
Quasi-periodic solutions for a nonlinear wave
equation.

Autor(en): Pöschel, Jürgen

Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 71 (1996)

Persistenter Link: https://doi.org/10.5169/seals-53845

PDF erstellt am: 30.04.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-53845


Comment. Math. Helvetici 71 (1996) 269-296 0010-2571/96/020269-28S1.50 + 0.20/0
© 1996 Birkhâuser Verlag, Basel

Quasi-periodic solutions for a nonlinear wave équation

JÙRGEN PÔSCHEL

1. Introduction and main resuit

We are going to study the nonlinear wave équation

utt uxx-rnu-f(u) (1)

on the finite x-interval [0, n] with Dirichlet boundary conditions

u(t, 0) 0 u(t, n), - oo < t < oo.

Hère, m > 0 is a real parameter, sometimes referred to as the "mass", and/is a real

analytic, odd function of u of the form

f(u)=au^Yfk^ **0. (2)

This class of équations comprises the sine-Gordon, the sinh-Gordon and the

$4-equation, given by

Îsinw,sinh m,

u+u3,

respectively, as well as odd perturbations of them of order five or more.
Our approach and its results are parallel to an investigation of the nonlinear

Schrôdinger équation \ut uxx - mu — f(\u\2)u on the same interval undertaken by
Kuksin and the author in [6]. Hence some parts of the respective expositions are

quite similar. But we decided to repeat them anyway so that the reader need not
refer to [6] for the essentials.
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270 JÛRGEN PÔSCHEL

We study this équation as an infinité dimensional hamiltonian System. As the
phase space one may take, for example, the product of the usual Sobolev spaces
0> Hq([Q, n]) x L2([0, n]) with coordinates u and v ut. The hamiltonian is then

-(v9v}+-<Au,u} + | g(u)dx9[ giu)
Jo

where A =d2fdx2 + m and g jof(s)d$9 and <•, •> dénotes the usual scalar

product in L2. The hamiltonian équations of motions are

ut -r- v, vt= —— -Au -/(m), (3)
ov du

hence they are equal to (1).
We will not reply on this set up, however, nor will we consider the initial value

problem for this System. Rather, we will solve an embedding problem, which does

not involve its flow, in order to construct large families of real analytic, global
solutions. More precisely, our aim is to construct plenty of real analytical solutions
that are quasi-periodic in time, hence a fortiori global. That is, they can be written
in the form

u(t9x) U(œ1t9...9œnt9x),

where U is a real analytic function of period 2n in the first n > 1 arguments, and

(ol,...,œn are rationally independent real numbers, the basic frequencies of u.

Thus, m admits a Fourier séries expansion

u(t9x)= X e*<«Uk{x)9
keZ"

where k • co Z, kj(or A spécial case are time periodic solutions, which are quasi-periodic

with exactly one basic frequency.
From a géométrie point of view, such solutions arise from embeddings of the

w-torus Tn into the phase space ^,

where DU^XjCOjUej, such that the straight windings 9(t) =œt + 0o on the torus

map into solutions of (3). Hence, in phase space they correspond to embedded

invariant tori, on which in suitable coordinates the vector field is constant with
linear flow. We call them rotational tori in the following.
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The quasi-periodic solutions to be constructed are of small amplitude. Thus, in
first approximation the higher order terms may be considered as a small perturbation

of the linear équation utt uxx — mu. The latter is of course well understood
and has plenty of quasi-periodic solutions.

To be more précise, let

0, ^-sin,*,

for y 1, 2,... be the basic modes and frequencies of the linear System with
Dirichlet boundary conditions. Then every solution is the superposition of their
harmonie oscillations and of the form

u(t9 x) £ Ç,(O0,(*), 9j(t) /, cos(A,f + tf)

with amplitudes 7, >0 and initial phases (pj. Their combined motion is periodic,
quasi-periodic or almost periodic, respectively, depending on whether one, finitely
many or infinitely many modes are excited. In particular, for every choice

of finitely many modes there is an invariant 2«-dimensional linear subspace Ej that
is completely foliated into rotational tori with frequencies Ayi,..., kJn:

{(m, i;) =(ql
7eP«

where Pn {/ g Un: Ij > 0 for 1 <j < n} is the positive quadrant in Un and

{(ii, v): q) + K2P) h for *
using the above représentation of u and v. In addition, each such torus is linearly
stable, and ail solutions hâve vanishing Lyapunov exponents. This is the linear
situation.

Upon restoring the nonlinearity/the invariant manifolds Ej with their quasi-periodic

solutions will not persist in their entirety due to résonances among the modes

and the strong perturbing effect of/for large amplitudes. In a sufficiently small

neighbourhood of the origin, however, there does persist a large Cantor subfamily
of rotational n-tori which are only slightly deformed.
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That means, there exists a Cantor set # c= Pw, a family of «-tori

over #, and a Lipschitz continuous embedding

such that the restriction of $ to each 5}(J) in the family is an embedding of a

rotational w-torus for the nonlinear équation. The image Sj of ^j[^f\ we call a

Cantor manifold of rotational n-tori.
Thèse Cantor manifolds hâve a number of additional properties.

(1) The embedding <P is a higher (fractional) order perturbation of the inclusion
mapping #0: Ej c» ^ restricted to &}[&]. Its restriction to each torus &j(J) is real

analytic, and it maps into the space of real analytic functions on [0, tt], with
uniform domains of analyticity.

(2) The cantor set # has full density at the origin:

where Br {/: |j/|| < r} and \i dénotes Lebesgue measure.

(3) By the previous properties, êj has a tangent space at the origin equal to Ej :

(4) The frequencies co of the rotational tori are diophantine, whence we also
call the latter diophantine tori. That is, there exist positive ce and t such that

|À:-co|>^r, OïkeZ».

The exponent t can be kept fixed, while a tends to zéro as the tori approach the

origin.
(5) Ail the tori are still linearly stable, and ail their orbits hâve zéro Lyapunov

exponents.

MAIN THEOREM. Suppose the nonlinearityfis real analytic, oftheform (2) and

odd:f( — u) —/(m). Thenfor each index set J {j\ < • • • <jn } with n>2, satisfying
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min Ji + i —ji <n — l, (4)

there exists for ail m > 0 a Cantor manifold ês of real analytic, linearly stable,

diophantine n-tori for the nonlinear wave équation given by a Lipschitz continuons

embedding

which is a higher order perturbation of the inclusion map <P0:Ej->& restricted to
2TjY€\. The Cantor set <€ hasfull density at the origin, and êj has a tangent space at
the origin equal to Ej. Moreover, Sj is contained in the space of real analytic
functions on [0, n].

For one point sets J {/} the same holds except for those m-values at which

with an integer k andsome indices 1 < v <j < pi. There are at most finitely many such

exceptions, and in particular none for J {1}.

Remark 1. An assumption of the form (4) is made to ensure that the Cantor
manifolds exist for ail positive m. Otherwise, one might hâve to exclude some set of
m -values, which is discrète in every compact interval in (0, oo). But the condition
given hère is certainly not the sharpest. Also, we did not investigate the exceptional
set for one point sets / given by (5) thoroughly because for the existence of Canor
dises of periodic solutions there are better results anyhow [4]. But it may well be

that there are no exceptional points at ail.

Remark 2. The assumption that/is odd is necessary. The solutions constructed
below are real analytic sine-series, hence in a neighbourhood of x 0 they are

defined, odd, and satisfy the differential équation. Adding the équations for u(t, x)
and u(t9 —x) one obtains/(w) +/(—u) =0.

Remark 3. One can show that the embedding # is not only Lipschitz across the

tori, but smooth in the sensé of Whitney. We did not pursue this point.

Remark 4. The frequencies of the diophantine tori are also under control. They
are
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where Ay (A7l,..., Ay and Aj is the n x w-matrix with coefficients Akl
(6/7t)(4-4, M^A,,).

Remark 5. The results remain true for odd nonlinearites / of the form

f(x,u)=au*+ £/*(*)«*, fl^O,
A:>5

where the coefficients^ are real analytic in jc, or in some Sobolev space Hs([09 n]),
s > 5, with norms growing at most exponentially to ensure analyticity in u. In the

latter, non-analytic case the resulting quasi-periodic solutions are of class Hs+2 in
x.

Remark 6. One may also add a gênerai odd perturbation term

€g(x, u) 6 £ gk(x)uk

to the nonlinearity/, with coefficients gk of the same type as the/*.. Then there still
exist Cantor manifolds for ail sufficiently small €, the smallness depending on m, n

and /. However, they are not dense at the origin, but hâve a hole there, since the

perturbation no longer tends to zéro as we approach the origin.

Remark 7. As one of the référées points out, the proof given below and thus
also the results apply to parameter values — 1 < m < 0 as well. On the other hand,

very little is known about the case m 0, which is "completely résonant".

Remark 8. Exactly the same results hold for the nonlinear wave équation (1)
with Neumann boundary conditions

and nonlinearities of the form (2) which need not be odd. Indeed, the solutions
constructed are real analytic cosine-series, hence even about x 0, which is

compatible with arbitrary nonlinearities. See also the remark following the proof of
Lemma 1.

The size of the Cantor manifolds Sj is not uniform, but dépends on m, n and

/, and tends to zéro as n tends to infinity. Thus, unlike the linear spaces Ej9 they
are not dense in some fixed neighbourhood of the origin. But they are asymptoti-
cally dense in the following sensé.

COROLLARY. The union of ail Cantor manifolds Sj intersects every nonempty

open cône in Hq([09 n]) x L2([0, n]) with vertex at the origin.
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We turn to the idea of proof and related results. As already indicated, we are
dealing with a perturbation problem in an infinité dimensional hamiltonian System.
The aim is to continue finite dimensional invariant tori with quasi-periodic motions
under the influence of an infinité dimensional perturbation. This calls for an
extension of the well known KAM theory for finite dimensional almost integrable
hamiltonian Systems, which was recently developed mainly by Kuksin - see the

monograph [5] and the références therein - and also by Wayne in [12] and the
author in [7, 8]. Moreover, this calls for an appropriate choice of the integrable
System to apply the perturbation theory to. And hère, there are essentially three

possibilities.
Linear System. The Klein-Gordon équation utt uxx — mu with Dirichlet

boundary conditions is integrable, and ail its solutions are periodic, quasi-periodic
or almost periodic. However, it is also completely degenerate, as in a linear system
there is no frequency amplitude modulation. Hence KAM theory is not applicable.

The situation is différent, if the scalar parameter m is replaced by some potential
function Q e L2([0, rc]). This amounts to introducing infinitely many parameters
into the system, which may be adjusted and thus substitute the usual nondegeneracy
condition. As a resuit one finds a Cantor set ofpotentials Q for which there are
Cantor families of small amplitude quasi-periodic solutions. This approach was
taken by Wayne [12]. However, that Cantor set surely does not include any open
interval of constant potentials Q m > 0 due to infinitely many nonresonance
conditions imposed on the frequencies Xj.

Integrable PDE. The sine-Gordon équation and the sinh-Gordon équation with
periodic boundary conditions are known to be integrable, exhibiting plenty of
quasi-periodic solutions. They may serve as the starting point for a perturbation
theory. This approach was taken by Bobenko and Kuksin [1], and essentially the

same results were obtained. However, before KAM theory may be applied a

formidable amount of work needs to be done to bring the équations into suitable
form. This involves the use of hyperelliptic Riemann surfaces, theta-functions,
Schottky uniformization, and other tools.

Integrable ODE. Hère the starting point is the équation utt uxx—mu + u3 with
Dirichlet boundary conditions. This équation is not integrable. But by a single
symplectic coordinate transformation, its hamiltonian is brought into Birkhoff
normal form of order four with respect to any finite number of basic modes. Then
KAM theory is applicable. This approach was suggested by the author in [7], and
carried out for the nonlinear Schrôdinger équation by Kuksin and the author in [6].
There some aspects, such as the transformation into normal form, are even simpler
than hère.

We indicate a few more détails of this approach. To start, we use the complète
set of eigenfunctions of the operator A to write u £ Xj^q^j, v E Xjf2pj<l)j. We
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obtain a hamiltonian in infinitely many coordinates which is real analytic near the

origin in some suitable Hilbert space of séquences and of the form

Thus we hâve an elliptic fixed point with infinitely many distinct frequencies. In the
classical hamiltonian theory, the standard tool to investigate such Systems is their
Birkhoff normal form. Hère, in contrast to the nonlinear Schrôdinger équation, no
complète normal form of order four is available due to asymptotic résonances

among the frequencies. Still, sufficiently many nonresonance conditions are satisfied

so that for each n > 1 there is a real analytic, symplectic coordinate transformation
which takes the hamiltonian into

> j ^ 1 min(y) <, n

where Ij — q) +P]- The dots stand for terms or order four in qn+u • • • >Pn + u • • •

and of order six in ail coordinates. Thus, at least the interaction of the first n modes

are put into a nonlinear integrable normal form up to order four.
To this hamiltonian, KAM theory may be applied to continue ail those tori with

Ij 0 for j > w. Since the coefficients Ay are easily determined, the relevant

nondegeneracy conditions are also easily verified, at least for those index sets

described in the Main Theorem. This then yields its proof.
Periodic solutions. KAM theory is a very powerful tool in order to construct

families of quasi-periodic solutions. For the construction of periodic solutions,
however, other approaches are more suitable. For example, in a pioneering paper,
Craig and Wayne [4] extended the Lyapunov center theorem to the infinité
dimensional hamiltonian System of the nonlinear wave équation. This, too, involves
small divisor problems, but to a lesser extent requiring fewer nondegeneracy
conditions. As a resuit, they could admit periodic boundary conditions to obtain
Cantor families of periodic solutions. By comparison, the KAM theoretic approach
forbids (at least until now) asymptotically double frequencies and hence periodic
boundary conditions. This is also the reason, why we did not bother to investigate
condition (5) for periodic solutions in détail. Very recently, this approach has been

extended considerably by J. Bourgain to handle also quasi-periodic solutions and

higher dimensional x-domains in this way. See for example [2].
Periodic solutions may also be found by variational and topological methods,

which are not restricted to a perturbative setting. The first resuit of this kind is due

to Rabinowitz [10,11], and some overview with références is given by Brezis [3].
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However, thèse periodic solutions are of quite a différent nature. Most importantly,
their time period has to be a rational multiple of their space period so that the wave

operator d2 — dl, acting on the corresponding space of x- and f-periodic functions,
has discrète spectrum. For this reason, they also do not corne in Cantor families.

Obviously, there still is a large gap between variational and perturbative results.
Plan. The rest of the paper is organized as follows. In section 2 the hamiltonian

is written in infinitely many coordinates, which is then put into its partial normal
form in section 3. In section 4 we recall the Cantor Manifold Theorem from [6],
which allows us to complète the proof of the Main Theorem in section 5.

2. The hamiltonian

We recall that the hamiltonian of our nonlinear wave équation is

H -\v,v) + - {Au, u} + g(u) dx.
2 2 Jo

To rewrite it as a hamiltonian in infinitely many coordinates we make the ansatz

72:1

where </>, y/ÏJn sin/x for j 1, 2,... are the normalized Dirichlet eigenfunctions
of the operator A with eigenvalues Ay2 =j2 + m. The coordinates are taken from
some Hilbert space /aJ of ail real valued séquences w (wu w2,...) with finite
norm

Below we will assume that a > 0 and 5 > 0. We obtain the hamiltonian

with équations of motions

dH ÔG
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Thèse are the hamiltonian équations of motion with respect to the standard

symplectic structure £ dq} a dpj on t°* x Sa>s.

This transformation may be considered as formai. But instead of discussing its

validity, we just take the latter hamiltonian as our new starting point and make the

following simple observation.

LEMMA 1. Leta>0 andsbe arbitrary. Ifa curve I-+Sa*s x éa>s, 11-> (q(t),p(t))
is a real analytic solution 0/(6), then

is a classical solution of(l) that is real analytic on I x [0, n].

Proof. For a > 0 and arbitrary s, the sum in question in absolutely convergent
in some complex neighbourhood of the x-interval [0, n] and some complex dise

around a given t in /, where q then takes values in the complexification of /flvS. The

same is true for its termwise /-derivatives of first and second order. Therefore, u is

real analytic in / and x, and we may differentiate under the summation sign. With

we find that

The <f>jj>\, are an orthonormal and complète family within the space of ail odd
L2-functions on [ — n, n]. Since u is odd and/is assumed to be odd, also/(w) is odd,
and we conclude that

utt -Au -/(w),

as we wanted to show.
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It is worth pointing out that the <£,, j > 1, do forai a complète orthonormal
family for ail L2-functions on [0, n], but not for ail analytic functions on [0, n\ This
problem does not arise with Neumann boundary conditions, where the 0, are the
normalized Neumann eigenfunctions, hence we are dealing with cosine-series. Then

u is even, hence f(u) is even about x 0 no matter what / is.

Next we consider the regularity of the gradient of G given by (7). To this end,
let t\ and L2, respectively, be the Hilbert spaces of ail bi-infinité, square summable

séquences with complex coefficients and ail square-integrable complex valued
functions on [—rc, n]. Let

be the inverse discrète Fourier transform, which defines an isometry between the

two spaces.
Let a > 0 and s > 0. The subspaces Jfs c {\ consist, by définition, of ail

bi-infinite séquences with finite norm

Through J^ they define subspaces Wa>s a L2 that are normed by setting
\\q\\a,S' F°r a > 0» the space Wa's may be identified with the space of ail 27i-periodic
functions which are analytic and bounded in the complex strip |Im z\ < a with trace
functions on |Imz| a belonging to the usual Sobolev space Hs.

LEMMA 2. For a > 0 and s>\, the space £%s is a Hilbert algebra with respect
to convolution of séquences, and

with a constant c depending only on s. Consequently, Wa*s is a Hilbert algebra with

respect to multiplication offunctions.

The short proof is given in Appendix A.

LEMMA 3. For a>0 and s > 0, the gradient Gq is real analytic as a mapfrom
some neighbourhood of the origin in tayS into *fa"y + 1, with
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Proof. Let q be in /"** and o ~\. Considered as a function on [—tt, n], u Sfq
is in W**** with ||«||^+ff <> \\q\\atS for m ^0. By the algebra property and the

analyticity of/, the function/(w) also belongs to Wa's+O with

113

\\a,s + o

in a sufficiently small neighbourhood of the origin. By (7) the components of the
gradient of G are the Fourier sine coefficients off(u) weighted with X~°. Therefore,
Gq belongs to fa>s+1 with

The regularity of Gq follows from the regularity of its components and its local
boundedness [9, Appendix A].

To summarize, we hâve a real analytic hamiltonian

l% (8)

in some neighbourhood of the origin in the Hilbert space /a's x {a>s with standard
symplectic structure T^JdqJ a dpJ9 where

The latter dépend on the parameter m > 0, which is not indicated in the following.
The parameters a > 0 and s > 0 may be fixed arbitrarily. Since G is independent of
p, the associated hamiltonian vectorfield,

G jhWh fydpj'

defines a real analytic map from some neighbourhood of the origin in ta's x /*?* into
^a,s+i xfaj+i Hence? xG is smoothing of order 1. By contrast, XA is unbounded of
order 1.

For the nonlinearity u3 we find

G -1 T Ml"^ 1 I GwWM (9)
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with

hc. (10)

It is not difficult to verify that Gljkl - 0 unless i ±j ± k ± l 0, for some combina-
tion of plus and minus signs. Thus, only a codimension one set of coefficients is

actually différent from zéro, and the sum extends only over i ±j ± k ± l 0. In
particular, we hâve

G =±
m 2n

by an elementary calculation - see [6].
From now on we focus our attention on the nonlinearity m3, since terms of order

fîve or more will not make any différence.

3. Partial Birkhoff normal forai

Next we transform the hamiltonian (8) into some partial Birkhoff form of order
four so that is appears, in a sufficiently small neighbourhood of the origin, as a

small perturbation of some nonlinear integrable System.

For the rest of this paper we introduce complex coordinates

1 1

We obtain a real analytic hamiltonian H S, A, \z3 p H on the now complex
Hilbert space /a'5 with symplectic structure i Zy dzj a dzr Real analytic means, that
H is a function of z and z, real analytic in the real and imaginary part of z.

In the following, A(£a's, ta>s + l) dénotes the class of ail real analytic maps from
some neighbourhood of the origin in ta*s into /flJ + 1.

MAIN PROPOSITION. For eachfinite n>\ and each m > 0 there exists a real

analytic, symplectic change of coordinates F is some neighbourhood of the origin in
ta*s that takes the hamiltonian H A+G with nonlinearity (9) into
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where Xô, Xè, XK e A{f, ^+'),

^ fflin(y) <, n

with uniquely determined coefficient Gy (6/n) • (4 — ôtJlïtA.j)9 and

|G| O(|£|U \K\ O(\\z\\l),

z (zn +15 zn + 2,.. .)• Moreover, the neighbourhood can be chosen uniformly for every
compact m-interval in (0, oo), and the dependence of F on m is real analytic.

Thus, the hamiltonian A -f G is integrable with intégrais \z} \2,j 1,2,..., while
the not-normalized fourth order term G is not integrable, but independent of the
first n modes.

Proof. For the proof it is convenient to introduce another set of coordinates

w_2, w_l9 wu w2,...) in tfff by setting Zj wJ9 Zj w_j. The hamiltonian
under considération then reads

j £ 1 ij,kj

The prime indicates that the subscripted indices run through ail nonzero integers.
The coefficients are defined for arbitrary integers by setting G, G^ ^. We recall
that the sum is restricted to indices i9j, k, l such that i ±j ± k ± l 0. This fact is

crucial for the following to hold.

Formally, the transformation F is obtained as the time-1-map of the flow of a
hamiltonian vectorfield XF given by a hamiltonian

with coefficients

otherwîse.
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Hère, AJ sgny- AM,

5£n {(i, j, k, /) e Z4: 0 # min(|i|,..., |/|) < «},

and J^ c 5£n is the subset of ail (ij9 k, /) (/?, -/>, #, —#). That is, they are of the

form (p, —p, q9 —q) or some permutation of it. Clearly, for the latter the denomi-

nator X\ + Aj + k'k + AJ vanishes identically in m.
The définition (12) is correct in view of the following lemma, which we prove at

the end of this section.

LEMMA 4. If i,j\k,l are non-zero integers, such that i ±j ±k ±1 =0, but

(ij, k, l) # (p, -p, q, -q\ then

cm i(|/||/|)
with some absolute constant c. Hence, the denominators in (12) are uniformly bounded

away from zéro on every compact m-interval in (0, oo).

We continue with the proof of the Main Proposition. Expanding at t 0 and

using Taylor's formula we formally obtain

Jo
\l-t){{H,F}9F}oX'Fdt

j\l-t){{H,F}9F}oX<FdÊ9

where {//, F} dénotes the Poisson bracket of H and F. The last Une consists of
terms of order six or more in w and constitutes the higher order term K. In the

second to last line,

{a,f} -i Y' (a; +1; + ^ + xi

hence
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Re-introducing the notations z7, z, and counting multiplicities we find that

** nun(/j) ^ n

with

18 1

12G,m=-— fori=;,
n À^j

by (11), while G is independent of the first n coordinates. Hence, formally we hâve

Hor=A + G + G + K2is claimed.
To prove analyticity and regularity of the preceding transformation we first

show that

Indeed, by Lemma 4 and équation (10), and with wy
' n r~-~ > we hâve

vl/l

I'
y,

If w g/^j, then w e£fs+a, a =5, and for 5 > 0, the latter is a Hilbert algebra by
Lemma 2. Therefore, w * # * w also belongs to tis+a, and hence

with

||FW(||^ + 1<c||w*w*vv||^+<r<c||H'|^. (14)

The analyticity of Fw follows from the analyticity of each component function and
its local boundedness [9, Appendix A]. This proves (13).
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It follows from (13) and (14) that in a sufficiently small neighbourhood of the
origin in ta>s the time-1-map A^],^ is well defined and gives rise to a real analytic,
symplectic change of coordinates F with the estimâtes

\\r - w|L,+, (K MU \\Dr - i\\z+hs 0(\\w \\ls),

where the operator norm || • ||°p 5
is defined by

Obviously, \\DF -I\\°?s + hs+l<\\Dr -I\\°?s+hs, whence in a sufficiently small
neighbourhood of the origin, Dr defines an isomorphism of fa's+1. It follows that
with XH g A(fa>s, Sa>s+l), also

r*xH Dr~lxHo r xffo r

The same holds for the Lie bracket: the boundedness of ||£^f||£$+i,5 implies that

Thèse two facts show that XKeA(^a's9 £a>s + x). The analogue claims for Xq and Xq
are obvious. D

Proof of Lemma 4. We may restrict ourselves to positive integers such that
i <j <k <l. The condition i ±j ±k ±l 0 thenreduces to two possibilités, either
i -j - k -f / 0 or i +j' + k -1 0.

We hâve to study divisors of the form ô ± Xt ± Àj ± Xk ± Xt for ail possible
combinations of plus and minus signs. To this end, we distinguish them according
to their number of minus signs. To shorten notation we let for example
<5+ + _+ K H- Xj — Xk -h A/. Similarly for ail other combinations of plus and minus
signs.

Case 0: No minus sign. This is trivial.

Case 1: One minus sign. Hère we hâve <5+ + _ + <5+_ + + <5_+++ ><5+ ++_, so it
suffices to study ô (5+ + + _. We consider 5 as a function of m and notice that

.5(0)=/
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Since k, is increasing with m, it follows that

à >
fm dm m

_
7

Case 2: JWo minus signs. Hère we hâve <5_
+ _ + ,<5__ + +><5+__ + and ail other

cases reduce to thèse ones by inverting the signs. So it suffices to study ô ô+__ +
The fonction/(f) y/t2 + m is monoton increasing and convex for t > 0. Hence we
hâve the estimate kt — kk >kt_p — kk_p for every 0<p <k. In the case i+j + k =1
we thus obtain kt — Xk > Xl_k+l — kt kJ+2l — kn hence

ô > kJ+2l - k3 > 2(kJ+1 - Xj) > 2if

using the mean value theorem and the monotonicity of/'. With the other alternative

i —j — k H- / 0 we hâve j — i / — k ^ 0, hence kt — kk>kJ+ï— kl + ï and

kJ+1 — kj > kl + 2 — K +1 • So we obtain

by the monotonicity of /", hence

cm
>

Thèse bounds give the claimed estimate.

Case 3 and 4: Three and four minus signs. Thèse ones reduce to the cases 1 and

0, respectively.

We note that the estimate of the lemma is asymptotically optimal, as it is

obtained by the divisor kn+x — 2kn + kn_ x as n -> oo.

4. The Cantor manifold theorem

In a neighbourhood of the origin in /aj we now consider more generally hamiltoni-
ans of the form H A + Q -h R, where A + Q is integrable and in normal form and
R is a perturbation term. More precisely, letting z (z, z) with z (zx,..., zn) and
^ fe+i»z« + 25...), and
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\zn\\ Z=\(|zn+,|2, \zn+1\\/

we assume that

A <a, 7>

with constant vectors a, /? and constant matrices A,B. In the Birkhoff normal form
lemma, A + G is of that form.

The équations of motion of the hamiltonian A + Q are

4 i(a + AI + £rz),z,, ^ i(]8 + BI\zr

Thus, the complex n-dimensional manifold E {£ 0} is invariant, and it is

completely filled up to the origin by the invariant tori

{z:|z/|2 2/,, 1 <y<«}, IePn.

On ^(/) the flow is given by the équations

Zj icOj (7)1,, co(7) a -h AI,

and in its normal space by

4=i^(7)fy, Q(I)=P+BI.

They are linear and in diagonal form. In particular, since (2(7) is real, z 0 is an
elliptic fixed point, ail the tori are linearly stable, and ail their orbits hâve zéro
Lyapunov exponents. We therefore call «^(7) an elliptic rotational torus with
frequencies co(I).

Including the nonintegrable perturbation term R this manifold E does in gênerai
not persist in its entirety due to résonances among the oscillations. Instead, our aim
is to prove the persistence of a large portion of E forming an invariant Cantor
manifold S for the hamiltonian H A + Q -f R.

That is, there exists a family of «-tori

U
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over a Cantor set <& aPn and a Lipschitz continuous embedding

V:

such that the restriction of W to each torus $"{!) in the family is an embedding of
an elliptic rotational «-torus for the hamiltonian H. We call the image S of 3TY&\

a Cantor manifold of elliptic rotational w-tori given by the embedding V: 2TY€\ -+ê.
In addition, the Cantor set ^ has full density at the origin, the embedding W is

close to the inclusion map *F0: E c+ £a*s, and the Cantor manifold ê is tangent to E
at the origin.

For the existence of S the following assumptions are made.

A. Nondegeneracy. The normal form A + Q is nondegenerate in the sensé that

(A2)
(A3) 0

for ail (k, l)eZnx Z00 with 1 < |/| < 2.

B. Spectral asymptotics. There exists d > 1 and ô < d — 1 such that

£=/+...+0(/),
where the dots stand for terms of order less than d in y. Note that the normalization
of the coefficient of jd can always be achieved by a scaling of time.

C. Regularity.

>s for d> 1,

By the regularity assumption the coeflScients of B — {BlJ)l^J^n<l satisfy the
estimate Btj — OQ3'3) uniformly in 1 £j ^ n. Consequently, for d 1 there exists a

positive constant k such that

(15)

uniformly for bounded /. For d > 1, we set k oo.

The following theorem is proven in [6] using the KAM-theorem for partial
differential équations from [8]. In [6] it is applied to some nonlinear Schrôdinger
équation, which has d =* 2. Hère we need it for the case d 1, which is more subtle.
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THE CANTOR MANIFOLD THEOREM. Suppose the hamiltonian H==A +
Q + R satisfies assumptions A, B and C, and

with

4-A
g > 4 H A — min(J — s, 1).

Then there exists a Cantor manifold ê of real analytic, elliptic diophantine n-tori
given by a Lipschitz continuous embedding W\ 3~Y€\ -*ê, where % hasfull density at
the origin, and W is close to the inclusion map Wo:

with some g > 1. Consequently> S is tangent to E at the origin.

Remark 1. The embedding Y can be chosen to include a parametrization of
each torus in which the flow is linear (although the estimate is then worse, see [6]).
Then, for each / g # and v0 e F{I\

*ItV0: t .-> nelûi(I)tv0)

is a real analytic solution curve in £a's for the hamiltonian H A -h Q + R. The

frequencies œ(I) are diophantine for ail / g W, so each such orbit is quasi-periodic
with n basic frequencies.

Remark 2. The map W is not only Lipschitz but may be shown to be smooth on

^~[^] in the sensé of Whitney. But we did not pursue this technical question.
Moreover, W may be extended to a global Lipschitz map W:E^>£a's satisfying the

same estimâtes as V - see again [6]. So S may be viewed as part of a global
Lipschitz manifold. The latter, however, has no invariant meaning for the hamiltonian

system outside the Cantor set.

5. Proof of the main theorem

We can now prove the Main Theorem. By section 2 our hamiltonian to start
with is

H - A + G \ £ kjipj + qj) + \ X Gljklqiqjqkqh
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where the coefficients Gljki are given by (10) and (11), and where

XG eA(Sa>s x •**, Sa>s+l x ^+1).

AU coefficients dépend on the parameter m > 0, which is not indicated. The

parameters a > 0 and s > 0 may be fixed arbitrarily. The domain of analyticity is

then, of course, determined with respect to the norm || • \as.
Now fix n > 1 and let / {1,...,«} first. The case of a more gênerai set / really

makes a différence only in the proof of Lemma 6 below. By section 3 there exists

a real analytic, symplectic change of coordinates F for each m > 0, which takes H
into HoF=A-\-G + G + K9 where, with the notation of the previous section,

A <a, /> + </?, Z>, G l- (AI, /> + <£/, Z>,

with a (Xu Xn\ p (Ân+U and A (G^<v^n, 5 (G^<j<n<n while
|G| O(||z||^) and |#| O(||z||^). Moreover, the regularity of the nonlinear
vector fields is preserved. Hence the transformed hamiltonian is of the form
Ho F =A + Q + R with <g G, R G + K required by the Cantor Manifold
Theorem.

Suppose for a moment that the assumptions of that theorem are satisfied. We
then obtain a Cantor manifold S of real analytic, elliptic diophantine n-tori in /a'5

for the hamiltonian H A H- G in complex coordinates given by an embedding

Thèse tori carry the quasi-periodic motions

for / e # and v0 e ^{ï\ Their real imaginary parts, q Re z and p Im z, solve the

équations of motion for the corresponding hamiltonian (8) in real coordinates.

Going back to the space Wa's+l12 by the isomorphism

Cf. fa,s __> Wa,s + 1^ q ^ U ^ ~7= ^W,

<? is mapped into another Cantor manifold of real analytic diophantine tori in
Wa*s+1/2, which by Lemma (1) carry real analytic, quasi-periodic solutions u of the

given nonlinear wave équation. This will prove the Main Theorem.
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We now verify the assumptions of the Cantor Manifold Theorem. We already
mentioned that XQ9 XR eA(Sa>s9 fa>s+l) with \R\ O(\\z||£,) H- 0(||z||£5). On the
other hand, we hâve

So conditions B and C are satisfied with d 1, b — 1 and s s +1 > s.

Moreover, since By Gy 24jn • À~lÀ~\ we hâve

with v 24ln(Xîl,.. k~l). This gives the asymptotic expansion

û,- =7+1+^ + oa-3) =7+^+ou-\
mT jm + <î;, />. Thus, for i >j,

^^ i - r-^r— + ou-3) i + oa-2x
« -7 0 + n)(j + w)

uniformly for bounded /. This gives k 2 in (15). Consequently, also the smallness

condition is satisfied, since

Ag>4

for g 6, k 2 and A 1.

Finally, we verify the nondegeneracy condition A. Item (A^ is always satisfied,

so it suffices to consider (A2) and (A3).

LEMMA 5. For alln>\ and ail m > 0, the matrix A (Gv)i^tJt^n is nondegen-

erate.

Proof. To shorten notation we multiply A by n/6. We then hâve A C — D,
where D is the «-dimensional diagonal matrix with diagonal éléments D} X~2, and

C is the rank one n x n-matrix with éléments Cy 4J.rU/1. Then, by the multilin-

earity of the déterminant function with respect to columns,
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det(Z>-C)=detZ>- £ C,,detZ)'

- n p- z ^n^
=d-4«) n A.

1 ^y <, n Aj

where Z)1 dénotes the matrix D with the î-th column and row eliminated. Thus we
hâve det A / 0. D

So far, ail thèse arguments do not change except for notation for the indices, if
/ {1,...,«} is replaced by an arbitrary finite index set / {j\ < • • • <jn}. This
is no longer true for the nondegeneracy condition (A3).

LEMMA 6. For an index set J {j\<' ¦ <jn} with n>2 satisfying the

assumption of the Main Theorem, one has

for ail k, l with 1 < |/| < 2 and ail m > 0. So for thèse index sets the normal form
A +Q is nondegenerate for ail m>0.

Proof We hâve to show that either <a, k} # (fi, /> or Ak ^BTl, where the

vectors and matrices are now defined with respect to the more gênerai index set /.
Suppose to the contrary that <a, k} </?, /> and Ak BTl. Multiplying A and

B by 7r/6 and defining C and D as above, we then hâve Dk Ck — BTl9 or

where v «(A/,1,..., A^;1), w =(X~\l9...), and jn+l <jn+2< ' - are the integers

not in /. Thus, ktA~l is independent of /, whence <v, k) -nktX~\ and thus

(16)

The assumption <a, k} </?, /> then further implies
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We first show that for |/| 1 this is not possible for any J. Indeed, we then hâve
</?, /> ±ÀV <w, />-1 for some v £/, so the two équations combined give

But this équation can not hâve an integer solution for any n > 1 and any 1 < i < n.
So consider now the case |/| 2. If we had |<h>, />| < {An — \)/{An -4), then

(16) implies

0# min \kl+l-kl\< min ' 7t + 1 7<I<
1 <>i<n 1 <,i<n H — 1

by assumption, which is not possible. On the other hand, |<w, />| > {An — \)l{An —

4) > 1 implies |<w, />| Afl + k~l with some index v <\n. But then one finds that

which leads to a contradiction to (17). This shows that <a, k} <jS, /> and

Ak =BTl can not hâve integer solutions.

LEMMA 7. iw / {/} one has {k, œ{I)) + </, O(/)> #0 /or a// fc, /
1 < |/| < 2 a«J ail m > 0 except those at which

n integer k and some indices 1 < v <j < fi. There are at mostfinitely many such

m-values.

Proof. We continue the preceding proof. The case |/| 1 being dealt with, let
|/| 2. By flipping signs if necessary we hâve <h>, /> X~l ±k~l with v < fi not in

/, and v # \i in the minus-case. Then (16) reduces to

k=3\i±i)'
and (16) and (17) together give
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We can rule out the minus-case, since then the two équations hâve opposite sign.

Also, j < v < \x leads to k < f a k > 2, and v < n <j leads to k > § a k < 2, which
are both impossible. So one must hâve v <j <ii. This allows only finitely many
choices for v, and reduces the integer k to the finite interval \<k <|((y/v) + 1).

One then vérifies that for fi > 4j2 there are no solutions at ail, and at most one for

fi < 4/2. Hence there are at most finitely many exceptional m -values for each/ And
there are clearly none for j 1.

6. The Banach algebra property

Consider the Hilbert space /aJ of ail doubly infinité complex séquences

?=(• ..,0-1, 0o> ?i>.-.) with

oo, [j] =max(l/|, 1).

The convolution q *p of two such séquences is defined by (q *p\ 2,k qj-kPk-

LEMMA. Ifa>Oands>i then \\q *p\\a,s <c\\q ||a,5 \\p \\a,s for q,pe ta>s with a

finite constant c depending only on s.

Proof. Let yjk =([/' — k][k]/[j]). By the Schwarz inequality,

2

y Yjkxk

for ail j. We hâve

1

so that

U-k]
U~k][k]

for ail j. It follows that for a 0,
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2

•/> IL

J k

y*

The case a > 0 îs a simple variation of the last estimate
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