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Représentations relativement équivalentes et variétés riemanniennes
isospectrales

Hubert Pesce

Introduction

Soient (X, m) une variété riemannienne fermée (i.e. sans bord, connexe et

compacte) et A l'opérateur de Laplace-Beltrami opérant sur C°°(X). Cet opérateur
possède un spectre discret qui s'appelle le spectre de la variété. Une question
naturelle est de savoir dans quelle mesure le spectre détermine la géométrie de la
variété. En particulier, deux variétés isospectrales sont-elles isométriques? Depuis
l'exemple de Milnor, on sait que la réponse à cette question est négative. Ensuite
d'autres exemples de caractère sporadique ont été construits (voir [Bel] pour un
historique du problème).

La situation a radicalement changé avec l'introduction par Sunada d'une
méthode systématique pour construire des variétés isospectrales [S]. Il se place dans

le cadre suivant: (X, m) est une variété riemannienne et Fl et F2 sont deux

sous-groupes discrets d'un groupe G d'isométries de (X, m) qui opèrent librement

sur X et qui sont tels que les variétés FX\X et F2\X sont compactes. On construit

par induction à l'aide de Ft une représentation de G qui s'appelle quasi-régulière et

qui l'on note nf^ Le théorème de Sunada affirme que si les représentations n^ et

nf2 sont équivalentes, alors les quotients riemanniens FX\X et F2\X sont isospectraux

pour le laplacien opérant sur les fonctions et, plus généralement, pour tout
opérateur différentiel naturel. En utilisant ce théorème, on peut construire de

nombreux exemples de variétés isospectrales et non isométriques. Il est alors naturel
de se demander si, lorsque l'on est dans la même situation, la condition du
théorème de Sunada est nécessaire. Les exemples d'Ikeda d'espaces lenticulaires

isospectraux sur les fonctions mais pas sur les formes [I] fournissent une réponse

négative à cette question. Il est donc raisonnable de penser que l'on peut obtenir des

quotients isospectraux en imposant une condition moins restrictive.
Le but de cet article est d'obtenir une condition moins forte que celle du

théorème Sunda qui assure l'isospectralité des variétés considérées. La condition
obtenue s'exprime encore en terme d'équivalence de représentations. L'idée est

d'utiliser l'existence d'un sous-groupe K de G qui est, à conjugaison près, contenu
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dans le stabilisateur pour l'action de G de tout point de X et d'associer à K une
sous-représentation (nf)K de n*fr On montre ensuite que si les représentations

(nf)Kçt (ti j?2)jr sont équivalentes, alors les quotients riemanniens F^^et F2\Arsont
isospectraux. Cette condition est, à priori, plus faible que celle de Sunada et
n'assure pas l'isospectralité des quotients pour d'autres opérateurs. Si l'on veut une
condition qui assure l'isospectralité pour un opérateur différentiel opérant sur les

sections d'un fibre (par exemple, le laplacien de Hodge-De Rham opérant sur les

formes différentielles), il faut alors considérer une autre sous-représentation de nft
qui prend en compte la géométrie du fibre.

La première partie est consacrée à la théorie des représentations. On introduit
une notion d'équivalence relative entre deux représentations d'un groupe de Lie et

on cherche à savoir comment cette équivalence relative se lit sur le caractère de ces

représentations. On rappelle aussi la formule des traces de Selberg.
La deuxième partie est consacrée à la généralisation du théorème de Sunada. On

donne trois preuves de ce résultat. La première utilise la méthode de transplantation,

la deuxième la formule des traces de Selberg et la troisième le théorème de

réciprocité de Frobenius.
Dans la troisième partie, on montre que, dans certains cas (espaces localement

symétriques de rang 1, variétés plates...), la condition obtenue est en fait une
condition nécessaire et suffisante pour que deux variétés localement isométriques
soient isospectrales. On utilise les résultats obtenus pour interpréter les exemples de

Urakawa et d'Ikeda et pour construire de nouveaux exemples de variétés isospectrales.

Dans l'appendice, on montre comment on peut généraliser à n'importe quel
opérateur différentiel naturel les résultats qui ont été obtenus dans les parties
précédentes et qui concernaient le laplacien opérant sur les fonctions.

1. Représentations relativement équivalentes

Dans ce chapitre, on étudie quelques propriétés concernant la théorie des

représentations qui seront utilisées plus tard pour étudier les problèmes d'isospec-
tralité.

Par la suite, G désignera un groupe de Lie unimodulaire et K un sous-groupe
compact de G. Toutes les représentations que l'on considérera seront supposées

unitaires, complexes et continues. Si p est une représentation de G dans un espace
de Hilbert V et si x est une représentation de K, on va définir à l'aide de x une
sous-représentation de p que l'on notera pT. Tout d'abord, si x est irréductible, on
définit Vx comme étant la somme des sous-espaces de V sur lesquels la restriction
de p à K est isomorphe à x et Vt comme étant le plus petit sous-espace fermé de F,
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contenant V\ et invariant par G. Dans le cas général, on définit Vx comme étant
l'adhérence de la somme des V^ quand p, parcourt l'ensemble des composantes
irréductibles de t. Le sous-espace Vt étant invariant, on obtient ainsi une
sous-représentation de p que l'on note px.

Il est clair que si p et a sont deux représentations équivalentes de G et si t est

une représentation de K9 alors pt et ax sont aussi équivalentes, la réciproque étant
évidemment fausse. Nous verrons plus loin que de tels exemples apparaissent
naturellement dans les problèmes d'isospectralité. Par la suite, on dira que deux

représentations p et a sont équivalentes relativement à t si les représentations px et

ax sont équivalentes et qu'elles sont Â'-équivalentes si, en notant lK la représentation
triviale de K, elles sont équivalentes relativement à 1*. Pour alléger les notations, si

p est une représentation de G dans un espace de Hilbert V, on notera VK (resp. VK)
le sous-espace V1k (resp. V1k) et pK la sous-représentation correspondant à VK.

Remarquons que VK est l'adhérence de l'espace vectoriel engendré par les VgKg~l

quand g parcourt G.

Dans la suite de cette partie, on va se concentrer sur le dernier cas évoqué et

essayer de comprendre à quelle condition deux représentations sont AT-équivalentes.
On notera ô le dual de G, c'est-à-dire l'ensemble des classes d'équivalence des

représentations unitaires et irréductibles de G, et ôK l'ensemble des classes d'équivalence

de représentations irréductibles qui admettent des vecteurs non nuls invariants

par K. Autrement dit, une représentation irréductible p dans un espace V est
dans ôK si VK n'est pas réduit à {0}. Remarquons que dans ce cas, V — VK et

p pK. Par contre, si une représentation irréductible p dans un espace V n'est pas
dans ôK, alors VK {0}. On en déduit que si a et j8 sont deux représentations de

G complètement réductibles telles que toute représentation irréductible de G ait une
multiplicité finie dans a et dans /?, alors a et /? sont AT-équivalentes si et seulement
si tout élément de ôK a même multiplicité dans a et dans /?.

Le critère que l'on vient d'énoncer est simple mais n'a d'intérêt que dans le cas
où l'on connait explicitement à la fois ô et la décomposition en composantes
irréductibles des représentations qui interviennent. On va voir maintenant une
condition nécessaire et suffisante pour que deux représentations soient AT-équivalen-
tes qui fait intervenir les caractères de ces représentations.

Avant d'énoncer le résultat, on va rappeler quelques résultats classiques. Tout
d'abord, si n est une représentation de G, q> est dans Cq(G\ l'ensemble des

fonctions C°° à support compact, et \iG désigne une mesure de Haar bi-invariante
fixée une fois pour toutes, alors l'opérateur n((p) =z$G<p(g)n(g)d[iG(g) est bien
défini. On dit qu'une représentation est à trace si pour toute fonction q> dans

Cq(G)9 l'opérateur n((p) est à trace. On peut alors montrer que l'application
q> h-> trace(n((p)) est une distribution. De plus, une représentation à trace est

complètement réductible et le nombre de composantes irréductibles isomorphes à
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une représentation irréductible donnée est fini ([G-G-P], p. 23). En adaptant la

preuve que l'on trouve dans ([J-L], p. 495) où le cas traité est celui où K est trivial,
on obtient le résultant suivant:

1. PROPOSITION. Soient G un groupe de Lie unimodulaire, K un sous-groupe
compact et nx et n2 deux représentations à trace de G. Alors nx et n2 sont

K-équivalentes si et seulement si pour toute fonction (p dans CfîiG) invariante à

gauche par K, nx((p) et n2((p) ont même trace.

Preuve de la Proposition. Nous allons tout d'abord prouver que l'égalité des

traces est une condition nécessaire. Soient n une représentation de G dans un espace
de Hilbert V et cp une fonction dans Cq(G) invariante à gauche par K, on a pour
tout k dans K on a:

(p(k~lg)n(g)dfiG(g)=
JG JG

(p(g)n(kg) dfiG(g) n(k)n((p).

Comme n(cp) laisse stable tout sous-espace de V invariant par 7t, n(cp) laisse

stable VK et la restriction de n((p) à l'orthogonal de VK est nulle. On en déduit que
si deux représentations nx et n2 sont Â-équivalentes et si <p est une fonction dans

Cq(G) invariante à gauche par K, alors la restriction de nx(cp) à {VX)K et la
restriction de n2(cp) à (V2)K sont conjuguées. Il en résulte que nx{q>) et n2(cp) ont
même trace.

Avant de commencer la preuve de la réciproque, on va rappeler quelques
notions classiques d'analyse harmonique. Tout d'abord, Cq{G), muni du produit de

convolution, est une algèbre (rappelons que le produit de convolution est défini par
cp * \j/(x) JG (p(xy~l)\l/(y) dfiG(y)). Par la suite, si x et .y sont dans G, on notera
Cxy l'espace vectoriel constitué des fonctions de Cq(G) invariantes à gauche par
xKx~l et invariantes à droite par yKy~l et Cq(G)k l'espace vectoriel engendré par
les Cxy quand x et y parcourent G. On vérifie facilement les propriétés suivantes:

(a) Si cp est dans Cxy et \j/ est dans Czt alors cp * ij/ est dans Cxt.
(b) Si (p est dans Cxy et z dans G et si Lz et Rz désignent les translations à

gauche et à droite par z, alors q> ° Lz est dans Cz-\x^y et q> ° Rz est dans

(c) Si cp est dans Cxy et si l'on pose cp*(x) cp(x~l), alors (p* est dans Cyx.

Une conséquence de la propriété (a) est que Cq(G)k est une algèbre pour le

produit de convolution. Les propriétés (b) et (c) nous seront utiles par la suite. On

va maintenant pouvoir prouver un premier résultat:
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2. LEMME. Soient a une représentation irréductible de G dans un espace de

Hilbert V qui appartient à ôK et v dans V — {0}, alors il existe <p dans Cq(G)k tel
cr((p)(v) soit non nul.

Preuve du Lemme. Soit W l'intersection des noyaux de (i(<p) quand cp parcourt
Cq(G)k. Il est clair que W est un sous-espace fermé de V. De plus, si cp est dans

Cq(G)k et g est dans G, on vérifie facilement que a{cp)a{g) a{q> ° Rg-\). On en
déduit, en utilisant la propriété b) que West un sous-espace invariant. Comme a est

une représentation irréductible, W— V ou W={0}. Pour prouver le Lemme, il
suffit de trouver un élément non nul de V qui n'appartient pas à W. Or, si v dans
VK — {0}, l'application g h» Re({a(g)(v) | v}) est continue est égale à ||i;||2 sur K. Il
existe donc un voisinage ouvert U de K tel que si g est dans U, alors
Re((&(g)(v) | ^» ^ IM|2/2- Munissons G d'une distance d invariante à gauche (par
exemple, une distance associée à une métrique riemannienne invariante à gauche).
Comme l'application g v-+ d(K, gK) est propre, il existe € > 0 tel que
{geG \d(K, gK) <e} soit contenu dans U. Donc, si p est une fonction C00 et

positive sur [0, + oo[, égale à 1 sur [0, e/2] et égale à 0 sur [e, + oo[, alors la fonction
q> définie par cp(g) p(d(K, gK)) appartient à Cq(G)k et Re((a((p)(v) \ v})
\g <p(g) Re(«g)(v) 11?» dficig) > fiG({g s G | d(K, gK) < e/2}) ||t? ||2/2 > 0. On en
déduit donc que si v est dans VK — {0}, alors v n'est pas dans W. Le Lemme est

donc démontré.

On va maintenant pouvoir démontrer le résultat suivant qui joue un rôle
important dans la preuve de la Proposition:

3. LEMME. Soient a une représentation irréductible de G dans un espace de

Hilbert V qui appartient à GK et A un ensemble. On suppose donnée, pour chaque a
dans A, une représentation irréductible <xa dans un espace de Hilbert Fa qui n'est pas
isomorphe à a. Soient va dans Fa et v dans V — {0} tels que pour tout q> dans

Cq(G)k, la somme Saey4 ||<Ta(ç>)(va) ||2 est finie, alors pour tout s > 0, il existe <p dans

tel que £a6a \\o«{<p)(va)f <e\\o{q>){v)f.

Preuve du Lemme. Raisonnons par l'absurde et supposons que pour tout q> dans

Cq(G)k on ait, Zaey4 ||ffa(^)(i0||2> €||ff((p)(i;)||2. Notons U la somme hilbertienne
U ®*eA V, et W l'adhérence dans U de Wo {®aeA <ra(<p)(t;a) | q> e CJftG)*}.
Comme ffa(g)ffa((p)(ya) <ra(<p ° L^-i)(t^a), il est clair que JFest un sous-espace de U
invariant par G pour la représentation ®aey4 <xa. On peut donc définir une application

linéaire Lo de Wo dans V en posant L0(®OL€A (ra(cp)(va)) =a(<p)(v). Cette
application linéaire est, d'après l'hypothèse que l'on a faite, bien définie et continue
et se prolonge donc en une application linéaire de W dans V. Si on note L l'unique
application linéaire continue de (/dans Kqui est nulle sur l'orthogonal de Wqî qui
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est égale à Lo sur Wo, alors L entrelace ®a€A <ra et a. Il en est donc de même pour
la restriction La de L à Fa. Comme, par hypothèse, o"a et a ne sont pas isomorphes,
on trouve que pour tout La est nulle et ce pour tout a, donc L est nulle. On en
déduit que pour tout q> dans Cq(G)k on a ff(<p)(t/) 0, ce qui constitute
une contradiction avec le Lemme précèdent. La preuve du Lemme est donc
terminée.

Fin de la Preuve. On va montrer montrer que si nx et n2 sont deux représentations

à trace de G telles que pour toute fonction cp dans Cô(G)K9 les opérateurs
nx((p) et n2(q>) ont même trace, alors nx et %2 sont A'-équivalentes. Notons Vt

l'espace de la représentation nt et Wt un sous-espace invariant de (Vt)K, les

sous-espaces W% étant tels que les restrictions de nx et n2 à Wj et W2 sont
équivalentes et le couple constitué de Wx et W2 est maximal pour cette propriété. Le
but est de montrer que Wt (FJ^, et ce pour i 1,2. Supposons que ce n'est pas
vrai et notons Ut l'orthogonal de Wt dans Vt.

Supposons qu'il existe a dans ôK qui apparait dans la décomposition en
irréductibles de la restriction de nx à Ux et qui n'apparait pas dans la décomposition
en irréductibles de la restriction de n2 à U2. Notons UXfO un sous-espace de Ux sur
lequel nx est isomorphe à a. D'après le Lemme 2, il existe cp0 dans Cq(G)k tel que
<K<Po) 9e 0- Posons (p ~q>$ * (p0, alors 7^(9) est un opérateur symétrique et positif
et, quitte à multiplier <p par un nombre réel positif, on peut supposer que
#(p||7ti(<p)(t?)|| 1 quand v parcourt les éléments de UlfO tels que ||i;|| l. Or
trace(nx{<p)) trace(n2(cp)) # 0, donc n2(cp) est non nul et notons A sup\n2((p)(v) ||

quand v parcourt les éléments de U2 tels que j|t>|| — 1. Considérons maintenant une

décomposition t/2= ®p6bUi,p de U2 en sous-espaces irréductibles et, pour chaque

peB, choisissons une base orthonormée {vpi5}6eAfi de U2tp formée de vecteurs

propres de n2 (<p). Alors, pour tout \J/ dans Cq(G)k, on a:

rrace(7c2(^* *^)) =X^ ||7t2(^)(^)||2< ex). On peut donc appliquer le Lemme

précédent avec un vecteur v de Uha tel que ||t;|| 1 et nx((p)(v) v. D'après ce que
l'on a vu, il existe cpx dans Cq{G)k tel que l'on ait: T*M ||7t2(^i)(%5)||2<
A~2||7t,(<pi)(t;)||2/2. Nous allons voir que ceci implique une contradiction. En effet:

(a) trace(nx((<px * <p)* * (cpx * q>))) ï> \\nx{q>x * q>)(v)||2

(b) trace(n2(((px * ^)* * (< 1

Donc, d'après ces inégalités, nx(((px ç>)* * (<px * (^) et 7r2(((p, * <p)* * (<^) * qj)) ne

peuvent avoir la même trace, ce qui constitue la contradiction désirée. On en déduit

que si un élément <r de ôK apparait dans la décomposition en irréductibles de la
restriction de nlkUXf alors il apparait dans la décomposition en irréductibles de la
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restriction de n2 à U2, ce qui contredit la maximalité du couple constitué de Wx et
de W2. La démonstration est maintenant terminée. En effet, on a montré que si

pour toute fonction cp dans Cq(G)k, les opérateurs nx(cp) et n2(cp) ont même trace,
alors les représentations nx et n2 sont AT-équivalentes. Or, si cp est dans Cxy alors
\j/ cp o Lx-\ o Rx est invariante à gauche par #et les opérateurs n^cp) et n^xj/) sont
conjugués, et ce pour i 1, 2. Donc, si l'on impose l'égalité des traces des

opérateurs n^cp) et n2((p) quand cp parcourt l'ensemble des fonctions de Cq(G) qui
sont invariantes à gauche par K, on a forcément l'égalité des traces des opérateurs
nx(cp) et n2(cp) quand cp parcourt Cq(G)k. La Proposition est donc démontrée.

4. Remarque

a) La proposition précédente est encore vraie si l'on considère des fonctions cp

dans Cq(G) invariantes à droite par K. Ceci est un conséquence directe du fait que
cp est invariante à droite par K si et seulement si cp* est invariante à gauche par K
et que n(cp*) est l'adjoint de n(cp).

P) On peut se demander comment le fait que deux représentations de G soient

équivalentes relativement à une représentation non triviale de K peut se lire sur leur
caractère. Pour cela, on introduit la représentation régulière p de G dans Lç(G)
définie par (p(g)cp)(x) ç(g~lx) pour x et g dans G et cp dans L^(G) et si t est une
représentation irréductible de K, on peut considérer le sous-sespace L\{G)X de

Lç(G). En adaptant la preuve de la proposition précédente, on obtient facilement
le résultat suivant: soient t une représentation irréductible de K et nx et n2 deux

représentations à trace de G, alors kx et n2 sont t-équivalentes si et seulement si

n^cp) et n2(cp) ont même trace pour toute fonction cp dans Co(G)nLc(G)x. On
vérifie facilement que la condition imposée à cp est équivalente au fait que pour tout
x dans G on ait:

cp(x)=dim(x)
K

où \iK désigne la mesure de Haar sur K normalisée par jjlk(K) 1 et Xt le caractère
de t.

Comme conséquence de cette Proposition, on a le résultat suivant:

5. COROLLAIRE. Soient G un groupe discret, K un sous-groupe fini de G et nl
et n2 deux représentations de G de dimension finie. Alors, en notant Xi et Xi te™

caractère respectif, nx et n2 sont K-équivalentes si et seulement si pour tout g dans G

on a:
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keK keK

Preuve. Ceci est une conséquence directe de la Proposition précédente et du fait
que si G est un groupe discret, alors une fonction est dans Cq(G) si et seulement si

elle est à support fini. On conclut en remarquant que les fonctions caractéristiques
des ensembles de la forme Kg quand g parcourt G forment une base de l'espace
vectoriel des fonctions à support fini invariantes à gauche par K. La preuve est

terminée.

On va maintenant s'intéresser aux représentations qui apparaissent naturellement

dans les problèmes d'isospectralité, à savoir les représentations induites. Le
cadre est le suivant: G est un groupe de Lie et F est un sous-groupe discret de G

tel que le quotient F\G soit compact. On vérifie facilement que si un tel sous-

groupe existe, alors G est unimodulaire et il existe une unique mesure /ur\G sur F\G
invariante par l'action de G sur F\G telle que pour toute fonction cp continue sur
G et à support compact, on ait:

f vis) dnG(g) f (£ <p(yg))d^o(g).
JG Jr\G \yer /

On définit alors une représentation de G unitaire et continue, que l'on note nG9 dans

l'espace Ll(F\G) en posant (nG(g)cp)(x) q>(xg) ûq>e Ll(F\G\ geGetxe F\G.
Il est connu que cette représentation est à trace et le but de la formule des trace de

Selberg est de calculer la trace des opérateurs nG(<p) quand cp parcourt Cq(G).
Avant d'énoncer la formule des traces de Selberg on a besoin de fixer quelques
notations. Tout d'abord, si g (resp. y) est dans G (resp. F), on note [g]G (resp. [y]r)
sa classe de conjugaison dans G (resp. F) et Gg (resp. Fy) son centralisateur dans G

(resp. F). Il est facile de vérifier que si F\G est compact, alors Fy\Gy l'est aussi. Si

g est conjuqué à un élément de F, on normalise la mesure de Haar sur Gg comme
suit: on fixe dans [g]G un élélement g0 et une mesure de Haar p(go) sur Gg0 et on
choisit comme mesure de Haar sur GxgQX-i la mesure p^xgox~l) qui est l'image directe
de p(go) par l'automorphisme intérieur Ix définit par Ix(g) xgx~l pour g e G. De

plus, il existe une mesure \iG \G sur Gg\G invariante par l'action de G qui est unique
si l'on demande que pour toute fonction <p continue sur G et à support compact, on
ait:

f <Kg) d»G(g) f f
JG JGg\G jGg

(P(xy) dp<*\x

Maintenant, si y est dans F, la mesure jâg \G étant fixée, il existe une unique
mesure sur Fy\Gy9 que l'on notera /i(y), invariante par l'action de Gy et vérifiant la
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même condition de normalisation que fir\G. Comme Fy\Gy est compact, //(y)(ry\Gy)
est fini et, comme on le vérifie facilement, ne dépend que de [y]r. Finalement, on
définit une fonction centrale rr sur G en posant rr{g) ^s^^^y^y) si [g]G

rencontre F et rr(g) 0 sinon. On peut maintenant énoncer la formule des traces de

Selberg ([G-G-P], p. 30):

6. PROPOSITION. Soient G un groupe de Lie et F un sous-groupe de G discret
tel que F\G soit compact. Alors la représentation nG est à trace et si q> est dans

CJ(G), on a Végalité suivante:

trace(7if(<p)) £ rr(g)
[g]G JGg\

II est clair, d'après la formule des traces, que l'application q> i-> trace(nG(q>)) est

une distribution qui s'étend en une mesure sur G que Ton va noter 6G. Si l'on note
0r[g](? la mesure sur G dont le support est [g]G et qui, si on identifie [g]G et Gg \G9
est égale à rr(g)nG G, alors 0r[g]G est bien définie (i.e. elle ne dépend pas du choix
de p{8)) et la formule des traces de Selberg s'écrit:

[g]G

On peut alors exprimer le fait que deux représentations du type que l'on vient
de considérer sont ^-équivalentes par l'égalité de deux mesures. Avant d'énoncer le

résultat, rappelons que la convolée \i * v de deux mesures \i et v sur G est l'image
directe de la mesure \i ® v par l'application (*, y) i-> xy. D'autre part, on notera v*
l'unique mesure de Haar sur K telle que vK(K) 1 et i l'injection de K dans G. Ceci

dit, on a le résultat suivant:

7. PROPOSITION. Soient G un groupe de Lie, K un sous-groupe compact et Fx

et F2 deux sous-groupes discrets et co-compacts de G. Les représentations nGx et nG2

sont K-équivalentes si et seulement si, en notant i^vK l'image direct de vKpar i, les

mesures (i*vK) * 6GX et (i*vK) * @G2 sont égales.

Preuve. On remarque que si l'on note C0(G) l'ensemble des fonctions continues

sur G à support compact et C0(G)K l'ensemble des fonctions de C0(G) invariantes
à gauche par K, alors l'application:

cp h-> [g h> cp(kg)dvK(k)
\ Jg /
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est surjective. En combinant les Propositions 3 et 5, on obtient que les représentations

nft et nf2 sont iÊ-équivalentes si et seulement si pour toute fonction q> dans

C0(G), on a:

f f <P(kg)dvK(k)d0l(g) f. f q>(kg)dvK(k)d9?l(g).
Jk jg jk jg

La Proposition découle alors de la définition du produit de convolution.

8. REMARQUE. Si A'est trivial, alors i+vK est la masse de Dirac en l'élément
neutre et (i+vK) * 9f 9f. Donc nfx et n^2 sont équivalentes si et seulement si les

mesures 9f{ et 9f2 sont égales, ce qui est équivalent au fait que pour toute classe de

conjugaison [g]G9 on ait 0r =^r2[g] • Compte-tenu de l'expression de ces

mesures, ceci est vrai si et seulement si rFl rr2 et on retrouve ainsi le résultat

prouvé par P. Bérard dans [Bé3].
On va terminer cette partie par un résultat d'hérédité sur l'équivalence relative

que l'on interprétera plus tard dans un cadre géométrique.

9. LEMME. Soient G un groupe de Lie unimodulaire, L un sous-groupe fermé et
unimodulaire et K un sous-groupes compact tels que Von ait la propriété suivante:

pour tout g dans G, il existe l dans L tel que gKg ~ï nl2 l(K nL)l~l. Si ax et a2 sont
deux représentations de L qui sont (K nL)-équivalentes, alors les représentations nY et

n2 induites par ax et a2 sont deux représentations de G qui sont K-équivalentes.

Preuve. Notons Vt l'espace de a, et <• •> le produit hermitien de Vt pour
i' l,2. Rappelons tout d'abord la définition des représentations nt. On considère
l'ensemble W°t des fonctions q> continues à support compact sur G et à valeurs dans

Vl telles que pour tout g dans G et / dans L, on ait cp{lg) <rt(l)(p(g). On munit W°t

du produit hermitien

L\G

&l\g désigne une mesure sur L\G invariante pour l'action de G). L'espace Wt

obtenu en complétant W°t à l'aide de (• | •) est l'espace de la représentation induite

nt qui est définie comme suit: (nt (g)(<p))(x) <p(xg) si q> est dans Wt et x, g sont dans
G.

Soit <p dans Wf**'1. Nous allons montrer que pour presque tout x dans G, q>(x)

est dans (Vt)KnL. Fixons un élément x dans G puis un élément k dans Kr\L. Alors,
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d'après la propriété demandée, il existe k1 dans K et / dans L tels que
(xg)k\xg)~x lkl~l. On en déduit que, puisque cp est dans WfKg~\ on a:

9(x) - (p{xgkrg-x) q>(lkl-lx) at{M-l)(p{x\

On a donc montré que (p(x) est dans (Fl)/(/:nZ')/"1 et donc, à fortiori, dans

(K)KnL> ce Qui constitue le résultat annoncé. Comme (Wt)K est l'adhérence de

l'espace vectoriel engendré par les WgKg~x quand g parcourt G, le Lemme est bien
démontré.

Dans la dernière partie, on donnera des exemples de groups G qui admettent des

sous-groupes Fx et F2 tels que les représentations nfY et nf2 soient ^-équivalentes,
pour un certain sous-groupes compact K, mais non équivalentes.

2. Une généralisation du théorème de Sunada

On va utiliser les résultats sur les représentations obtenus dans la première partie

pour étudier les problèmes d'isospectralité. On se place dans le cadre suivant: (X, m)
est une variété riemannienne, G est un sous-groupe fermé du groupe des isométries
de (X, m) et Fx et F2 sont deux sous-groupes discrets de G qui opèrent librement sur
Xet tels que les variétés FX\Xet F2\X soient compactes (on vérifie facilement que
cette condition implique que les quotients FX\G et F2\G sont compacts). Comme Fx

et F2 sont des groupes d'isométries de (X, m), la métrique m induit une métrique m,
sur Ft\X de sorte que la projection de X sur Ft\X soit un revêtement riemannien
(on gardera cette notation par la suite). On cherche alors une condition d'ordre
algébrique pour que les variétés (FX\X9mx) et (F2\X,m2) soient isospectrales. Une
telle condition est donnée par le théorème de Sunada [S]: si les représentations
quasi-régulières nfl et nf2 sont équivalentes, alors les quotients riemanniens

(FX\X9 mx) et (r2\Z, m2) sont isospectraux pour tout opérateur différentiel naturel:
laplacien opérant sur les fonctions, laplacien de Hodge-De Rham opérant sur les

formes différentielles...
La condition du théorème de Sunada est très forte et ne peut ère une condition

nécessaire pour que deux variétés localement isométriques soient isospectrales. En
effet, Ikeda a construit des exemples d'espaces lenticulaires (i.e. des quotients de la
sphère canonique par un groupe cyclique) isospectraux pour le laplacien opérant sur
les fonctions mais pas pour le laplacien opérant sur les 1-formes (on reviendra plus
tard sur ces exemples). Si l'on veut obtenir une condition nécessaire et suffisante

pour que deux variétés localement isométriques soient isospectrales, il faut donc
trouver une condition qui assure l'isospectralité des variétés considérées qui soit
plus faible que celle du théorème de Sunada.
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Avant d'énoncer la condition obtenue, on a besoin de rappeler un résultat relatif
aux actions de groupes sur les variétés. Si G est un groupe de Lie qui opère sur une
variété X, on notera Gx le stabilisateur d'un point x de X, c'est-à-dire l'ensemble des

g e G tels que g • x x. Si l'action de G est propre et C00, alors Gx est un
sous-groupe compact de G et on peut montrer ([Bo], p. 96) qu'il existe un
sous-groupe compact K de G, que l'on appelle stabilisateur générique, jouissant des

deux propriétés suivantes:

a) Pour tout x e X, K est conjugué à un sous-groupe de Gx.

b) II existe un ouvert dense U tel que si x e U, alors K et Gx sont conjugués.

1. EXEMPLES. Si {X, m) est une variété riemannienne et G est un sous-groupe
fermé du groupe des isométries de (X, m), alors l'action de G est propre et on peut
regarder les cas particuliers suivants:

a) (X9 m) est homogène sous l'action de G. On peut alors écrire X G\K où K
est le stabilisateur d'un point fixé une fois pour toutes. Il est clair que K est le

stabilisateur générique de l'action de G sur X.

b) G est un groupe dénombrable d'isométries d'une variété (X, m) complète.
Comme l'ensemble des points fixes d'une isométrie différente de l'identité est un
fermé d'intérieur vide, la réunion des points fixes des éléments de G différents de

l'identité ne peut pas être égale à X puisque, d'après le théorème de Baire, elle est

d'intérieur vide. On en déduit que le stabilisateur générique de l'action de G est

trivial.
On peut maintenant énoncer la généralisation du théorème de Sunada:

2. PROPOSITION. Soient (X, m) une variété riemannienne, G un sous-groupe
fermé du groupe des isométries de (X, m), K le stabilisateur générique de Vaction de

G sur X et Fx et F2 deux sous-groupes discrets de G tels que les quotients FX\X et
F2\X soient des variétés compactes. Si les représentations 7i^, et n^2 sont K-équiva-
lentes, alors les quotients riemanniens {FX\X, mx) et (F2\X, m2) sont isospectraux.

Il existe trois preuves de résultats, dont une n'est valable que dans le cas où X
est compacte. Chacune de ces preuves a, comme nous allons le voir, des avantages.

Preuve par la méthode de transplantation. La méthode de transplantation est due à

P. Bérard qui l'a introduite pour redémontrer et interpréter le théorème de Sunada

[Bé2]. On va tout d'abord en rappeler le principe. On considère un sous-groupe
fermé G du groupe des isométries de (X, m) et F un sous-groupe discret de G tel que

F\X soit une variété compacte. Tout d'abord, si H est un sous-groupe fermé de G,

on note pH l'unique mesure sur H\X telle que pour toute fonction cp continue et à

support compact sur X on ait, si vm désigne la mesure riemannienne de (X, m),
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(p(h • x) dfiff(h) 1 dpH(x).[ <p(x) dvm(x) f f
JX JH\X \JH

On définit alors un espace de Hilbert comme suit: on considère tout d'abord
l'espace vectoriel des fonctions cp continues sur Xà valeurs dans L^(F\G) qui sont
telles que pour x dans X et g dans G on ait la relation cp{g • x) nf{g)q>{x). Si on
munit cet espace du produit hermitien suivant:

| (<p(x)\xl/(x))dpG(x)

(on a noté (• | •) le produit hermitien de L^(F\G)) et si on le complète par rapport
à ce produit hermitien, on obtient un espace de Hilbert que l'on note L2(G\X; nf).
On définit alors une application linéaire Tr de Ll(F\X) dans L2(G\X; nf) en

posant (Tr(p)(x)(g) cp(g • x) pour q> dans L^FXX), x dans X et g dans G (on a

identifié x et g avec leur image respective dans F\X et F\G). La première étape
consiste à montrer que Tr est une isométrie. Si on considère maintenant deux

sous-groupes Fl et F2 tels que les représentations nfl et nf2 soient équivalentes et
si l'on note U une isométrie de Lc(Fi\G) dans Lc(F2\(j) qui entrelace ces deux

représentations, alors U induit une isométrie, que l'on note encore £/, entre
L2(G\X; n?x) et L2(G\X; n?2). On obtient ainsi une isométrie TFlJ2
Tp2l o [/o TFl de Lç(Fx\X) dans Lc(r2\Ar). La deuxième étape consiste à montrer
que Tritr2 induit une isométrie entre les espaces de Sobolev Hq(Fi\X) et

Hlc(F2\X). On en déduit, en utilisant la caractérisation variationnelle des valeurs

propres, que les quotients riemanniens (FY\X, mx) et (r2\X9 m2) sont isospectraux.
La preuve de la proposition est basée sur la remarque suivante: si K est le

stabilisateur générique de l'action de G et si F a les mêmes propriétés que
précédemment, alors L\X\ nf) —L\X\ (n?)K). En effet, si x est dans X, alors K
est conjugué à un sous-groupe de GX9 le stabilisateur de x. Il existe donc g dans G

tel que gKg~l soit inclu dans Gx. Si maintenant cp est dans L2(X; nf) et / dans Gx,
alors cp(x) cp(l - x) nf(l)(p(x). On en déduit que pour tout x dans X, on a:

ç>(x) € L2(X; tcF)g- s L2(x; n?)*«'1 s L2(Z; *?)*.

Il maintenant clair, d'après la preuve par transplantation, qui si les représentations
71^ et 7i^2 sont ^-équivalentes, alors les quotients riemanniens (Fl\X>mi) et

(F2\X9 m2) sont isospectraux.

3. REMARQUE. La preuve par transplantation met en avant l'aspect combi-
natoire du théorème de Sunada. En particulier, elle est encore valable si les groupes
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n'opèrent pas librement (on obtient ainsi des orbifolds) ou si les variétés considérées

sont à bord.

Preuve par la formule des traces de Selberg. On va utiliser les résultats de la
première partie. Tout d'abord, on sait, d'après Donnelly [Dol], que si une variété
riemannienne (X, m) admet un quotient compact, alors il existe une solution
fondamentale de l'équation de la chaleur. Notons p(t9 x, y) le noyau de la chaleur
de (X, m) où t > 0 et x, y sont dans X. Pour chaque couple (x, t), définissons une
fonction cpx t sur G par la formule cpXJ{g) =p(t, x, g • x). Il est clair que cpxt est un
fonction invariante à gauche par Gx, Or il existe / dans G tel que IKI~1 soit inclu
dans Gx9 donc (pxt est un fonction invariante à gauche par IKI~1. Si on suppose
maintenant que JHj et F2 sont tels que les représentations nfx et nf2 soient

if-équivalentes, comme cette notion ne dépend que de la classe de conjugaison de

K dans G, en utilisant les résultats de la première partie, on obtient que
trace{nfx{cpxt)) trace(n$2((pXtt)). Notons que ceci est justifié puisque l'application
q> h-* trace(nf((p)) est une mesure sur G et que cpxt est une fonction positive. En
appliquant la formule des traces de Selberg à (pXjt on obtient;

JGç
rr#(g) p(t, ux,gu- x) dfiGg\G(u).

JG\G

On pose maintenant çt(x) \Gg\GP(U u-x9gw x) d^GgXG{u). Comme la mesure

\iG iq est invariante par l'action naturelle de G sur Gg\G et le noyau de la chaleur
est lui aussi invariant par G (i.e. si g est une isométrie, alors

p(t, x, y) =p(t, g x9g - y))y on obtient que pour tout g dans G et x dans X, on a
<Pt(g ' x) ~<pt(x). Donc (j>t définit une fonction sur G\X et en intégrant cette
fonction par rapport à la mesure pG introduite au début de la preuve par
transplantation on obtient:

trace(n?,((pXtt))dpG(x)
Jg\x

Z *>> ($) /**> u-x9gu'x) d/uGfG(u) dpG(x).
[g\G JG\X JGg\O

Or, on vérifie facilement que:

p(t9 wx%gux) d\iG fG(u) dpG(x) » p(t, x9 gx) dpG(x),
JG\X JGM\G Jg8/X
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Maintenant, il est bien connu que si l'on note Am/ le laplacien de (r,\JT, m,) et si t
est un réel positif, alors l'opérateur e-'Ara, est à trace. De plus, si l'on note ZFi(t)
cette trace, D. DeTurck et C. Gordon ont démontré l'identité suivante [DT-G]:

Zrt(<) E rrt(g) f p(t, x9 g • x) dpGg(x).
[g]G JGg\X

On en déduit que si les représentations nfx et nf2 sont AT-équivalentes, alors les

fonctions ZFi et Zp2 sont égales, ce qui est équivalent à l'isospectralité des quotients
riemanniens (rx\X, mx) et (F2\X, m2).

Preuve par le théorème de réciprocité de Frobénius. Dans cette partie, on suppose

que la variété X est compacte. Comme le groupe G que l'on considère est un
sous-groupe fermé du groupe des isométries de (X, m) qui est alors un groupe
compact, G est aussi compact. On va donc pouvoir utiliser le théorème de

réciprocité de Frobénius que nous allons rappeler.
On considère un sous-groupe fermé H d'un groupe compact G. Si t est une

représentation de G, on notera Res%(i) la représentation de H obtenue en considérant

la restriction de t à H. Si p est une représentation de //, on notera Ind%(p) la

représentation de G induite par p (voir la preuve du lemme 9 de la première partie

pour la définition d'une représentation induite). Finalement, si t est une représentation

irréductible et p une représentation complètement réductible, on notera [t :p] la

multiplicité de t dans p. On peut maintenant énoncer ([War], p. 430):

THÉORÈME DE RÉCIPROCITÉ DE FROBENIUS. Soient G un groupe
compact et H un sous-groupe fermé de G. Si x est une représentation irréductible de

G et p une représentation irréductible de H, alors:

Revenons au problème initial. Comme la variété (X, m) est compacte, son
laplacien Am admet un spectre discret. On va noter Sm l'ensemble des valeurs

propres de Am comptées sans multiplicité et si X est dans 5m, on notera Vx l'espace

propre complexe correspondant (la multiplicité de k dans le spectre de (X, m) est

donc égale à dimc Vx). Si H est un sous-groupe fermé du groupe des isométries, on
obtient une représentation de H dans Vx en posant n"{h){(p) « q> ° h~x pour (p dans

Vx et h dans H. Maintenant, si G est un groupe compact d'isometries et si f, et F2

sont deux sous-groupes finis de G opérant librement sur X, comme les fonctions

propres de (Ft\X, mj correspondant à une valeur propre /* sont les fonctions de V^

invariantes par Faction de F(i les quotients riemanniens (F^X, nii) et (F2\X>m2)
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sont isospectraux si et seulement si, en notant lf/ la représentation triviale de Fl9

pour toute valeur propre X de Sm, on a [lriitc^1] — [Ir2-^A2]- On va maintenant

essayer d'obtenir une expression de [l^inf1] faisant intervenir G.

peô

I [p:n?JLp:«n
peô

Or, d'après Donnelly [Do2], une représentation irréductible p de G est une
sous-représentation de l'une des représentations nf si et seulement si elle appartient
à ôK. On en déduit que pour tout À dans Sm, on a la formule suivante:

II est maintenant clair que si les représentations nfl et nf2 sont /^-équivalentes,
alors les quotients riemanniens (Fl\X9 m^ et (F2\X9 m2) sont isospectraux. D

4. REMARQUE. Cette preuve a deux avantages. Le premier est que, comme
celle par transplantation, elle est encore valable si l'action des groupes Ft n'est pas
libre. Le deuxième avantage est que l'on va pouvoir obtenir, dans les bons cas, la

réciproque de cette proposition, c'est à dire une condition nécessaire et suffisante

pour que deux variétés localement isométriques soient isospectrales.

3. Etude de quelques cas particuliers

Le fait que la condition imposée dans la Proposition 1 soit moins restrictive que la
condition du théorème de Sunada va nous permettre d'obtenir, dans certains cas,

une condition nécessaire et suffisante pour que deux variétés localement

isométriques soient isospectrales. Tout d'abord, faisons la remarque suivante: le

problème de départ est de savoir à quelle condition les quotients riemanniens

{FX\X, m,) et (F2\X9 m2) sont isospectraux. La condition que l'on a trouvée dans la
partie précédente fait intervenir un groupe G quelconque à qui on impose juste de
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contenir Fx et F2. Si on veut espérer obtenir une condition nécessaire et suffisante

que deux telles variétés soient isospectrales, il faut savoir pour quel groupe G la
condition imposée est la plus faible. Le résultat est le suivant:

1. LEMME. Soient (X, m) une variété riemannienne, G le groupe des isométries
de (X, m), K le stabilisateur générique de Vaction de G sur X, L un sous-groupe fermé
de G et Fx et F2 deux sous-groupes discrets de L tels que les quotients FX\X et F2\X
soient des variétés compactes. Si les représentations n\x et 7tp2 sont KnL-équivalen-
tes, alors les représentations n^ et %^2 sont K-équivalentes.

Preuve. On va tout d'abord montrer que le stabilisateur générique de l'action de

L sur X zst KnL. Notons i/le stabilisateur générique de l'action de L sur X. Alors
il existe un ouvert dense U (resp. V) tel que si x est dans U (resp. F), alors le

stabilisateur Lx (resp. Gx) de x est conjugué à H (resp. K) dans L (resp. G). On
choisit maintenant un élément x de UnV, alors Lx Gxn L, ce qui montre bien

que l'on peut supposer que H KnL. Maintenant, si g est dans G, alors

Gg x=gKg~l et Lg x Gg xr\L. On en déduit qu'il existe / dans L tel que

l(KnL)l~l. On peut donc appliquer le lemme 9 de la première partie et on conclut
en remarquant que les représentations nft et Ind^(Kp) sont équivalentes.

La condition la plus faible est donc celle que l'on impose quand G est le groupe
des isométries. On peut maintenant énoncer le résultat obtenu:

2. PROPOSITION. Soient (X, m) une variété riemannienne, G le groupe des

isométries de (X, m), K le stabilisateur générique de Faction de G sur X et Fx et F2

deux sous-groupes discrets de G tels que les quotients FX\X et F2\Xsoient des variétés

compactes. On suppose que Vune des trois conditions suivantes est vérifiée:

(a) X est compacte et les espaces propres réels de (X9 m) sont irréductibles.

(b) (X, m) est un espace symétrique de rang 1 de type non compact.
(c) (x, m) est Un muni de sa métrique usuelle.

Alors les quotients riemanniens (F{\X, m,) et (F2\X9m2) sont isospectraux si et
seulement si les représentations n^ et nf2 sont K-équivalentes.

Les techniques utilisées suivant les cas sont différentes.

Preuve dans le cas (a). Rappelons tout d'abord que si t est une représentation
réelle irréductible, alors il n'y a que trois possibilités pour sa complexifiée:

(1) tc est irréductible. On dit que t est de type réel.

(2) tc p ® p* où p est irréductible et p* est la représentation contragrédiente.
On dit que t est de type complexe.

(3) tc p 0p où p est irréductible. On dit que t est de type quaternionien.
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Revenons maintenant à la preuve. Soient (X, m) une variété riemannienne

compacte dont les espaces propres réels sont irréductibles, T, et F2 deux sous-

groupes finis de G tels que les quotients riemanniens (Fi\X9 mx) et (F2\X, m2) soient
isospectraux et p dans GK. D'après Donnelly [D2], il existe une valeur propre X de

(X, m) telle que p soit une sous-représentation de nf. De plus, la preuve de la

généralisation du théorème de Sunada utilisant le théorème de réciprocité de

Frobenius, montre que l'isospectralité des variétés considérées implique que
[l/V7*?1] tlr2:7Cî2]» ce qui est équivalent à:

[a:n?2][a:nf].

Si la représentation nfM est de type réel, alors nf p et on obtient [pmfj
[p:n?2]. Si nfM est de type quaternionien, alors nf p®p et on obtient encore
\P'-n?x] [p'-n?2]' Finalement, si nfMest de type complexe, alors 7if p®p*eton
obtient:

[p:*Fj[p:*AG] + [p*:<][p^
On remarque maintenant qu'une fonction cp appartient à un sous-espace de Vx

(resp. Lc(Fi\G)) isomorphe à p si et seulement si cp appartient à un sous-espace
isomorphe à p* et on en déduit que [p:nft] =[p*:tt^] et [p:nf] =[p*:?rf]. Dans
tous les cas, on obtient donc l'égalité [p :nfJ [p :nf2]. Comme celle-ci est vérifiée

pour toute représentation p dans ôKy on a montré que les représentations n^ et Up2

sont ^-équivalentes.

3. EXEMPLES. Il est connu que si GjK est un espace symétrique de type
compact de rang 1, alors les espaces propres de X sont irréductibles pour G. En
particulier, si X est la sphère S", alors G O(n + 1) et K O(ri) et il existe des

exemples de sous-groupes finis Fx et F2 de G non conjugués dans G et tels que les

représentations n^ et nf2 soient iT-équivalentes. En utilisant la propositon précen-
dente, on va pouvoir donner de tels exemples.

a) Les exemples d'Urakawa. Ce sont des sous-groupes Ft de O(n + 1) engendrés

par des réflexions (n > 3), En utilisant les calculs de série de Poincaré faits dans

[Bé-B], Urakawa donne des exemples de groupes de Coxeter Fx et F2 tels que, si Cx

et C2 sont les chambres de Weyl correspondantes, alors CxnSn et C2nSn sont
isospectraux pour le problème de Neumann et le problème de Dirichlet. Comme les

fonctions propres de C/nS" pour le problème de Neumann sont les fonctions

propres de Sn invariantes par fIS les représentations n*fx et nf2 sont ^-équivalentes.
Les premiers exemples non triviaux apparaissent lorsque n 3. Dans ce cas on peut
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prendre Fx correspondant au système de racines A3 x Ax et F2 correspondant au
système de racines A2x B2. On peut trouver de nombreux exemples aux pages 450

et 451 de [U]. C'est en utilisant les exemples d'Urakawa et la proposition précédente

que C. Gordon et D. Webb on construit des domaines convexes isospectraux et non
isométriques [G-W].

b) Les exemples d9Ikeda—Ce sont des exemples d'espaces lenticulaires, c'est-à-
dire de quotient de sphères par des groupes cycliques. Plus précisemment, on
considère S2n + l c Cn + 1 et on note Ta le groupe cyclique engendré par l'élément ya

de O(2n+2) défini par ya(zl9..., zn + l) (exp(2/7ia1)z1,..., exp(2inotn + l)zn+l)
où a (al5..., an+1). Si tous les a, sont rationnels, on obtient un groupe fini qui
opère librement sur S2n + l. A chaque groupe JHa, Ikeda associe une fraction
rationnelle, qui ne dépend que du spectre de Fa\S2n + l9 et en travaillant avec cette

fraction rationnelle, arrive a construire des exemples d'espaces lenticulaires isospectraux

et non isométriques. Ikeda s'est aussi intéressé au problème de l'isopectralité
des espaces lenticulaires pour le laplacien de Hodge-De Rham opérant sur les

formes différentielles et a construit pour chaque p e {0,...,«} des groupes tels que
les quotients Fa\S2n+l et Fp\S2n + l soient isospectraux pour les i-formes pour tout
/ <p mais pas isospectraux pour les/? + 1-formes. Il est clair que les représentations
n?a et 7t^ sont Â'-équivalentes et ne peuvent pas être équivalentes. Par exemple, si

on prend n « 3, a (3/11, 4/11, 5/11) et fi (1/11, 2/11, 3/11), alors les quotients
Fa\S5 et rp\S5 sont isospectraux pour le laplacien opérant sur les fonctions mais ne
sont pas isospectraux pour le laplacien opérant sur les 1-formes [I]. Ce sont
d'ailleurs les seuls exemples connus de groupes induisant des représentations
À^-équivalentes et non équivalentes.

c) Une modification des exemples d'Ikeda—On peut montrer très simplement

que les exemples d'Ikeda fournissent des quotients isospectraux de l'espace projectif
complex muni de sa métrique symétrique usuelle (les objets obtenus sont alors des

orbifolds). Pour cela, on remarque que le stabilisateur générique de l'action SO{2n)
sur SU(2n)/SU(2n - 1) est SO(2n - 1) =* SU(2n - l)nSO(2n), ce qui est équivalent

au fait que pour tout g dans SU(2ri), il existe / dans SO(2n) tel que
gSU(2n-l)g-lnSO(2n)^l(SO(2m)nSU(2m-l))l-1. Donc, si T, et T2 sont
deux sous-groupes finis de SO(2ri) tels que les représentations nf^2^ et nf^2**
soient SO(2n — 1)-équivalentes, on peut, d'après ce que l'on vient de voir, appliquer
le lemme 9 de la première partie et on obtient que les représentations nf^2^ et
nsu(2ny sont su(2n - l)-équivalentes et, a fortiori, S(U(l) x U(2n - 1))-équivalentes,

puisque SU(2n — 1) est inclu dans S(U(l) x U(2n — 1)). On peut donc appliquer

la généralisation du théorème de Sunada et on obtient que les orbifolds
TjXCP2""1 et F2\CP2n~l sont isospectrales. En utilisant la même technique, on
peut construire des quotients isospectraux d'espaces projectifs quaternionniens.
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4. REMARQUE.
a) S. Zelditch a montré que si un groupe fini G opère sur un variété X telle que

pour toute représentation réelle et irréductible p de G on ait dimp < dimX, alors
l'ensemble des métriques m invariantes par G pour lesquelles tous les espaces

propres réels de (X, m) sont irréductibles pour G contient un ensemble résiduel

[Z]. En utilisant ce résultat, on peut montrer que, sous les mêmes hypothèses
de dimension, pour un ouvert dense de métriques invariantes par G, la réciproque
du théorème de Sunada est vraie [PI] (rappelons que si G est fini, alors K est

trivial).
P) On peut généraliser la proposition précédente aux espaces symétriques de

rang quelconque de la manière suivante. Soient X G\K un espace symétrique de

type compact où G est semi-simple et simplement connexe et D dans l'algèbre
D(G/K) des opérateurs différentiels sur X invariants par G, alors si F{ et F2 sont
deux sous-groupes finis de G opérant librement sur X et tels que les représentations
nfY et %f2 soient ^-équivalentes, D induit des opérateurs Dri et Dr2 sur FX\X et

F2\X qui sont isospectraux (voir l'appendice). La généralisation de la proposition
précédente peut s'énoncer comme suit: si pour tout D dans D(G/K)9 les opérateurs
induits DFl et DTl sont isospectraux, alors les représentations n(fx et 7r^2 sont

^-équivalentes. Pour cela, on utilise le fait que si p est dans ôK, alors il existe un
unique sous-espace F de L\(X) sur lequel n% est équivalente à p et un homomor-
phisme cp de D(G/K) dans C tel que pour tout cp dans V et D dans D{GjK) on ait
D(q>) cp(D)(q>). De plus, cp # cx si p # x ([H], p. 538). Le raisonnement est alors
le même que dans la proposition précédente.

Preuve dans le cas b). On considère X G\K un espace symétrique de rang un
de type non compact. On peut alors décrire explicitement GK. Pour cela, on
considère une décomposition d'Iwasawa G KAN avec dim A 1 et on note M le

centralisateur de A dans K. Pour chaque s dans C, on note xs la représentation de

P MAN dans C définie par Xs(me'n) =e~st et ns la représentation de G induite

par Xs- Remarquons que les représentations considérées ne sont pas toutes unitaires.
On peut cependant montrer [K] que toute représentation unitaire et irréductible de

G appartenant à ôK est équivalente à l'une des représentations ns où s parcourt
l'ensemble Q défini par:

• Q iUu{s e uR tels que -p < s < p} si G SO(n, 1) ou SU (n, 1).

• fl /Ru{56R tels que -ma/2-l £s <mJ2+ l}u{±p} si G Sp(n9 1)

ou F4(_2o).

On a noté p la demi-somme des racines positives et ma la multiplicité de la racine

simple. De plus deux telles représentations ns et nS' sont équivalentes si et seulement
si s' -\-s.
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Considérons maintenant un sous-espace irréductible V de L2C(F\G)K où F est

un sous-groupe discret et cocompact de G. On peut montrer que dim VK 1 et que
si q> dans VK, alors (p descend en une fonction sur F\X F\G/K qui est une
fonction propre pour le laplacien associé à la métrique localement symétrique [H],
De plus, si la restriction de nf à F est équivalente à nS9 alors (p est une fonction

propre associée à la valeur propre p2 — s2. Réciproquement, si cp est une fonction

propre de F\X pour une valeur propre A, on peut voir cp comme un élément de

Ll(F\G)K c= Lc(F\G)K et chaque projection non nulle de q> sur sous-espace
irréductible sera encore une fonction propre correspondant à la valeur propre X. On

en déduit que la multiplicité d'une valeur propre X dans le spectre de F\X est égale

au nombre de classes d'équivalence de représentations ns quand s parcourt Q qui
apparaissent dans L\Z(F\G)K et qui sont telles que p2 — s2 X. Or, si s et s' sont
dans Q et s2 s'2, alors s' ±s et ns et nS9 sont équivalentes. Donc la multiplicité
d'une valeur propre X est égale à la multiplicité de l'unique classe d'équivalence qui
contient un élément ns avec p2 — s2 X. La preuve est donc terminée.

5. REMARQUE.
a) Dans le cas où X est le plan hyperbolique H2, alors G PSX(2, R) et

K S0(2) et on peut montrer en utilisant la formule des traces de Selberg que les

surfaces de Riemman FX\X et F2\X sont isospectrales si et seulement si les

représentations nfl et nf2 sont équivalentes [P2]. On peut retrouver ce résultat en
utilisant la description de G. Les représentations irréductibles de G qui ne sont pas
dans ôK s'appellent classiquement les représentations de la série discrète et sont
naturellement paramétrées comme {con avec n eZ, n #0}. Avec ces notations, on
peut montrer que la multiplicité de œn dans nf est égale à \n\(g — 1) si \n\ > 2 et à

g si n ± 1 où g désigne le genre de la surface F\X [Wal]. Comme, en dimension
2, le genre est un invariant spectral, la multiplicité dans nf de n'importe quelle
représentation irréductible ne dépend que du spectre de la surface F\X et on
retrouve le résultat précédemment cité.

P) On peut généraliser la proposition précendente aux espaces symétriques de

rang quelconque de la manière suivante. Si X G/K est un espace symétrique de

type non compact de rang /, alors l'algèbre D(G/K) des opérateurs différentiels sur
X invariants par G est un anneau de polynômes en / variables algébriquement
indépendantes. Maintenant, si D est dans D(G\K) et si Fx et F2 sont deux

sous-groupes discrets de G tels que les quotients FX\X et F2\X soient des variétés

compactes et tels que les représentations nfx et %f2 soient AT-équivalentes, alors D
induit des opérateurs DFl et DTl sur rx\X et F2\X qui sont isospectraux (voir
l'appendice). La généralisation de la proposition précédente peut s'énoncer comme
suit: si pour tout D dans D(G/K) les opérateurs induits DFx et DFl sont isospec-
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traux, alors les représentations nfx et 7r^2 sont ÀT-équivalentes. Pour montrer ce

résultat, on utilise les résultats suivants d'analyse harmonique sur les espaces
symétriqeus [H]. Tout d'abord, si on fixe une décomposition d'Iwasawa G KAN
et si a désigne l'algèbre de Lie de A, alors il y a une bijection entre l'ensemble des

classes d'équivalence de représentations (non nécessairement unitaires) de G admettant

des vecteurs invariants par K et les orbites du groupe de Weyl sur
ct£ homK(a, C). La deuxième assertion utilisée est le fait que si F est un sous-espace

irréductible de L2:(F\G)K, alors F contient une unique, à constante multiplicative

près, fonction invariante par K qui, en fait, est une fonction propre pour
chaque Dr quand D parcourt D(G/K). De plus, si la restriction de nf à F
correspond à un paramètre A e aj et si l'on note T(Z))(A) la valeur propre correspondante,

alors F est un isomorphisme de D(G/K) sur l'algèbre des polynômes définis

sur a£ et invariants par le groupe de Weyl.

Preuve dans le cas c)— Le principe de la preuve est le même que pour les

espaces symétriques de rang un de type non compact. On considère Un comme
l'espace homogène G\K où G est le groupe des isométries Un\x O(n) et K=O(ri).
Rappelons que la loi de groupe sur G est donnée par (x, A)( y, B) (x + Ay, AE) si

x9 y sont dans Un et A, B dans O(n). On peut donc appliquer la théorie de Mackey,
théorie qui permet facilement de classifier les représentations irréductibles du
produit semi-direct d'un groupe abélien par un groupe compact [M]. On trouve que
toute représentation irréductible de G qui est dans ôK est équivalente à l'une des

représentations pa que l'on va définir. Si a est dans le dual (Rw)* de Rw, on note
Kx {A e K tels que a ° A a}. On définit alors une représentation dont l'espace
est Ll(Ka\K) en posant (pa(x, A)<p)(B) - cxp(2i7ta(Bx))(p(BA) si cp est dans

Lc(Ka\K). De plus, deux telles représentations pa et pp sont équivalentes si et
seulement si ||a|| ||/?|| où |||| désigne la norme associée au produit scalaire sur
(Un)* induit par le produit scalaire de Un.

Considérons maintenant un sous-espace irréductible F de L^(F\G)K où F est un
sous-groupe discret et cocompact de G opérant librement sur Un. On vérifie que
dim VK 1 et que si cp dans VK9 alors q> descend en une fonction sur F\X F\G/K
qui est une fonction propre pour la laplacien associé à la métrique plate ([H], p.
410). De plus, si la restriction de nf à F est équivalente à pa, alors cp est une
fonction propre associée à la valeur propre An2 ||a||2. Réciproquement, si cp est une
fonction propre de F\X pour une valeur propre A, on peut voir cp comme un
élément de Ll(F\G)K c L2C{F\G)K et chaque projection non nulle de q> sur sous-

espace irréductible sera encore une fonction propre correspondant à la valeur propre

A. On en déduit que la multiplicité d'une valeur propre A dans le spectre de F\X
estégale au nombre de classes d'équivalence de représentations pa quand a parcourt
(Rw)* qui apparaissent dans Lc(F\G)K et qui sont telles que 47r2||a||2 A. Or, si a
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et j8 sont dans (Rw)* et sont tels que ||a|| ||/?||, alors pa et p^ sont équivalentes.
Donc la multiplicité d'une valeur propre A est égale à la multiplicité de Tunique
classe d'équivalence qui contient Un élément pa avec 47r2||a|2 X. La preuve est

donc terminée. D

Appendice

Le but de cet appendice est de donner un analogue de la généralisation du
théorème de Sunada pour une classe plus large d'opérateurs différentiels naturels.

On se place dans le cadre suivant: on considère une variété riemannienne (X, m)
et E un fibre naturel pour m au dessus de X; c'est-à-dire un fibre hermitien tel que
si g est une isométrie de (X, m), alors g opère sur E de sorte que g induise une
isométrie de Ëx sur Egx. Dans ces conditions, le groupe des isométries opère sur
l'ensemble S(E) des sections C00 de E de la manière suivante: si g est une isométrie
et s une section de E9 alors (g • s)(x) =g s(g~l • x). Remarquons que si F est un

groupe discret d'isométries de (X, m) opérant librement sur X, alors il opère aussi

librement sur E et le fibre quotient Er est un fibre naturel au dessus de F\X pour
la métrique induite par m dont les sections sont les sections de E invariantes par F.
On considère maintenant un opérateur différentiel naturel 2), c'est-à-dire un opérateur

différentiel opérant sur les sections de E et commutant avec l'action sur les

sections des isométries de (X, m). Si F est comme avant, alors D induit un opérateur
différentiel naturel Dr opérant sur les sections de Er.

1. EXEMPLES.
a) Si X est une variété quelconque, alors f\£{T*X)c est naturel pour toute

métrique riemmannienne m sur X et l'opérateur de Hodge-De Rham À£» est un
opérateur naturel pour m. On peut généraliser cette exemple en considérant le

laplacien de Lichnérowicz opérant sur les tenseurs.

b) Si X G/K est un espace symétrique et si t est une représentation de K dans

un espace V de dimension finie, on construit un fibre homogène Ex sur X en

quotientant G x F par l'action suivante de K:k • (g, v) « (gk~\ x(k)v). Le fibre ainsi

obtenu est naturel pour la métrique symétrique de X et l'opérateur de Casimir est

un opérateur naturel pour cette même métrique.
On peut maintenant énoncer la généralisation du théorème de Sunada:

2. PROPOSITION. Soient Efibre naturel au dessus d'une variété riemmannienne

(X, m) et D un opérateur différentiel naturel elliptique et auto-adjoint. Soient G un

groupe d'isométries, K le stabilisateur générique de l'action de G sur X et t la
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représentation de K dans la fibre Ex au dessus d'un point X dont le stabilisteur est K.
Soient Fx et F2 deux sous-groupes discrets de G tels que les quotients FX\X et F2\X
soient des variétés compactes. Si les représentations tc^, et nf2 sont équivalentes
relativement à t, alors les opérateurs DFl et Dr2 sont isospectraux.

Preuve. Le plus simple est d'adapter le preuve par transplantation. Pour cela on
considère le fibre au dessus de Zdont la fibre au point x est l'espace L2(F\G; Ex)
des fonctions L2 définies sur F\G à valeurs dans Ex. Notons que ce fibre s'identifie

au produit tensoriel du fibre trivial X x LKF\G) par E. On peut définir une action
de G sur ce fibre comme suit: si q> est dans L2(F\G; Ex) et g dans G, alors g ¦ cp est

l'élément de L2(F\G;Egx) défini par g - cp =g • (n^(g)cp). On va noter
L2(G\X; nf;E) l'ensemble des sections L2 du fibre obtenu en quotientant
(X x Ll(F\G))(g)E par G. Autrement dit, un élément q> de L2(G\X\ n?; E) est la

donnée pour tout x dans X d'un élément cp(x) de L2(F\G; Ex) tel que si g est dans

G et h dans F\G, alors cp(g • x)(h) =g • ((nf(g)(p(x))(h)). On considère maintenant

l'application Tr définie sur L2(Er) à valeurs dans L2(G\X; nf; E) par la formule

(Trs)(x)(g) =(g~l • s)(x) si x est dans X et g dans F\G. On vérifie facilement que
Tr est une isométrie.

On fait maintenant la remarque suivante: si x est dans X, quitte à changer K en

gKg~\ on peut supposer que K est contenu dans Gx et si q> est dans

L2(G\X; nf ; E), alors pour tout g dans F\G et pour tout k dans AT on a

q>{x)(gk) t(k~l)q>(x)(g) où t désigne la représentation de K dans Ex. On choisit
maintenant une base orthonormée {e,}i ^^r de Ex et, si q> est dans L2(G\X; nf ; is),
on note {<?>iW}i<i^r les composantes de cp(x) dans la base {el}\<l<r. On vérifie
facilement que les fonctions (pt engendrent un sous-espace de Lc(r\G) sur lequel la

restriction à K de %¥ est isomorphe à la représentation t* contragrédiente de la

représentation t. On en déduit que les fonctions cpt appartiennent à Lc(r\G)T*.
Maintenant, si Fx et F2 deux sous-groupes discrets de G tels que les représentations
%¥l et nf2 soient équivalentes relativement à t, alors elles sont équivalentes
relativement à t* (comme <p eLc(r\G)T* si et seulement si q> €Ll(F\G)T, ces deux

conditions sont en fait équivalentes) et si U est une isométrie de L^F^GX* dans

Lc(F2\G)x* qui entrelace ces deux représentations, on obtient une isométrie de

L2(G\X; %^x\ E) dans L2(G\X; nf2\ E) que l'on note encore C/et qui est définie par
(Uq>)(x) =2^=i (Uq>l)(x)el (on vérifie facilement que U est indépendante du choix
de la base {et}^^r).

La fin de la preuve consiste à montrer que TF} r2= Tf2l o f/o TFi est

une isométrie de L\Eri) sur L2(Er2) qui induit une isométrie entre les

espaces de Sobolev Hl(Eri) et Hl(Er2). On en déduit que les opérateurs DFl et

Dr2 sont isospectraux en utilisant la caractérisation variationnelle des valeurs

propres.
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3. REMARQUE. On peut aussi, dans le cas où X est compacte, donner une

preuve de la proposition précédente qui utilise le théorème de réciprocité de

Frobenius. Il faut pour cela adapter le résultat de Donnelly (i.e. prouver qu'une
représentation irréductible p de G apparait dans l'un des espaces propres si et
seulement si Res%{p) a une de ses composantes irréductibles isomorphe à r). Si les

espaces propres de D sont irréductibles pour G, la condition de la proposition est

une condition nécessaire et suffisante. Or, cette condition d'irréductibilité est vérifiée

lorsque X est la sphère Sn munie de sa métrique canonique, E le fibre /\P(T*X)C et

D le laplacien de Hodge-De Rham et les espaces lenticulaires construits par Ikeda
qui sont isospectraux sur les 7-formes pour j ^p et qui ne sont pas isospectraux sur
les (p + 1)-formes donnent des exemples de groupes Fx et F2 qui sont tels que, si

l'on note xJ la représentation naturelle de K O(n) dans /yC, alors les représentations

nfx et nf2 sont équivalentes relativement à xJ pour j <p mais ne sont pas
équivalentes relativement à t(/7 + 1).
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