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Triangle subgroups of Kleinian groups

Gaven J Martin*

(for J. A. Kalman on the occasion of his 65th birthday)

Abstract We exhibit an interesting new phenomenon concerning certain tnangle subgroups A of
Klemian groups V Namely the hyperbohc plane 17 stabihzed by A has a precisely mvanant tubular
neighbourhood Thus the correspondmg 2-orbifold F2 77 \Tn îs always embedded in the hyperbohc
3-orbifold M3 H3/r We deduce that any two such tnangle groups can algebraically intersect only in
a finite cychc subgroup

We give sharp estimâtes for the radius of thèse tubular neighbourhoods and présent applications
concerning the estimation of co-volumes of Kleinian groups contaimng thèse tnangle subgroups

1. Introduction

In this paper we exhibit a seemingly new phenomenon concerning certain

tnangle subgroups of Kleinian groups. Our results as presented hère only apply to
the (2, 3,/?)-triangle groups, A(29 3,/?). We are aware that our results hold in more
generahty for certain other infinité families of triangle groups and the methods of
proof we use hère apply in those situations too. However the necessary proofs seem

to require a case by case analysis which would considerably lengthen this paper. We

are therefore content to présent the results in this spécial case m the hope that some

gênerai géométrie explanation might later be found which identifies ail tnangle

groups with the properties we describe.

There are many reasons for studying Kleinian groups containing triangle
subgroups. First, such Klemian groups are extremal for many géométrie problems.
For instance a Kleinian group which contains éléments of finite order p > 1 whose
fixed point sets are as close as possible always contain a (2, 3,/?)-triangle subgroup
[5]. As another example, the smallest limit volume hyperbolic 3-orbifold, see [1],

can be obtained as the limit {p -+ oo) of a séquence of orbifolds which are the orbit

* Research supported in part by grants from the Austrahan Research Council, the New Zealand
Foundation for Research Science and Technology and the U K Scientific and Engineering Research

Council

339



340 GAVENJ MARTIN

spaces of Kleinian groups containing (2,3,/?)-triangle groups [3]. The limit
Kleinian group contains a (2, 3, oc)-triangle group.

Secondly, the torsion free finite index subgroups of such a Kleinian group
contain surface groups. If the hyperbolic plane stabilized by a triangle subgroup has

a precisely invariant neighbourhood of given radius, then the torsion free subgroups
yield quotients which are hyperbolic 3-manifolds with geodesically embedded
surfaces having an embedded tubular neighbourhood of at least the same radius. (It
is relevant to note hère that the (2, 3, p) -triangle groups contain among them ail
surface groups). Often the solutions to various extremal problems for hyperbolic
3-manifolds concerning geodesically embedded surfaces are realized as the orbit
spaces of torsion free subgroups of Kleinian groups with triangle subgroups. For
instance the smallest volume hyperbolic 3-manifold containing a geodesically
embedded surface is the orbit space of a subgroup of a Kleinian group containing a

(2, 3, 12)-triangle group [3]. Thèse examples are partly described in §4 and other
related examples of higher genus surfaces are described in [3] and [13].

And finaUy, rigid Kleinian groups (those admitting no nontrivial déformations)
with nonempty domains of discontinuity on the Riemann Sphère hâve triangle
subgroups as component stabilizers. For instance certain extremal two generator
web groups with simple branch set, which are in a sensé close to arithmetic groups,
contain triangle groups with the properties we describe [10].

Before stating our main results let us recall some basic définitions and notation.
We shall use the books of Beardon [2] and Maskit [12] as standard références for
facts concerning Kleinian groups.

The complex plane is denoted by C and its one point compactification is the
Riemann Sphère C Cu{oo}. We let Môb(2) dénote the group of ail Môbius
transformations of C. Each/eMôb(2) is of the form

(1.1)

where a, b9 c, deC. Each such / extends uniquely to an isometry of hyperbolic
3-space H3 via the Poincaré extension [2]. Hère hyperbolic 3-space is identified with
the upper-half space H3 {(xux2,x3) eU3:x3>0} with the Riemannian metric
ds2 =z\dx\2/x3 of constant négative curvature equal to —1. We shall dénote the

hyperbolic distance between a pair of points x and y in D-03 by p(x, y). If A and B
are subsets of H3, then

inf p(x9y). (1.2)
x e A,y e B
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GKven a set A c H3 a tubular neighbourhood of radius e about A is the set

{xeU3:p(x,A)<s}. (1.3)

When A is a hyperbolic Une, a tubular neighbourhood is usually called a collar.
A subgroup of Môb(2) is discrète if the identity is isolated in the topology of

uniform convergence of C. See [2] and [4] for a discussion of discreteness and
various reformulations of the définition. A Kleinian group F is a discrète nonelemen-

tary subgroup of Môb(2). Hère nonelementary means that the group F does not
contain an abelian subgroup of finite index. The elementary Kleinian groups are

completely classified and it is the nonelementary groups which are of primary
géométrie interest.

Because of the Poincaré extension we can, and shall, view a Kleinian group as

a group of orientation preserving isometries of hyperbolic 3-space. The orbit space

J H3/y is called a hyperbolic 3-orbifold. The space â is a hyperbolic 3-manifold if
the group F is torsion free. The co-volume of a Kleinian group F is the volume of
the orbit space £ in the induced hyperbolic metric, equivalently it is the hyperbolic
volume of a measurable fundamental domain for the action of F on H3.

A hyperbolic plane 77 u H3 is that subset of H3 meeting a plane or sphère of (R3

which is perpendicular to ôH3«C. A hyperbolic plane with the metric induced
from H3 is isometric to the usual 2-dimensional hyperbolic space H2 with metric of
constant Guassian curvature — 1. A triangle subgroup A of a Kleinian group F is a

subgroup isomorphic to some standard hyperbolic (p,q, r) -triangle group, that is

the index two subgroup of the group generated by the reflections in the sides of a

2-dimensional hyperbolic triangle with vertex angles n/p, n/q, and njr in hyperbolic
2-space. Hère we must hâve \\p + l/q + 1/r < 1. Since the triangle groups are rigid
in Môb(2), if A is a triangle subgroup of a Kleinian group, then there is a

hyperbolic plane 77^ c H3 which is invariant under A, that is/(77^) 77^ for each

feA. Furthermore the action of A on the invariant hyperbolic plane FIâ is

conjugate to the standard action of a triangle group on hyperbolic 2-space. Thus we
see the usual picture of a tesselation by hyperbolic triangles of the invariant
hyperbolic plane. For p > 7 we shall usually dénote the (2, 3,/?)-triangle subgroup
by A(p).

A set A c H3 is said to be precisely invariant under a Kleinian group F if

g(A)=A or g(A)r\A=0 for ail g € F. (1.4)

The stabilizer of A is the subgroup FA defined by

FA {geF:g(A)=A}. (1.5)
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We can now state our main theorems. The first theorem describes the possible
algebraic intersections of différent triangle subgroups of a Kleinian group.

THEOREM 1.6. Let A(2, 3,p) and A '(2, 3, q) be distinct triangle subgroups of a

Kleinian group.

• VP 5e q, then A(2, 3,p)nAf(2, 3, q) is afinite cyclic subgroup oforder 2 or 3;

• Ifp q, then A(2, 3,/?) n A '(2, 3, q) is afinite cyclic subgroup oforder 2, 3 or p.

It is a routine matter to verify that the intersections described in Theorem 1.6 can

actually occur. The next theorem shows that the hyperbolic planes stabilized by
(2, 3,p)-triangle subgroups are precisely invariant.

THEOREM 1.7. Let Ax and A2 be distinct (2, 3,p)-triangle subgroups of a
Kleinian group stabilizing hyperbolic planes 17 j and ÏI2 respectively. Then

(7i//?)
(1.8)

The lower bound is sharp in the sensé that for every p > 7 there is a Kleinian group
Tp containing distinct (2, 3, p)-triangle subgroups whose invariant hyperbolic planes

are separated by exactly the distance given in the right hand side of équation (1.8).

We shall show in addition that the extremal case exhibiting the sharpness of
Theorem 1.7 occurs only when there is a common elliptic élément of order p. We

then establish the following variant of Theorem 1.7.

THEOREM 1.9. Let A(p) and A\q) be (2, 3,p) and (2, 3, q)-triangle subgroups

of a Kleinian group stabilizing hyperbolic planes TIp and U'q respectively. Ifp =q,
assume in addition that the common perpendicular between TIp and ÏI'q does not
coïncide with an elliptic axis of order p. Then

p(np9 n'q) > arcsinh^) « 1.3170 (1.10)

We shall actually give an explicit bound for the right hand side of équation (1.10)
for each value ofp and q in Corollary 3.20. We believe this bound to be of roughly
the correct magnitude although we hâve no good examples to verify this.1}

We next turn our attention to estimating the co-volume of Kleinian groups with
(2, 3,/0-triangle subgroups.

ï} Added in proof. This bound has recently proven to be sharp in joint work with F. W. Gehring
and T. H. Marshall.
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THEOREM 1.11. Let F be a Kleinian group containing a (2, 3, p)-triangle
subgroup. Then

yp 2

We give a différent formula which is somewhat better in the case p e {7, 8}. A
table of the estimâtes we obtain comparée with the conjecturée sharp examples can
be found at the end of §5. We see from this that the volume estimate of Theorem
1.11 is quite good. This estimate actually represents only the volume of an
embedded solid hyperbolic cylinder about the degree p singular set and the

examples of §4 show that this bound is sharp for each p > 7 in this regard.

2. Preliminary results

The main tool that we shall use in the proof of the results stated above is the

sharp collaring theorem for elliptic éléments of a Kleinian group together with the

fact that the extremal situation occurs for (2, 3,/?)-triangle groups. This resuit was
established in our earlier work with F. W. Gehring [5]. We recall some terminology
in order to state the resuit we need.

Other than the identity the éléments of a Kleinian group F can be classified into
three distinct types: If g e F, then g is either

• elliptic: conjugate to a rotation z -+cz9 z e C and \c\ 1. The order of g is the

period of the rotation.

• parabolic: conjugate to the translation z -+z + 1.

• loxodromic: conjugate to a dilation z-^cz, z e C and |c| ^ 1.

Elliptic and loxodromic transformations g hâve two fixed points in the Riemann

sphère C and we call the hyperbolic Une joining thèse fixed points the axis of g,
denoted axis(g). Let/and g be elliptic or loxodromic Môbius transformations. We

say that the axes of/and g are parallel if they lie in a common hyperbolic plane and

do not meet. We say that the axes are perpendicular if one of the axes lies in a

hyperbolic plane which meets the other axis at a right angle.
We define the numbers ô(p, q) for integers/? and q, 2 <p, q < oo, max{p, q) > 3,

as follows:

ô(p9 q) inf p(axis(f\ axis(g)) (2.1)
f
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where the infimum is taken over ail pairs of Môbius transformations/and g such that

/is elliptic of order p, g is elliptic of order q and </, q} is a Kleinian group. The
restriction max{/?, q} > 3 is necessary as two éléments of order two can never generate
a Kleinian group. Basic compactness theorems imply the infimum is actually a

minimum [ 11] (see for instance the proof of our Theorem 3.2 hère).
The main tool we shall use in this paper can be found in [5], Theorem 6.19, and also

[6].

THEOREM 2.2. For allp > 7,

• ô(2,p) arccosh(l/(2 sin n//?)).
Let (f, g} be a Kleinian group withfandg elliptic oforder 2 andp respectively.
Then p(axis(f), axis(g)) ô(2,p) only if the axes off and g are parallel or
perpendicular and <X #) is the (2, 3, p)-triangle group or a Z2-extension of this

group.

• ô(3,p) =arccosh(cot(7r//?)/x/3).
Let (f9gy be a Kleinian group withfandg elliptic oforder 3 and p respectively.
Then p(axis(f), axis(g)) ô(39p) only if the axes off and g are parallel and

</,£> is the (2, 3,p)-triangle group.
m ô(p,p) =20(2, p).

Let </*, g> be a Kleinian group withfand g elliptic oforder p. Then p(axis(f),
axis(g)) ô(p,p) only if the axes off and g are parallel and <f,g} is the

(2, 3, p)-triangle group.

In [5] [6] we hâve identified many other values for ô(p, q). It turns out that the
set of possible values for p(axis(f)9 axis(g)) for/ of order p and g of order q and

</, g} Kleinian, initially cornes in a discrète part and then a continuous part (roughly
the continuous part cornes from the groups that are free on the two elliptic generators).
The value ô(p, q) is the smallest possible nonzero value. While other triangle groups
are not necessarily extremal for the distance between axes of elliptic éléments of other
orders, ail that is really necessary for our proof is that the set of values is discrète
and that we can identify ail those axial distances which are less than the values for
the triangle groups in question. This is the basis for our claim in the introduction
that our results also hold for other infinité families of triangle groups. For instance

<$(4, p) is not attained in the (2,4, p)-triangle group, however it very nearly is. A similar
situation anses in the case ofô(59p) and the (2, 5,/?)-triangle groups. However thèse

are the only other infinité families for which we know our results are valid.
We shall also need the following results [5], Theorem 6.19.

THEOREM 2.3. For n^m>l we hâve the estimate

s:r \ ^ • iY v/2 co$(nln) — 1 \
o(m9 n) > arcsmh ^v. v

I.
\2 $m(n n) sm(n m)J
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We now give a few results which are used in the proof of Theorems 1.7 and 1.9.

The first lemma we need is a simple conséquence of convexity and some elementary
hyperbolic trigonometry.

LEMMA 2.5. Let T be a hyperbolic triangle with vertex angles tt/2, 7c/3 and njp,
p>l.Ifz,weT, then

p(z9w) <ô(3,p)

with equality and only if z and w lie on the vertices with angles 7t/3 and njp.

The next lemma will give an estimate of the distance between a line lying in a

hyperbolic plane stabilized by a (2, 3,/?)-triangle group to an elliptic axis of order
2 or 3.

LEMMA 2.6. Let A be a (2,3,p)-triangle subgroup of a Kleinian group F
stabilizing the hyperbolic plane IIA. If lis a hyperbolic line in II'A9 then there is a point
vxe IIÔ stabilized by an élément of order 3 in A such that

p(yx, /) < arccosh(2 cos(nlp)ly/3), (2.7)

Moreover there is a point v2 e HA stabilized by an élément of order 2 or 3 in A such

that

p(v2, l) < -z arccosh(2 cos(n/p)/-v/3). (2.8)

Proof We view UA as the unit disk model of hyperbolic 2-space H2 and A as a
triangle group acting on it. The hyperbolic plane H2 is tesselated by hyperbolic
triangles whose vertices meet the axes of elliptics in À. The line / lies in UA and
therefore meets some hyperbolic triangle T of this tesselation. Conjugate by a
Môbius transformation preserving IIÂ9 so that T is a hyperbolic triangle in the
tesselation such that the vertex with angle njp is at the origin. Now the link of this
vertex in the triangulation of H2 obtained from this tesselation is a regular
hyperbolic p-gon ail of whose internai angles are 2rc/3. The line / meets this p-gon
and therefore meets a side. Each side of this p-gon has endpoints which meet the

axes of elliptics of order 3 and the axis of an elliptic of order 2 in the middle.
he side length is 2arccosh(2cos(7t//?)/>/3). The resuit is now easily seen to
follow. D
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THEOREM 2.9. Let A be a (2, 3,p)-triangle subgroup of a Kleinian group F
stabilizing the hyperbolicplane FIA. ïfgeT is elliptic of order 2, 3 or q >/?, then

0 (2.10)

unless q e {2, 3,/?} and geA, or g is elliptic of order 2 and axis(g) c JJA-

AProof Again we identify FIA and H2. The triangle group A then tesselates FI

and the vertices of the tesselating triangles are stabilised by elliptic éléments of A.

Case 1. q 3 or q >p.
Suppose first that g is elliptic of order q and q 3 or q >p. It is immédiate

from Lemma 2.5 that the axis of g cannot meet the interior of any triangle of
the tesselation, or at any point which is not a vertex of a triangle in the
tesselation. This is since the function ô(3,p), as a function of /?, is strictly
increasing and the vertices with angles rc/3 and njp of each triangle are exactly
the distance ô(3,p) apart. Now suppose that the axis of g meets at a vertex of
some triangle in the tesselation. Since q>p>l or q 3, if the vertex is stabi-
lized by an elliptic of order p we must hâve p =q9 by the classification of the

elementary discrète groups [2], and this axis must coincide with that of the

elliptic of order p in A. Thus geA. If the axis of g meets a triangle of the
tesselation in a vertex stabilised by an elliptic of order 2 we get a contradiction
because the two vertices with angles tc/2 and njp are at a distance S(2,p) which
is smaller than ô(p, q) for both q 3 and q >p. Finally in this case if the axis

of g meets a triangle of the tesselation in a vertex stabilized by an elliptic of
order 3, then the classification of the elementary groups implies that g has order
3. By the second part of Theorem 2.2 (since g has order 3 and its axis is at

most the distance ô(3,p) from an order p axis in A) the axis of g is parallel to
the elliptic axis of order p in A, It again follows that geA. Thus Theorem 2.9

has been verified if g has order 3 or q > p.
Case 2. q 2.

There remains the possibility that g has order 2 and its axis meets FIA. It is

possible that the axis lies in IIÂ, and we hâve allowed for this in our conclusion.
We may therefore assume that axis(g) meets IIA at some unique point, say w.

Let 9 be the angle of intersection between the axis of g and the hyperbolic plane
nÂ. If 9 7t/2, then <g, A} is a discrète Fuchsian group. (It is discrète since it is

a subgroup of F and it is Fuchsian since both g and éléments of A fix FIA and

are orientation preserving when restricted to this hyperbolic plane). Since A is a

(2, 3,/?)-triangle group it follows that geA. Thus we assume 0<9 <n/2. Let
nA —g{IIÂ). The dihedral angle of intersection between FIA and FI'A is either 26

or n —29 whichever is the smaller.
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By virtue of the fact that thèse two hyperbolic planes meet there is a vertex

vp g IIâ of the tesselation lying on an elliptic axis / of order p for which

P(vp9n'à)<cosh(ô(3,p)).

Let w be the closest point of JJ'A to vp. From what we hâve proved in Case 1,

w # vp. Next there is a point vpeIIfA such that

p(v'p,w)<cosh(ô(3,p)).

Since the Une from vp to w is perpendicular to II'A we see that the angle at w formed
by the two line segments from w to vp and from w to vp is ti/2.

Therefore

œsh(p(vp9 vp)) cosh(p(w, vp)) cosh(p(w, vp)) (2.11)

cosh2(ô(3,p)). (2.12)

However we must also hâve

coshCpO^, v'p))>œsh(2ô(2,p))

since the two vertices lie on différent elliptic axes of order p. Thus

cosh(2<5(2,/0) < cosh2((5(3,/?))- (2.13)

Substituting in the values for ô(2,p) and ô(39p) from Theorem 2.2 we obtain

2sin2(7i//7) ^3
or

l<4sin2(7t//7). (2.15)

Equation (2.15) implies that p <4. This contradiction proves Theorem 2.9.

We want to use Theorem 2.9 to show that the hyperbolic planes stabilized by
différent triangle groups do not meet. We begin with an auxiliary lemma which
bounds the angle of intersection if they do in fact meet.
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LEMMA 2.16. Let A(p) and A\q) by (2, 39p) and (2, 3, q)~triangle subgroups of
a Kleinian group F stabilizing différent hyperbolic planes FIp and FI'q respectively.
Suppose that p < q and thaï the hyperbolic planes FIp and U'q intersect at the dihedral
angle 9. Then

sin(0) > (1/2 + cos(nlp)ly/3)-112 :> 0.95. (2.17)

Proof To see this we argue in a similar manner as in the proof of Theorem 2.9.

By Lemma 2.6, if tj is the Une of intersection of the two hyperbolic planes, there is

an elliptic élément /e F of order 2 or 3 whose axis / axis(f) is perpendicular to
Flp and lies at a distance at most

r arccosh(2

from rj. Theorem 2.9 implies that / cannot meet the hyperbolic plane FI'q. Again
consider the hyperbolic plane 77 perpendicular to rj and containing /, and the two
Unes formed by the intersections with 77 of the hyperbolic planes Flp and 77^. The
dihedral angle 9 of the intersection of 77^ and 77^ is the angle between thèse two
Unes in 77. Elementary hyperbolic trigonometry implies the estimate

cosh(r) ;

sin(0)

which yields the desired resuit.

The preceding resuit implies that if the two hyperbolic planes 77^ and 77^ do
intersect, then they do so nearly perpendicularly. We will use this fact to show that
they don't intersect at ail.

THEOREM 2.18. Let A(p) and A'(q) be (2, 3,/?) and(2, 3, q) triangle subgroups

of a Kleinian group F stabilizing hyperbolic planes Flp and Fl'q respectively. Then

unless p =q9 IJp=nq and A(p) A'(q).

Proof It is clear that the hyperbolic planes cannot coincide unless ail the
attributed equalities are valid. We therefore suppose that the hyperbolic planes do
meet with dihedral angle 9 > 9 along the Une rj. Let w erj. Then w lies in a triangle
of the tesselation of np and also a triangle of the tesselation of IIq. Therefore
Lemma 2.5 asserts that there are points vp e 77^ and vq e FI'q stabilized by the
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elliptics of order p and q respectively and such that p(w, vp) <*èp ô(39p) and
p(w> vq) ^àq à(39q). Next from the law of hyperbolic cosines we hâve

vp9 vq)) < cosh^) cosh(^) — sinh^) sinh^) cos(0). (2.19)

Now substituting in the values of 6p and ôq given in Theorem 2.2 and our
estimate for the dihedral angle of intersection given in Lemma 2.16 we obtain
the following inequality.

cosh(p(vp9 vq)) <- \cot(nlp) cot(nlq)-.96y/cot2(nlp) — 3y/cot2(nlq) - 3j.

However we also hâve the estimate of Theorem 2.3:

cosh(p(vp9 vq)) > cosh(ô(p9 q))
4 sin2(7c//?) sm2(n/q)

'

Using elementary calculus one can show that thèse two estimâtes are incompatible

for 7 <p <q.

Theorem 2.18 implies that the hyperbolic planes IIp and U'q cannot meet at

any finite point of H3. We next want to show that they do not meet at infinity
either.

THEOREM 2.20. Let A(p) and A\q) be distinct (2, 39p) and (2, 39q) triangle
subgroups of a Kleinian group F stabilizing hyperbolic plane FIp and FI'q respective^.

Then

P(np9n'q)>o.

Proof Suppose that p(IIp9Jl'q) =0. Then, since the two hyperbolic planes

cannot meet at any finite point of H3 by Theorem 2.18, there is a point of
tangency of the two hyperbolic planes at some point of C which we may as well
assume to be oo. In this situation the two hyperbolic planes are parallel vertical
euclidean planes. Consider the axes of elliptics of order 3 (for instance) in A(p).
They are hyperbolic Unes which are perpendicular to FIp and do not meet FI

q by
Theorem 2.9. However they occur at greater and greater heights and it is geo-
metrically évident that they must therefore eventually meet Fl'q. This contradiction

establishes Theorem 2.20. D
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3. Invariant tubular neighbourhoods

Theorem 2.20 implies that the hyperbolic plane stabilized by a (2, 3,/?)-triangle

group is precisely invariant (see (1.4)). In this section we shall give estimâtes, some
of which are sharp, on the distance between the invariant hyperbolic planes
stabilized by différent (2, 3,/?)-triangle groups. We begin by defining certain num-
bers <x(p, q) which bound from below the distance between any pair of hyperbolic
planes stabilized by (2, 3,p) and (2, 3, #)-triangle groups.

For integers p and q with 7 <p, q < oo let a(/?, q) be the largest real number
with the following property: If F is a Kleinian group and A(p) and A\q) are

(2, 3,/0 and (2, 3, g)-triangle subgroups respectively stabilizing hyperbolic planes

Up and n'q, then

THEOREM 3.2. For ail 7<p,q< oo,

0 < a(/?, q) < oo.

Moreover for each such p and q there is a Kleinian group Fpq with subgroups A(p)
and A'(q), which are (2,3,/?) and (2, 3, q)-triangle groups respectively, stabilizing
hyperbolic planes FLp and Fl'q with

p(IIp9nq)=a(p,q).

Proof. Let p and q be given as in the statement of Theorem 3.2 and set

a a(/?, q). We first use the combination theorems to provide examples to show
that a < oo. Let A(p) and A'{q) be triangle groups. Then both A(p) and A'{q) act

discontinuously in C\{CP } and C\{Cq} respectively, where Cp, Cq are circles or Unes

in C (the limit sets of the groups). Let Fp and Fq be open subsets of fundamental
domains for the respective actions. Choose a Môbius transformation g of C such

that

Then the Klein-Maskit combination theorems [12] imply that the group

<A(p)9gA>(q)g-l>

is g discrète nonelementary, hence Kleinian, group which is algebraically isomor-

phic to the free product group A(p) * A'{q). Since this Kleinian group contains a

(2, 3,/j) and a (2, 3, q) triangle groups as subgroups it follows that a < oo.
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Next we show that a > 0. Let Fn be a séquence of Kleinian groups with triangle
subgroups An(p) and A'n(q) stabilizing hyperbolic planes FInp and Wnq such that

Consider the séquence of subgroups of Fn defined by

After conjugating by a suitable hyperbolic isometry of H3 we may assume that the

common perpendicular between Unp and U'nq is bisected by the point (0, 0, 1) e H3

and lies in the Une {(0, 0, 0 g H3}. Choose generators {gn,i,/n,i} and {gw,2>/«,2} for
An(p) and Arn(q) respectively such that gw/ are elliptic of order 2 and/^, are elliptic
of order 3 and the axes of fni and gni are at a distance no more than
max{<5(3,/?), 5(3, q)} from the Une {(0,0, t) e H3}. This is possible since the common

perpendicular meets the tesselation of both hyperbolic planes. It now follows
from the local compactness of the Môbius group that for i 1, 2

gnil ->& and fnyl -+gt as n -* oo

By the theorem of J0rgensen [11] on the algebraic convergence of séquences of
discrète nonelementary Kleinian groups, the limit group

is discrète and nonelementary. Also, the algebraic convergence theorem is easily
seem to imply that A^ip) <g, ,/i > is a Fuchsian group which is the homomorphic
image of a (2, 3,/?)-triangle group. It follows tht A^{p) is a (2, 3,^)-triangle group.
Similarly for the group A'^{q) (g2,fi}- There are of course invariant hyperbolic
planes U^p and n^q and it remains only to observe that

^p, 11'^) a,

and that a > 0 by Lemma 2.16.

We now give two différent ways of estimating the number <%(/?, q) which will in
turn give bounds for it. We begin by defining a séquence of numbers ap(m) as

follows:
Let ap(m) be the largest number with the following property: If F is a Kleinian

group, A(p) a (2, 3,/?)-triangle subgroup stabilizing a hyperbolic plane 17, and/e F
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is an elliptic of order m with axis(f) nlJ 0, then

cosh(/>(/7, axis(f))) > ap(m). (3.3)

It is not difficult to show using a compactness argument, much the same as we used

in the proof of Theorem 3.2, that 0 < ap(m) < oo and that the value ap(m) is attained
in an example.

Let us now give an estimate on the value of ap(m) in terms of the value oc(p,p).

THEOREM 3.4. For ail m > 2 and p > 7

Proof. Let F be a Kleinian group and A(p) a (2, 3, /?)-triangle subgroup stabilizing
a hyperbolic plane UA. Let/be an elliptic of order m in F such that axis(f) nIIA 0.
We may conjugate the group F so that axis(f) is the line {(0, 0, t) e H3}. The collection
of hyperbolic planes fk(JIA), k 1, 2,..., m now form m congruent euclidean

hémisphères. The hyperbolic distance between any pair of them is at least oc(p, p) since

each hyperbolic plane fk(IIA) is stabilized by the (2, 3,/?)-triangle group fkA(p)f~k.
Let II be the hyperbolic plane which is perpendicular to axis(f) and TIA. Then

II meets the other m -hyperbolic planes perpendicularly as well, moreover the common
perpendicular between axis(f) and any of the other hyperbolic plane fk{Tlâ) lies in
II as does the common perpendicular between any adjacent pair of hyperbolic planes,

fk(nA) &ndfk+l(nA). We now view 77 as the disk model of hyperbolic 2-space. In
FI we see m complète hyperbolic Unes, each congruent by a euclidean rotation (induced
by/), the distance between any pair of Unes is at least <x(p,p). The distance ap(m)
we are trying to estimate is, in the worst case, the distance between any one of thèse

Unes and the point 0. Choose one of thèse lines / and construct a Lambert quadrilatéral
as follows. Let lx be the géodésie line segment from 0 to /, l2 be the initial half (starting
from /) of the géodésie segment which is perpendicular to /and either adjacent géodésie
line. Let /3 be the géodésie segment from the endpoint of the segment /2, not in /,

to 0. Finally l4 is the portion of / Connecting lx to /2. AU angles of this quadrilatéral
are 7i/2 except for the angle at 0 which is njm by symmetry. We seek the length of
lu and know the length of l2 is at least a(/?,/j)/2. Then by formulas of hyperbolic
trigonometry, [2] Theorem 7.17.1 we finct

>cosh(/2)/sin(7r/m).

From which the desired resuit follows. D
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Suppose that A A{p) and â' A\q) are (2, 39p) and (2, 3, q)-triangle
subgroups stabilizing hyperbolic planes Flp and Fl'q whose common perpendicular is /
and that {A, A'} is discrète. Then for m e {2, 3,/?} we set

cm(A, A') min{p(/, axis(g)): g eA has order m and ajcw(^) ^ /}. (3.6)

Thus cm(zl, A') is the distance from the common perpendicular of FIp and FI'q to the
closest elliptic axis of order m which is perpendicular to Flp and not coincident with
the common perpendicular. Notice that it follows from Lemma 2.5 that
0<cm(A,A')<ô(p9p).

The following theorem is used to give an estimate on the value of <x(/?, q) in
terms of the values ap(m) and cm(A, A').

THEOREM 3.7. Let F be a Kleinian group and let p and q be integers with
1 <p, q < oo. Suppose that A A{p) and A' A\q) are (2, 3,/?) and (2, 3, q)-tri~
angle subgroups stabilizing hyperbolic planes JJp and FFq respectively. Then

for ail m e (2, 3,/?).

Proof. Again we conjugate the group F so that the common perpendicular
between the two hyperbolic planes is a subset of the Une {(0, 0, i) e H3}. Let
m e {2, 3, p } and let / be an axis of an elliptic of order m perpendicular to Flp closest

to the intersection of, but not coincident with, the common perpendicular. The Une

/ is at least the distance aq(m) from the other hyperbolic plane Fl'q. The reason for
this is simply that / and n'q are disjoint (if they were to meet they would meet

perpendicularly since / is the axis of an elliptic élément of F. Hence / would be the

common perpendicular between FIp and Fl'q which it is not).
We now construct a regular hyperbolic pentagon ail of whose angles are tt/2 as

follows. Let lx be the géodésie Une segment which is the common perpendicular
between / and Fl'q. l2 is the portion of / joining lx to FIP. l3 is the common
perpendicular between Flp and FI'q. Complète the pentagon in the obvious manner,
denoting that segment in Flp by /4. We seek the length of /3, we hâve a lower bound

on the length of lx given by aq(m). The length of l4 is equal to cm(A, A'). Again by
the formulas of hyperbolic trigonometry ([2] Theorem 7.18.1) we hâve

sinh(/4) sinh(/3) cosh^). (3.9)

Thus sinh(p(Ilp, FI'q)) > cosh(a9(m))/sinh(cw(^, .d')) as desired. D
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We now put together the two estimâtes of Theorem 3.4 and Theorem 3.7 to
obtain the following corollary.

COROLLARY 3.10. IfF is a Kleinian group and A(p) and A \q) are (2, 3, p) and

(2, 3, q)-triangle subgroups stabilizing hyperbolic planes FIp and FL'q, then

„,,_ cosh(afo,?)/2) /o%^
A,A'))$m(nlm) v * 7

for ail me (2,3, p).

The point to the corollary is that with p q in the extremal configuration the

number cc(p,p) will occur on both sides of équation (3.11) and can be bounded

purely in terms of the number cm(A, A') for which we already hâve estimâtes.

THEOREM 3.12.

2sin2(7i//>)

i - 4 sm2(7i//7)

Proof Theorem 3.2 asserts the existence of an extremal Kleinian group F with
two (2, 3,/>)-triangle groups stabilizing hyperbolic planes 77\ and 172 with

p(17i, n2) ot(p,p) %> (3.14)

Squaring both sides of the inequality (3.11) of Corollary 3.10 and using the obvious

trigonométrie identities we find that

cosh2(a) > a cosh(a) + 1 + a (3.15)

where a 1/(2 sin2(7r/m) sinh2(cm(A, A'))) > 0. Thus for ail m e {2, 3,/?} we hâve

cosh(a) > 1 + _ 2/

*

fA ,_. (3.16)
2 siir(7r//w) sinrr(cw(zl, A

We now set m =/?. By Lemma 2.5 we hâve cp(A, A') < ô(3,p) < ô(p,p) unless the

common perpendicular between FIX and /72 is the axis of an elliptic of order p and

cp(A9 A') ô(p,p). Substituting the value of ô(p,p) from Theorem 2.2 into équation

(3.18) yields

w x t
2 sin2(nlp)

cosh(a) > 1 -h -—A
'

1-4 sm2(nlp)

The converse inequality will be shown by example in the next section.
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COROLLARY 3.17. For every p,q>7 with p^q

Proof. Theorem 3.2 guarantees the existence of the extremal group F containing
the two triangle subgroups stabilizing hyperbolic planes a distance a(p, q) apart. If
p ^q, then the common perpendicular cannot coincide with an elliptic axis of order

p and q and hence cp(A, A') < S(39p) by Lemma 2.5. Corollary 3.10 implies

(7c jp)

From Theorem 3.12

l-4sin2(7r/?)'

which together with (3.19) and Theorem 2.2 gives the desired resuit.

A point to notice is that for ail p and q the left hand side of équation (3.18) in
Corollary 3.17 is bounded below by 3.

COROLLARY 3.20. For every p,q>7 with p^q
q) > 2iîcsïnh(y/3) « 1.3170

Of course one can use the ideas hère to obtain estimâtes under other assump-
tions. For instance one might assume the common perpendicular is an axis of order
2 or 3. We leave it to the reader to obtain thèse estimâtes.

We also wish to record the following resuit which gives estimâtes when p —q
and the common perpendicular is not an elliptic axis of order/?. The proof is similar
to that of Corollary 3.17.

THEOREM 3.21. Suppose that Ax and A2 are two (2, 3,p)-triangle subgroups of
a Kleinian group F which stabilize distinct hyperbolic planes TIl and ïl2 and that the

common perpendicular is not coincident with an elliptic axis of order p. Then

>3.

Our results now give estimâtes for the numbers a.(m) via Theorem 3.4.
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THEOREM 3.22. Forp>ly

p sin n/m
1

' sin(7t/m)

Finally, let us say a few words about the algebraic intersection theorem
mentioned in the introduction. It is easily seen that the intersection of a (2, 3,^-triangle

group and a (2, 3, q) -triangle group cannot contain any élément of infinité
order as each such is a hyperbolic transformation whose axis must lie in both
invariant hypberbolic planes. But thèse hyperbolic planes do not meet. Therefore
the intersection, if nontrivial, must be generated by an elliptic élément of order 2,
3, p or q. If p # q it is clear that the intersection cannot contain either the elliptic
of order p or q simply because the associated triangle groups cannot contain thèse

extra elliptics and remain discrète.

4. Examples

The examples that exhibit the sharpness of our Theorem 3.12 were explicitly
constructed in an earlier joint work with M. Conder [3]. The groups in question are

subgroups of groups generated by reflections in the faces of a hyperbolic pentahe-
dra. Thèse groups were constructed by opening up a cusp of a certain tetrahedral
orbifold group. More precisely the group generated by reflections in the sides of a

hyperbolic tetrahedron with Coxeter diagram 3-3-6, whose index two orientation
preserving subgroup is the minimal co-volume cusped (finite volume noncompact)
orbifold. Interestingly (and not unrelatedly) this Kleinian group has minimal
co-volume among ail Kleinian groups with an élément of order 6 [8]. We continu-
ously decreased the dihedral angle of the edge whose stabilizer was the elliptic of
order 6 while keeping ail the other dihedral angles fixed. When the angle is

decreased until it has the forai n/p9 p> 7, the group is discrète. However it has

infinité co-volume. The tetrahedron has opened up and subtends a (2, 3,/?) triangle
on the sphère at infinity. We show how, in thèse circumstances, to construct a

hyperbolic plane 77 perpendicular to the three faces of the unbounded tetrahedron
which subtend the triangle. The three faces then subtend a (2, 3,/?)-triangle in 77

and the group generated by thèse three reflections is a Z2-extension of the

(2, 3,/0-triangle group which stabilizes II. If we adjoin to this group the reflection
in the hyperbolic plane II we find from the Poincaré Polyhedron Theorem [12] that
the group obtained is discrète. The index two orientation preserving subgroup is the
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Kleinian group we want. Call it F°(p). It contains a (2, 3,/?)-triangle subgroup
stabilizing the hyperbolic plane 77 and has finite co-volume (actually, it contains a

Z2-extension of this triangle group which is orientation preserving but when
restricted to II is orientation reversing as there are elliptic axes of order two lying
in JJ). It is extremal with respect to the collaring theorems because it contains a

(2, 3,/?)-triangle subgroup. Because of the explicit construction we can compute the

length of the primitive loxodromic élément sharing an axis with the elliptic of order

p. The calculations occur in §3 of [3] and the value we want is twice the value
identified in équation (3.5) in that paper, since this is the distance between

perpendicular elliptic axes of order two and hence half the translation length of the

primitive loxodromic. The minimal distance between (2, 3,/?)-triangle subgroups is

then bounded above the translation length of this loxodromic. We record this
discussion in the following theorem.

THEOREM 4.1. For each p>l there is a Kleinian group F0{p) containing two
distinct (2, 39p)-triangle subgroups stabilizing hyperbolic planes II\ and FI2 with

Proof. Equation (3.5) of [3] gives the value / for the distance between perpendicular

elliptic axes of order two along the axis of the elliptic of order p in the group
r°(p\ where

sinh2(/) (4.2)
csc2(nlp) -4

The translation length of the primitive loxodromic élément is then 21. But then the
above équation gives

cosh(2/) 1 +

1 |

csc2(n/p) — 4

2sin2(7r//Q
1 — 4sin2(7t//?)'

Actually, the construction of thèse groups by continuous variation of a single
dihedral angle makes the volume easy to compute as well, and this is related in [3].
We also should point out that the co-volumes of the groups F°(p) hâve a finite limit
which is the smallest possible value for the limit of a séquence of finite co-volumes
of any séquence of Kleinian groups [ 1]. Thus thèse groups are extremal in many
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différent ways. A short list of the volumes of thèse groups is given in the next
section where we compare them with gênerai lower bounds.

5. Lower bounds on the co-volume

We use two différent methods to obtain estimâtes on the co-volumes of Kleinian
groups with (2, 3,/?)-triangle subgroups as follows. First we use the action of the

triangle group on a precisely invariant neighbourhood of the stable hyperbolic
plane; second we use the collaring theorem about the elliptic axis of order p
together with a bound obtained on the translation length of any loxodromic
élément whose axis coincides with the elliptic axis of order p. This latter bound is

given by the size of the precisely invariant neighbourhood of the hyperbolic plane.
Let us state the following simple corollary of the results of the previous section.

LEMMA 5.1. Let F be a Kleinian group and A(p) a (2, 3, p)-triangle subgroup.
Let FI dénote the invariant hyperbolic plane stabilizedby A(p). Then 77 has a precisely
invariant tubular neighbourhood of radius ct(p,p)l2.

Proof. Let g eF and N the tubular neighbourhood of II of radius a(/?,/?)/2.
Suppose that g(N)nNï 0. Then p(II9g(II)) < a(/?,/?). As both FI and g{FI) are
stabilized by (2, 3,/>)-triangle groups we must hâve g(JI) =11 by the définition of
the numbers a(/?, p). It follows that g(N) N, so that N is precisely invariant.

Suppose now that F is a Kleinian group with a (2, 3,/?)-triangle subgroup, A(p)
stabilizing a hyperbolic plane 77. Let s be the radius of a precisely invariant tubular
neighbourhood of FI. It follows that the volume of H3jF is bounded below by the

volume of Ne(FI)IFn. Hère Fn is the stabilizer of FI. Because there may be an
involution stabilizing FI whose axis lies in II we see that the triangle group A(p) has

index at most two in the stabilizer of FI and therefore has index of at most two in
the stabilizer of Ne(II). It is at most two since anything stabilizing iV£(77) stabilizes
77 and therefore has a Fuchsian subgroup of index two. This Fuchsian subgroup
contains the (2, 3,p)-triangle group, and therefore is the (2, 3,/?)-triangle group.
(We note that the index is indeed two in the conjectured extremals.)

It is easy to see that a fundamental domain for the action of the triangle group
A(p) on Ne(Il) is the set Q T x [ — g/2, e/2] where T is a fundamental domain for
the action of A(p) on FI. Hère the interval [ — e, s] is identified with a géodésie line

segment perpendicular to T whose bisector 0 lies in T. Therefore in order to get a

lower bound on the co-volume of the Kleinian group F, we need to compute the

volume of Q, with e <x(p,/>)/2, and then divide by 2. Hère is how to compute the
volume of Q.
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LEMMA 5.2. Let JJ be a hyperbolic plane in H3 and A a measurable subset of
FI. Let QA(s) be the union of ail géodésie Une segments of length 2s which are
perpendicular to A and whose bisector lies in A. Then

Volhyp(QA(s)) \ Areahyp(A)(smh(2e) + 2e). (5.3)

Proof We use the coordinates (t, p) where % e II and p measures the oriented

hyperbolic distance (that is choose a + and a — direction) from 17. In thèse

coordinates the volume élément can be computed as

dVolhyp cosh2(p) dA(x) dp (5.4)

where dA{%) is the hyperbolic area measure in II (see [7] for this calculation in ail
dimensions). The resuit now follows.

The area of a fundamental domain & for the (2, 3,/?)-triangle group is

Lemma 5.2 now yields the following volume estimâtes in view of our previous
discussion.

THEOREM 5.5. Let T be a Kleinian group with a (2, 3,p)-triangle subgroup.
Then

Volhyp(U*m > \ Q -^(sinh(a(/>,p)) + «(/>,/>)). (5.6)

As we mentioned above we can also use the collaring theorems, Theorem 2.2, to
give the volume estimate. This is because the elliptic of order p has a precisely
invariant tubular neighbourhood of radius ô(p,p)/2 ô(2,p). The stabilizer of this
solid hyperbolic cylinder is generated by the elliptic of order p, a primitive
loxodromic élément (whose translation length we hâve bounded below by <x>(p,p))

and possibly an involution of order two whose axis is perpendicular to the elliptic
axis of order p. The hyperbolic volume of a solid cylinder of length t and radius r
is tut sinh2(r). We therefore hâve the following theorem.

THEOREM 5.7. Let T be a Kleinian group with a (2, 39p)-triangle subgroup.
Then
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sinh\ô(2,p))

CCOShl4 ¦h*.//»

In fact we hâve shown that under the circumstances of the theorem that there
is an embedded solid hyperbolic cylinder whose volume is given by Theorem 5.7.

The examples of Section 4 show that this estimate is sharp for every p > 7. Notice
that as p -» oo

n (\ -4 sm\nlp)\
2 4sin2(*//>) J - 2 sm\nlp)\ 1

The estimate given by Theorem 5.5 is better than that of Theorem 5.7 only when

p e {7, 8}. Hère is a table comparing our estimâtes and the conjectured best bound.

p lower bound on co-volume
7 0.145686...
8 0.164406...
9 0.179486...

10 0.194991

oo 0.25
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