8 cubics, the partials
derivatives of the Coble quartic (theorem IV.6), although the corresponding
homogeneous ideal is not generated by these cubics.

One could also give partial information at least if Aut(E) is a torus, or by
using results of [P], if Aut(E) = Gl, (k) (the latter case meaning that E is a twist
of the trivial bundle). But it seems to be difficult (and somewhat messy) to
calculate for instance the multiplicity. In the last part of the paper, we compute
the multiplicity of a generalized theta divisor of SUy(2, ¢) at a point [L@®L"],
where L? # (. In fact, this computation could be done with only minor changes
for a point E of any rank with det(E) = 0 and Aut(E) =G, x G,,.

Let us also mention that similar results could be obtained exactly in the same
way for certain surfaces. But, all the future applications that we have in mind as
well as the applications that we have in our hand are for curves. Therefore, we
have restricted ourselves to the case of curves.

Notations and conventions

All the schemes are of finite type over an algebraically closed field k of
characteristic p # 2. Except in the first section, it will be assumed of characteris-
tic zero. By point we mean closed point. The scheme P(V) is the projective space
Proj(Sym VV) of lines of V and V will also denote the pointed affine space
Spec(Sym VV) = Spec k[ V] (notice that k[ V] is the coordinate ring of V).

The notations X (resp. x) will denote a smooth projective connected
curve over k of genus g >2 (resp. a closed point x of X). If ¥ is a line bundle
on a scheme, the linear system PHY(%) is denoted by |.#| and the dual projec-
tive space by |#|'. Fix also two integers r >2 and d. Finally, E will always
denote a rank r polystable bundle on X of determinant dx and SUx(r,d) is
the moduli space of rank r semi-stable vector bundles of determinant @(dx) on
X.

I. Around the Coble quartic

In this section, we first recall for the non-expert reader some facts about the
geometry of the Kummer variety (essentially due to Mumford, Kempf and
Khaled). We explain then the link between the Coble quartic and the Kummer
of the jacobian JX of a canonical genus 3 curve X on one hand, and, in the
other hand the identification of the Coble quartic and SUx(2,0). Finally, we
state our result about the Coble quartic.
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Generalities on linear system on abelian varieties

Let A be an abelian variety and L an ample line bundle on it. It is well-
known that L” is very ample if n > 3. A more subtle result due to Kempf (see
[Kh1]) says that the products

H°(A, L") ® H(A, L™) - HY%A, L"*™)

are surjective if n>2 and m >3. In particular, the complete linear system
A —|L"|v is projectively normal. Let I, be the corresponding homogeneous ideal

I, = Ker( @ Sym* HYA, L") » @ HY(A, L) )
k=0 k=0
Kempf and Khaled (cf. [Kh1]) have also shown that I, is generated by quadrics
and cubics if » >3 and by quadrics if » >4.
The situation is very different for n = 2. In this case, the linear system |L? is
in general only base point free.

From now on, A is a principally polarized irreducible abelian variety

Let ® be a symmetric divisor representing the polarization. Then the line
bundle .¥ = (0(20) does not depend on the particular choice of such a @. Then,
the canonical morphism

Ka: A—|&|

induces an embedding of A/ +1 in |Z|". The image k(A) of k, is the Kummer
variety of A. The line bundle % is canonically {+ 1}-linearized (as the pull-back
of kX0(1) and one has

H°(1(A), O(n)) = HY(A, £7)*
where HY(A, #£™)* is the invariant part of H%(A, #") under —1.

Remark. If k =C, the link with the classical geometry of theta functions can
be explained as follows. The Chern class ¢,(¥) e H(A, Z) give a symplectic non

degenerate Z-bilinear form on H, (A, Z) which depends only on the polarization
[#]. The abelian variety A is the quotient of Ty(A) by the lattice I' = h,(A, Z).
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Choose a symplectic basis (y;,...,7) of I'. Then (y,,...,7,) is a basis of
To(A) which therefore will be identified to C% The matrix t of coordinates of
(Yg+15---5Y2) in C# is called the period matrix and one has by construction
A = C8/(Z# @ tZ#). With this description of A, the space H°(A, #") becomes the
space of order 2n theta functions (with respect of 1). The sections of
H%(x(A), O(n)) are the even theta functions of order 2n.

Notice the formula dim H%(x(A), O(n)) =28~ (n& + 1) (see [C], page 56 in the
case k = C and formula (+) below in general).

The theorem of Mumford-Koizumi [Ko] says that the Kummer variety is
projectively normal if and only if A has no vanishing theta-nulls. Geometrically,
this condition means that among the 2% symmetric theta divisors @ representing
the principal polarization, there is no @ vanishing at the origin with even multi-
plicity. In the case where A is the jacobian of a smooth curve X, this condition
simply means that there is no effective even theta-characteristic on X.

Suppose now that A has no one vanishing theta-null

The number A(n, g) of independent degree n hypersurfaces containing x(A) is
28 -1
h(n, g) =( +: )—Zg“(ng+ D).

In particular x(A) is never contained in a quadric. If g =2, one has A(3,g) =0
and Ah(4,g) = 1. the Kummer surface is a quartic surface with 2% =16 nodes.
Suppose now g > 3; then A(3, g) >0 and «(A) is always contained in cubics. Let
I, (resp. #£,) be the homogeneous ideal (resp. the sheaf of ideal) of x(A); by
definition, one has

I,= Ker( @ Sym* H%(A, &) » @ HY(A, gk)’L)
k>0 k>0

and the dimension of the degree § component I,[d] = dim H%x,, O(3)) of 1, is
h(g, 5). One has the

THEOREM 1 ((Kh 2]). With the notations above, 1, is generated by quartics
in degree >4.

In particular, the ideal £, is itself generated by quartics.
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Remark. When g =3 or A is generic, this theorem was known from Wirtinger
[Wi].

If g=3: the Kummer variety is embedded in P"=|%|'. In this case,
dim I,[3] =8 and dim I,[4] = 70 > 64 = dim I,[3]. dim H°(P?, ¢(1)) which shows
that I,[4] is not generated by cubics. '

(2) One can ask the following natural questions:

(2.1) Is the Kummer k(A) variety set-theoretically defined by the cubics of
1,[3]?

(2.2) Is the Kummer x(A) variety schematically defined by the cubics of 1,[3]?
In other words, is the canonical map I,[3] ® O( —3) — £ 4 surjective?

The dimension 3 case: the Coble quartic

Let us first recall general facts from [M] about the Mumford group G(.%), the
group of pairs («, @) where o is an isomorphism of (%) on £ (r, is the
translation by a). The morphism (o, a) — a surjects onto A, and one has a
canonical exact sequence

1 -k*->G(F)—-A;, -0

with k* central. Let V be a G(%)-module. We say that V is of level n if
0 <dim(V) <o and k* acts on V by ¢+ ¢". If V is irreducible, there exist an
unique integer n such that V is of level n. The basic fact about the representation
theory of G(.%) is the following classical observation:

LEMMA 3. Let w be an odd number. There exists only one (up to isomorphism)
irreducible G( ¥)-module V,, of level w. Moreover, if V is any G(£)-module of level
w, then V is a sum of copies of V(w).

Let us explicit the representation V(w). Let G(2) be the group which is set
theoretically the product k* x F§ x F§ with the group law

A &8 (un, ) ==y, ¢ +n, & +1).

Because the characteristic is #2, the group G(.%) is (non canonically) isomorphic
to G(2): an isomorphism is called a level 2 theta structure on A.
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Remark. If k = C, the polarization can be seen as a symplectic non degener-
ate form on H, (A, Z) (for instance, it is the Chern class of a symmetric divisor
© as above). The choice of a symplectic basis # of H,(A, Z) defines the period
matrix T of A and identifies A and C#/(Z2 + tZ5). Moreover # defines canoni-
cally a theta structure on .Z.

From now on, A is endowed with a level 2 structure

Then V(w) can be viewed as Map(F5, k) with the action given by the
formula

(4,68 f) =(=D*22f(v +¢), veF, feMap(F k).

Of course, H°(A, &) is a level 1 module of dimension 2% = dim Map(F%, k).
Therefore, there exists a G(.%) isomorphism V(1) 5 H%A, %) well defined up to
a non zero scalar. The action on +1 is given by the inverse formula (p. 331 of
[M]): this is just the multiplication by —1 on F5. More generally, using a level
2n theta structure, H%(A, #")* can be identified with the even functions on
(Z/2nZ)*# and we get the formula

dim HY(A, M+ =28"'(n® + 1). (+)
For v e F%, let Z, € V(w) be the characteristic function of {v}. We have then
(A8 Z, =(=1)&+0m7

Remark. If k =C and A = C8/(ZE@1Z?) as above, H(A, %) is canonically
identified with the space of level 2 theta function with respect of v and Z,
corresponds to the theta function with characteristic (v, 0)

v
9[ 0]( 2z, 21).

We now focus our attention to the 3-dimensional case. Because A is assumed to
be irreducible with no vanishing theta-nulls, A is the jacobian JX of canonical
curve X of genus 3.
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Then I;x[3] is a level 3 G(¥)-module of dimension 8 and therefore isomor-
phic to V(3). Let C, e I;x[3] be the cubic corresponding to Z,. The cubic C, is
invariant under the subgroup I= {1} x {0} ></F\§ of G(2) = G(Z). Notice that a
monomial Z,Z,Z,, is invariant under I if and only if w =u + v. We think to F3
as P?(F,) u0. It follows that C, is of the form

Y Z,Z22+ Y o Z¢

a,eF3 deP2F;

where Z¢ =11y, ,.,Z,. The group I acts on C, by (1,0, ) — (—1)**> and there-
fore Z, - C, is also invariant under I and can be written using the coefficients a,
and oy of C,. Let C be the quartic

zZ,-C,.

By direct computation, one observes dC/0Z, = 4C,.
By construction, C is invariant under {1} x F§ x {0} which gives 0C/0Z, = 4C,

for all c e F5. In particular, there exists a quartic containing x(JX) in its singular
locus. Notice that C being invariant under I as Z, - C, is, the quartic div(C) of
|Z|" is invariant under the whole G(¥). Let us prove the

LEMMA 4. The Coble quartic is the unique G()-invariant quartic in |L|"
containing k(JX) in his singular locus.

Remark. This is probably the meaning of the assertion (6) page 106 of [C].
Proof of the lemma: let F be an equation of a G(.%)-invariant quartic. There
exists a character y of G(.%) such that (with the notations above)

F((4,¢ 8 - Z,) = (4, & §)) - F(Z,). (1)

Let p € F5 such that x(1, 0, §) =(—1)"¢ Differentiating (1) with respect of Z,
gives that there exists a scalar 4, such that

0F[0Z,=A,0C[0Z,,,. (2)

Because p # 2, the endomorphism given by Z,—Z,, , is semi-simple and the
system (2) becomes
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dF =dC M (3)

where M is a semi-simple matrix. After eventually replacing F and C by projectively
equivalent hypersurfaces, one can assume that M is diagonal. In this case, (3) gives
that F and some multiple of C differs by a p*-power of some form G. By degree
consideration (using p # 2), one obtains G = 0. O

To go further, one has to construct geometrically the Coble quartic: this has
been done in [N-R2].

Rank 2-vector bundles and the Coble quartic

Let X be a canonical curve of genus 3 (recall that p = char(k) # 2). Let A be the
jacobian JX. Let ©® be the (canonical) theta divisor on Pict~!(X). If
[E] e SUx(2, 0), the locus

©p = {L e Pict~ /(X) | HY(X, EQ L) #0}
is a divisor in PH?(Pict ~!(X), 0(2©)) and the G(0(2®))-equivariant morphism @y

. (SUx(2,0) — PHY(Pict~(X), 0(26))
?xE —  Og

is an embedding onto a quartic C(X) by [N&R]. The Riemann’s bilinear rela-
tions furnish a canonical identification |Z|¥ =PH(Pic*~'(X), 0(20)) and the
corresponding G(.%)-equivariant morphism ¢x:SUx(2,0)c|#|¥ restricts on
Sing(SUx(2,0)) = A/ + 1 to the Kummer morphism x;x.

Exercise. Suppose that k is of characteristic 0. Using the Verlinde formula,
prove directly that ¢y is an embedding. Notice that this formula was unknown
when Narasimhan and Ramanan stated and proved their theorem

Notice that ¢x[Sing(SUx(2, 0))] = x(JX). In particular C(X) is a quartic singu-
lar exactly along x(JX). The G(¥)-invariance and the lemma above shows then
that C(X) is the Coble quartic. In fact, at least if k is of characteristic zero, a
stronger statement due to Beauville than the lemma 4 is true.

PROPOSITION 5 (Beauville). Assume that p =char(k) is zero. The Coble
quartic is the unique quartic in |£|" containing k(JX) in its singular locus.
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Sketch of proof. let F be a quartic singular along x(JX). Notice that C is not
a cone. The condition to be a cone being algebraic, the generic member of the
pencil (C + tF),., is not a cone. In particular, one can assume that F is not a
cone. The partial derivatives of C are then a basis of the cubics containing the
Kummer. This fact together with the fact that F is not a cone proves that F and
C have the same jacobian ideal. A result of [Do] ensures that F and C are
related by an invertible linear transformation T. Because C is singular exactly
along x(JX), the linear morphism T leaves x(X) invariant. An easy adaptation of
the Torelli theorem proves that T is induced by an element of Aut(X) which
leaves obviously div(C) = @x(SUx(2, 0)) invariant. O

The beautiful corollary of the equality Sing(C(X)) = x(JX) is the

THEOREM 6 [N-R2]. The Kummer variety of the jacobian of a genus 3
canonical curve is set theoretically defined by cubics.

This gives a positive answer to the question (2.1).
More surprisingly (recall that I;x[3] does not generate I;x[4]), the main result
of the present paper is

THEOREM 1V.6. Assume that p = char(k) is zero. The scheme defined by the
eight partial derivatives of the Coble quartic is reduced.

The proposition and the fact that these eight cubics defines set-theoretically
the Kummer variety of x(JX) proves the

COROLLARY. Assume that p = char(k) is zero. Let X be a canonical genus
3 curve over. The sheaf of ideals S ;x of the Kummer variety k(JX) is generated by
cubics.

These facts will be proved in section IV and give a positive answer to the
question (2.2).

II. Local structure of SUy(r, d) and classical invariant theory

From now, k is of characteristic zero. If (X;), .~ (resp. (;), <n) are indeter-
minates (resp. non negative integers), let me denote by X, n and X” the N-tuple
X =(X,), the multi-index n = (n;) and the product X* =T, x% respectively. For
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V a finite dimensional vector space with dual V", the ring k[ V] (resp. £[[V]]) is the
polynomial ring Sym V" (resp. its completion at the origin).

It is well known (see [S] for instance) that the key ingredient to analyse the local
structure of SUx(r, d) is the étale slice theorem of Luna. Let us recall this analysis.

Take n big enough such that E(nx) is globally generated and has no H' for every
semi-stable rank r vector bundle E of degree d (every n such that rn +d >r(2g — 1)
has this property). Let y = y(E(nx)) be the corresponding Euler-characteristic. In
Grothendieck’s scheme Z2uot which parametrizes quotients

O(—nx)®* » E,

let 2 be the open set whose closed points correspond to such quotients with the
following properties:

(i) E is semi-stable of rank r and degree d.
(il) HY(X, E(nx)) =0 and the natural map H(X, 0®%) - H°(X, E(nx)) is onto.

Let & be the universal quotient bundle on 2. The scheme 2 is smooth and the
semi-simple group G =PGL, acts on it. The moduli space SUx(r, d) is the GIT
quotient of 2/G.

For (E;) be a set of a vector bundles over X, the kernel of the trace map

Ker(@Ext!(E,, E) — 5 H(X, 0))
will be denoted by (@®Ext!(E,, E,)),.

Let ¢ =[O(—nx)®* - E] a point of 2 and gr the corresponding graded object.
By the very definition of semi-stability, there exists a G-stable open affine neigh-
borhood @Q and the fibre of @ — Q/G at [E] contains a unique closed orbit G(q).
This orbit is either characterized as being of minimal dimension, or as having an
isotropy group G, = Aut(E) of maximal dimension: one checks that this exactly
means that E is polystable. The corresponding orbit is closed. The closedness of the
orbit and the smoothness of 2 corresponding to E allows us to use the Luna étale
slice theorem (more precisely the remarque page 97 of [Lu]) which gives precisely
the:

. THEOREM 1 (Luna). Let E be a polystable of rank r and determinant ((dx).
There exists an étale neighborhood of (Ext{(E, E)/Aut(E), 0) (resp. (SUx(r, d), E))
which are isomorphic.
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Remarks 2. (a) The group Aut(E) acts by functoriality on both arguments of
Exty(E, E). Notice that the scalars acts trivially and therefore

Exty(E, E)/Aut(E) = Ext}(E, E)/Gg
where
det
Gg = Ker{Aut(E) — G,, }.

(b) We’ll say for short that SUx(r, d) is étale locally isomorphic to Ext)(E, E)/
Gg at E.
(¢) By definition, one has

Exty(E, E)/Gg = Spec(Ag)
where Ag is the ring of polynomial maps on Ext{(E, E) invariant under Gg.
Unless otherwise stated, all bundles will be polystable

COROLLARY. The local ring @SUX(,,‘,),[E] depends only on the numerical invari-
ants of X and E.

Suppose once for all that E is non stable (/(E) > 1). One has of course the
inequalities

1<dimGg<r?—1 (1)

with equality on the left hand side (resp. right hand side) of (1) if Gg =G,, (Case
1) (resp. Gg = Sl, (Case 2)). Let’s examine these 2 cases.
1. Case 1: Gg=G,,

In this case, E is a direct sum E =E, @ E, where E, is stable of slope d/r, rank
r; #0 and E, 2 E,. Each element (x,, a,) € Gg(k) acts by multiplication by o, - o

on each factor Ext'(E,, E;) of

Ext!(E, E) = ®Ext!(E,, E)).
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Let

rir;(g —1) ifi#j

d,; = dim Ext'(E;, E)) = {,_,_(g —D+1 ifi=j
v

and X§;, k=1,...,d,; a basis of Exty(E,, E;)".

The ring
Ag ck[Ext'(E,E)] =k[X},,1<i,j<n 1<k <d,]]

is the ring generated by (Ext'(E,, E,) ® Ext'(E,, E,))s and the products
Xi,-Xhy, 1<k, 1<d;;).

Let & be the affine cone of the Segre variety
P(Ext'(E,, E,)) x P(Ext!(E,, E,)) =« P(Ext!(E,, E,) ®, Ext!(E,, E,)).
PROPOSITION 1. There is an isomorphism
Spec(Ag) > (Ext'(E,, E,) @ Ext!(E,, E,)), x &.

Note that Spec(Ag) is a cone.

COROLLARY 2. With the previous notations, SUx(r, d) is étale locally isomor-
phlc to (Extl(E] . El) @Extl(Ez, Ez))o x% at E= E] @ Ez.

Using furthermore that the multiplicity at the origin of the affine cone of a
projective variety is just its degree, one gets the

COROLLARY 3. The Zariski tangent space is
(Ext'(E,, E;) @ Ext'(E,, E,)), ® (Ext'(E;, E,) ®; Ext'(E,, E,)).
Moreover the multiplicity of SUx(r, d) at [E] is

2. du—z)

mult[El(SUx (r, d)) = ( do—1
1,2

(recall that d, , =r, - r,(g — 1)).
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2-d,—2
di,—1
Using that the singular locus of Sing SUx(r, d) is closed in SUx(r, d), one obtains
easily in this way another proof of the fact that Sing SUx(r, d) is the non stable

locus, except if g =r =2 and d =0.

Remark 4. Note that ( )=1 if and only if g=2 and r,=r,=1.

IV. Case 2: G =SI,

In this case, E = L® where L® = (). Using a translation by L~! which induces
an automorphism of SUx(r, 0), one may assume L = (. The ring Ay is the ring of
polynomial maps on M,(r)¢ invariant under Sl,. This group SI, acts diagonally by
conjugation on each factor M, (r), which is the space of traceless matrices of size .
For general r, Procesi [P] and Rasmyslev [Ras] have obtained the following
description of the first 2 syzigies of Ag:

— Generators: for every sequence i = (i, . . . , i) of integers of [1, ..., g], let
t; be the invariant polynomial map
- M,(r)¢ - k
XK X) e TR, X))

Then the ¢; with N({) <2¢ — 1 form a system of generators.

— Relations between all the #;s: Let Px be the characteristic polynomial of the
general matrix X. The homogeneous polynomial X — Tr(X - Px(X)) gives by
polarization (namely by taking the total differential of order g +1) a
multilinear map F(H,,...,H,,,) where the H,s runs in the set of all
possible monomials in the X,.

Although this description is quite explicit, it looks difficult to obtain a com-
plete finite set of relations between the (finite) set of generators constructed
above.

As far as I know, the only case where such a finite description is available is for
r=2(*.

(*) According to some experts of invariant theory, it is more or less hopeless to obtain such a finite
description of Ag in the general case.
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Assume moreover that r =2

In this case, Ag can be described by using classical results of the geometric
invariant theory of SO;(k). Following [LeB], 1.4, let me briefly explain this

description.
For X e My(2), let u(X) = (u;(X), u,(X), u5(X)) € k* be defined by the equality

X =( u; (X) (X) =/ — 1u3(X)>
U, + / — 1u;(X) —u; (X) '

By theorem 4.1 of [LeB] the isomorphism

My(2) — k3
X = u(X)

induces an identification of Ag with the polynomial maps of (k*)®¢ invariant under
the canonical diagonal action of SO, (k).

Let T, ; be the invariant function corresponding to (u, . . ., u,) — (4; - u;) (scalar
product), namely T, (X, ..., X,) =3;Tr(X;X)).
Let T, ;, be the invariant function corresponding to (u;, ..., u,) — u; A u; Aty

(the wedge product lives in A %k>= k), namely T, (X, ..., X,) = TH(X,X;X,).
With some abuse of notation, one can now use the results of H. Weyl [W], theorem
(2.9 A) and (2.17 B) and it’s sequel on page 77 which says the following:

— Generators for the invariants maps under O;(k): the set

Ty
— Relations between the generators: the 4-minors of the g x g-symmetric
matrix
s 3
. ) J

and the relations T, ; = T, ;. One recognizes the coordinate ring of the (affine)
cone C of symmetric matrices of rank <3. This scheme is well understood: it
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is integral and normal [easy], Cohen-Macaulay [H-R], it multiplicity at the
origin (or the degree of the projectivization PC) is known [H-T]. ..

— Generators for the SO;(k)-invariants maps are: the T, ’s and the T, ;,’s.
— Relations: the previous 4-minors and:

T leJst = det([Tin.jm]l <nmg 3) (1)

T. . T, —T. .T. + T, Ti Ti3,i4Tio,i1J2 (2)

0,84 ~ E,i,i3 I1siq T igyianis in,i4

il’il’i3
01563 -

and the relations given by the symmetry of T,; and the skew symmetry of
T, j« in the indices.

Let C be the tangent cone of Spec(Ag) at the origin. It is the subscheme of
C x Spec k[T, ;4]

whose ideal is generated by

Tii,iz,i3 ’ le.iz.j:! (3)
and
Tio,i4 i],iz,i3 - il,i4Ti0,i2,i3 + Ti2,i4Ti0,i|,i3 - Ti3,i4Ti0,i|,i2 (4)

and relations given by the skew symmetry of T, ;; in the indices. The ideal described
above is the ideal of initial forms of the ideals given by (1) and (2).

Let k(C) be the function field of C and K its algebraic closure. Note that,
according to (3), the ideal I¢ of C in C is nilpotent. This implies by [F] example
4.3.4, the formula

multy C = lengthOc ¢ - multy(C). (5)
The next formula is clear

lengthOc e = 1 + dimyc) Icje ® oz K(C) =1 + dimg Ic/e ®o: K. (6)

One therefore has to compute the dimension over K of the sub-vector space Vy

of the dual space of W=@K-T,;, of equations given by (4) and the skew
symmetry condition for the T, ;. This vector space is isomorphic to Ic;z ®oz K.
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LEMMA 2. The dimension of V1 depends only on the conjugation class of T.
Proof. The symmetric matrix

T =[T,;] e My(K)

acts on the dual vector space V of K#. Let (e;), .;<, be the canonical basis and
(e )1 <i<g its dual basis. The map

A% - AWV
Ty B e nene

identifies W and A 3*VY. With this identification, the relations (4) become
—T(ey) e, ve, ve, Ve,

and dim Vi is the corank of

VV® A4V =5 A3V
x'Q®y = T(xY)y

This map depends only on the conjugation class of T. O

One can therefore assume that T is diagonal of eigenvalues 4, with A, =0 for
3<i<gand 4, #0if i <3.
Let us prove this simple lemma

LEMMA 3. The dimension of Vi is [g(g —1)(g —2)/6] —[(g —3)g—4)
(g—5)/6]ifg=3and 0 if g <2.

Proof. If g <2, the vector space A%V is zero and so is V. Suppose g > 3.
Consider an equation

Tio,i4Ti1,i2,i3 - Til,i4Tio,i2,i3 + Tiz,i4Ti0,i1,i3 - Ti3,i4Tio,i1,i2 (4)

‘defining V. If i, ¢{1,2,3} or i,é¢{iy, i), i, i3} then the equation (4) is trivial.
Let me suppose that i,e{1,2,3} and for instance that i, =1i,. If i,€ {i,, i,, i1},
the equation is just a consequence of the skew symmetry of T, ; ... To get a
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new relation, one has therefore further to suppose further that i, ¢ {i,, i,, i3} and the
equation becomes

A’l‘ T 0.

0 figis

Of course, the other cases are obtained by symmetry. One has proved the following:
the equations (4) are non trivial if and only if

{io, iy, bp, i3} ={i,j, k}u{is} and i, ¢{i,j, k}.
In this case the relation (4) becomes

Tou =0,
or equivalently

Ti=0 if {i,jk}n{1,2,3}+#0.

In particular this corank is

_ge—1g—-2) (g—3NEg—-4eg—5) C

dim A°V—-A)_, ; g

The degree d of the locus (*) of g x g-symmetric matrices of corank >r is
computed in [H-T], proposition 12.b:

. =1 \r—qo
dg——degPC—aIJO'(—i;:*_—'l‘—).
a

Using the formulas (5) and (6) and the lemma 3, one obtains the

(*) In [H-T], this locus is endowed with the reduced scheme structure. But it is known in full
generality that the natural scheme structure given by the vanishing of the (g —r + 1)-minors is
Cohen-Macaulay [J] and generically reduced [easy] and therefore reduced. In our case (r =g — 3), this
reduceness is obvious, because C is a ring of invariants.
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THEOREM 4. The multiplicity of [0 ® 0] in SUx(2, 0) is

(1 L& - 1;(5’ —2) (g—3)g ;4)(5' — 5)) -3

ifg>3and 1 if g =2.

Remarks 5.
1. The preceding discussion gives a precise description of the tangent cone C of
SUx(2, 0). In particular, the Zariski tangent space at the trivial bundle is

T[@@@] SUx(z, 0) = Sym2 V G‘) A 3V.
2. One recovers the smoothness of SUx(2,0) if g =2.

In the case of a non hyperelliptic genus 3 curve, the generalized @ divisor
embeds SUx(2, 0) as the Coble quartic SUx(2, 0) in PH°(J?, 2 - ©@,;) (see [N-R2]
and [D-O] pages 184-185).

THEOREM 6. The scheme defined by the eight partial derivatives of the Coble
quartic C(X) is reduced.

This theorem is the consequence of the

THEOREM 6 bis. (i) The (étale) local equation of the Coble quartic at the trivial
bundle is

T? = det([Ti,j]I <ij< 3)

in the affine space A’ with coordinates T, T, ; with T, ; =T,

(ii) The (étale) local equation of the Coble quartic at E=E, @ E, with E, #E, is
a rank 4 quadric in A’.

(iti) The ideal generated by the 8 cubic equations which are the partials derivatives
of the Coble quartic is prime.

Proof. The first 2 points are clear from proposition II.2 and (1), (2). Let me
prove (iii). Let K the scheme defined by the partial derivatives of an equation of
€(X). The Kummer variety K(X) is the reduced scheme of K. It is therefore
enough to prove that the completion of K at each non stable point E of
K(X) K is reduced. Because of the invariance of the Coble quartic under the



Local structure of the moduli space of vector bundles over curves 391

Theta group of 2- @, one has 2 cases to examine: either E is trivial, or
E=E,®E, with E, # E,. In the first case, by (i), the equations in £[[T, T, ]] of
the completion of K at [O® O] are. T and the 2 x 2-minors of [T, ], < ;<3 It is
precisely the (completion at the origin) of the cone over the Veronese surface in
P° (with homogeneous coordinates T, ;) and K is therefore reduced. The second
case is even simpler, K being (the completion of) a 3-plane in A’ (the tangent of
K(X)). O

V. The case SUy(3, 0) for of a genus 2 curve

Suppose in this section that X has genus 2 and let .# =SUx(3,0) be the
moduli space of rank 3 semi-stable vector bundles on X with trivial determinant.
Consider a non stable point E of .#.

The case Gg = G,, has been treated in section II: in this case, the completion
of # at E is the completion at the origin of a rank 4 quadric in A°®,

Suppose now that Gg =G,, x G,, which means

E=E ®E,PE, with E; # E; for i #j and deg(E;) = 0.

Let X, be a basis of Ext'(E;, E;)" for i #j. Let o/g =k[X,;]°¢ be the ring of
invariants of k[X ;] under G with the action defined by the following rule

g-X!'=]'](i")U n

%

for (a,, 0,, 43) € Gg(k) = (k*)3/k*. The following equality is easy
Ag = k[(@Ext'(E;, E))o] ® .

A polynomial Xp, X* is in &/ if and only if

an’i—_—:zni,j fOI’ i= 1, 2,3 (1)
J J

if p, # 0. Therefore, /5 is generated by the monomials

X*® such that n satisfies (1).



392 YVES LASZLO
LEMMA 1. The ring /g is generated by

X32X21 X35 X 2X53X3, and X, ;X;;, i<J.

Proof. put ¢, , =n,; —n;; and let n be a multi-index satisfying (1). The relations
(1) become

012+ 0:,3=0, 0,,=053, 0,3+0,3=0.
If 5+ = 61’2 = 0, we Write n= (nz’l + 5+, nz’l, n1’3, n1,3 + 6+, n3’2 + 6+, n3,2) and use

the monomial X, ,X,;X;, corresponding to n,=(1,0,0, 1, 1, 0) to write n =m +
0% - ny. This allows us to write

X" = (X1,2X2,3X3,1)‘s+ l—[ (X - X )™

i<j

with m, ; > 0. In the same way, when 6 ~ = —J,, >0, one has an equality

X2 =(X3,X5,X13)°" [] (X X, ;)™

i<j
with m, ; > 0. O
For iel={l, 2,3}, put

X = Xj,k9 X3 =Xi ) (i =XiX; 43

with I={i, j, k} and j <k. Let {, =X;,X,,X,; and {s =X, ,X,3X;,. There is an
equality

C4‘:s = C162C3'

PROPOSITION 2. The natural morphism

JKX] - e
f'{xf' adt

gives an isomorphism

KX [(XaXs — XX, X3) > .
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Proof. Let p be the (prime) ideal generated by X,Xs — X; X,X;. Let
P=) o,X*

be an element of Ker(f). Then, one finds by simple expansion

f(P) =Z°‘r_z I’[xtb(n):me Z o,

m dn)=m

with
¢(n) = (n; + ns, ny + ny, 13 + ns, ny + ny, Ny + ns, B3 + ns)
which implies

o, =0. (2)

n
d)=m

(Here X2=1II,X? and x?=II,x7"" n=(n;),<.<s and m =(m;),<,<¢ are multi-
indices).

The kernel of ¢ is generated by (1,1, 1, —1, —1): if ¢(m") = ¢(m), there exists
a € Z, such that

+a(1,1,1,0,0) +m' = +2(0,0,0, 1, 1) + m.
In particular, one has the congruence

(X4 Xs)* - X7 = (X, - X5)* - X" mod p. (3)
According to (2) and (3), we get the existence of a positive integer a such that

(X4 X5)?- P=0mod p.

Since the ideal p is prime and (X, - X;) ¢ p and therefore P € p. O

COROLLARY 3. Let E a point of M satisfying Gg=G,, xG,,. Then A is
étale locally isomorphic at E to

(@Ext'(E,, E))o x Spec(k[X;]/(X X5 — X, X,X3)).

Its tangent cone is a rank 2 quadric in the Zariski tangent space Tig M = A°.



394 YVES LASZLO

In particular, there exists a family E of semi-stable bundles of trivial determi-
nant over a germ of curve such that:

(i) The group Gg, of the generic bundle E, is G,, ®; k(n).
(ii) The group of Gg, the special bundle E; is G,, X G,,,.
(i) The multiplicity of .# at [E,] and [E,] are the same.

This shows that 2 points of .# can have the same multiplicity without having the
same group of automorphisms.

When the E has 3 summands for which at least 2 are isomorphic, or equivalent
if Gg is not a torus, the calculations are very intricate (but seem to be possible). In
fact, one can in spite of this obtain the following

PROPOSITION 4. The tangent cone at each non stable point E such that Gg is
not a torus is a quadric in A° of rank <2.

Proof. let E be a semi-stable vector bundle of rank 3 and determinant ¢ and @5
the canonical theta divisor on Pic'(X). Using the corollary 1.7.4 of [Ray], the
determinantal locus @ in Pic!(X)

O = {L e Pic'(X) such that H*(X, EQL) # 0}
is a divisor in PH°(J!, 0(30)). The Picard group of # is cyclic with

ample generator ((®) [D-N]. By [B-N-R], the inverse image of (1) by the
morphism

e - PHU, 0(36,))
"1IE - O

is 0(@®) and n* is a (canonical) isomorphism
|e]v >PH(J!, 0(36y)).

Using this isomorphism, n becomes the morphism given by the complete linear
system |@| (in particular, |@| has no base point in this case!). There are various
ways to prove this simple lemma, but the following one can be generalized for the
higher rank case.
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LEMMA 5. The morphism = is finite of degree 2 over P&,

Proof of the lemma. Using the isomorphism n*(0(1) > O(@), we get that © is
finite of degree c;(@)® onto P%. One therefore has to compute the degree of =.
Although there exists a general beautiful formula due to Witten to evaluate the
volume

¢ (@) dim SUx (r0)
(dim SUx(r, O)!’

we give a simplest (and elementary) method to get this volume for .#. One has
to prove that the leading term of the Hilbert polynomial n — P(n) = x(X, ") is
2/8!. The canonical divisor of .# is @ ¢ [D-N]. Serre duality implies therefore
the symmetry

P(n) =P(—6 —n). (4)

The Grauert-Reimenschneider vanishing theorem (recall that .# has rational sin-
gularities) gives the equality

P(n) = dim H(#, ©") forn > —5.
One therefore obtains the values

Pn)=0 forn=-5,...,—1,P(0)=1 and P(1) =09. (5
By (4) and (5), one obtains

P(X) = AX + 55X+ 2)(X + )X +2)(X + D)X —a)(X + 6 + o).
The equalities P(0) =1 and P(1) =9 imply

o=—-3+./—47 and A=%. O

One has proved that the morphism = is finite of degree 2 onto |@| =P%
Since # is Cohen-Macaulay and P® smooth, this double covering is flat (EGA
IV]15.4.2) and is given locally by an equation



396 YVES LASZLO

t* = f(x)

where x are local coordinates on P8, This implies that the multiplicity of each point
of # is <2.

Take a point E € .# such that Gg is not a torus: it is a non smooth point of .#,
therefore the tangent cone is a quartic (the initial term of fis not linear). But, such
a point is a specialization of a point E, such that Gg, =G,, x G,,: by the (obvious)
semi-continuity of the rank of the quartic cone of E, the inequality rank <2 follows
from the corollary 3. O

Remark 6 (Dolgacev). The morphism n is ramified along a sextic S(X) in
PH’(J', O(3@;)). Consider the embedding

Jl (@Y |3@J1|V =P8.

The variety J' is contained in 9 quadrics. Using the action of the Mumford group
as in I, it can be shown that there exists a unique cubic ¢(X) of [3@|¥ which is
both invariant under the Mumford group and singular along J'.

QUESTION (Dolgacev). Are the sextic S(X) and the cubic €(X) dual to each
other?

V1. Multiplicity of the theta divisor (rank 2 case)

Recall that there exists a (Cartier) divisor ® on SU(2, wx) which is character-
ized by the following universal property [D-N]: let S be a k-scheme and E a family
of semi-stable vector bundles over Xg=X x, S of determinant wy. Let
n: S = SUx(2, wyx) be the classifying map corresponding to E. Then, one has the
equality

n*(0) = div(det Rp E)".

By construction, the geometric points of @ are the classes [E] € SU(2, wy) such that
H%(X, E) #0.

. Remark. The vanishing of H(X, E) depends on the S-equivalence class [E] of E.
Let E be a semi-stable vector bundle of determinant wy. Recall ([La], theorem
II1.3) that for E stable
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and that the tangent cone is defined in Ext}(E, E) by the ideal of the determinant
of linear forms defined by the cup-product

H°(X, E) ® Ext)(E, E) » H((X, E).

These facts can be generalized formally (using the universal property of ©) as
follows. Let [E] € Su(2, wy) a non stable point of @ of graded object E=E, @ E,
and let

= 1 dim H%(X, E) = dim HY(X, E,) = dim H(X, E,)

(note that E, ® E, = wx which implies by Serre duality and Riemann-Roch the
equality

dim H(X, E,) = dim H(X, E,) = dim HY(X, E,)). (1)

With the notations of I, let V = Spec k[[Ext}(E, E)]] be a (formal) étale slice of 2 at
E and

7: V> V/AUt(E) — s SU(2, wy)

the canonical morphism. Then, the induced map
n*(@)/Aut(E) - ©

is étale. The tangent cone of n*(@) is given by the determinant
dg € Sym* Ext}(E, E) ¥

defined (up to a non zero scalar) by the cup-product

H%(X, E) ® Exty(E, E) »H'(X, E)

In particular, a point e € Ext}(E, E) is in the tangent cone of n*(®) at [E] if and
only if the cup-product
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ve: HY(X, E) - H(X, E)
1s not onto.
PROPOSITION 1. Assume that E, # E,. Then, the multiplicity of © at [E] is

mult @ =3 dim HY(X, E) - multg, SUx(2, 0).

Proof. With the notation of the second section, the completion of SU(2, wy) at
[E] is the completion at the origin of

(Ext!(E,, E;) @ Ext'(E,, E,))y x &
where & is the cone over the Segre variety

P(Ext'(E,, E,)) x P(Ext!(E,, E,)) =« P(Ext'(E,, E,)) ®, Ext!(E,, E,)).
Fix coordinates

X =(X};) on Ext'(E,, E)) for i #j and (Y) = Y* on Ext!(E,, E)).
The equation F of n*(@) is of the form

F=dg+ Gy g

where G,, ., vanishes at the origin with order >2k + 1. The polynomials dg and
G, 1 are Gg invariant and therefore (see section 2) can be written in terms of Y
and z%'=X%, - X} ,. Let me decompose dj as

2h
dE = 'Zo Qi(X)Pﬂt—i(Y)
where the degree of Q; (resp. Py, _;) is i (resp. 2h — i) and P, = 1. Using the degrees,
one finds the following properties:
— If i is odd, then Q,(X)P,,_,(Y) =0.
. = If Py, _,; #0, then Q,; is invariant and therefore

Q(X) =R,(2)
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with R; is a polynomial in z of degree i which is defined up to the ideal of the

Segre cone <.
It follows that the equation of n*(®) can therefore be written as

R,(2) +8(z, Y) (2)

where S vanishes at the origin with order >4 + 1 at the origin.

LEMMA 2. The polynomial Q,,(X) is non zero.

Proof of the lemma. According to the previous discussion, one just has to
prove the existence of e € Ext!(E,, E,) @ Ext!(E,, E,) < Ext}(E, E) such that the
cup product ue: HA(X, E) - H(X, E) is onto. By symmetry, one only has to
prove the existence of e,eExt!(E,;,E,) such that the cup product
ve,: HY(X, E,) - H'(X, E,) is onto. This is classical (see [La], lemma I1.8): let I'
be the variety

I'={(k- s k-e)ePHYX,E,) x PExt'(E,, E,) such that s ue = 0}

and p (resp. q) the first (resp. second) projection. Let 0#se H%X,E,) and
D = div(s) its zero divisor. The canonical surjection us: #om(E,, E,) - E,(—D)
gives a surjection

us: Ext'(E,, E,) - H\(X, E,). (3)
By (3) the dimension of p~!(k - s) is
dim p~'(k - 5) = diim P Ext'(E,, E,) — P dim HY(X, E,) — 1
Therefore dim I' =dim P Ext!(E,, E,) —1 and ¢(I') #T. O
The polynomial R, can be thought of as an element of

H°(P Ext!(E,, E,) x P Ext'(E,, E,), O(h, h))

which by the lemma 2 is non zero. According to (2), the completion of the
tangent cone is therefore the hypersurface of (Ext!(E,, E,) @ Ext'(E,, E,)), X &
given by R,. The proposition follows. ;
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