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Triangle subgroups of Kleinian groups

GAVEN J. MARTIN*

(for J. A. Kalman on the occasion of his 65th birthday)

Abstract. We exhibit an interesting new phenomenon concerning certain triangle subgroups 4 of
Kleinian groups I'. Namely the hyperbolic plane IT stabilized by 4 has a precisely invariant tubular
neighbourhood. Thus the corresponding 2-orbifold F? = I1/I';; is always embedded in the hyperbolic
3-orbifold M3 = H*/T. We deduce that any two such triangle groups can algebraically intersect only in
a finite cyclic subgroup.

We give sharp estimates for the radius of these tubular neighbourhoods and present applications
concerning the estimation of co-volumes of Kleinian groups containing these triangle subgroups.

1. Introduction

In this paper we exhibit a seemingly new phenomenon concerning certain
triangle subgroups of Kleinian groups. Our results as presented here only apply to
the (2, 3, p)-triangle groups, 4(2, 3, p). We are aware that our results hold in more
generality for certain other infinite families of triangle groups and the methods of
proof we use here apply in those situations too. However the necessary proofs seem
to require a case by case analysis which would considerably lengthen this paper. We
are therefore content to present the results in this special case in the hope that some
general geometric explanation might later be found which identifies all triangle
groups with the properties we describe.

There are many reasons for studying Kleinian groups containing triangle
subgroups. First, such Kleinian groups are extremal for many geometric problems.
For instance a Kleinian group which contains elements of finite order p > 7 whose
fixed point sets are as close as possible always contain a (2, 3, p)-triangle subgroup
[5]. As another example, the smallest limit volume hyperbolic 3-orbifold, see [1],
can be obtained as the limit (p — o0) of a sequence of orbifolds which are the orbit
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340 GAVEN J. MARTIN

spaces of Kleinian groups containing (2, 3, p)-triangle groups [3]. The limit
Kleinian group contains a (2, 3, co)-triangle group.

Secondly, the torsion free finite index subgroups of such a Kleinian group
contain surface groups. If the hyperbolic plane stabilized by a triangle subgroup has
a precisely invariant neighbourhood of given radius, then the torsion free subgroups
yield quotients which are hyperbolic 3-manifolds with geodesically embedded
surfaces having an embedded tubular neighbourhood of at least the same radius. (It
is relevant to note here that the (2, 3, p)-triangle groups contain among them all
surface groups). Often the solutions to various extremal problems for hyperbolic
3-manifolds concerning geodesically embedded surfaces are realized as the orbit
spaces of torsion free subgroups of Kleinian groups with triangle subgroups. For
instance the smallest volume hyperbolic 3-manifold containing a geodesically em-
bedded surface is the orbit space of a subgroup of a Kleinian group containing a
(2, 3, 12)-triangle group [3]. These examples are partly described in §4 and other
related examples of higher genus surfaces are described in [3] and [13].

And finally, rigid Kleinian groups (those admitting no nontrivial deformations)
with nonempty domains of discontinuity on the Riemann Sphere have triangle
subgroups as component stabilizers. For instance certain extremal two generator
web groups with simple branch set, which are in a sense close to arithmetic groups,
contain triangle groups with the properties we describe [10].

Before stating our main results let us recall some basic definitions and notation.
We shall use the books of Beardon [2] and Maskit [12] as standard references for
facts concerning Kleinian groups.

The complex plane is denoted by C and its one point compactification is the
Riemann Sphere C=Cu{c}. We let Mob(2) denote the group of all Mdbius
transformations of C. Each f e Méb(2) is of the form

az+b

—_ =1 .
oz rd’ ad — bc =1, (1.1

f2) =

where a, b, ¢, d e C. Each such f extends uniquely to an isometry of hyperbolic
3-space H?* via the Poincaré extension [2]. Here hyperbolic 3-space is identified with
the upper-half space H?={(x,, x,, x;) € R*:x; >0} with the Riemannian metric
ds® =|dx[*/x3 of constant negative curvature equal to —1. We shall denote the
hyperbolic distance between a pair of points x and y in H* by p(x, y). If 4 and B
are subsets of H3, then

p(4,B) = inf p(x,y). (1.2)
xeAyeB
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Given a set A = H? a tubular neighbourhood of radius ¢ about 4 is the set
N,(A4) = {x e H?: p(x, A) <e}. (1.3)

When A4 is a hyperbolic line, a tubular neighbourhood is usually called a collar.

A subgroup of Mo6b(2) is discrete if the identity is isolated in the topology of
uniform convergence of C. See [2] and [4] for a discussion of discreteness and
various reformulations of the definition. A Kleinian group I is a discrete nonelemen-
tary subgroup of Mob(2). Here nonelementary means that the group I' does not
contain an abelian subgroup of finite index. The elementary Kleinian groups are
completely classified and it is the nonelementary groups which are of primary
geometric interest.

Because of the Poincaré extension we can, and shall, view a Kleinian group as
a group of orientation preserving isometries of hyperbolic 3-space. The orbit space
2 = H?3/y is called a hyperbolic 3-orbifold. The space 2 is a hyperbolic 3-manifold if
the group I is torsion free. The co-volume of a Kleinian group I is the volume of
the orbit space 2 in the induced hyperbolic metric, equivalently it is the hyperbolic
volume of a measurable fundamental domain for the action of I' on H?.

A hyperbolic plane IT U H? is that subset of H* meeting a plane or sphere of R>
which is perpendicular to dH?*~ C. A hyperbolic plane with the metric induced
from H?3 is isometric to the usual 2-dimensional hyperbolic space H? with metric of
constant Guassian curvature — 1. A triangle subgroup A of a Kleinian group I' is a
subgroup isomorphic to some standard hyperbolic (p, g, r)-triangle group, that is
the index two subgroup of the group generated by the reflections in the sides of a
2-dimensional hyperbolic triangle with vertex angles n/p, n/q, and n/r in hyperbolic
2-space. Here we must have 1/p + 1/g + 1/r < 1. Since the triangle groups are rigid
in Mob(2), if 4 is a triangle subgroup of a Kleinian group, then there is a
hyperbolic plane IT, = H* which is invariant under A4, that is f(I1,) = I1, for each
feA. Furthermore the action of 4 on the invariant hyperbolic plane I1, is
conjugate to the standard action of a triangle group on hyperbolic 2-space. Thus we
see the usual picture of a tesselation by hyperbolic triangles of the invariant
hyperbolic plane. For p > 7 we shall usually denote the (2, 3, p)-triangle subgroup
by 4(p).

A set A = H? is said to be precisely invariant under a Kleinian group I if

gA)=A or gA)nA=J forallger. (1.4)
The stabilizer of A is the subgroup I', defined by

r,={gel:g(4)=4}. (1.5)
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We can now state our main theorems. The first theorem describes the possible
algebraic intersections of different triangle subgroups of a Kleinian group.

THEOREM 1.6. Let A(2, 3, p) and A'(2, 3, q) be distinct triangle subgroups of a
Kleinian group.

® If p#4q, then A(2, 3, p) n4'(2, 3, q) is a finite cyclic subgroup of order 2 or 3,

e Ifp =gq,then A(2, 3, p) nA'(2, 3, q) is a finite cyclic subgroup of order 2, 3 or p.

It is a routine matter to verify that the intersections described in Theorem 1.6 can
actually occur. The next theorem shows that the hyperbolic planes stabilized by
(2, 3, p)-triangle subgroups are precisely invariant.

THEOREM 1.7. Let A, and A, be distinct (2, 3, p)-triangle subgroups of a
Kleinian group stabilizing hyperbolic planes I1, and II, respectively. Then

2
p(1l,, I1,) > arccosh(l + 2 sin (/p) )

; 1.8
1 — 4 sin*(n/p) (1.8)
The lower bound is sharp in the sense that for every p > 7 there is a Kleinian group
I', containing distinct (2, 3, p)-triangle subgroups whose invariant hyperbolic planes
are separated by exactly the distance given in the right hand side of equation (1.8).

We shall show in addition that the extremal case exhibiting the sharpness of
Theorem 1.7 occurs only when there is a common elliptic element of order p. We
then establish the following variant of Theorem 1.7.

THEOREM 1.9. Let A(p) and A'(q) be (2, 3, p) and (2, 3, q)-triangle subgroups
of a Kleinian group stabilizing hyperbolic planes II, and IT respectively. If p =g,
assume in addition that the common perpendicular between Ilp and Il does not
coincide with an elliptic axis of order p. Then

p(I,, I,) > arcsinh(,/3) ~ 13170 . ... . (1.10)

We shall actually give an explicit bound for the right hand side of equation (1.10)
for each value of p and g in Corollary 3.20. We believe this bound to be of roughly
the correct magnitude although we have no good examples to verify this.?

We next turn our attention to estimating the co-volume of Kleinian groups with
(2, 3, p)-triangle subgroups.

D Added in proof. This bound has recently proven to be sharp in joint work with F. W. Gehring
and T. H. Marshall.
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THEOREM 1.11. Let I be a Kleinian group containing a (2, 3, p)-triangle
subgroup. Then

1 — 4 sinX(n /p)) arccosh(l — 2 sin*(n /p)) . (1.12)

3 T

Vol (W) = 2 ( 4 sin’(n/p) 1 — 4 sin’(n/p)

We give a different formula which is somewhat better in the case p € {7, 8}. A
table of the estimates we obtain compared with the conjectured sharp examples can
be found at the end of §5. We see from this that the volume estimate of Theorem
1.11 is quite good. This estimate actually represents only the volume of an
embedded solid hyperbolic cylinder about the degree p singular set and the
examples of §4 show that this bound is sharp for each p > 7 in this regard.

2. Preliminary results

The main tool that we shall use in the proof of the results stated above is the
sharp collaring theorem for elliptic elements of a Kleinian group together with the
fact that the extremal situation occurs for (2, 3, p)-triangle groups. This result was
established in our earlier work with F. W. Gehring [5]. We recall some terminology
in order to state the result we need.

Other than the identity the elements of a Kleinian group I' can be classified into
three distinct types: If g e I', then g is either

e elliptic: conjugate to a rotation z — ¢z, z € C and |c| = 1. The order of g is the
period of the rotation.

@ parabolic: conjugate to the translation z -z + 1.

e loxodromic: conjugate to a dilation z —»cz, z € C and |c| # 1.

Elliptic and loxodromic transformations g have two fixed points in the Riemann
sphere C and we call the hyperbolic line joining these fixed points the axis of g,
denoted axis(g). Let fand g be elliptic or loxodromic Mobius transformations. We
say that the axes of fand g are parallel if they lie in a common hyperbolic plane and
do not meet. We say that the axes are perpendicular if one of the axes lies in a
hyperbolic plane which meets the other axis at a right angle.

We define the numbers ( p, q) for integers p and ¢, 2 < p, ¢ < o0, max{p, q} >3,
as follows:

op, q) = ifrf plaxis(f), axis(g)) (2.1)
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where the infimum is taken over all pairs of Mobius transformations f'and g such that
fis elliptic of order p, g is elliptic of order g and {f, g) is a Kleinian group. The
restriction max{p, ¢} > 3 is necessary as two elements of order two can never generate
a Kleinian group. Basic compactness theorems imply the infimum is actually a
minimum [11] (see for instance the proof of our Theorem 3.2 here).

The main tool we shall use in this paper can be found in [ 5], Theorem 6.19, and also

[6].

THEOREM 2.2. Forallp >,

® (2, p) = arccosh(1/(2 sin 7/p)).
Let {f, g> be a Kleinian group with f and g elliptic of order 2 and p respectively.
Then p(axis(f), axis(g)) = 6(2, p) only if the axes of f and g are parallel or
perpendicular and {f, g > is the (2, 3, p)-triangle group or a Z,-extension of this
group.

® J(3, p) = arccosh(cot(n/p) /\/3).
Let {f, g> be a Kleinian group with f and g elliptic of order 3 and p respectively.
Then p(axis(f), axis(g)) = 6(3, p) only if the axes of f and g are parallel and
{f,g) is the (2, 3, p)-triangle group.

® &(p,p) =24(2, p).
Let {f, g) be a Kleinian group with f and g elliptic of order p. Then p(axis( f),
axis(g)) = 6(p, p) only if the axes of f and g are parallel and {f,g) is the
(2, 3, p)-triangle group. O

In [5] [6] we have identified many other values for d(p, g). It turns out that the
set of possible values for p(axis(f), axis(g)) for f of order p and g of order g and
{f, g > Kleinian, initially comes in a discrete part and then a continuous part (roughly
the continuous part comes from the groups that are free on the two elliptic generators).
The value é(p, g) is the smallest possible nonzero value. While other triangle groups
are not necessarily extremal for the distance between axes of elliptic elements of other
orders, all that is really necessary for our proof is that the set of values is discrete
and that we can identify all those axial distances which are less than the values for
the triangle groups in question. This is the basis for our claim in the introduction
that our results also hold for other infinite families of triangle groups. For instance
0(4, p) is not attained in the (2, 4, p)-triangle group, however it very nearly is. A similar
situation arises in the case of 4(5, p) and the (2, 5, p)-triangle groups. However these
are the only other infinite families for which we know our results are valid.

We shall also need the following results [5], Theorem 6.19.

. THEOREM 2.3. For n >m > 7 we have the estimate
o(m,n) > arcsinh( \/2 cos(z/m) — 1 ) (2.4)

2 sin(n/n) sin(w/m)
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We now give a few results which are used in the proof of Theorems 1.7 and 1.9.
The first lemma we need is a simple consequence of convexity and some elementary
hyperbolic trigonometry.

LEMMA 2.5. Let T be a hyperbolic trzangle with vertex angles n[2, 7|3 and n/p,
p=2T.1If zyweT, then

p(z, w) <4(3, p)
with equality and only if z and w lie on the vertices with angles n(3 and n[p. O

The next lemma will give an estimate of the distance between a line lying in a
hyperbolic plane stabilized by a (2, 3, p)-triangle group to an elliptic axis of order
2 or 3.

LEMMA 2.6. Let A be a (2, 3, p)-triangle subgroup of a Kleinian group I
stabilizing the hyperbolic plane I1,. If | is a hyperbolic line in I1 ,, then there is a point
v, € I stabilized by an element of order 3 in A such that

p(v,, 1) < arccosh(2 cos(x/p)[/3). (2.7)

Moreover there is a point v, € I1, stabilized by an element of order 2 or 3 in A such
that

p(vy, 1) < 1arccosh(2 cos(n/p)/\/_ 3). (2.8)

Proof. We view II, as the unit disk model of hyperbolic 2-space H? and 4 as a
triangle group acting on it. The hyperbolic plane H? is tesselated by hyperbolic
triangles whose vertices meet the axes of elliptics in A. The line / lies in IT, and
therefore meets some hyperbolic triangle T of this tesselation. Conjugate by a
Moébius transformation preserving II,, so that T is a hyperbolic triangle in the
tesselation such that the vertex with angle n/p is at the origin. Now the link of this
vertex in the triangulation of H? obtained from this tesselation is a regular
hyperbolic p-gon all of whose internal angles are 2n/3. The line / meets this p-gon
and therefore meets a side. Each side of this p-gon has endpoints which meet the
axes of elliptics of order 3 and the axis of an elliptic of order 2 in the middle.
he side length is 2 arccosh(2 cos(n/p) /ﬁ). The result is now easily seen to
follow. U
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THEOREM 2.9. Let 4 be a (2, 3, p)-triangle subgroup of a Kleinian group T
stabilizing the hyperbolic plane I1,. If g €I is elliptic of order 2, 3 or q > p, then

axis(g) nll, = J (2.10)

unless q € {2,3,p} and g € A, or g is elliptic of order 2 and axis(g) = I1,.

Proof. Again we identify II, and H? The triangle group 4 then tesselates I1,
and the vertices of the tesselating triangles are stabilised by elliptic elements of 4.

Case 1. g =3 or g = p.

Suppose first that g is elliptic of order ¢ and ¢ =3 or g > p. It is immediate
from Lemma 2.5 that the axis of g cannot meet the interior of any triangle of
the tesselation, or at any point which is not a vertex of a triangle in the
tesselation. This is since the function 6(3,p), as a function of p, is strictly
increasing and the vertices with angles n/3 and =n/p of each triangle are exactly
the distance d(3, p) apart. Now suppose that the axis of g meets at a vertex of
some triangle in the tesselation. Since g >p >7 or g =3, if the vertex is stabi-
lized by an elliptic of order p we must have p =¢, by the classification of the
elementary discrete groups [2], and this axis must coincide with that of the
elliptic of order p in 4. Thus g e 4. If the axis of g meets a triangle of the
tesselation in a vertex stabilised by an elliptic of order 2 we get a contradiction
because the two vertices with angles /2 and n/p are at a distance 4(2, p) which
is smaller than d(p, q¢) for both ¢ =3 and g > p. Finally in this case if the axis
of g meets a triangle of the tesselation in a vertex stabilized by an elliptic of
order 3, then the classification of the elementary groups implies that g has order
3. By the second part of Theorem 2.2 (since g has order 3 and its axis is at
most the distance 4(3, p) from an order p axis in 4) the axis of g is parallel to
the elliptic axis of order p in 4. It again follows that g € A. Thus Theorem 2.9
has been verified if g has order 3 or g > p.

Case 2. q =2.

There remains the possibility that g has order 2 and its axis meets I1,. It is
possible that the axis lies in I1,, and we have allowed for this in our conclusion.
We may therefore assume that axis(g) meets II, at some unique point, say w.
Let 0 be the angle of intersection between the axis of g and the hyperbolic plane
II,. If = =n/2, then (g, 4) is a discrete Fuchsian group. (It is discrete since it is
a subgroup of I' and it is Fuchsian since both g and elements of 4 fix II, and
are orientation preserving when restricted to this hyperbolic plane). Since 4 is a
(2, 3, p)-triangle group it follows that g e 4. Thus we assume 0 <60 <m/2. Let
II', = g(I1,). The dihedral angle of intersection between II, and IT/, is either 20
or m — 260 whichever is the smaller.



Triangle subgroups of Kleinian groups 347

By virtue of the fact that these two hyperbolic planes meet there is a vertex
v, € Il of the tesselation lying on an elliptic axis / of order p for which

p(v,, ITy) < cosh(d(3, p)).

Let w be the closest point of II; to v,. From what we have proved in Case 1,
w # v,. Next there is a point v, € IT}; such that

p(vy, W) <cosh(5(3, p)).
Since the line from v, to w is perpendicular to IT); we see that the angle at w formed
by the two line segments from w to v, and from w to v, is /2.

Therefore

cosh(p(v,, v,)) = cosh(p(w, v,)) cosh(p(w, v,)) (2.11)
= cosh?(6(3, p)). (2.12)

However we must also have
cosh(p(v,, v,,)) = cosh(24(2, p))
since the two vertices lie on different elliptic axes of order p. Thus
cosh(26(2, p)) < cosh?(6(3, p)). (2.13)

Substituting in the values for 4(2, p) and (3, p) from Theorem 2.2 we obtain

1 cot?(n/p)
sy ST 3 (219
or
1 < 4 sin’(n/p). (2.15)

Equation (2.15) implies that p <4. This contradiction proves Theorem 2.9. a

We want to use Theorem 2.9 to show that the hyperbolic planes stabilized by
different triangle groups do not meet. We begin with an auxiliary lemma which
bounds the angle of intersection if they do in fact meet.
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LEMMA 2.16. Let A(p) and A'(q) by (2, 3, p) and (2, 3, q)-triangle subgroups of
a Kleinian group I' stabilizing different hyperbolic planes II, and II, respectively.
Suppose that p < q and that the hyperbolic planes 11, and I1 intersect at the dihedral
angle 6. Then

sin() > (1/2 + cos(n/p)/</3) "2 = 0.95. (2.17)

Proof. To see this we argue in a similar manner as in the proof of Theorem 2.9.
By Lemma 2.6, if #n is the line of intersection of the two hyperbolic planes, there is
an elliptic element fe I' of order 2 or 3 whose axis / = axis(f) is perpendicular to
11, and lies at a distance at most

r = arccosh(2 cos(n/p)/+/3)/2

from 5. Theorem 2.9 implies that / cannot meet the hyperbolic plane IT;. Again
consider the hyperbolic plane IT perpendicular to # and containing /, and the two
lines formed by the intersections with IT of the hyperbolic planes I1, and II;. The
dihedral angle 6 of the intersection of II, and IT is the angle between these two
lines in II. Elementary hyperbolic trigonometry implies the estimate

1
cosh(r) > M

which yields the desired result. O

The preceding result implies that if the two hyperbolic planes II, and II; do
intersect, then they do so nearly perpendicularly. We will use this fact to show that
they don’t intersect at all.

THEOREM 2.18. Let A(p) and A'(q) be (2, 3, p) and (2, 3, q) triangle subgroups
of a Kleinian group I stabilizing hyperbolic planes II, and II respectively. Then

I,nil, =g

unless p =q, I1, = I, and A(p) = 4'(q).

Proof. 1t is clear that the hyperbolic planes cannot coincide unless all the
attributed equalities are valid. We therefore suppose that the hyperbolic planes do
meet with dihedral angle 6 > 0 along the line . Let w e . Then w lies in a triangle
of the tesselation of I, and also a triangle of the tesselation of II;,. Therefore
Lemma 2.5 asserts that there are points v, € Il, and v, € IT;, stabilized by the
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elliptics of order p and g respectively and such that p(w,v,) <d, =4(3, p) and
p(w,v,) <d, = 0d(3, q). Next from the law of hyperbolic cosines we have

cosh(p(v,, v,)) < cosh(d,) cosh(é,) — sinh(d,) sinh(d,) cos(6). (2.19)
Now substituting in the values of 6, and 6, given in Theorem 2.2 and our

estimate for the dihedral angle of intersection given in Lemma 2.16 we obtain
the following inequality.

cosh(p(v,, v,)) < % (cot(n [p) cot(m/q) — .96\/ cot¥(n/p) — 3\/ cot¥(n/q) — 3).

However we also have the estimate of Theorem 2.3:

2cos(n/g) —1
4 sin*(n/p) sin*(n/q) "

cosh(p(v,, v,)) = cosh(d(p, 9)) = \/ 1+

Using elementary calculus one can show that these two estimates are incompat-
ible for 7<p <q. O

Theorem 2.18 implies that the hyperbolic planes II, and II, cannot meet at
any finite point of H3. We next want to show that they do not meet at infinity
either.

THEOREM 2.20. Let A(p) and A'(q) be distinct (2, 3, p) and (2, 3, q) triangle
subgroups of a Kleinian group I stabilizing hyperbolic plane II, and II respec-
tively. Then

p(Il,, 1) > 0.

Proof. Suppose that p(Il,,IT1;) =0. Then, since the two hyperbolic planes
cannot meet at any finite point of H® by Theorem 2.18, there is a point of
tangency of the two hyperbolic planes at some point of C which we may as well
assume to be co. In this situation the two hyperbolic planes are parallel vertical
euclidean planes. Consider the axes of elliptics of order 3 (for instance) in 4(p).
They are hyperbolic lines which are perpendicular to I, and do not meet II; by
Theorem 2.9. However they occur at greater and greater heights and it is geo-
metrically evident that they must therefore eventually meet IT,. This contradic-
tion establishes Theorem 2.20. O



350 GAVEN J. MARTIN

3. Invariant tubular neighbourhoods

Theorem 2.20 implies that the hyperbolic plane stabilized by a (2, 3, p)-triangle
group is precisely invariant (see (1.4)). In this section we shall give estimates, some
of which are sharp, on the distance between the invariant hyperbolic planes
stabilized by different (2, 3, p)-triangle groups. We begin by defining certain num-
bers a( p, g) which bound from below the distance between any pair of hyperbolic
planes stabilized by (2, 3, p) and (2, 3, g)-triangle groups.

For integers p and g with 7 <p, g < o let a(p, g) be the largest real number
with the following property: If I' is a Kleinian group and 4(p) and 4'(g) are
(2, 3, p) and (2, 3, g9)-triangle subgroups respectively stabilizing hyperbolic planes
I, and IT, then

p(l,, 115) = o p, ). (3.1
THEOREM 3.2. For all 7<p, q < o,

0<ap,q) < oo.

Moreover for each such p and q there is a Kleinian group I', , with subgroups A(p)
and A'(q), which are (2,3, p) and (2, 3, q)-triangle groups respectively, stabilizing
hyperbolic planes I1, and II; with

p(1,, 11;) = a(p, q).

Proof. Let p and g be given as in the statement of Theorem 3.2 and set
a = p, q). We first use the combination theorems to provide examples to show
that a < 0. Let 4(p) and 4'(q) be triangle groups. Then both 4(p) and 4'(g) act
discontinuously in C\{C, } and C\{C, } respectively, where C,, C, are circles or lines
in C (the limit sets of the groups). Let F, and F, be open subsets of fundamental
domains for the respective actions. Choose a Mébius transformation g of C such
that

g(F,) > C\F,.

Then the Klein-Maskit combination theorems [12] imply that the group

{A(p), g4 (@)~

is a discrete nonelementary, hence Kleinian, group which is algebraically isomor-
phic to the free product group 4(p) * 4'(q). Since this Kleinian group contains a
(2,3,p) and a (2, 3, g) triangle groups as subgroups it follows that a < co.
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Next we show that « > 0. Let I',, be a sequence of Kleinian groups with triangle
subgroups 4,(p) and 4,,(g) stabilizing hyperbolic planes II,, and II, , such that

pl,,, IT, ;) —>o.
Consider the sequence of subgroups of I', defined by

I'\(p, q) =<4,(p), 4.(9)>-

After conjugating by a suitable hyperbolic isometry of H> we may assume that the
common perpendicular between II,,, and IT, , is bisected by the point (0, 0, 1) € H?
and lies in the line {(0, 0, f) € H?}. Choose generators {g,,,f,} and {g,.,f,.} for
4,(p) and 4,(g) respectively such that g, ; are elliptic of order 2 and f,,; are elliptic
of order 3 and the axes of f,; and g,; are at a distance no more than
max{d(3, p), (3, q)} from the line {(0, 0, /) € H*}. This is possible since the com-
mon perpendicular meets the tesselation of both hyperbolic planes. It now follows
from the local compactness of the Mobius group that for i =1, 2

8ni 8 and fn,i g as n — o

By the theorem of Jorgensen [11] on the algebraic convergence of sequences of
discrete nonelementary Kleinian groups, the limit group

F(p’ q) = <g19ﬁ’g2,ﬁ>

is discrete and nonelementary. Also, the algebraic convergence theorem is easily
seem to imply that 4 (p) = {g,,f,) is a Fuchsian group which is the homomorphic
image of a (2, 3, p)-triangle group. It follows tht 4. (p) is a (2, 3, p)-triangle group.
Similarly for the group 4/, (q) = <{g»,/>). There are of course invariant hyperbolic
planes I, and II, , and it remains only to observe that

p(ﬂoo,pa H,oo,q) = a,
and that o >0 by Lemma 2.16. O

We now give two different ways of estimating the number «( p, ) which will in
turn give bounds for it. We begin by defining a sequence of numbers a,(m) as
follows:

Let a,(m) be the largest number with the following property: If I' is a Kleinian
group, 4(p) a (2, 3, p)-triangle subgroup stabilizing a hyperbolic plane II, and feI'
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is an elliptic of order m with axis(f) NIl = J, then
cosh(p(I1, axis( f))) = a,(m). (3.3)

It is not difficult to show using a compactness argument, much the same as we used
in the proof of Theorem 3.2, that 0 < a,(m) < oo and that the value a,(m) is attained
in an example.

Let us now give an estimate on the value of a,(m) in terms of the value a(p, p).

THEOREM 3.4. Forallm>2andp >17

cosh(a(p, p)/2)
sin(n/m)

cosh(a,(m)) > (3.9)

Proof. Let I' be a Kleinian group and 4( p) a (2, 3, p)-triangle subgroup stabilizing
a hyperbolic plane 1. Let f'be an elliptic of order m in I' such that axis(f) nIl, = &.
We may conjugate the group I" so that axis( f) is the line {(0, 0, #) € H*}. The collection
of hyperbolic planes f*(I1,),k =1,2,...,m now form m congruent euclidean
hemispheres. The hyperbolic distance between any pair of them is at least a( p, p) since
each hyperbolic plane f*(I1,) is stabilized by the (2, 3, p)-triangle group f*A(p)f~*.

Let IT be the hyperbolic plane which is perpendicular to axis(f) and II,. Then
IT meets the other m-hyperbolic planes perpendicularly as well, moreover the common
perpendicular between axis( f) and any of the other hyperbolic plane f*(I1,) lies in
II as does the common perpendicular between any adjacent pair of hyperbolic planes,
f%(I1,) and f*+'(I1,). We now view II as the disk model of hyperbolic 2-space. In
I1 we see m complete hyperbolic lines, each congruent by a euclidean rotation (induced
by f), the distance between any pair of lines is at least a(p, p). The distance a,(m)
we are trying to estimate is, in the worst case, the distance between any one of these
lines and the point 0. Choose one of these lines / and construct a Lambert quadrilateral
as follows. Let /; be the geodesic line segment from 0 to /, /, be the initial half (starting
from /) of the geodesic segment which is perpendicular to / and either adjacent geodesic
line. Let /; be the geodesic segment from the endpoint of the segment /,, not in /,
to 0. Finally /, is the portion of / connecting /, to /,. All angles of this quadrilateral
are m/2 except for the angle at 0 which is n/m by symmetry. We seek the length of
l,, and know the length of /, is at least a(p, p)/2. Then by formulas of hyperbolic
trigonometry, [2] Theorem 7.17.1 we find

. cosh(/;) = cosh(l,) /sin(r/m).

From which the desired result follows. O
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Suppose that 4 = A(p) and 4’ = 4'(q) are (2, 3, p) and (2, 3, g)-triangle sub-
groups stabilizing hyperbolic planes I, and IT; whose common perpendicular is /
and that {4, 4" is discrete. Then for m e {2, 3, p} we set

cm(4, 4) = min{p(l, axis(g)): g € A has order m and axis(g) #}. (3.6)

Thus c,,(4, 4’) is the distance from the common perpendicular of II, and II to the
closest elliptic axis of order m which is perpendicular to IT, and not coincident with
the common perpendicular. Notice that it follows from Lemma 2.5 that
0<c,(4, 4) <(p, p).

The following theorem is used to give an estimate on the value of a(p, q) in
terms of the values a,(m) and c, (4, 4').

THEOREM 3.7. Let I be a Kleinian group and let p and q be integers with
7<p,q < oo. Suppose that A = A(p) and A' = A'(q) are (2, 3, p) and (2, 3, q)-tri-
angle subgroups stabilizing hyperbolic planes 11, and II, respectively. Then

cosh(a,(m))
sinh(c,,(4, 4"))

sinh(p(IT,, IT,)) > (3.8)

for all m € (2, 3, p).

Proof. Again we conjugate the group I' so that the common perpendicular
between the two hyperbolic planes is a subset of the line {(0,0, r) e H*}. Let
m € {2, 3, p} and let / be an axis of an elliptic of order m perpendicular to II, closest
to the intersection of, but not coincident with, the common perpendicular. The line
l is at least the distance a,(m) from the other hyperbolic plane IT;,. The reason for
this is simply that / and II; are disjoint (if they were to meet they would meet
perpendicularly since / is the axis of an elliptic element of I'. Hence / would be the
common perpendicular between II, and IT; which it is not).

We now construct a regular hyperbolic pentagon all of whose angles are n/2 as
follows. Let /;, be the geodesic line segment which is the common perpendicular
between / and IT;. I, is the portion of / joining /; to II,. /; is the common
perpendicular between II, and IT;. Complete the pentagon in the obvious manner,
denoting that segment in I1, by /,. We seek the length of /;, we have a lower bound
on the length of /; given by a,(m). The length of /, is equal to c,,(4, 4°). Again by
the formulas of hyperbolic trigonometry ([2] Theorem 7.18.1) we have

sinh(/,) sinh(/y) = cosh(/,). (3.9

Thus sinh(p(I1,, IT})) > cosh(a,(m))/sinh(c,,(4, 47)) as desired. O
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We now put together the two estimates of Theorem 3.4 and Theorem 3.7 to
obtain the following corollary.

COROLLARY 3.10. If T is a Kleinian group and A(p) and A'(q) are (2, 3, p) and
(2, 3, g)-triangle subgroups stabilizing hyperbolic planes Il, and 117, then

cosh(a(g, 9)/2)

sinh(p(11,, 1)) > sinh(c,,(4, 4")) sin(r/m)

(3.11)

for all m € (2, 3, p).

The point to the corollary is that with p = g in the extremal configuration the
number o p, p) will occur on both sides of equation (3.11) and can be bounded
purely in terms of the number c,,(4, 4’) for which we already have estimates.

THEOREM 3.12.

2 sin?(n/p)
1 —4sin*(n/p)
Proof. Theorem 3.2 asserts the existence of an extremal Kleinian group I with
two (2, 3, p)-triangle groups stabilizing hyperbolic planes II, and II, with

cosh(a(p,p)) =1+ (3.13)

p(1,, I1,) = o p, p) = 0. (3.14)

Squaring both sides of the inequality (3.11) of Corollary 3.10 and using the obvious
trigonometric identities we find that

cosh*(a) > a cosh(a) + 1 +a (3.15)
where a = 1/(2 sin®(z/m) sinh?(c,,(4, 4'))) > 0. Thus for all m € {2, 3, p} we have

1
2 sin?(n/m) sinh?(c,,(4, 4")

cosh(a) > 1 + (3.16)

We now set m =p. By Lemma 2.5 we have c,(4, 4") <4(3, p) < é(p, p) unless the
common perpendicular between I1, and IT, is the axis of an elliptic of order p and
c,(4, 4"y = &(p, p). Substituting the value of é(p, p) from Theorem 2.2 into equa-
tion (3.18) yields

2 sin®(n/p)
1 —4sin*(n/p)’

_ cosh(x) =1+

The converse inequality will be shown by example in the next section. O
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COROLLARY 3.17. For every p,q =7 with p #q

3 1 — 3 sin*(n/q)
—45sin’(n/p) 1 — 4 sin*(n/q)
Proof. Theorem 3.2 guarantees the existence of the extremal group I containing
the two triangle subgroups stabilizing hyperbolic planes a distance a( p, g) apart. If
P # q, then the common perpendicular cannot coincide with an elliptic axis of order
p and ¢ and hence ¢,(4, 4') < 4(3, p) by Lemma 2.5. Corollary 3.10 implies

cosh(a(q, 9)/2)

sinh?(a( p, q)) > 1 (3.18)

| § . 1
sinh(a(p, q)) = sinh(6(3, p)) sin(r/p) (3.19)
From Theorem 3.12
sin%(nt/q)
% 2)= /1
cosh(a(g, 9)/2) \/ + 1 —4sin*(n/q)’
which together with (3.19) and Theorem 2.2 gives the desired result. -

A point to notice is that for all p and g the left hand side of equation (3.18) in
Corollary 3.17 is bounded below by 3.

COROLLARY 3.20. For every p,q =7 with p #q
a(p, g) = arcsinh(,/3) ~1.3170 ... . .

Of course one can use the ideas here to obtain estimates under other assump-
tions. For instance one might assume the common perpendicular is an axis of order
2 or 3. We leave it to the reader to obtain these estimates.

We also wish to record the following result which gives estimates when p =¢q
and the common perpendicular is not an elliptic axis of order p. The proof is similar
to that of Corollary 3.17.

THEOREM 3.21. Suppose that A, and A, are two (2, 3, p)-triangle subgroups of
a Kleinian group I' which stabilize distinct hyperbolic planes I1, and I1, and that the
common perpendicular is not coincident with an elliptic axis of order p. Then

. 3 — 9 sin*(n/p)
sinh*(p(11,, I1,)) = (1 — 4 sin®(n/p))?

>3. ]

Our results now give estimates for the numbers a,(m) via Theorem 3.4.
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THEOREM 3.22. For p >17,

/1 +sin¥(n/p) /(1 — 4 sin’(n/p))
sin «/m

cosh(a,(m)) >

1
= sin(n/m)

Finally, let us say a few words about the algebraic intersection theorem
mentioned in the introduction. It is easily seen that the intersection of a (2, 3, p)-tri-
angle group and a (2, 3, g)-triangle group cannot contain any element of infinite
order as each such is a hyperbolic transformation whose axis must lie in both
invariant hypberbolic planes. But these hyperbolic planes do not meet. Therefore
the intersection, if nontrivial, must be generated by an elliptic element of order 2,
3, porgq. If p #gq it is clear that the intersection cannot contain either the elliptic
of order p or g simply because the associated triangle groups cannot contain these
extra elliptics and remain discrete.

4. Examples

The examples that exhibit the sharpness of our Theorem 3.12 were explicitly
constructed in an earlier joint work with M. Conder [3]. The groups in question are
subgroups of groups generated by reflections in the faces of a hyperbolic pentahe-
dra. These groups were constructed by opening up a cusp of a certain tetrahedral
orbifold group. More precisely the group generated by reflections in the sides of a
hyperbolic tetrahedron with Coxeter diagram 3-3-6, whose index two orientation
preserving subgroup is the minimal co-volume cusped (finite volume noncompact)
orbifold. Interestingly (and not unrelatedly) this Kleinian group has minimal
co-volume among all Kleinian groups with an element of order 6 [8]. We continu-
ously decreased the dihedral angle of the edge whose stabilizer was the elliptic of
order 6 while keeping all the other dihedral angles fixed. When the angle is
decreased until it has the form =n/p, p > 7, the group is discrete. However it has
infinite co-volume. The tetrahedron has opened up and subtends a (2, 3, p) triangle
on the sphere at infinity. We show how, in these circumstances, to construct a
hyperbolic plane IT perpendicular to the three faces of the unbounded tetrahedron
which subtend the triangle. The three faces then subtend a (2, 3, p)-triangle in IT
and the group generated by these three reflections is a Z,-extension of the
(2, 3, p)-triangle group which stabilizes I1. If we adjoin to this group the reflection
in the hyperbolic plane IT we find from the Poincaré Polyhedron Theorem [12] that
the group obtained is discrete. The index two orientation preserving subgroup is the
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Kleinian group we want. Call it I'°(p). It contains a (2, 3, p)-triangle subgroup
stabilizing the hyperbolic plane IT and has finite co-volume (actually, it contains a
Z,-extension of this triangle group which is orientation preserving but when
restricted to IT is orientation reversing as there are elliptic axes of order two lying
in IT). It is extremal with respect to the collaring theorems because it contains a
(2, 3, p)-triangle subgroup. Because of the explicit construction we can compute the
length of the primitive loxodromic element sharing an axis with the elliptic of order
p. The calculations occur in §3 of [3] and the value we want is twice the value
identified in equation (3.5) in that paper, since this is the distance between
perpendicular elliptic axes of order two and hence half the translation length of the
primitive loxodromic. The minimal distance between (2, 3, p)-triangle subgroups is
then bounded above the translation length of this loxodromic. We record this
discussion in the following theorem.

THEOREM 4.1. For each p > 7 there is a Kleinian group I'°(p) containing two
distinct (2, 3, p)-triangle subgroups stabilizing hyperbolic planes I, and I1, with

2 sin’(n/p)
1 —4sin¥(n/p)

cosh(p(Il;, IT;)) =1 +

Proof. Equation (3.5) of [3] gives the value / for the distance between perpendic-
ular elliptic axes of order two along the axis of the elliptic of order p in the group
I'%(p), where

1

sinh*(/) = Ty — e

(4.2)

The translation length of the primitive loxodromic element is then 2/. But then the
above equation gives

cosh(2]) =1+ Ao — A
s 2
14 2 sin“(n/p)

" 1—4sin¥(n/p)’ =

Actually, the construction of these groups by continuous variation of a single
dihedral angle makes the volume easy to compute as well, and this is related in [3].
We also should point out that the co-volumes of the groups I'°( p) have a finite limit
which is the smallest possible value for the limit of a sequence of finite co-volumes
of any sequence of Kleinian groups [1]. Thus these groups are extremal in many
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different ways. A short list of the volumes of these groups is given in the next
section where we compare them with general lower bounds.

5. Lower bounds on the co-volume

We use two different methods to obtain estimates on the co-volumes of Kleinian
groups with (2, 3, p)-triangle subgroups as follows. First we use the action of the
triangle group on a precisely invariant neighbourhood of the stable hyperbolic
plane; second we use the collaring theorem about the elliptic axis of order p
together with a bound obtained on the translation length of any loxodromic
element whose axis coincides with the elliptic axis of order p. This latter bound is
given by the size of the precisely invariant neighbourhood of the hyperbolic plane.
Let us state the following simple corollary of the results of the previous section. .

LEMMA 5.1. Let I be a Kleinian group and A(p) a (2, 3, p)-triangle subgroup.
Let II denote the invariant hyperbolic plane stabilized by A(p). Then II has a precisely
invariant tubular neighbourhood of radius o( p, p)/2.

Proof. Let geI' and N the tubular neighbourhood of IT of radius a(p, p)/2.
Suppose that g(N) "N # . Then p(I1, g(IT)) < a( p, p). As both IT and g(IT) are
stabilized by (2, 3, p)-triangle groups we must have g(IT) = IT by the definition of
the numbers a(p, p). It follows that g(N) = N, so that N is precisely invariant. [J

Suppose now that I' is a Kleinian group with a (2, 3, p)-triangle subgroup, 4(p)
stabilizing a hyperbolic plane I1. Let ¢ be the radius of a precisely invariant tubular
neighbourhood of I1. It follows that the volume of H3/I" is bounded below by the
volume of N,(II)/T';. Here I'; is the stabilizer of II. Because there may be an
involution stabilizing IT whose axis lies in IT we see that the triangle group 4( p) has
index at most two in the stabilizer of IT and therefore has index of at most two in
the stabilizer of N,(IT). It is at most two since anything stabilizing N,(II) stabilizes
IT and therefore has a Fuchsian subgroup of index two. This Fuchsian subgroup
contains the (2, 3, p)-triangle group, and therefore is the (2, 3, p)-triangle group.
(We note that the index is indeed two in the conjectured extremals.)

It is easy to see that a fundamental domain for the action of the triangle group
A(p) on N,(Il) is the set Q = T x [ —¢/2, ¢/2] where T is a fundamental domain for
the action of 4A(p) on II. Here the interval [ —¢, ¢] is identified with a geodesic line
segment perpendicular to 7 whose bisector O lies in 7. Therefore in order to get a
lower bound on the co-volume of the Kleinian group I', we need to compute the
volume of @, with € = a(p, p)/2, and then divide by 2. Here is how to compute the
volume of .
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LEMMA 5.2. Let IT be a hyperbolic plane in H* and A a measurable subset of
II. Let Q,(c) be the union of all geodesic line segments of length 2¢ which are
perpendicular to A and whose bisector lies in A. Then

Vol,,,(24(g)) = % Areay,,(A)(sinh(2¢) + 2¢). (5.3)

Proof. We use the coordinates (z, p) where t € IT and p measures the oriented
hyperbolic distance (that is choose a + and a — direction) from II. In these
coordinates the volume element can be computed as

dVol,,, = cosh?(p) dA(z) dp (5.9

where dA(7) is the hyperbolic area measure in IT (see [7] for this calculation in all
dimensions). The result now follows. O

The area of a fundamental domain % for the (2, 3, p)-triangle group is

1 1
Area () = 2n(—6— —;)

Lemma 5.2 now yields the following volume estimates in view of our previous
discussion.

THEOREM 5.5. Let I' be a Kleinian group with a (2, 3, p)-triangle subgroup.
Then

Vol (W211) 2 % (=3 )sinhta(p. ) + a(p. ). (56)

As we mentioned above we can also use the collaring theorems, Theorem 2.2, to
give the volume estimate. This is because the elliptic of order p has a precisely
invariant tubular neighbourhood of radius é(p, p)/2 = 6(2, p). The stabilizer of this
solid hyperbolic cylinder is generated by the elliptic of order p, a -primitive
loxodromic element (whose translation length we have bounded below by a(p, p))
and possibly an involution of order two whose axis is perpendicular to the elliptic
axis of order p. The hyperbolic volume of a solid cylinder of length t and radius r
is nt sinh?(r). We therefore have the following theorem.

THEOREM 5.7. Let I be a Kleinian group with a (2, 3, p)-triangle subgroup.
Then
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Volyy(H3/I) = a(p, p) sinh*(3(2, p))

_n(1—4sin’(n/p) 1 — 2 sin’(n/p)
2 ( 4 sin’(n/p) ) arccosh(l — 4 sin’(n/p) )

In fact we have shown that under the circumstances of the theorem that there
is an embedded solid hyperbolic cylinder whose volume is given by Theorem 5.7.
The examples of Section 4 show that this estimate is sharp for every p > 7. Notice
that as p » ©

n (1 —4 sinz(n/p)) arccosh(l — 2 sin%(n/p) ) Ny (5.8)

2\ 4sin*(n/p) 1 —4sin*(n/p)) 4

The estimate given by Theorem 5.5 is better than that of Theorem 5.7 only when
p €{7, 8}. Here is a table comparing our estimates and the conjectured best bound.

p lower bound on co-volume conjectured sharp bound
7 0.145686 . . . 0.17712...
8 0.164406. .. 0.21442 ...
9 0.179486 ... 0.2365. ..
10 0.194991 ... 0.25106. ..
o 0.25 0.30532...
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