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The marked length spectrum vs. the Laplace spectrum on forms on
Riemannian nilmanifolds

RUTH GORNET

Abstract. The subject of this paper is the relationships among the marked length spectrum, the length
spectrum, the Laplace spectrum on functions, and the Laplace spectrum on forms on Riemannian
nilmanifolds. In particular, we show that for a large class of three-step nilmanifolds, if a pair of
nilmanifolds in this class has the same marked length spectrum, they necessarily share the same Laplace
spectrum on functions. In contrast, we present the first example of a pair of isospectral Riemannian
manifolds with the same marked length spectrum but not the same spectrum on one-forms. Outside of
the standard spheres vs. the Zoll spheres, which are not even isospectral, this is the only example of a
pair of Riemannian manifolds with the same marked length spectrum, but not the same spectrum on
forms. This partially extends and partially contrasts the work of Eberlein, who showed that on two-step
nilmanifolds, the same marked length spectrum implies the same Laplace spectrum both on functions
and on forms.

Section 1: Introduction

The spectrum of a closed Riemannian manifold (M, g), denoted spec(M, g), is
the collection of eigenvalues with multiplicities of the associated Laplace—Beltrami
operator acting on smooth functions. Two Riemannian manifolds (M, g) and
(M', g’) are said to be isospectral if spec(M, g) = spec(M’, g').

The Laplace—Beltrami operator may be extended to act on smooth p-forms by
A4 =db + dd, where o is the adjoint of d and p is a positive integer. We call its
eigenvalue spectrum the p-form spectrum.

The length spectrum of a Riemannian manifold is the set of lengths of smoothly
closed geodesics, counted with multiplicity. The multiplicity of a length is defined as
the number of distinct free homotopy classes of loops that contain a closed geodesic
of that length. We denote the length spectrum of (M, g) by [L]-spec(M, g). This is
a natural notion, since the geodesic of shortest length in a free homotopy class is
just the shortest loop representing that class. (Note that other definitions of
multiplicity appear in the literature.)

Research at MSRI supported in part by NSF grant DMS-9022140. Research at MSRI and Texas Tech
supported in part by NSF grant DMS-9409209.
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298 RUTH GORNET

Two Riemannian manifolds (M, g,) and (M,, g,) have the same marked length
spectrum if there exists an isomorphism between the fundamental groups of M, and
M, such that corresponding free homotopy classes contain smoothly closed
geodesics of the same length. Manifolds with the same marked length spectrum
necessarily have the same length spectrum.

The purpose of this paper is to study the relationships among the marked length
spectrum, the length spectrum, the Laplace spectrum on functions and the Laplace
spectrum on forms on Riemannian nilmanifolds.

The relationship between the Laplace spectrum and lengths of closed geodesics
arises from the study of the wave equation (see [DGu], [GuU]), and in the case of
compact, hyperbolic manifolds, from the Selberg Trace Formula (see [C], Chapter
XI). Colin de Verdiere [CdV] has shown that generically, the Laplace spectrum
determines the length spectrum. On Riemann surfaces, Huber showed that the
length spectrum and the Laplace spectrum are equivalent notions (see [Bu] for an
exposition).

The Poisson formula gives the relationship between the Laplace spectrum and
length spectrum of flat tori, with the result that pairs of flat tori are isospectral if
and only if they share the same length spectrum (see [CS], [G3]). Pesce [P2] has
computed a Poisson-type formula relating the Laplace spectrum and length spec-
trum of Heisenberg manifolds and has also shown that pairs of Heisenberg
manifolds that are isospectral must have the same lengths of closed geodesics.
Previously, Gordon [G1] exhibited the first examples of isospectral manifolds that
do not have the same length spectrum. These Heisenberg manifolds have the same
lengths of closed geodesics. However, the length spectra often differ in the multiplic-
ities that occur. All known examples of manifolds that are isospectral have the same
lengths of closed geodesics.

The marked length spectrum contains significantly more geometric information
than the length spectrum. Croke [Cr] and Otal [Ot1], [Ot2] independently showed
that if a pair of compact surfaces with negative curvature have the same marked
length spectrum, they are necessarily isometric. The same is true for flat tori (see
[G3]). In the cases studied by Croke and Otal, the marked length spectrum and the
geodesic flow are, roughly speaking, equivalent notions. On two-step nilmanifolds,
Gordon, Mao, and Schueth [GM], [GMS] showed that the geodesic flow is
significantly stronger. Recently Eberlein [E1] showed that for two-step nilmanifolds,
the same marked length spectrum implies the same Laplace spectrum both on
functions and on p-forms for all p. (See Section 3 for more details.)

In contrast, the standard sphere and the Zoll sphere (see [Bes]) have the same
marked length spectrum (trivially so, as they are both simply connected and by
definition have the same lengths of closed geodesics), yet they are not even
isospectral on functions. Indeed, any manifold isospectral to a standard sphere of
dimension less than or equal to six must be isometric to it (see [B2]).
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Examples of pairs of Riemannian manifolds that are isospectral on functions
but not on forms are sparse. Most constructions for producing pairs of isospectral
manifolds can be explained by Sunada’s method [S] or its generalizations [DG],
[GW1], [B3]. Pairs of manifolds constructed by the Sunada techniques necessarily
have the same p-form spectrum for all p.

For any choice of P € Z*, Ikeda [12] has constructed examples of isopectral lens
spaces that are isospectral on p-forms for p =0,1,..., P but not isospectral on
(P + 1)-forms. A straightforward argument shows that for the family of lens spaces
considered by Ikeda, if a pair of lens spaces in this family has the same marked
length spectrum, they are necessarily isometric. Gordon [G2] has constructed pairs
of Heisenberg manifolds that are isospectral on functions, but not isospectral on
one-forms. A consequence of Eberlein’s theorem is that Heisenberg manifolds with
the same marked length spectrum are necessarily isometric. (See Section 3 for more
details.) The only other known examples of manifolds that are isospectral on
functions but not isospectral on forms are pairs of isospectral three-step nilmani-
folds presented and studied in [Gt3]. These examples are studied further here.

This paper focuses almost exclusively on three-step nilmanifolds. The main
results are a partial extension and a partial converse to Eberlein’s theorem for
three-step nilmanifolds.

MAIN THEOREM 3.2.2. For a large class of three-step nilmanifolds, if a pair
of nilmanifolds in this class has the same marked length spectrum, they necessarily
share the same Laplace spectrum on functions.

MAIN EXAMPLE. Example V in the table below exhibits the first example of
a pair of isospectral Riemannian manifolds with the same marked length spectrum, but
not the same spectrum on one-forms.

These results have led to the following.

CONJECTURE. Pairs of Riemannian nilmanifolds with the same marked length
spectrum are necessarily isospectral on functions.

Background ideas and notation are established and explained in Section 2. In
[Gt3], we presented a new construction for producing pairs of isospectral nilmani-
folds of arbitrary-step. In Section 3, this construction together with Eberlein’s
theorem and techniques from Riemannian geometry are used to prove the Main
Theorem.

Also in [Gt3], we presented new examples of isospectral three-step nilmanifolds
with combinations of properties described in the table below. For consistency, the
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Table I. New examples of isospectral manifolds

Pair of 3-step Vp same Rep. equiv. Isomorphic Same Same
isospectral p-form fundamental fundamental length marked length
nilmanifolds spectrum groups groups spectrum spectrum

I (7 dim) Yes Yes No No No

II (5 dim) Yes Yes Yes Yes No

III\IV (7\5dim) No No No No No

V (7 dim) No No Yes Yes Yes

numbering of the examples in this paper coincides with the numbering of the
examples in [Gt3]. Note that Example V is also the Main Example.

The spectrum on functions, spectrum on forms, quasi-regular representations,
and fundamental groups of these examples were examined in [Gt3]. In Sections 4
and 5 we compare the length spectrum and marked length spectrum of these
examples. The pairs of isospectral manifolds described in Table I have the same
lengths of closed geodesics. However, the length spectra often differ in the multiplic-
ities that occur.

All of the examples described in the above table are of the form (I'\G, g), where
G is a three-step nilpotent Lie group, I' is a cocompact, discrete subgroup of G (i.e.
I'\G compact), and g arises from a left invariant metric on G. Two cocompact,
discrete subgroups I'; and I', of a Lie group G are called representation equivalent
if the associated quasi-regular representations are unitarily equivalent. If I', and I',
are representation equivalent, then (I';\G, g) and (I';\G, g) are necessarily isospec-
tral on functions and on smooth p-forms for any choice of left invariant metric g
on G.

REMARK. Example I provided the first example of a pair of representation
equivalent subgroups of a solvable Lie group producing nilmanifolds with unequal
length spectra. This cannot happen in the two-step nilpotent case. The relationships
among the quasi-regular representation, the length spectrum, and marked length
spectrum of nilmanifolds are studied in [Gt2], where we also present the first
examples of pairs of representation equivalent subgroups of two-step nilpotent Lie
groups that do not produce nilmanifolds with the same marked length spectrum.
Example I is also the first example of a pair of nonisomorphic, representation
equivalent subgroups of a solvable Lie group. See [Gtl1] for more details. Note that
nilpotent Lie groups are necessarily solvable.

Some of the contents of this paper are contained in the author’s thesis at
Washington University in St. Louis in partial fulfillment of the requirements for the
degree of Doctor of Philosophy. The author wishes to express deep gratitude to her
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advisor, Carolyn S. Gordon, for all of her suggestions, encouragement, and support.
The author also wishes to thank Patrick Eberlein for helpful conversations.

Section 2: Background and notation
Section 2.1: Definitions

Let G be a simply connected Lie group with Lie algebra g. A metric on G is left
invariant if left translations are isometries. Note that a left invariant metric is
determined by a choice of orthonormal basis of the Lie algebra g of G. We denote
the corresponding inner product on g by {,).

Let I" be a cocompact, discrete subgroup of G. A left invariant metric g on G
descends to a Riemannian metric on I'\G, which we also denote by g. This paper
focuses exclusively on manifolds of the form (I'\G, g), where g arises from a left
invariant metric on G.

As G is unimodular, the Laplace—Beltrami operator on (I'\G, g) is

where {E,,..., E,} is an orthonormal basis of the Lie algebra g of G.

Recall that free homotopy classes of loops of a manifold I'\G correspond to the
conjugacy classes in the fundamental group I'. We will denote by [y], the free
homotopy class of I'\G represented by y e I'. That is, [y}, = {fy7 " el}.

For real numbers 1 > 0, we write 4 € [y]- if there exists a closed geodesic of length
4 in the free homotopy class of loops [y]; of (I'\G, g).

Let y be an element of I'. We say a geodesic g of (G, g) is translated by the element
y with period A > 0 if

yo(s) = o(s + 1) Vs eR.

If o is a unit speed geodesic on (G, g), then ¢ projects to a smoothly closed geodesic
on (I'\G, g) of length A, and the projection of ¢ is contained in the free homotopy
class [y);. Note that we do not assume that A is the smallest period of o.

As the projection (G, g) = (I'\G, g) is a Riemannian covering, all closed geodesics
of (I'\G, g) must arise in this fashion. So to study the closed geodesics of (I'\G, g),
it is enough to study the y-translated geodesics of (G, g).

Let o(s) be a geodesic of G through p =0(0). Let é(s) =p~la(s). As left
translations are isometries, ¢ is a geodesic of G through e. If o is translated by y
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with period A, then § is translated by (p ~'yp), also with period i. To see this, note
that if yo(s) = o(s + A), then

(p~'yp)é(s) = (p~'yp)p ~'o(s) =p~'yo(s) =p~o(s + 1) = é(s + A).

2.1.1 NOTATION. In summary, the length A €[y]; if and only if there exists
x = p~'yp €[y]l; and a unit speed geodesic a(s) on (G, g) through e = ¢(0) such that
xo(s) = o(s + A), Vs € R. That is, x translates ¢ with period 4. Here [y]; denotes the
conjugacy class of y in G.

With this notation, a pair of manifolds (I',\G,, g,) and (I',\G,, g,) share the
same marked length spectrum if and only if there exists an isomorphism @: I'; - I',
such that for all y e I'; and for all 4 > 0,

4 €[ylr, if and only if A € [P(Y)]r,.

We say that the isomorphism @ marks the length spectrum between (I';\G,, g,) and
(I':\G3, &)

Section 2.2: Nilmanifolds

Let g be a Lie algebra. We denote by g the derived algebra [g, g] of g. That
is, g is the Lie subalgebra of g generated by all elements of the form [X, Y] for
X, Y in g. Inductively, define g**V = [g, g*]. The Lie algebra g is said to be k-step
nilpotent if g¢® =0 but g* =D #0. A Lie group G is called k-step nilpotent if its Lie
algebra is.

If G is a nilpotent Lie group with cocompact, discrete subgroup I', the locally
homogeneous space I'\G is called a nilmanifold. If G is an abelian Lie group, then
I’ is merely a lattice of rank » in G, where n is the dimension of G. In this case,
log I' is also a lattice in g.

Let exp denote the Lie algebra exponential from g to G. The Campbell-Baker-
Hausdorff formula gives us the group operation of G in terms of g. Namely, for
X,Yeq:

exp(X) exp(Y) =exp(X+ Y+%[X, Y] +%[X, [X, Y] +T1§[Y’ [Y, X]]+ - '),

where the remaining terms are higher-order brackets. Note that for two-step
nilpotent Lie groups, only the first three terms in the right-hand side are nonzero.
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For three-step groups, only the first five terms are nonzero. If g is nilpotent and G
is simply connected, then exp is a difftfomorphism from g onto G. Denote its inverse
by log.

If G, and G, are nilpotent Lie groups with cocompact, discrete subgroups I',
and I',, respectively, any abstract group isomorphism @: I', — I', lifts uniquely to a
Lie group isomorphism @: G, — G,.

For details of cocompact, discrete subgroups of nilpotent Lie groups, see [Ra).

2.2.1 DEFINITION. Let ® be a Lie group automorphism of G. Let I be a
cocompact, discrete subgroup of G.
(1) We call @ an almost inner automorphism if for all elements x of G there exists
a, in G such that ®(x) =a,xa;'.
(i) We say @ is a I'-almost inner automorphism if for all elements y of ' there
exists a, in G such that ®(y) = a,ya;".

Denote by IA(G) (respectively, AIA(G), I'-AIA(G)) the group of inner automor-
phisms (respectively, almost inner automorphisms, I'-almost inner automorphisms)
of G. Note that IA(G) < AIA(G) = I'-AIA(G).

2.2.2 THEOREM (Gordon and Wilson, Gordon [GW1], [G1]). Let G be an
exponential solvable Lie group, and let I’y and I', be cocompact, discrete subgroups of
G. Let @ be a I'i-almost inner automorphism of G such that &(I'y) =TI,. Then
(I''\G, g) and (I',\G, g) are isospectral on functions and on forms for any choice of
left invariant metric g on G. Moreover, the automorphism I' marks the length
spectrum between (I')\G, g) and (I',\G, g).

Note that a nilpotent Lie group is necessarily exponential solvable.

Section 3: The marked length spectrum vs. the Laplace spectrum on functions of
three-step nilmanifolds

Throughout this section, G is a simply connected, k-step nilpotent Lie group
with Lie algebra g, I' is a cocompact, discrete subgroup of G, and g is a left
invariant metric on G, which descends to a metric on I'\G, also denoted by g. We
denote the center of g by 3 and the center of G by Z(G). Let L, denote left
multiplication by x € G. As g is left invariant, L, is always an isometry of (G, g). Let
G® = exp(g®) denote the kth derived subgroup of G. Note that if G is k-step
nilpotent, then G*~V = Z(G).
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Section 3.1: Preliminaries

3.1.1 THEOREM. Let G be a three-step nilpotent Lie group with left invariant
metric g. Let o be a geodesic on (G, g) that is translated by the element y € G with
period A >0. Let p = 0(0). Then

(L([log(p~"7p), al), 6(0) >, =0.

REMARK. This is the three-step generalization of a result due to Eberlein [E1].
Recently Dorothee Schueth [Sch] has given an elegant proof, which generalizes the
result to nilpotent Lie groups of arbitrary step.

Outline of Proof of 3.1.1. We briefly describe the basic steps in the original
three-step proof. For more details, see [Gt4], Chapter 4.

Let G be a simply connected, three-step nilpotent Lie group with Lie algebra g
and left invariant metric g. Let g = v ® g, where v is the orthogonal complement
of gV in g. Let g’ = { @ g®, where { is the orthogonal complement of g in g.
Thus g=v®{ @ g®.

Let {X;, X,, ..., X,} be an orthonormal basis of v. Let {Z,, Z,, ..., Zx} be an
orthonormal basis of {, and let {W,, W,, ..., W} be an orthonormal basis of g©.
Throughout this proof the indices i, j, and / run from 1 to J, the indices 4 and k run
from 1 to K, and the indices ¢ and r run from 1 to 7.

Define A%, Bj;, Ci by

ij
(X, X;] = ;A{szk + 2:‘, B,W,
[X., Zi] = —[Z,, Xi1 =) CiW,.
t

As [X;, X;] = —[X, X;], we have Aj; = —A}; and B}, = —B},. By the Jacobi equa-
tion [g", V] =[g, ¢®] =0. Thus [Z,, Z,] =0. Finally, by applying the Jacobi
equation to X;, X}, X, and examining the W, coefficient, we obtain:

0=>) (45Cy + A5 Ch + A5Ch).
x

For Lie algebras with a left invariant metric, the covariant derivatives can be
calculated via

YUy =3 AU, VL ¥ 450, Y1, V) +5 <O, V1,0



The marked length spectrum vs. the Laplace spectrum 305

for U, V, Y in g. We obtain the covariant derivatives:

ViZi=7% ZA X, += }_jc

7, X, = ;ZA"X 35 Cut,
J
VW, =V X, == Z Zc Z,,

Vs Zn =V, W, = 0,
1
Vszt = VW,Zk =‘2“Z C X
J

For x € G, x = exp(Z; x;X; + Z; 2, Z; + X, w,W,) gives us a global coordinate sys-
tem on G. With this coordinate system, a straightforward computation shows us that

X =7+ 3 (3T 0l )"
+ (ZxB Z kzk+ "I;kxc,kx,A )6(31;,
eop i)

6

W,=—.
‘ ow,

Let o(s) = exp(Z; x; ()X + Zi z:(5)Z; + Z, w,(s)W,) be a geodesic of (G, g) with
initial velocity ¢(0) = Z; X;X; + X, Z, Z, + X, W, W,. A straightforward computation
of V4, 6(s) =0 produces the following geodesic equations for a three-step nilpotent
Lie group, reduced to a system of n-ordinary differential equations.

% (s) = —gc: x,(5)A%Z, — ; x,($)B4w, — Z 2, (S)Chw,
- % i,I,Zk,t x,(8)x, ()W, Cip A% + X,
Z(5) = % g x;(8)%;()A% + ,Zz x;(5)W,Chr + %
9 =3 T %05 OBy ~3 24O OCk +5 % 5 OAECK

1 : i,
— .,;klx,- (9%, (5)x,(S)Cir Af + W,
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If we assume that a geodesic a(s) starts at the identity and is translated by the
element y, then a lengthy but straightforward (brute-force) calculation yields

{[log(»), g], 6(0) ), = 0.

Here one uses extensively the fact that if yo(s) = o(s + A), then L.(d(s)) =
a(s + A).

In the general case, let o(s) be a geodesic of G through p =a(0). Let
a(s) =p ~'o(s). Then a is a geodesic of G through e. If ¢ is translated by y with
period A, then « is translated by p ~!yp, also with period A. Thus

{[log(p~'yp), g], 4(0)>, = 0.

But a(0) = (L,-1),(d(0)). As our metric is left invariant, we obtain

CL,+([log(p ~'vp), g]), 6(0)>, =0,
as desired. O

REMARK. Ron Karidi [K] has recently given a formulation of the geodesic
equations for an arbitrary nilpotent Lie group with a left invariant metric. As
above, this formulation is in terms of an orthonormal basis and structure constants
of the Lie algebra.

3.1.2 NOTATION. Let 7 denote the canonical projection from G onto G =
G/G%-Y, For I' a cocompact, discrete subgroup of G, denote by I' the image of I'
under 7. The group I is then a cocompact, discrete subgroup of G. Let & denote the
metric on G defined by restricting the left invariant metric g to an orthogonal
complement of g*~ 1 < 3, where g is the Lie algebra of G. With this choice of metric
g on G, the mapping

n: (G, 8) —(G, 2)

is a Riemannian submersion with totally geodesic fibers.

If :G,—>G, is a Lie group homomorphism, then necessarily &: G§¢-Y -
G$~D. Let @ denote the canonical projection of @ onto @ =7 o &: Gl - G,.

The Lie algebra of G is g = g/g*~ V. We denote elements of § by U where U is
the image of U € g under the canonical projection from g onto G. Similarly, we will
denote elements of G by X where % is the image of x € G under the canonical
projection from G onto G.

All of the nilpotent Lie groups studied here have the following property.
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3.1.3 DEFINITION. Let G be a simply connected, k-step nilpotent Lie group.
We say G is strictly nonsingular if the following property holds: for all z in Z(G) and
for all noncentral x in G there exists a in G such that the commutator

1

axa 'x 1=z

The Lie algebra g is strictly nonsingular if for all X in ¢ — 3 and all Z in 3 there exists
Y in g such that [X, Y] =Z, that is

3 < ad(X)(9).

One easily sees that the Lie group G is strictly nonsingular if and only if its Lie
algebra g is strictly nonsingular. Note that for strictly nonsingular nilpotent Lie
algebras, 3=g%~ V.

3.1.4 COROLLARY. Let G be a simply connected, strictly nonsingular three-
step nilpotent Lie group with left invariant metric g. Consider the Riemannian
submersion (G, g) — (G, §). If o is a geodesic on G such that yo(s) = o(s + A) for some
noncentral y in G and some A >0, then ¢ is a horizontal geodesic. That is,

(Lys+(3),6(s)>=0  VseR.

Before proving Corollary 3.1.4, recall the following properties of Riemannian
submersions.

3.1.5 PROPOSITION (see [GHL)). Let (M, g) — (M, §) be a Riemannian sub-
mersion.
(i) Let a be a geodesic of (M, g). If the vector a(0) is horizontal, then d&(s) is
horizontal for all s, and the curve T o o is a geodesic of (M, §) of the same
length as o.
(i) Conversely, let p € M and let ¢ be a geodesic of (M, §) with a(0) = n(p).
Then there exists a unique local horizontal lift 6 of o through p = 6(0), and
G is also a geodesic of (M, g).

Proof of Corollary 3.1.4. By Theorem 3.1.1

(L,+([log(p~'yp), g]), 6(0)>, =0,

where p = 0(0). By strict nonsingularity

3=9? c[log(p 'yp), gl
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Thus

<Lp*(3)’ &(0) >p =0.

Thus d(0) is horizontal. By Proposition 3.1.5, we know that d(s) is horizontal for
all seR. O

Section 3.2: Main Theorem

On two-step nilmanifolds, we have the following relationship between the
marked length spectrum and the p-form spectrum.

3.2.1 THEOREM (Eberlein [El]). Let I'y, I', be cocompact, discrete subgroups
of simply connected, two-step nilpotent Lie groups G,, G, with left invariant metrics
g1, & respectively. Assume that (I'/\G,, g,) and (I',\G,, g,) have the same marked
length spectrum, and let ®@: ', - I', be an isomorphism inducing this marking. Then
D =(P, o0 452)|,~ \» Where @, is a I'y-almost inner automorphism of G,, and ®, is an
isomorphism of (G,,g,) onto (G, g,) that is also an isometry. Moreover, this
factorization is unique. In particular, (I''\G,, g,) and (I';\G,, g,) have the same
spectrum of the Laplacian on functions and on p-forms for all p.

REMARK. Note that if I'-AIA(G) =IA(G), then the elements of I'-AIA(G)
are isometries of (G, g), where g is any choice of left invariant metric g of G. So by
Theorem 3.2.1, any two-step nilmanifold with the same marked length spectrum as
(I'\G, g) is necessarily isometric to it. This property applies to Heisenberg groups.
Thus pairs of Heisenberg manifolds with the same marked length spectrum are
necessarily isometric.

We may now state the main result of this paper.

3.2.2 MAIN THEOREM. Let G be a simply connected, strictly nonsingular,
three-step nilpotent Lie group. Let I', and I', be cocompact, discrete subgroups of G
such that I' N Z(G) =T',n Z(G). If (I')\G, g) and (I';\G, g) have the same marked
length spectrum, then (I')\G, g) and (I',\G, g) are isospectral on functions.

To prove Theorem 3.2.2, we need the following.

-3.2.3 THEOREM [Gt3, Theorem 3.2]. Let G be a simply connected, strictly
nonsingular nilpotent Lie group with left invariant metric g. If I, and I', are
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cocompact, discrete subgroups of G such that
I''nZ(G)=T,nZ(G) and spec(I')\G, §) = spec(I',\G, g),
then

spec(I'1\G, g) = spec(I';\G, g).

3.2.4 THEOREM. Let G be a simply connected, strictly nonsingular three-step
nilpotent Lie group with cocompact, discrete subgroup I' and left invariant metric g.
Let y be a noncentral element of I'. Then for all 2 > 0 we have the following condition.

Aelylr ifand only if A €[n(y))F.
Assume for the moment that Theorem 3.2.4 is true.

3.2.5 COROLLARY. Let G, and G, be simply connected, strictly nonsingular,
three-step nilpotent Lie groups with cocompact, discrete subgroups I’y and I', and left
invariant metrics g, and g,, respectively. Let ® mark the length spectrum between
(I'\Gy, &1) and (I;)\Gy, &) Then ® must mark the length spectrum between

(rl\Glsgl) and (Fz\Gz,gz)

Proof of Corollary 3.2.5. For noncentral y eI'y, let the length A € [n(y)]7,. By
(3.2.4) A€[ylr,. By hypothesis 1 €[®()]-,. By (3.2.4) again, 4 €[n(®())]F,=
[B(()]7,-

Reversing the roles of I', and I',, we obtain the desired result. O

Proof of Main Theorem 3.2.2. Let & mark the length spectrum between
(I''\G, g) and (I;\G, g). By (3.2.5) we know that @ must mark the length spectrum
between (I';\G, £) and (I',\G, g). By Theorem 3.2.1 spec(I"; \G, &) = spec(I",\G, 2).

The result now follows directly from Theorem 3.2.3. O

It remains only to prove Theorem 3.2.4, which is immediate from the following
two lemmas.

3.2.6 LEMMA. Let G be a simply connected, strictly nonsingular three-step
nilpotent Lie group with cocompact, discrete subgroup I' and left invariant metric g.
Let y be a noncentral element of I'. With the above notation, if the length A € [y]; then

A € [rn(P)]7.

Proof of Lemma 3.2.6. If the length A €[y];, then there exists a unit speed
geodesic a(s) of G through e such that
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P 'ypo(s) = a(s + A)

for some p € G.

By (3.1.4), a(s) is a horizontal geodesic, and by (3.1.5), @ > a(s) is a unit speed
geodesic of (G, ).

But n(p ~'ypa(s)) = n(p ~Hn(y)n( p)n(a(s)) = n(o(s + 1)). Thus n(c) is a unit
speed geodesic translated by n(p ~")n(y)n(p) with period A. That is, A € [n(y)]7, as
desired. O

3.2.7 LEMMA. Let G be a simply connected, strictly nonsingular k-step nilpo-
tent Lie group. Using the above notation, let the length 1 €[j)7, where y # e. Then

A €[yl for all y e n=1(p).

Proof of Lemma 3.2.7. Let o be a unit speed geodesic of (G, g) through & = (0)
and translated by p~'jp for some p € G with period A.

By (3.1.5), the unique horizontal lift § of o with 6(0) = e is a geodesic of (G, g).

As both G and G are complete, we see that ¢ is defined for all s e R. We also
have = o 6(s) = o(s) for all s eR. To see this, note that the set .S of all such s is
nonempty as 0 € S, open by completeness, and closed by uniqueness and smooth-
ness. Thus, S =R.

Now n(6(4)) = p~'yp. Let p be such that n(p) = p.

Let yen~'(7). Then n(p~'yp) =p~'9p = n(6(4)). Thus (GNP ~wp) "' is a
central element of G.

By strict nonsingularity, there exists x € G such that

x (P D)x(p~'yp) " = 6(A)(pvP) 7,
that is x ~1(p ~'yp)x = 6(4).

If we let p’ = px, then 6(1) =p’~'yp’. Note that n(p'~'yp’) = n(6(s)) =p ~'7p.
We now show that p'~'yp'é(s) = 6(s + A) for all s eR. Let

a(s) = (p'~'yp") ~'é(s + A).

Now a(0) = (p'~'yp") ~16(1) = e. Also, a(s) is horizontal since g is left invariant and
a is just a left translate of the horizontal curve 6. Moreover,

- m(o(s)) =n((p'~'yp) '6(s + X)) =p 7 'pa(s + 4)

=p 57 pp~'ipo(s) = a(s).
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Thus « is a horizontal geodesic through e € G whose projection agrees with ¢. By
uniqueness in Proposition 3.1.5, a(s) = 6(s) Vs e R.
Consequently,

p' " lyp'é(s) =6(s + A)

for all s e R. Thus the length

Aellr,

as desired. O

Section 3.3: Three-step nilmanifolds with a one-dimensional center

3.3.1 THEOREM. Let G be a simply connected, strictly nonsingular, three-step
nilpotent Lie group with a one-dimensional center. Let I'; and I', be cocompact,
discrete subgroups of G such that I, Z(G) =T',nZ(G). Let g be any left invariant
metric on G. Then (I')\G, g) and (I';\G, g) have the same marked length spectrum if
and only if there exists an isomorphism ®: T, — T, such that ®: I’y —I', marks the
length spectrum between (I',\G, g) and (I',\G, g).

Proof of Theorem 3.3.1. The forward direction follows immediately from Corol-
lary 3.2.5.

For the converse direction, assume that there exists an isomorphism &: ', —» I,
such that @ marks the length spectrum between (I',\G, ) and (I",\G, g).

We need to show that for all y e I', and for all 4 > 0, the length 4 €[y],, if and
only if 4 € [®(y)],.

We consider two cases:

Case 1. yeI'inZ(G).

If the length 4 € [y], then there exists a unit speed geodesic a(s) of G such that
vo(s) = a(s + A).

As & is an isomorphism, we known that &(I'y n Z(G)) =I',nZ(G) = 'y Z(G),
and hence @ must map a generator of I';nZ(G) to a generator of I', N Z(G).
There are only two such generators. Thus for all y e I'y »n Z(G), either &(y) =y or
&(y) =y~". Hence [®())];, =[], or [P(W]r,=[? "Ir,.

If [®(P)], = [V]r,, then the geodesic a(s) of G projects to a closed geodesic of
(I';\G, g) of length 4 in the free homotopy class [y]r,.

If [2(Y)]r, = [y“]rz, then the geodesic a(s) = a(—s) of G projects to a closed
geodesic of (I',\G, g) of length A in the free homotopy class [y ~'] ,.
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This argument also works for @~': I', » I';, which must necessarily mark the
length spectrum. Consequently, for all y e I'y n Z(G) and for all 1 >0,

A €[ylr, if and only if 4 € [®()]r,.

Case 2. y ¢ Z(G).

Let the length A €[y];,. By strict nonsingularity and Theorem 3.2.4, we know
that A €[n(y)]7,. By assumption, we know that i€ [5(1:();))],:2. Now n(®@(y)) =
@(n(y)). Thus by Theorem 3.2.4 again we know 4 € [®(p)]r,. Reversing the roles of
I'y and I, in the above, we see that for all noncentral y € I'y and for all 4 > 0,

A €[ylr, if and only if 4 € [®(Y)],,

as desired. O

Section 4. The marked length spectrum vs. the one-form spectrum

The example below is the first example of a pair of isospectral Riemannian
manifolds with the same marked length spectrum, but not the same spectrum on
one-forms. Outside of the standard vs. Zoll spheres, which are not even isospectral
for dimension less than or equal to six, this is the only example of a pair of
Riemannian manifolds that have the same marked length spectrum but not the
same spectrum on one-forms.

Example V

We use the notation of Section 3.
Consider the simply connected, strictly nonsingular, three-step nilpotent Lie
group G with Lie algebra

g=spang{X,, X,, Y., Y,, Z,, Z,, W}
and Lie brackets

[Xla Yl] =[X2a Y2] =Zl
[Xl, YZ] =Z2
t [XI,ZI] =[X2, Zz] =[Y19 nLi=w

and all other basis brackets zero.
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We fix a left invariant metric on G by letting {E,, E,, E;, E,, Es, E, E;} be an
orthonormal basis of g where

1 1
Ei=X,—3X,—- 1),

29274
1
E2=X2—ZY1,
E‘3= Yls
E4= Y] + Yz,
E5=Zl,
1
E¢=52Z,+ Z,,
2
E7=W.

Let @ be the automorphism of G defined on the Lie algebra level by
1 1
Xl_) —X1+X2+ZY1+5Y2,

1 1
X2_)X2__2'Yl+—4_zl,

Yl_) —Yla
Y,-2Y, + Y, + Z,,
1

Zl—’Zl+_2’W9

1
Zz'—)“'Zl—'Zz“}"ZW,
W-o—W.

A straightforward calculation shows that @ (U, V]) =[®,(U), ®,(V)] for all
U, Vin g. Thus @ is indeed a Lie group automorphism.
Let I', be the cocompact, discrete subgroup of G generated by

{exp(2X}), exp(2X2), exp(1)), exp(Y), exp(Z,), exp(Z,), exp(W)},

and let I', = ¢(I',). Note that I'y nZ(G) =T, Z(G) = {exp(jW):j e Z}.
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Let & be the projectio_n of & onto G. Then @ factors as @ = ¥, o ¥, where ¥,
is the automorphism of G given on the Lie algebra level by

_ R T
Xl—’—Xl+X2+ZY1+§Y29

_ o 1-

X 2= X, — _2_ Yl ’

Yl s Yl ’

)72 27, + I_’z,

Z_ 1 Z_ 1»

Z_z --Z 1~ Z—z,
and ¥, is the automorphism of G given on the Lie algebra level by

X—; 1 X 1»

_ o _ 1=

X2 e 4 Xz + ZZI .

)71 i 171 ’

I_’z“’ )72”21 —Z_z,

Z— i Z 1s

Zz d Zz.

By rewriting ¥, in terms of the orthonormal basis (E,, E,, E,, E,, Es, E¢} of g,
one easily sees that ¥,(E;) = +E, for i =1,...,6. Thus the automorphism ¥, is
also an isometry of I'. A simple calculation shows that ¥, is an almost inner
agton_lorphism of G. Thus by (3.2.1), & marks the length spectrum between
(I')\G, g2) and (I';\G, £). By (3.3.1), @ marks the length spectrum between (I",\G, g)
and (I',\G, g).

By (3.2.2), the manifolds (I';\G, g) and (I';,\G,g) must be isospectral on

functions.
In contrast, we have the following.

4.1 THEOREM [Gt3, Proposition 4.11]. The manifolds (I',\G, g) and (I',\G, g8)
are not isospectral on one-forms.
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Section 5: The (marked) length spectrum and previous examples

We now compare the Iength spectra and marked length spectra of Example 1
through Example IV described in Table I. The spectrum on functions, spectrum on
one-forms, quasi-regular representations, and fundamental groups of these exam-
ples were studied in [Gt3].

We use the notation of Section 3. All of these examples can be constructed by
Theorem 3.2.3, in particular, I'y " Z(G) = ', Z(G).

Let the length A € [L]-spec(I’;\G, g). Let m;(4) denote the multiplicity of the
length A in [L]-spec(I";\G, g). We decompose m;(A) as

m;(4) = m;(2) +m;(3) (5.1

where m] (4) is the number of central free homotopy classes in which A4 occurs, and
m;(A) is the number of noncentral free homotopy classes in which 4 occurs.

5.2 PROPOSITION. For pairs of isospectral manifolds constructed using Theo-
rem 3.2.3, the central multiplicities are equal; that is, my (1) = m5(A).

Proof of Proposition 5.2. If yel'y,nZ(G) =T,NnZ(G), then by (2.1.1), the
length A €[], if and only if 1 €[y];,. As the conjugacy classes of y in I'; and I,
respectively contain only the element y, we have a natural correspondence between
the central conjugacy classes in I'; containing a closed geodesic of length A and the
central conjugacy classes in I', containing a closed geodesic of length A. O

So for the examples below, we need only compare m' (1) and m5(4).

Example I: Remarks

Let

g =spang{X;, X5, Y1, Y5, Z,, Z,, W}
with Lie brackets

[Xl: Yl] = [Xz, Yz] =2Z,
[Xla Yz] =2,
[Xlazl] =[X2, Zz] =[Y19 Yz] =W

and all other basis brackets zero.
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Clearly g is a strictly nonsingular, three-step nilpotent Lie algebra.
Let I') be the cocompact, discrete subgroup of G generated by

{exp(2X,), exp(2X;), exp(Y,), exp(Y>), exp(Z,), exp(Z,), exp(W)},

and let I', be the cocompact, discrete subgroup of G generated by

{¢Xp(2X 1), exp(2X5), exp(Y,), CXP( Y, + ‘;‘Zz ) exp(Z,), exp(Z,), exp(W) }

The fundamental groups and the quasi-regular representations of Example I are
studied extensively in [Gtl]. There we showed that I'; and I', are not abstractly
isomorphic, hence (I',\G, g) and (I',\G, g) cannot possibly have the same marked
length spectrum for any choice of left invariant metric.

Let g be the left invariant metric on G defined by letting

{Xl’ XZ’ Yla Y29 Zla ZZ; W}

be an orthonormal basis of g.

In [Gt2], we showed that (I';\G, g) and (I',\G, g) do not even have the same
length spectrum. Although the same lengths of closed geodesics occur, the multi-
plicities of certain lengths differ.

Example I provided the first example of a pair of representation equivalent
subgroups of a solvable Lie group producing manifolds with unequal length
spectra. Note that nilpotent Lie groups are necessarily solvable.

Example II: The (marked) length spectrum
Let
g =spang{X;, ¥, Y5, Z, W}

with Lie brackets given by

[X s Y, 1] =Z
X, Z]1=[Y,, L] =W
and all other basis brackets zero.

" Clearly g is a strictly nonsingular, three-step nilpotent Lie algebra.
Let I', be the cocompact, discrete subgroup of G generated by
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{exp(2X;), exp(Y,), exp(Y,), exp(Z), exp(W)}

and let I', be the cocompact, discrete subgroup of G generated by

{exp(2X 1), exp( Y, + % y4 ), exp(Y,), exp(Z), exp(W) }

Note that these generating sets are canonical in the sense that every element of I',
can be written in the form exp(2n, X,) exp(m, Y,) exp(m, Y,) exp(kZ) exp(jW) for
some integers n,, m,, m,, k, j. Likewise for I',.

5.3 PROPOSITION. The above nilmanifolds have the same length spectrum, that
is

[L]-spec(I'1\G, g) = [L]-spec(I'’;\G, g)
for any choice of left invariant metric g of G.

We showed in [Gt3] that I'; and I', are isomorphic as groups. Thus a natural
question to ask is, if a pair of nilmanifolds have the same length spectrum and have
isomorphic fundamental groups, must they necessarily have the same marked length
spectrum? In [Gt2] we exhibited examples of two-step nilmanifolds that answer this
question in the negative. Example II is a higher-step example with similar properties.

5.4 PROPOSITION. The manifolds (I',\G, g) and (I';\G, g) do not have the same
marked length spectrum for any choice of left invariant metric g on G.

Proof of Proposition 5.4. Let g be any left invariant metric on G, and assume
Y. I, - I', marks the length spectrum between (I';\G, g) and (I';\G, g). Extend ¥
to the Lie group isomorphism ¥: G — G such that ¥Y(I')) =T,.

We showed in [Gt3], Proposition 4.6, that any isomorphism ¥: I'; - I', must be
given at the Lie algebra level by:

Y.(W)==xW,
W (Z)=+Z +hW
Y. (Y,) =+ Y, mod g

1
Y. (Y) = i(Y, +52) +h, Y, + h,Z mod g®

1

1
§h3 Y, +=h, Y, mod gV

V() = £X, + 3

where h,, h,, h,, h;, and h, are integers and A3+ h3 #0.



318 RUTH GORNET

By Corollary 3.2.5 and Theorem 3.2._1, ¥ =@, 0P, where ,:G—>G is an
isomorphism that is also an isometry of (G, £), and ®, € I',-ATA(G). As Y, and Y,
are not in [X,, g}, we must have

G, (X)) =+X, +3h ¥, +3h, Y, + 2, Z,
D, (V) =Y, +hY,+2,Z,
®,,(Y,)=1Y,+2,Z,

?,,(Z) =

for some z,, z,, zy€R.
Now @&, an isometry implies that for all U, V in g,

(U, VY =(Dx(U), &,;x(V)). (%)
Settlng U=Zand V =7Y, in (), we see that z; =0. Setting U = Y, in () and
letting V = Y,, and then V = Z, we obtain 4, = Zy= 0. Finally, by setting U = X in

(*) and letting ¥ = Z, then V = Y,, and then V = Y,, we see that z;, = hy = h, =0,
which contradicts 43 + h2 # 0. O

Before proving Proposition 5.3, we need the following.

5.5. PROPOSITION (see [Gt3, Proposition 2.1]). Let I'y and I, be cocompact,
discrete subgroups of the Lie group G with left invariant metric g. If for each x in G
we have

# {['}’]r, cxXlg}=# {[V]yz < [xlg},
then
[L]-spec(I')\G, g) = [L]-spec(I';\G, g).

Here #{[ylr, =[xl } denotes the number of distinct conjugacy classes in I'; contained
in the conjugacy class of x in G.

Proof of Proposition 5.3. Let x € G. We count the number of distinct conjugacy
classes in I', and I', contained in [x];.



The marked length spectrum vs. the Laplace spectrum 319

Let y, =exp(2n,X,) exp(m, Y,) exp(m, Y,) exp(kZ) exp(jW) eI, for n,, m,,
m,, k € Z. Define the mapping F: ', > I', by

F(y,) = exp(2n, X,) eXp(rm (Y1 + % Z )) exp(m, ;) exp(kZ) exp(jW).

The mapping F gives us a correspondence between the elements of I'; and the
elements of I',. Note that F is not a Lie group isomorphism.

Now 7y, and F(y,) =7, are conjugate in G. In particular, F(y,) = ay,a~"' where
a=eif m; =0, and a =exp(;X,) exp((3 + (k/2m,))Y,) if m, #0. Thus [y,];, < [x]g
if and only if [F(y,)]r, < [x]e.

To use Proposition 5.5, we must now compare the number of distinct conjugacy
classes in I'; and I', respectively that are contained in a fixed [x];.

Using the Campbell-Baker-Hausdorff formula, two elements

71 = exp(2n, X,) exp(m, Y,) exp(m, Y,) exp(kZ) exp(jW)
and
71 =exp(2ny X,) exp(m’ Y,) exp(m; Y,) exp(k'Z) exp(j'W),
of I', are conjugate in I'; if and only if there exist integers 7,, /i, 1, k such that

ny=n, my=m, mhH=m,, k'=k+2ma, —2n,m,,

j, =J + mzr}'_ll — ml"ﬁz + 2kﬁl — 2n1i€+ ZmIﬁ% = 4n1ﬁ1n—;l1 + 2n%n—11.

Let K = ged(2n,, 2m,). From the above, we see that every conjugacy class in I',
contains at least one representative such that ke {1,2,..., K}. We call such a
representative nice. Two nice representatives are in the same conjugacy class in I',

if and only if k = k’ and there exist integers 71, , m,, m,, k such that m, i, —n,m; =0
and

j’ =j +m2r711 —-mllfl2 + 2kﬁ1 ~2n1k—+ 2mlﬁ% "‘4”1’7]’;11 + 271%"7!1.

Similarly, two elements of I',

1 .
72 = exp(2n, X)) CXP("h ( Yi+52 )) exp(m, Y,) exp(kZ) exp(jW),
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and

1
v2 =exp(2n} X;) GXP(m’l (Yl +3 Z )) exp(m3 Y,) exp(k’Z) exp(j' W),

are conjugate in I', if and only if there exists integers #,, m,, m,, k so that

ny=n,, mi=m,, my,=m,, k'=k+2mn, —2nm,,

j’ =j + (mlﬁl —nlml) +m2m1 —'mlﬁlz + 2kﬁ1 —2n1k

+2m, A% — 4n,n,m, + 2n3m,.

Again we see that every conjugacy class in I', contains at least one nice
representative, that is, a representative such that ke {l,2,..., K}, where K =
ged(2n,,2m,) as above. Again, two nice representatives are in the same conjugacy
class in I', if and only if k =k’ and there exist integers #,, m,, m,, k such that
m,f; —n,m; =0 and

J = + mym, —mym, + 2kit, — 2n,k + 2my i3 — 4n,fi,m, + 2n3m,.

Note that the correspondence F:I',— I, sends nice representatives to nice
representatives. Thus if we restrict ourselves in nice representatives, the conjugacy
conditions are equivalent. That is, two nice representatives y; and y} are in the same
conjugacy class in I'; if and only if the corresponding elements F(y,) and F(y,) are
in the same conjugacy class in I',.

Let y,, 72, ..., 7. be nice representatives of the L distinct conjugacy classes in
I'; contained in [x];. Then F(y,), F(y,), ..., F(y,) are nice representatives of L
distinct conjugacy classes in I',. The same applies to F~': I, -»T,.

Thus

#{Vlr, = Xlo } = #{V)r, = [Xl6 },

as desired. O

Example III: The length spectrum
Let

g=spanR{Xl, X2’ Yla Y2a Zl, ZZ’ W}
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with Lie brackets

[X1, Yl] =[X2, Yz] =Zl

[Xla Yz] = Zz

[Xx, Zl] = [Xz, Zz] = [Yls Yz] =W
and all other basis brackets zero.

Clearly g is a strictly nonsingular, three-step nilpotent Lie algebra.
Let I, be the cocompact, discrete subgroup of G generated canonically by

{exp(2X)), exp(2X>), exp(Y)), exp(Y>), exp(Z,), exp(Z,), exp(W)},
and let I', be the cocompact, discrete subgroup of G generated canonically by
{exp(X)), exp(X3), exp(2Y}), exp(2Y5,), exp(Z, ), exp(Z,), exp(W) }.
Let g be the left invariant metric on G defined by letting
{X,, X%, Y,,Y,,Z,,2Z,, W}
be an orthonormal basis of g.

5.6 PROPOSITION. The nilmanifolds (F,\G, g) and (I';)\G, g) do not have the
same length spectrum. In particular, the multiplicity of the length 1 in [L]-
spec(F\\G, g) is greater than its multiplicity in [L}-spec(I',\G, g).

Proof of Proposition 5.6. By Proposition 5.2 we need only consider the noncen-
tral free homotopy classes. That is, we need only show mj(1) > m5(1).

Let y =

exp(4,n, X,) exp(4,n, X,) exp(B,m, Y,) exp(B,m, Y,) exp(k, Z,) exp(k,Z,) exp(jW)

for integers n,,n,, m,, my, k,,k,,j and A4,, 4,, B;, B,€{1,2}. Note that ye I, if
and only if

A =4,=2, B, =B,=1 (%)
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and if y € I', if and only if
A1=A2=1, B1=B2=2. (**)

By Theorem 3.2.4, to determine if 1€[y];, for noncentral y e I';, we need only
determine if 1 €[y]7. That is, rather than looking at the lengths of closed geodesics
on the three-step nilmanifolds (I';\G, g), we instead look at the lengths of closed
geodesics on the quotient two-step nilmanifolds (I';\G, g) for i =1, 2.

The Lie algebra of G =g§=g/g® =spang{X,, X,,Y,,Y,,Z,,Z,} with Lie
brackets

[th ]71] =[A72, ?2] =Zl
[A_,l’ ]72] =Z—2,

and all other basis brackets zero.
We may now use the following result due to Eberlein.

5.7 THEOREM [El]. Let N be a simply connected, two-step nilpotent Lie group
with Lie algebra n and left invariant metric g. Let I' be a cocompact, discrete
subgroup of N. Let 3 be the center of n and v the orthogonal complement of 3 in n.
Any element y e I' may be expressed uniquely as exp(V* + Z*) where V* ev and
Z*e3. Let Z** be the component of Z* orthogonal to [V*,n]. Let A > 0.

(1) If the length 4 €[y];, then [V*] <A < /|[V*} +|Z**.

(2) The length A =|V*|eyl; if and only if |Z**| =0.

(3) The length ) = /|V*} +|Z**} e[4];.

Here n = g and the metric g is determined by the orthonormal basis of g
{X_’l’ 1‘_,2’ )_,la 172’ Z_h 2_2}

By Theorem 5.7, to find y such that 1€[7]7, we need 7 = exp( V* 4+ Z*) such
that |V*P<1<|V*?+|Z**]>, where V*espang{X,,X,,Y,,Y,} and Z*e
spang{Z,, Z,}. _ _ _ _ )

Forboth I'yand I',, V*=A,n, X, + A,n, X, + Bjm, Y, + B,m, Y,, where n,, n,,
my;, mye Z. Note that if |V/*|#0, |[V*[>=A4}n}+ A3n3+ Bim?+ B3m3>1. So
|V*? <1if and only if |/"*[* = 1. By Theorem 5.4, 1 = 1 = |V*| e [j], if and only if
|Z**| =0.

" So if 7 =exp(V* + Z*) with |V'*| #0, then 1€[j]5, if and only if |[F'*|=1 and
|Z**| =0.
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We consider two cases.

Case 1. (n))*>+ (m,)% #0. B
In this case, 3=[log7, g}, so Z** is automatically zero. Applying the con-
dition |V*|=1 and lifting to the three-step level, we have 1 €[y, ], if and only if

(see (+))

1 =exp(t Y,) exp(k, Z,) exp(k,Z;) exp(jW),
and 1€[y,]r, if and only if (see (**))

v2 = exp(+ X;) exp(k, Z,) exp(k,Z,) exp(jW).

We must now compare the number of distinct free homotopy classes of I'; and
I', that take on one of these forms.

Another element y; =exp( + Y,) exp(k}Z,) exp(k,Z,) exp(j'W) of I'; is conju-
gate to y, in I'; if and only if there exist integers 7,, 7i,, m; and k, such that

ky =k, +2n;,; k3 =k, +2n,; J'=Jj tmy +2kA, + 2k, 0, + 40,7,
Another element y; =exp( £ X;) exp(kiZ,) exp(k>Z,) exp(j'W) of I'; is con-
jugate to y, in I, if and only if there exist integers #,,i1,, m,, and m, such

that

k '—=k1:i—-2n7ll; k:z=k2$2rh2;

—

J =] Fky +my, + kA, + kyfiy F 2/, A, F 2,0,

For I'; we have two choices {—1, +1} for the coefficient of Y,, two choices
for k;, two choices for k,, and one choice for j for a total of 8 distinct free
homotopy classes. For I', we have two choices {—1, +1} for the coefficient of X,
two choices for k;, two choices for k, and one choice for j for a total of 8
distinct free homotopy classes. Thus, the multiplicities of 1 coming from this case
are equal.

Case 2. n?+m3=0 but n3+m? #0.

In this case, [log 7, §] =spang{Z,}, so Z** =0 if and only if k, =0. Applying
the condition |*| = 1 and lifting to the three-step level, we have the length 1 €[y,]r,
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if and only if (see (*))
1 =exp(£ 1) exp(k, Z,) exp(jW),
and the length 1€ [y,],, if and only if (see (*+))
72 = exp(+ X;) exp(k, Z,) exp(jW).

We must now count the number of distinct free homotopy classes of I'; and I',
that take on one of these forms.

Another element y] =exp( + Y;) exp(k|Z,) exp(j' W) of I'; is conjugate to 7, in
I, if and only if there exist integers 7,, m, such that

Another element y5 = exp( + X,) exp(k}Z,) exp(j'W) in I', is conjugate to 7, in
I, if and only if there exist integers 7,, m, and k, such that

ki =k, F 2my; J=J $E2+k1ﬁl + 2n,m,.

For I'; we have two choices {—1, + 1} for the coefficient of Y;, two choices for
k,, and one choice for j for a total of 4 distinct free homotopy classes. For I", we
have two choices {—1, +1} for the coefficient of X, two choices for k,, and one
choice for j for a total of 4 distinct free homotopy classes. Again the multiplicities
of 1 coming from this case are equal.

Case 3. |V*| =0, |Z*| 0.

Let y = exp(k,Z,) exp(k,Z,) exp(jW), for k,, k,, jeZ. Note that ye I' )N T,.
Thus by (2.1.1), any length occurring in [y];, will also occur in [y]r,. Let
v =exp(kiZ,) exp(k>2Z,) exp(j'W) be another element of I'ynI",, where ki, k5,

j eLZ.
Now 7y’ is conjugate to 7 in I'; if and only if there exist integers #,, 71, such that

ki=k; ks =k,, J =Jj+2k,n, + kyn,).

However 9’ is conjugate to y in I', if and only if there exist integers 7,, 71, such
that

ki=ky; ks =ky; J' =]+ (kA + k).
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Note that there are twice as many distinct conjugacy classes represented by
elements of the form y = exp(k,Z,) exp(k,Z,) exp(jW) for I'; as for I',. Thus, to
show the multiplicities are not equal here, we need to exhibit a closed geodesic of
length 1 in just one free homotopy class of this form.

Note that |Z**[> = |Z** = k2 + k3. By Theorem 5.7(3) and lifting to the three-
step level, we see /ki+k3elyl;, and /ki+k3e[yl;,. Thus, the length
1e[exp(+Z)]y,, i,j=1,2. |

Therefore, for Case 3, the length 1 occurs with twice the multiplicity in
[L]-spec(I',\G, g) as it does in [L]-spec(I’,\G, g).

As the multiplicities of the length 1 are equal in all of the other cases, the
multiplicities of the length 1 are not equal, as claimed. O

Example IV: The length spectrum
Here the Lie algebra is the same Lie algebra as Example II, that is
g =spang{X,, Y,, Y,, Z, W}

with Lie brackets

[Xl, Yl] =Z
(X1, Z] =[Y,, ,]=W

and all other basis brackets zero.
Let I', be the cocompact, discrete subgroup of G generated canonically by

{exp(2X), exp(Y}), exp(Y>), exp(Z), exp(W)},
and let I', be the cocompact, discrete subgroup of G generated canonically by

{exp(X, ), exp(2Y, ), exp(Y,), exp(Z), exp(W)}.
Let g be the left invariant metric on G defined by letting
{Xla Yla Y2a Za W}

be an orthonormal basis of g.
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5.8 PROPOSITION. The nilmanifolds (I',\\G, g) and (I',\G, g) do not have the
same length spectrum. In particular, the multiplicity of the length ). = /4n(7 — n) in
[L]-spec(I'|\G, g) is greater than its multiplicity in [L]-spec(I';)\G, g).

Proof of Proposition 5.8. By Proposition 5.2, we only considér the noncentral
free homotopy classes. In particular, we show mi(1) >m5(4) where A=
 4n(7 —m).

By Theorem 3.2.4 if we wish to determine if A €[y];, for noncentral y e I';, we
need only determine if A € [}]7. That is, rather than looking at the lengths of closed
geodesics on the three-step nilmanifolds (I';\G, g), we instead look at the lengths of
closed geodesics on the quotient two-step nilmanifolds (I',\G, g) for i =1, 2.

However, for this example, g =~ h; ® R where b); denotes the three-dimensional

Heisenberg algebra. To see this, note that
h={X,,Y,,Z}, and [X, ¥,]=Z.
This is an ideal in §. And
Rz {7,

which is also an ideal in g. Let H, be the three-dimensional Heisenberg group. Note
that

H, = {CXP(xljfl) exp(» Y1) exp(zZ): x,, y,, eR}.

This direct sum is actually a Riemannian direct sum, as the metric may also be
written as

£=89%

where g, is the left invariant metric on b, given by the orthonormal basis
{X1, Yy, Z} and g, is the left invariant metric on R given by the unit vector {Y>}.

Furthermore, as I'; = (I';, n H,;) ® (I'; nR), we also have the Riemannian direct
sum

(T\G, &) =(T;nH)\H,, ;) @((finR)\R’ 2).

Using rescaling of geodesics, it is not difficult to show that the length 4 € [}] if
and only if

A2=A1+43
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where the length 4, €[},]7,x, and the length 4; €[},]5, r. Here 7 = (f,, 7,) with
respect to the direct product I', =(I';,nH,) ®(I"; nR).

Now, the length spectrum of ((I'; "R)\R, g,) is easily seen to be |log(},)| for all
7,€I'; AR. Thus the length spectrum here (not counting multiplicities) is precisely
the positive integers.

The length spectrum of ((I'; n H,)\H,, £,) has been calculated by both Gordon
and Eberlein (see [E], [G1]) and is known to be

() Jlog()| if 7, € Iy H,, for 7, ¢ Z(H,).

(i) {JlogF)], /(4nk)(Jlog(7,)| — mk): 1 <k < ((1/2m)[log(7)]), k € Z}, for €

I'nZ(H,).

Nonintegral lengths occur in (I'; » H;)\H, only when |log()71)| >2n > 6.

Also note that \/4n(7 — ) €[#,]5,n, if and only if 7, =exp(+7Z) eI',n H,.
This is the smallest possible nonintegral length.

Thus

An(7 —m) = A?= A} + A3

if and only if 22=0 and A2 =4n(7 —7) if and only if § =exp(+72Z) €T,
By lifting to (I';\G, g), we see \/4n(7 — n) €[y];, if and only if

y =exp(£7Z) exp(jW) el

We now count the number of distinct free homotopy classes represented by a 7y
of this form.

Let y' =exp(+7Z) exp(j'W).

Now 7’ is conjugate to y in I'; if and only if there exists integer 71, such that

J'=j+ 147,

However, y’ is conjugate to y in I', if and only if there exists integer 7, such that

J=jt7n,.

Thus there are 14 choices for j in I'; and there are 7 choices for j in I',. So the
multiplicity of the length ./4n(7—=n) in (I'|\G,g) is 28, (14 for each of
exp(+7Z) exp(jW) and exp(—7Z) exp(jW)), and likewise the multiplicity in

(I',)\G, g) is 14.
Thus the multiplicities of ./4n(7 — n) are not equal here, as claimed. O
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