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Correction to “‘uniqueness for the harmonic map flow from surfaces to
general targets”
(Comment. Math. Helvetici 70 (1995) 310-338)

A. FREIRE

The calculation leading to estimate (3.8) in the paper is incorrect. Thus the
construction of adapted p-frames described in the paper is not valid, and the
existence of such frames adapted to a general time-dependent map (Theorem 3.1)
remains in doubt. What is possible to obtain are tangent frames which are ‘optimal’
in a certain sense, but only for each fixed time. As described below, this turns out
to be sufficient to prove the main theorem 1.1 as stated in the paper. For
convenience of the reader, we recall its statement. We consider weak solutions of
the heat flow for harmonic maps with initial data u,e H'(M; N), where N is a
k-dimensional compact embedded submanifold of R?, with the induced Riemannian
metric. Define:

VT=HYM x [0, T]; N)nL>([0, T]; H'(M; N)) nL*([0, T]; H*(M, N)).

By work of M. Struwe [1], a solution v e V7 exists for sufficiently small 7> 0
(depending on u,), and may be continued to a global weak solution with finite
singular set in M x (0, o0). We refer to v as the ‘almost regular solution’.

THEOREM 1.1. Let ue H'(M x [0, T]; N) be a weak solution of the harmonic
map flow with initial conditions uy€ H'(M, N). Assume E () <E, a.e.inI=[0,T].
Then there exists T' € (0, T) such that ue V™.

The proof proceeds in two steps. First, using a modified ‘optimal frames’
construction for each constant time (Lemma A) and a lemma of Hélein [16]
(Lemma D), we obtain a regularity result for each u(f) (Lemma B). Then
we conclude the proof by the same ‘perturbation argument’ used in the paper
(Lemma 2.2).

Theorems, lemmas, equations and references in the paper are referred to here by
the same number. The notation is the same, with the following additional conven-
tions. F*? denotes the space of orthonormal k-frames in R?. In the notation of
frames e; and connection forms w,; the indices i, j are usually omitted for brevity.
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Uniqueness for the harmonic map flow from surfaces to general targets 331

¢ > 0 denotes a generic positive constant whose value may depend on M, N, a given
smooth tangent orthonormal frame e on N, and on u,.

For simplicity the argument below is given in the case of surfaces without
boundary. ‘

The statement and proof of Theorem 3.1 (existence of adapted frames) should
be changed as follows. .

Let e = (¢;)%_,, e e L°(I; H'(M; F~?)), be the ‘background’ adapted frame ob-
tained by composing a smooth orthonormal frame tangent to N with u(x, f). Since
u(t) > u, strongly in H'(M; N) as t -0 (by the energy bound hypothesized in the
theorem), we also have e(f) — e(0) strongly in H'(M; F*?). Let € > 0 be given. We
define T, € (0, T') as follows. Since dim(M) = 2, we may write:

e(0) =¢'(0) +e%0),

where e%(0) e C*(M; F*?) and e'(0) € (H' n L=)(M; R?) satisfies ||€'(0) |z <e€/2.
Fix T, >0 such that |e(t) —&(0) |5 <e€/2 for all £€[0, T,] such that e(r) e H'.
Then, setting e'(?) = e(r) — €%(0), we have:

“él(l‘) “Hl <e€,

for all ¢ €[0, T.] such that e(r) e H'.
The result that replaces theorem 3.1 is:

LEMMA A. Let € >0 be given, and choose T, > 0 as above. Fix t € [0, T.] such
that u(f) e H(M; N). We may find a tangent orthonormal frame e(t) € H'(M; F*?)

adapted to u(t), whose connection 1-form w,; = {de,, e;> admits the decomposition:

o(t) = w'(t) + 0*(?),

with éw'(?) =0, ||w'(?) ||, < € and w*(f) € L*Q' (M) ® so(k), with norm bounded by a
constant independent of t.

Proof. Let o(t) = {{de[(1), &;(1) >}, @(t) = {{(de}(0), e;(t)>}. Consider a ‘gauge
transformation’ g € H'; SO(k)) which minimizes the functional F(g) given by:

F(g) = J |dgg’ + gao'(g|? dx,
M

where the superscript ‘t’ denotes ‘transpose’. A minimizer clearly exists. The
Euler-Lagrange equation for F is:
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dw'() =0,

where: w!(f) = dgg’+ gw'(f)g’. Since g is a minimizer,
lo'@|.< |o'®|.<e.

Let e;(t) =Z;g;¢;(t). The connection 1-forms w of e(f) = (¢;)(f) may be decom-
posed as:

w(t) = dgg’ + g g’ = 0'(?) + (1),
where w?(r) = gw*(fg". Since |@(?)|. < ||de?(0) |, < ¢, this concludes the proof.

Remark A. w' is not the connection 1-form of a frame. However, defining
e! =ge', we have (since {e,e) =g’):

(de',e)=dg(e',e) +glde', e)
= dggt —dg<é-29 e> +g<de—l’ é><é’ e>

=dgg' +gw'g' —dg{e? e);

so w! = {(dei, e> +dg<e? e)}. (In this calculation we have denoted, for instance,
by {e', e) the matrix with jj-th entry <{e}, ¢;).)

Lemma A gives no control on the connection 1-forms w,, (e; tangential, e,
normal). Thus the proof of theorem 1.1 must be modified. This is accomplished by
using a lemma of Hélein, which allows us to give a simpler proof than the argument
attempted in the paper. The main step is the following lemma.

LEMMA B. Consider a solution u: M x I - N of the harmonic map flow to N
satisfying the assumptions of theorem 1.1. There exists €, >0 with the following
property. Define T, >0 as in the paragraph preceding Lemma A. Let t€(0, T, ]
satisfy u,(f) e LA(M; R?), u(t) € H'(M, N). Then du(t) € L*Q}, and

|du(®) |4 < (1 + [u,(8)]|2),
for a constant ¢ independent of t. In particular, du € L*([0, T, ]; L*).
The conclusion of lemma B is ‘higher regularity of u in space directions’. It is

then easy to conclude u is in the class V7 (for some 7" < T) as claimed in theorem
1.1, by means of a ‘perturbation argument’ based on linear parabolic theory. This
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is accomplished in the following lemma (which is essentially a restatement of
Lemma 2.2 in the paper).
Consider the general non-homogeneous linear parabolic system of the form:

. {rb,—A(D: —(dd - w)e +f(x,f) on M x I
(L) ®(.,0)=0 in M,

LEMMA C. There exists €,>0 (depending on M and T) with the following
property. Let I'=[0, T, where T e(0,T] is arbitrary. Let feL%I',L*?),
weL>(I', L*Q") and e e L*(M x I'), ||e||, < 1. Assume ||®|| o 12) < €. Let D be
a solution of (L) in (H'nL*)M xI'), such that |V®| s €L*I’). Then
@ e LYI', W?*3), (Note: €, is independent of T'.)

Proof. The first part of the proof of Lemma 2.2 shows that, for each p € (1, 4],
there exists €(p) > 0 such that system (L) has unique solutions in L§(I', W?**?). In
particular one may find €,>0 such that (L) has a unique solution @, €
L', W>*3), and also a unique solution in L3(I’, W>*3), The latter must coincide
with the given &, since ||V'® || sar € L*(I') implies (by linear theory, Theorem 2.1)
@ e LY(I', W), Since L', W?*3) ¢, LYI', W**?), uniqueness in L3(I', W>?)
implies ¢ = &,.

Proof of Theorem 1.1. Using the background frame {e, }?_,, we write the
equation for u in the form (2.4a):

u, —du= =Y {du- @, e e,.
ia

Let €, be given by lemma C. Choose T' <min{T, , T.,}. Then for ¢t €[0, T"] the
following decomposition holds:

(I)ia(t) = d—)}a(t) + Caia(t)’

where |@L(f) |, <€ and @} e L°(M x [0, T']). Letting v: M x [0, T,] = R? be the
solution of the linear heat equation with initial data u,, we obtain for w =u —v:

w,—dw = =) {dw- @, e e, + f(x,1),
w(.,0)=0,
where:

f(x, 1) = <{dv - ®L, & e, + {dw - @2, & e, € LY(0, T, L*?).
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Indeed we have (as in subsection 2.3):

Hdv : C(_),la ”L“/:’(M;) <c "dv ”L“’(M,) ”(I)lla “LZ(M,)
< cldv |y [0l HEaepers

|dw - &F, | Lo,y < c||aw || L2ary | 0% | oary»

which implies:

V2 eqr0m < ceil|olZagan + T'||@Ww |2 i L2 | 0% 7 <car  1y-

By lemma B, dw e L%[0, T'], L*). Thus we may apply lemma C to w and
conclude w € L§([0, T'], W>*?), hence u € L*([0, T"], W**?3). From the embedding
W43, W4 and the equation of the flow this implies u € L%([0, T"], H?), as
claimed in the theorem.

Proof of lemma B. (1) Let €, =c,€,, where c; is the constant defined in
paragraph (4) below and ¢, is given by Lemma D below. Let T, >0 be chosen as
in Lemma A above. Fix ¢t €(0, T, ] such that u,(f) € L?, and let e(t) = (¢;)(f) be the
adapted frame given by Lemma A, whose connection 1-forms decompose as in its
statement: w(f) = w'(f) + w*(f). Since dw'(r) =0, we have the Hodge decomposi-
tion:

o'(t) =0B(t) + H(D),
where B(1) € H'Q%, ® so(k) satisfies {,, B(f) =0 and:
Bl < el <ce.
and H(?) is a harmonic 1-form on M.
(2) In order to use Hélein’s lemma we must localize the problem. Cover M by

open sets {U, })_,, such that:

(i) there exist conformal coordinate charts ¢,: D, » M, ¢,(D,) = U,;
(ll) Mc Uﬁ—-l Va’ Vaz = (pa(Dl/Z)'

We denote by D, the open disk with radius r centered at the origin in C(D = D,),
endowed with the metric ds? = 1%|dz|?, pulled back from M via the local charts ¢,.
Fix an index a for the remainder of the proof, and for simplicity of notation
identify the maps u, ¢;, etc. with their pullbacks to D, under ¢,.
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Let

(1) = G (0> = 3 <ty — ity €D € L(D),
a;= {(e;(1);, ej(t)>

= 2 [@)(0) + iw,(6,)] € LA(Dy)

(with L? norm independent of ¢ in both cases). Then:
(ai)z_ = <uz£9 ei> + <uz’ (ei)£>

1
= {A%Au, e, + Z oa,;,
J
(4 denotes the Laplacian in the Euclidean metric) so:
12
(D (o); +Zaﬁ°‘j ='Z‘<unei>-
J

(3) By remark A above, we have:
AB =dw' = {de' A de — dg A d{e,, ed}_e #},(D,).

(). denotes a local Hardy space, as in [16]). Therefore B € WZY(D,) = C%D,)
and:

Bl w2,y < c(|de'|||de >+ |dg 2 le]an).
We also have the estimates (in D,):

|dg(@) |2 = || (Dg(®) — g(t)w'(2) |2 < 2|'(2) |2 < 2,
|de'(D ]|, = |(dg)e’ + gde||, < c(||dg |, + ||e* ]| a1) < ce,

so we conclude ||Bl|y21p,) < ce.
(4) Corresponding to the decomposition:

w=0B+w?+H,
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we set:

o(0;) = a(t) = a'(¥) + a*(t) +a’(),
where (and here we define c,):

al(t) = 6B(0;) e WV\(D), la! || w1 < c€,
a*() = w*(0;) e L*(D),
a’(t) = H(1)(9;) e L>(D),

with L® norm bounded independently of ¢ in the last two cases.
We may rewrite (1) in the form:

2 @):+XYa=1
J
where:
)'2
=7 w0, &0 + ), (@ +adoy (1) e LAD),

with:

1D | L2y < (|, (0) | L2y + | <A, €,(O) D ]| L2())
3 <c(l+ “u,(t) ”L2(D))-
(5) LEMMA D. (Hélein [16]) There exist constants €, >0, ¢y > 0 such that if

a,; € WD), |a, || w11 < €, one may find solutions p*e L=(D,C"),k =1,...,n of
the system:

Br=Xa;,  B*=BHi

and a map M = (m;) € L*(D, GL(n, C)) such that:

1Mo+ M oo | =S

-~

and b* =X!_, my p’, where b', ..., b" is the standard basis of C".
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(6) We have (as in [16]):

o = Z 5,'1'0‘1' = ; mjkﬁ;(ai = ; my, X,
where y* = X, Ba; and (2) implies:

yE = Z [(B¥):0; + BF(2:);]
4) =Y B4 LAD)

By elliptic regularity for 0, this implies:
yA(t) € Hl(Dl/z),

and hence y*(¢) (and therefore «;) is in L?(D,;,) for each 1 <p < co. In particular,
this clearly implies du(f) e L%(V,)) for each «. Thus du e L*Q},. The estimate
claimed in the lemma follows from (3) and (4).
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Erratum: Antonio G. Rodicio, Flat exterior Tor algebras and cotangent complexes,
Comment. Math. Helv. 70 (1995) 546-557.

The proof of Proposition 5, and so the one of Theorem 1 and Corollary 3, are
incomplete. The problem is that it has been used as a general result in homotopical
algebra that (as far as we know) is not yet proved: the fact that the Kiinneth spectral
sequence of simplicial algebras over a simplicial ring is a spectral sequence of bigraded
algebras with divided powers. Recently we have learned that our claim in Remark 6 on
the existence of the bisimplicial algebra resolution P was too precipitate. Our idea to
construct P only works when Y contains a field; and in this case the resolution can also
be easily deduced from the bar construction. Therefore, although we are positively
convinced that the results are valid in full generality, the proofs given in the paper are,
at the present, only complete when the rings in consideration contain a field.

In fact, we have an alternative proof of the cohomological part of Corollary 3, for
general rings, and as a consequence, in the case A is noetherian, one of the homological
part. This proof will appear in our paper “On the acyclicity of the Tate complex™.

Even though it is probable that the bisimplicial algebra resolution does not exist
in general, it is easy to prove that the spectral sequence is of bigraded algebras. For,
it is used as a bisimplicial module resolution and it is defined, using the shuffle
operator, an external product in the total complex associated to the bicomplex,
which is compatible with the filtrations. So it seems likely that the divided powers
exist. We leave it as an interesting open problem.

On the other hand, Corollary 3 was used in the paper “Projective exterior
Koszul homology and decomposition of the Tor functor” (Invent. Math. 123,
123-140 (1996)) by A. Blanco, J. Majadas and A. G. Rodicio. Since at the present
it is not proved for general rings that the FLEKH property implies the vanishing of
André-Quillen homology, in Proposition 7 and Theorem 8 (i), the hypothesis “I is
a FLEKH-ideal” must be replaced by “H;(A, B, —) =0 for all j >3”. No addi-
tional change is necessary in the statements of the results: though in the proofs of
Theorem 2 and Theorem 13, our incomplete Proposition 5 was used, alternative
proofs of these results will also appear in the paper cited above.
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