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Compactifying coverings of 3-manifolds

MICHAEL L. MIHALIK

Abstract. If a finitely presented group G is negatively curved, automatic or asynchronously automatic
then G has an asynchronously bounded ‘““almost prefix closed”” combing. Results in [Br,] and [E] imply
that the fundamental group of any closed 3-manifold satisfying Thurston’s geometrization conjecture has
an asynchronously bounded, almost prefix closed combing.

MAIN THEOREM. If M is a compact P2-irreducible 3-manifold, n,(M) has an asynchronously
bounded, almost prefix closed combing, and H, a subgroup of =, (M), is quasiconvex with respect to this
combing, then the cover of M corresponding to H is a missing boundary manifold.

§1. Introduction

_ A 3-manifold M is a missing boundary manifold if there is a compact manifold
M, and a subset K of the boundary of M such that M — K is homeomorphic to M.
If M is a compact P?-irreducible 3-manifold and M is the cover of M corresponding
to a finitely generated subgroup of =, (M), then J. Simon has conjectured that M is
a missing boundary manifold (see [Si]).

In §2, we define a geometric group theory notion “1-tame”, for pairs of groups,
motivated by the combing ideas for groups introduced in [MT].

The connection between compactifying 3-manifolds and 1-tame pairs is de-
scribed by the following result, proved in §4.

If G is the fundamental group of a compact P2-irreducible 3-manifold M, and
H is a finitely generated subgroup of G then, the pair (H, G) is 1-tame if and only
if the cover of M corresponding to H is a “missing boundary’’ manifold.

In [Si] Simon verified his conjecture for M any compact P,-irreducible 3-mani-
fold and H the fundamental group of a boundary component of M. In [J] W. Jaco
generalized this to the case where H is a finitely generated peripheral subgroup of
n,(M). W. Thurston showed in [T] that if M admits a geometrically finite, complete
hyperbolic structure of infinite volume, then M is a missing boundary manifold. F.
Bonahon [Bo] showed that any hyperbolic-3-manifold M with finitely generated
fundamental group is a missing- boundary manifold, provided that =,(M) is not a
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Compactifying coverings of 3-manifolds 363

free product. In [HRS] J. Hass, H. Rubinstein and P. Scott show that if M is a
closed P2-irreducible 3-manifold such that =, (M) contains a subgroup 4 isomor-
phic to Z x Z, then the cover of M with fundamental group A is a missing
boundary manifold.

Our results on the Simon conjecture are obtained through an examination of
combings of groups. If a finitely presented group G is word hyperbolic, automatic
or asynchronously automatic then G has an asynchronously bounded “almost
prefix closed”” combing. Results in [Br,;] and [E] imply that the fundamental group
of any closed 3-manifold satisfying Thurston’s geometrization conjecture has an
asynchronously bounded, almost prefix closed combing.

Our main result in this paper is

MAIN THEOREM. If M is a compact P?-irreducible 3-manifold, n,(M) has an
asynchronously bounded, almost prefix closed combing, and H, a subgroup of n,(M),
is quasiconvex with respect to this combing, then the cover of M corresponding to H
is a missing boundary manifold.

M. Bridson has observed that if G is the 3-dimensional Heisenberg group then
any finitely generated subgroup of G is quasiconvex with respect to some asyn-
chronously bounded almost prefix closed combing. If G is a CAT(0) group acting
properly discontinuously, cocompactly and by isometries on the geodesic metric
space X and H is an abelian subgroup of G then by the “Flat Torus Theorem”, H
acts on an n-flat in X and so H is quasiconvex with respect to geodesics in X. In
particular, it G is a knot or link group (then G is CAT(0) see [BH] and [L]) and H
a peripheral subgroup then H is quasiconvex in a bounded almost prefix closed
combing of G. More generally, if M is a compact P,-irreducible 3-manifold
satisfying Thurston’s geometrization conjecture and H the fundamental group of a
boundary component of M, then H is quasiconvex in some bounded almost prefix
closed combing of 7, (M) (see [Br,]). Combining this with our main theorem gives
Simon’s result [Si].

In [R], L. Reeves shows that cubed 3-manifolds have biautomatic fundamental
groups. These manifolds have canonical immersed surfaces and the corresponding
surface groups are quasiconvex (rational) in the fundamental group of the cubed
manifolds with respect to the biautomatic structure. Hence (by the above theorem)
the covers of cubed manifolds corresponding to these surface groups are missing
boundary manifolds.

In [GS] S. Gersten and H. Short study the quasiconvex subgroups of biauto-
matic groups.

In the case that G is the fundamental group of a closed irreducible 3-manifold
M, the pair (G, H) is 1-tame and H is the trivial group, results in [BT], [MT] and
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[Tu] imply that the universal cover of M is homeomorphic to R3. It is an easy
matter to see that if G is “almost convex” then the pair (G, 1) is 1-tame. This gives
a different proof of the main result of V. Poénaru’s paper [P]. The relation between
A. Casson’s C, condition, the QSF condition developed by S. Brick, S. Gersten and
J. Stallings and tame pairs (G, 1) is discussed in [MT].

§2. Definitions, and statements of results

While our main interest in this paper is in compactifying covers of compact 3-
manifolds we will work with more general spaces, namely polyhedra. If T is a
triangulation of the pair of polyhedra (X, C), then the largest subcomplex of the
first baracentric subdivision of T, whose realization is contained in X — C, is a
strong deformation retract of X — C. This can be used to show,

LEMMA 1. If (X, C) is a pair of polyhedra with C compact, then the following
are equivalent.

(1) n,(X — C) is finitely generated (l.e. each component of X — C has finitely
generated fundamental group).

(2) n,(CI(X — C)) is finitely generated.

(3) For each component K of X — C, n,(CI(K)) is finitely generated.

(4) For any vertex v e X — C, there is a finite subcomplex B of X containing v
such that any loop in X — C, based at v, is homotopic rel {0, 1} to a loop in
B by a homotopy in X — C.

By (4), if C,c C, are finite subcomplexes of X and =,(X — C,) is finitely
generated then n,(X — C,) is finitely generated. So to show that n;(X — C) is
finitely generated for all finite subcomplexes C of X, it suffices to show 7n;(X — C)
is finitely generated for sufficiently large C.

DEFINITION. Let X be a compact polyhedra, H a finitely generated subgroup of
7, (X) and * a vertex of X (= the universal cover of X). The pair (X, H) is 1-tame
if for each integer N there is an integer M such that for any edge path « in
CI(X — St™(Hx)) with a(0), a(1) € St"(Hx), a is homotopic rel{0, 1} to an edge path
B in St™(Hx), by a homotopy in CI(X — St™(Hx)).

This definition is easily seen to be independent of base point *, and triangulation
of X.
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THEOREM 1. If X, and X, are compact polyhedra, H, is a finitely generated
subgroup of n,(X,) and f(n,(X,), H,) = (n,(X3), H,) is an isomorphism of pairs then
(Xi, H,) is 1-tame if and only if (X,, H,) is 1-tame.

DEFINITION. If G is a finitely presented group and H a finitely generated
subgroup of G, then the pair (G, H) is 1-tame if for some (any) finite polyhedra X,
with n,(X) = G, we have (X, H) is 1-tame.

DEFINITION. A4 3-manifold M is a missing boundary manifold if there is a
compact manifold M, and a subset K of the boundary of M such that M—Kis
homeomorphic to M.

In [Tu], T. Tucker shows that if M is a noncompact P2-irreducible 3-manifold,
and for each finite subcomplex C of (some triangulation of) M, n,(M — C) is
finitely generated then M is a missing boundary manifold.

THEOREM 2. If X is a finite polyhedra with n,(X) =G and H is a finitely
generated subgroup of G, then (G, H) is 1-tame iff for each finite subcomplex C of
H\X, n,((H\X) — C) is finitely generated.

COROLLARY 3. If M is a compact P*-irreducible 3-manifold and H is a finitely
generated subgroup of m,(M) then H\X is a missing boundary manifold iff
(m, (M), H) is 1-tame.

In the next section we define combings of groups.

If a finitely presented group G is negatively curved, automatic or asyn-
chronously automatic then G has an asynchronously bounded ‘“almost prefix
closed” combing. Results in [Br,;] and [E] imply that the fundamental group of any
closed 3-manifold satisfying Thurston’s geometrization conjecture has an asyn-
chronously bounded, almost prefix closed combing.

Our main result is an easy corollary of the following more general resuit.

THEOREM 4. If a group G has an asynchronously bounded, almost prefix closed
combing, and H, a subgroup of G, is quasiconvex with respect to this combing, then
the pair (G, H) is 1-tame.

§3. Algebraic preliminaries

Our approach to combings is a geometric one. If A4 is a finite set of generators
for a group G, then I'(G, A), the Cayley graph of G with respect to 4, is a
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1-complex with O-skeleton equal to G and a directed edge from vertex v to vertex
w if va = w for some a € A. Making each edge of I' isometric to the unit interval
gives a metric d, on I'. Let * be the identity vertex of I'. A combing of G (with
respect to A) is a set of edge paths {p,: [0, T,] »I'} such that v € G, p,(0) = *,
p,(T,) =v. As a convenience p, is extended to [0, co) by setting p,(x) = v for all
x > T,. A combing is asynchronously bounded if there is an integer K such that for
each pair of adjacent vertices u, v in I', there are non-decreasing surjections
a, B: [0, o) = [0, 00) each of which, when restricted to an interval between adjacent
integers, is either constant or an isometry and so that d(p,(«(x)), p,(f(x))) <K for
all x €[0, oc0). We call (a, f) an asynchronous adjustment for (p,, p,). The constant
K is called the asynchronous fellow traveler constant.

A combing {p,} of G (with respect to 4) defines a map r of G into 4*, the free
monoid. The group G is asynchronously automatic if {p,} is asynchronously
bounded and r(G) is the language accepted by some finite state automaton.

A combing {p, } is almost prefix closed if there is an integer K such that for each
v € G and integer n €[0, T,] there is a w € G such that p,(T,) € St*(p,(n)) and the
prefix p,([0, n]) is a subset of StX(im(p,)).

Say G is asynchronously automatic. Then r(G) < A* is the accept language
of a finite state automaton. Let K be an integer so that if S is a state of this
automaton that can be joined to an accept state, then it can be joined by a path of
length <K. Then any prefix of a combing path given by r can be extended by K or
fewer edges to an actual combing path. Hence any asynchronously automatic group
has an asynchronously bounded, almost prefix closed combing. By Theorem 8.28 of
[E] the fundamental group of a Haken 3-manifold need not be asynchronously
automatic.

If G is a finitely generated group with combing {p, }, then the subgroup H of G
is quasi-convex with respect to {p, } if there is an integer L such that for each 4 € H,
im(p,) < StX(H) = I'(G, A).

§4. Proofs of Theorems 1 and 2
The following lemmas are straightforward.

LEMMA 4.1. If X is a finite simplicial complex and X® its 2-skeleton, then
(X, H) is 1-tame iff (X®, H) is 1-tame.

Hence we need only consider the case X; and X, are 2-dimensional simplicial
complexes.
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LEMMA 42. If (X,,*) and (X,,*,) are finite complexes such that
(n,(X;, *)), H)) and (n,(X,, *,), H,) are isomorphic pairs of groups, then there are
maps f,: (X;, *,) = (X5, *,) and f,: (X5, *,) = (X, *,) such that:

(1) (fiofo), and (fy°f1)4, the induced maps on fundamental groups, are the
identity.

(ii) (f1)4(H,) = H, (and so (f3),(H,) = Hy).

(iii) For each edge e of X,(X>), fi(e)(f>(e)) is an edge path.

LEMMA 4.3. Say f;, X;, H; and _are as in Lemma 4.2. Lelfl be the lift of f,
to (X 1> *,) that takes *, to *, and let f2 be the lift of f, to (X,, *,) that takes %, to

1- Then there is an integer K, such that if x € X,, then f, - f,(x) € St*1(x) and, if
x € X, then f, o f,(x) € St¥1(x).

Proof of Theorem 1

Assume the notation of Lemma_ 4.3, and that (X, H,) is l-tame. The
group 7,(X;, ;) acts on the left of X (1€ {1,2}). By elementary covering space
theory, if g;em (X, %), lhefj fl(gl*l) = ((ﬁ)#ﬁgl))*b and [2(8’2*2)
((j;)#(g2))51' In particular, f; e fi(g:%1) =81 %, [ °/2(82%2) =&2%, fi(H %)) =
H,%, and f,(H,*,) = H,%,. Note that if X, is an integer larger than the length of
the edge path f;(e) for all edges e in X;, then for any edge e in X;(X,),
fz fl (e)(f,f>(e)) has length <K3.

Now choose an integer K; such that any edge loop in X , or X,_ of length
<2K, + K2 + 1 is homotopically trivial in St*3(v) for any vertex v of the loop.

Let 4 be an integer and y an edge path in CI(X, — St*(H,#%,)) such that
7(0), (1) are elements of St*(H, #,). Then y decomposes into edge subpaths each of
which is either a path in St***3(H,#%;) or_an edge path a such that a(0), «(1) are
elements of St **3(H, %) and im(a) = CI(X, — St**53(H, %,)). To see that (X;, H,)
is 1-tame, it suffices to find an integer J so that any such a is homotopic rel{0, 1}
to an edge path in St/(H,#%,) by a homotopy in CI(X; — St4(H, ¥,)).

Let « be as above. Let v, be the initial point of « and v, the end point of a.
Choose 64(9,), an edge path of length <K, from v, to f, o f,(go) (~v, to f5 o fi(1y)).
By the definition of K;, « is_homotopic rel{0, 1} to <&, f;fi(®),67'> by a
homotopy in St*3(im(x)) = CI(X, — St4(H, %,)). We have reduced our problem to
showing:

There is an integer J such that for any «, as above, fz f,(oz) is homotopic
rel{0, 1} to an edge path in St’(H,%,) by a homotopy in Cl(X , — StA(H, +))).

If N is a positive integer choose L,(N) such that f,(St"(#,)) < St"*)(%,) and
L,(N) such that £,(StY(%,)) = StL2™(%,). Then f,(StN(H, %,)) = St''“¥(H,%,) and
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f;(StN (H,#,)) = Stl2™)(H, %,). Furthermore, we may assume that L; is an increasing
function. . . _ B
Note that if x € X, — StX1*1(H,%,), then f,(x) € X; — StN(H, %)). (If f,(x) €
St"(H,#,), then f\f,(x) e St'™(H,%,), but x e StX(f, o f,(x)) implies that x e
St<i+LiY(H,%,)) Similarly if x € X, — St\itLW(H.3), then Jf,(x)€X,—

StN(H,#,). _ _
As fi(St'*5(H, %)) c SthU+K)(H,%,), we have fi(«(0)) and fi(«(1)) in
Sthi4+K)(H, %,). Decompose /(@) as By, 0y, Boy 0ay - - oy Bus %y B> Where o

and B; are sub-edge paths of fi(«), such that im(f;) c StXi+L1+X)(H, %) and
im(e;) = CI(X, — StKi+ L+ K)(H %)) with a,(0) and «;(1) in St51+LiA+K)(H %),
for all i. Since (X,, H,) is 1-tame, there is an integer M(K, + L,(4 + K3)) and for
each i, a homotopy F; of «;, rel{0, 1}, to an edge path y,, in St¥(H,%,) such that
im(F;) c CI(X, — Stfa+ L1+ K9(H, %)) < X, — StE+ 1+ LO(H %), By the above
note, im(f; o F;) = X; — St4(H,¥,). o

Let M, = max{M(K, + L,(4 + K3)), K, + L,(4 + K3)}. Then f, o f1(a) is homo-
topic rel{0, 1} to an edge path in f,(St™1(H,%,)) = St2™(H, %,) by a homotopy in
X, — St*(H, %,), and we can select J = L,(M,).

Similarly if (X, H,) is 1-tame, we have (X,, H,) is 1-tame. O

Proof of Theorem 2. Say (G, H) is 1-tame. Let * be a vertex of X and % a vertex
of X over *. Let ¢q: X—> H\X be the quotient map and let % =gq(¥). To help
distinguish which space a star occurs in, we use St for the N-th star in H\X. If N
is a positive integer and v is a vertex of Bd(St};(#)) then we show there is an integer
M(N) such that any loop at v in CI(H\X — St}}(#)) is homotopic rel{0, 1} to a loop
in St} (%), by a homotopy in CI(H\X — Stj(%)). As m;(CI(St}{ (%) — St}(%)) is
finitely generated, we will have n; (CI(H\X — St} (%)) is finitely generated. Let « be
an edge loop at v with image in CI(H\X — St (#)). Choose & € X over v and let &
be the lift of a to #. Observe that for any integer K, ¢ ~'(Stf;(¥)) = St*(H%). Hence
@ has image in CI(X — StY(H#%)) and &(0), &(1) are elements of StV(H%).

Since (G, H) is 1-tame, there is an integer M such that « is homotopic rel{0, 1}
to an edge path in St¥(H%) by a homotopy in CI(X — StN(H#)). Composing this
homotopy with ¢ gives a homotopy of « rel{0, 1}, to an edge loop in St}{(#) by a
homotopy in CI(H\X — St} (#)). .

Conversely, assume for each integer N, each component of CI(H\X — St} (%))
has finitely generated fundamental group. For each component of
CI(H\X — St¥(#)) (there are only finitely many) choose a vertex base point in
the boundary of this component. If C is such a component and v is the base
point of C, then as =,(C, v) is finitely generated, we may choose M, an integer
such that St (#) contains a finite set of edge loops which represent generators of
7,(C, v).
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Now any loop in CI(H \X St¥ (*)) based at v is homotopic rel{0, 1} to a loop
in St} (%) by a homotopy in CI(H \X St¥(%)). Choose M, such that if v and w are
vertices of Bd(StY(#)) which are in the same component of CI(H \X St¥(%)) then
there is an edge path between v and w, in CI(H\X — St (%)) of length <M. Let
M be an integer larger than M, and each of the (finitely many) M., above. Now
by a change of base point argument any loop in CI(H\X — St} (%)) based at a
vertex in Bd(StY(#)) is homotopic rel{0, 1} to a loop in St}{(*) by a homotopy in
CI(X — St (x)). _

Let « be an edge path in CI(X — St"(H#%)) such_that a(0), «(1) are vertices
of St¥(H%). Then g« is an edge path in CI(H\X St¥ (%)) with vertices in
Bd St¥ (*) Let f be an edge path of length <M, from ga(l) to gu(0) in
CIl(H \X St (#)). Now {qa, B is homotopic rel{0, 1} to an edge loop 7y at gqa(0)
where 7y is in St} (%) and the image of this homotopy is in CI(H\X — St} (%)). Let
F be such a homotopy.

We have g - o is homotopic rel{0, 1} to {8, y~') by a homotopy with the same
image as F. Call this homotopy W. Lifting W gives a homotopy of « rel{0, 1} to
and edge path (the lift of (y, ') to a(0)) in St¥(H*). Furthermore this homotopy
has image in CI(X — St¥(%¥)), so (G, H) is 1-tame. O

§5. Proof of the main theorem

Let P be a presentation for G. Let X be the standard 2-complex corresponding
to P. Let X be the universal cover of X. The 1-skeleton of X is the Cayley graph of
P, and so the vestices of X are the elements of G. Let * represent the identity vertex.
Let g: X > H\X be the quotient map, and *e H\X = q(x). We have an asyn-
chronously bounded, almost prefix closed combing for G. For each vertex v of X,
let p,: [0, 0) — X be the combing path for v. Let L be the quasiconvex constant for
H with respect to {p, }, and & be the asynchronous fellow traveler constant. Let /
be the constant that arises from {p,} being almost prefix closed. Le. if a: [0, n] = X
is a prefix of a combing path, then there exists v € G such that d(v, a(q_)) <I and
im(a) = St/(im(p,)). Let Q be an integer such that any edge loop « in X of length
at most 26 + 2 is homotopically trivial in St9(v) for all vertices v € a. '

LEMMA 5.1. If M is an integer, a: [0, n] —» X is an initial segment of a combing
path and a(n) € StM(H), then im(a) = StT+L+U+M3(H),

Proof. Choose v such that d(v,a(n)) <I and im(x) < St'(im(p,)). Let
{e,,...,e.» be an edge path in X such that ¢,(0) e H, ¢,(1) =v and k <1+ M.
We have im(p,,q)) = St*(H) (since H is quasiconvex). Also, im(p, 1))
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St’(im(p, , y)) and im(p, o)) = St’(im(p,, 1)) for i€ {2,3,...,k} (by the defini-
tion of ). Hence im(p,) < StL+Y+Mi(H) and so im(x) < St/ +HL+U+MS(F), O

LEMMA 5.2. If o and B are terminal segments of combing paths, p, and p,,
respectively, such that there is an edge e from v to w, the initial points of o and B
correspond under the asynchronous matching, and vy is an edge path of length <6 from
the initial point of o to the initial point of B then {a,e, =, y~'> is homotopically
trivial in St2(>im()).

Proof. Choose 0 =x, <x,<--* <Xx;, =1. Define F: I x I X as follows:

(1) Flio1x oy and Fl ;. 1y are respectively, a reparametrization of a composed
with an asynchronous adjustment and a reparametization of f composed with an
asynchronous adjustment, so that F|, . ;. is an edge of « or constant,

I[xi,xiﬂ 1x (13 18 an edge of B or constant, and d(F(x;, 0), F(x;, 1)) < ¢ for all i. (This
is possible since « and B are asynchronous é-fellow travelers.)

(2) Flx; <o, is an edge path of length <.

(3) Fl{o}x[o,u =7y and Fl{l} x [0,1] = €-

Now consider the edge loop <F‘[xi,x1+1]>< {0}> Fl{xi+l} xI» (Fl[xi’xi+l] x {1})_1’
(F l{xi} «7) " 1>. The length of this loop is <24 + 2. Hence it is homotopically trivial
in St2(F(x;, 0)) = St2(im(«)). Define F on [x;, x;,,] x I to realize this homotopy.
Then im(F) < St2(im(«)), and the result follows. O

Let « be an edge path in Cl()? — St¥(H)) such that a(0), a(1) = StY¥(H). Choose
M>Q +N. It suffices to show that « is homotopic rel{0, 1} to a path in
St/+@M+Di+L+3(H) by a homotopy in X — St¥(H). The path « decomposes into
sub-edge paths, oy, B, %, B, ..., % 1, Ba1,®, where im(x;) = StM(H) and
im(B;) = CI(X — St™(H)). It suffices to show that B(=p,) is homotopic rel{0, 1} to
a path with image in St/+*M+%+L+3(H) by a homotopy in X — StV(H).

Let e, e,,...,e, be the edges of B, p; be the combing path corresponding to
e;(1), po the combing path corresponding to e;(0) and T; =T, .

If ¢, is the last point of [0, T;] such that p;(¢;) € St¥(H), then let a; be a point of
[0, T;] such that a; corresponds (under the asynchronous tracking) to p,_;(¢;_;), 7:
be an edge path of length <4 from p;_,(¢;,_,) to p;(a;) and ¢, be the subpath of p,
and a; to ¢,.

It suffices to show that for each i.

(1) Im(y,, €'> Cst1+(M+I)6+L+5(H) and

(2) {7, &> is homotopic rel {0,1}, by a homotopy in X— StN(H), to

{pi- 1|[x —1.Ti—11 Cis (Pil[: T]) .
For then, patching together these homotopies gives a homotopy rel {0, 1} of

ﬂ§<elae2"'-9en> to <'YI361:}'2,'~ -ayna én)) m X_StN(H)



Compactifying coverings of 3-manifolds 371

If a;<t, then & =p,|, ;- In this case, by Lemma 5.1, p,|o,, has image
in St/*M+D*L(H), and im(y;) = St(p,_(t;,_,)) = ST M(H), so im{¢, 9> <
St/+ M+ D+ L+3(H). By applying Lemma 5.2 with p,_,|, _, 7,_,; in place of , ¢, in
place of e, y; in place of y and p; |, r,; in place of § we have <y,, ¢;> is homotopic
rel {0,1}, by a homotopy in Ste(im(p;_,|,_, r,_;)), to <pf-‘|[zi-1.rf_11’ e;,
Pili,r1) ™' Asim(p; 1|y, _,.7,_ 3 = CUX — St™(H)) and M > N + Q, the image of
this homotopy does not intersect StY(H).

If t;<a;, then again im(y;,) = St¥(p,_,(t,_,)) = StI+M+Dé+L+3(Iy  Observe
that & =(pif,q0;) " and im(&) =S(im(p;_,|p, _,)- Hence by Lemma 5.1
im(&;) c StI+WM+0+L+(fy By Lemma 5.2, 9, is homotopic rel {0,1} to
<~Pi—1|[z,-~1,7;_1], e, (p; |[a,,T,~])~_1> by a h0n30t0py in StQ(im(Pi—lI[t,._,,r,-,,])) <
X — StN(H). As im(¢;) = CI(X — StM(H)) < X — StN(H), y:, &> is homotopic rel
{0,1} to <p;_1ly,_,.1,_» €5 (Plu,7,;) "> by a homotopy in X — StV(H). O
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