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The classification of compact hyperbolic Coxeter rf-polytopes with
d + 2 facets

Frank Esselmann

Abstract. This paper provides a list of ail compact hyperbolic Coxeter polytopes the combinatorial type
of which is the product of two simplices of dimension greater than 1. Combined with results of
Kaplinskaja ([Ka]) this complètes the classification of compact hyperbolic Coxeter */-polytopes with
d + 2 facets.

1. Introduction

Let Hd dénote the d-dimensional hyperbolic space.
A polytope P cHd bounded by hyperplanes Hx,..., Hn is said to be a Coxeter

polytope if for each pair Hn H} the intersection is either empty, or the angle

L(Hn Hj) is of the form n/k for some k eN,k>2. (By L(Hn Hj) we always mean
the angle lying in P.) Such a polytope is a fundamental domain of the discrète

group generated by the reflections in the bounding hyperplanes. Conversely, each
discrète finitely generated reflection group has a Coxeter polytope as a fundamental
domain.

Of spécial interest are Coxeter polytopes of finite volume. In contrast to the
spherical and euclidian cases where complète descriptions were obtained, in the
hyperbolic space only particular cases hâve been treated successfully. For example,
in dimension 2 and 3 Coxeter polytopes of finite volume are completely character-

ized([Po],[vD],[An]).
Furthermore, the polytopes with the lowest possible number of bounding

hyperplanes, the simplices, are classified ([La], [Ko], [Ch]). For polytopes with a
few more than d + 1 bounding hyperplanes (d dim P) there are already gaps in
the classification. Besides some examples, the following is known: Kaplinskaja 1975

described ail hyperbolic Coxeter polytopes of finite volume the combinatorial type
of which is a product of a segment and a simplex ([Ka], see also [Vi2]). Im Hof
classified hypberbolic Coxeter polytopes of finite volume which can be described by
Napier cycles ([ImH]). Their bounding hyperplanes satisfy orthogonality conditions
limiting their number to be at most d -f 3.

In particular, compact hyperbolic Coxeter polytopes are of finite volume. In this

paper, we will complète the classification of compact hyperbolic Coxeter polytopes
bounded by d -f 2 hyperplanes, d > 3, by proving:

229



230 FRANK ESSELMANN

THEOREM 1.1. In H4 there exist exactly the following compact Coxeter poly-
topes the combinatorial type of which is the product of two simplices of dimension

greater thon 1:

10

10

In W\ d>5, no such polytopes exist.

Compact hyperbolic polytopes with angles <ti/2 are simple, and the combinatorial

type of a simple polytope with d H- 2 facets equals the product of two simplices.
Thus within the set of compact hyperbolic Coxeter polytopes bounded by d + 2

hyperplanes the set of polytopes considered in the theorem is complementary to
that considered by Kaplinskaja.

The methods used in this paper can easily be extended to investigate compact
hyperbolic Coxeter polytopes bounded by d -f 3 hyperplanes. Because of the great
number ofcombinatorial types there is so far no complète classification. Nevertheless,
it is proved in [Es] that such polytopes do not exist in H**, d > 8, and that the example
found by Bugaenko ([Bu]) in H8 is unique. This resuit is of interest with respect to
the maximal dimension: Vinberg has shown that compact hyperbolic Coxeter
polytopes only exist in dimension d < 29 ([Vil]). Examples in HK, d > 9, are not known.

2. Polytopes and Gale diagrams

For détails and proofs see [GrJ. Let us recall some facts from polytope theory:
A polytope P c 1^ is the convex hull of finitely many points in (K A supporting
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hyperplane of P is a hyperplane i/ which intersects P but does not eut it. A subset

/ç P is a/ace of P if either/e {0, P} or there exists a supporting hyperplane of P
such that /= H nP. In the latter case/is called a proper face of P. A k-face is a
face of dimension &. The 0,1, (d — 1)-faces are respectively its vertices, edges and
facets. With respect to the ordering given by set inclusion, the set of ail faces of P
is a lattice, the face-lattice of P.

A simplex is the convex hull of d + 1 affinely independent points. A polytope is

said to be simplicial if each proper face is a simplex. A d-Polytope is said to be

simple if each A:-face is contained in exactly d — k facets.

Two polytopes P and P* are said to be dual to each other provided there exists

an inclusion reversing bijection between their face-lattices.

Let P e Udbs a polytope with vertices {x, \j e J}, / {1,..., n}. It is well known
that the face-lattice of P can be read off from the Gale transform {xx,..., xn} c
^n-d-i of ^e vertices of P. It has the property that conv{jc, |/ e / £ /} is a face of
P if and only if either / / or 0 is contained in the relative interior of convjx, |i e

/\/}. After normalizing, we may assume \xt | 1 for ail xt ^ 0. A normalized Gale
transform is called a Gale diagram. The polytope P is simplicial if and only if
0 e relint conv^ \i e 1} implies dim conv^ |/ g /} n — d — 1.

Now let P be a simplicial rf-polytope with d + 2 vertices. Then each point in the
Gale diagram of {xl9..., xd+2} is equal to 4-1 or — 1. The multiplicity of -H 1, — 1

is defined to be the number ofpoints in the Gale diagram equal to H-1, — 1 respectively.
There exists a polytope to a Gale diagram with multiplicities x and y if and only if
x, y > 2 holds.

Let P* be dual to P with facets {/!,... ,fd+i\> and let <p dénote the inclusion
reversing bijection of the face-lattices with (p(xt) =/. Since Pis simplicial and hence

P* is simple, we hâve <p(convia|i e/}) Ç]ieIf for each face convlxjz e/} of P.

Therefore, the face-lattice of P* can be read off from the Gale transform of
{xx,... ,xd+2} in the foliowing way: The intersection Ç]ieif is a proper face of P*
(i.e. unequal 0) if and only if 0 is contained in the relative interior ofconv{xf |i i J\I).

Let x, y be the multiplicity of -h 1, — 1 respectively. In the following we dénote

by Pxy the class of combinatorially équivalent simple polytopes with d H- 2 facets

which is determined in the above way by the Gale diagram. The reader should bear

in mind that Pxy is determined by the existence of two sets of facets, say F,, F2, of
order x, y respectively, which are minimal with respect to the property that O/.eF /# — 0

for,/=1,2.

3. Hyperbolic Coxeter polytopes

For détails and proofs see [Vi2]. We choose the Kleinian model of hyperbolic
space:



232 FRANK ESSELMANN

Let R41 dénote the vector space Ud+l endowed with the quadratic form
—xl + xj-f • • * +Xj and the corresponding bilinear form The set

C {v e Rda\(v, v) < 0} consists of two connected components C+ and C_. We

identify Hd with the set C+/R>0. Let n dénote the canonical map R^O}-»^1/
R>0. A hyperplane in H*' is of the form Hv {tc(w)|w g C+9 (v, w) 0} for a vector
v of length >0. Dénote by H~ the halfspace given by {tc(w)|w € C+,(v, w) < 0}. A
Coxeter polytope is of the form

tel

We assume that in this représentation of P none of the halfspaces contains the
intersection of the others, and that the vt are normalized by the condition
(vl9 vt) 1. The Gram matrix G{P) of P is defined to be the Gram matrix of the vn

iel. The mutual disposition of HVi and Hv can be read off from (vl91>7):

HVt and Hv intersect if and only if — 1 <(vt, Vj) <;0. In this case we hâve

(v^vj^ ~cos(L(HVi,HVj)).
HVi and HVj are parallel if and only if (vl9 Vj) -1.
HVi and Hv diverge if and only if (vhVj) < —l. In this case we hâve

(pn Vj) — cosh(p) where p dénotes the distance between HVi and Hv.
Since P has only angles <nj2 (lying in P), we hâve (vl9 Vj) < 0.

A Coxeter polytope P can be described most conveniently by a Coxeter diagram
S S(P): The vertices of S correspond to the vectors vl9 i e I. If L(HV[9 HVj) n/k
the vertices v, and Vj are joined by a A:-labeled edge or a (k — 2)-fold edge. In this
case the multiplicity m[t?,, Vj] of the edge is defined to be k — 2. If the corresponding
hyperplanes are parallel they are joined by a bold edge, and if they diverge by a
dotted edge labeled, if necessary, by cosh(p).

To each Coxeter diagram there corresponds in the obvious way a symmetric
matrix with l's along the diagonal and entries <0 off it. So we may use the terms

describing Gram matrices to describe the corresponding Coxeter diagrams. We
dénote by S'e S9 v e S and \S\ a subdiagram, a vertex and the order (i.e. the
number of vertices) of S, respectively.

A Coxeter diagram is said to be spherical if the corresponding Gram matrix is

positive definite. A connected Coxeter diagram is said to be parabolic if it has

déterminant 0 but every proper subdiagram is spherical. An arbitrary Coxeter

diagram is said to be parabolic if every connected component is parabolic.
The spherical and parabolic Coxeter diagrams are classified, see for example

[Bou].
A Lannér diagram is the Coxeter diagram of a compact hyperbolic Coxeter

simplex. It is characterized by the fact that it is neither spherical nor parabolic, but
each proper subdiagram is spherical. Table 1 contains ail Lannér diagrams. For
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Table 1

order Lannér diagrams

o -o

(2 < k,l,m < oo,c^—i-p (2 < k,l,

4=

L\:

A-

later références we hâve given names to the diagrams of order greater than 3. The
black vertices are explained later.
We recall the following fondamental facts:

A Coxeter diagram of a compact hyperbolic Coxeter polytope does not contain
a parabolic subdiagram ([Vi2], Th. 4.1).
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For each Coxeter diagram S of signature (d, 1, n0) (i.e. with d, 1, n0 eigenvalues
4-1, — 1, 0, respectively), there exists a Coxeter polytope P aUd (possibly not of
finite volume) with S(P) S ([Vi2], Th. 2.1).

Let P be a compact hyperbolic Coxeter polytope. The intersection /= P n
f]ieJHl is a proper face of P if and only if the Coxeter diagram generated by the

{vt\ieJ} is spherical. In this case dim/=rf-|/| ([Vi2], Th. 3.1).

4. Technical tools

By the facts mentioned above and the characterization of Pxy by the sets of facets

Fx, F2 (cf. end of section 2), we now can reformulate our classification problem: For
each jc,j>3we hâve to find every Coxeter diagram S with the following proper-
ties:

(Cl) S does not contain parabolic subdiagrams,
(C2) S contains exactly two disjoint Lannér diagrams Ll9 L2 of order x and y,
(C3) the signature of S is (x + y - 2, 1, 1).

(The compactness of the polytope described by S follows from the fact that the
face-lattice coïncides with the face-lattice of a compact polytope in PXty.) From
condition (C3) it follows immediately that

(C3') L, and L2 are adjacent.
To fulfil (C3') instead of (C3) alread means a strong restriction on S. For that

reason, we fix some notations and make some remarks helpful to verify (Cl), (C2)
and (C3'):

A Coxeter diagram satisfying (Cl), (C2) and (C3') is said to be a Coxeter
realization of Pxy. Unless otherwise stated, the Lannér diagrams of order x and y
in a Coxeter realization of Pxy are denoted respectively by Lx and L2.

Since decreasing the multiplicity of an edge in a spherical diagram always leads

to a spherical diagram, we get:

LEMMA 4.1. Let S be a Coxeter realization of Pxy containing the Lannér
diagrams Lx and L2. Let Sf be a connected Coxeter diagram we can get from S by
decreasing the multiplicity ofsome edges joining Lx and L2. Then S'is also a Coxeter
realization of Pxy.

For a Coxeter diagram S, we dénote by Ck(S) the set of ail Coxeter diagrams
S' 3 S, \S'\ \S\ + k, satisfying

—Sf is connected,
—Sf does not contain a parabolic subdiagram, and
—S' contains exactly the Lannér diagrams already contained in S.
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If S is a Coxeter realization of Pxy, then for a suitable ueS we hâve

S\veCx_x(L2).
Let S be a Coxeter diagram. We call a vertex ueSan open vertex of 5 if there

exists a Coxeter diagram S'e CX(S) such that v is adjacent to the vertex w e S'\S.
Obviously each Lannér diagram in a Coxeter realization of Pxy, x,y>2,

contains an open vertex.

By the following lemma, open vertices are easy to detect:

LEMMA 4.2. Let v be an open vertex of S. Then there exists a Coxeter diagram
S'e Cx (S) such that m[w, v] 1 and m[w, u]=0forwe S'\S and each u e S\v.

The proof is obvious. In Table 1 the open vertices of Lannér diagrams of order
4 and 5 are marked black.

To check condition (C3) we will use the following technical tools of Vinberg
([Vil]):

A Coxeter diagram is called superhyperbolic if the corresponding Gram matrix
has more than one négative eigenvalue. The local déterminant of a Coxeter diagram
S on a subdiagram T is defined to be the ratio

t\ det(S)
T) -

det(5\T) '

LEMMA 4.3. (cf. [Vil], Prop. 12) If a Coxeter diagram S is generated by

subdiagrams Sx, 5*2 having a unique vertex v in common, then

det(S, t;) detCS1!, v) + det(52, v)-l.

LEMMA 4.4. ([F/1], Prop. 13) If a Coxeter diagram S is generated by disjoint
subdiagrams Sx and S2joined by a single edge [vu v2], then

det(5, <!>„ i?2» det(5l5 vl)dQt(S29 v2) - (t?,, v2)2,

where (vu v2} dénotes the subdiagram generated by vx and v2.

LEMMA 4.5. ([F/1], Prop. 15) Suppose the Coxeter diagram S is generated by

two disjoint hyperbolic subdiagrams Sx and S2joined by a unique edge [vu v2] and that
the subdiagrams Si\vx and S2\v2 are spherical diagrams. Assume that one of the

following conditions holds:

(i) m[vu v2] 1 and det^, Vi)det(S29 v2) >\.

(ii) m[vu v2] 2 and det(Sl5 t71)det(5r2, v2)

Then the diagram S is superhyperbolic.
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The following table contains some local déterminants det(S, v) used for later
calculations. The function d(k, /, m) is defined to be

cos2(n/k) + cos2(7r//) H-cos(7r/A:)cos(7r//)cos(7r/m)

sin2(7c/m)
-1.

Notice that d(k, /, m) is for k9l,m> 2, an increasing function of k9 /, m.

4.1. Proof of the theorem

Step 1) Let us first consider the Coxeter realizations of Pxy for x>4 and

y>3.
Since Lx contains an open vertex, we hâve Lxe{L\,L\>L\,L\,L\,L\,L\}.

Assume Lx =L%. Obviously the only diagram in CX(L\) is given by

It contains no open vertex, hence C2(L\) 0, and thus Lxi±L\.
If we hâve Lx e {L\, L\, L\), it is easy to see by inductive construction that

C3(LX) contains exactly one diagram. It is given by

respectively. None of thèse contains an open vertex, so we can conclude y 3. It is

easy to see that under thèse conditions there exists no Coxeter realization of Pxy.
Altogether for the Coxeter realizations of Pxy, x > 4, y ^ 3, only Lxe{Ll,L\,L25)
is possible.

Step 2) Let us assume x,y > 4. By step 1) we hâve Lx,L2e {L%, L\, L§}. In this

set, L\ is the only diagram with two open vertices. If S is a Coxeter realization of
PXty such that both open vertices are adjacent to the second Lannér diagram, then
S contains a cycle S' and LtcS' for i 1,2. This is a contradiction to condition

(Cl) or (C2).
Therefore, in each Coxeter realization of Pxy, the Lannér diagrams are joined

by a single edge, say [vx, v2], such that vx and v2 are open vertices of Lx and L2
respectively. For the pairs (L|, £4), (14, £§) and (L\, L25) a multiplicity m[vl9v2] 1

provides parabolic subdiagrams. The same is true for the pairs (£5,1,5), (L\, L|),
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Table 2

graphs det(5, y) values

-d(M,m)

< -î for

M>3,m>4;
k 2, Z > 4, m > 6;

&,Z>4,m 3;
jfc 3, Z > 5, m 3;
fc 2,Z > 5, m 5;

v < -^ for m > 5;

-^ for m 4;

m

4sin2 + 1

< -^ for m > 9;

-^ for m 8;

« -0.328 for m
7;

-0,309

« -0,156

«-0,471

« -0,447
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Table 2 (Cont.)

c^-i°-o o»

-1,618

-1,618

-2,414

-X-1-JÏ
4 -0.957

5+2y/5+3y/2+s/î()
: 4.219

2.618

-2(x/5 -8.472
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(L\,Ll) and multiphcity m[vuv2]=2 Hence only the last three pairs with
m[v\, v2] 1 can be Coxeter reahzations of Pxy In fact they are, but they are ail
superhyperbolic (Lemma 4 5, Table 2)

Step 3) Let us assume x > 4, y 3 It îs easy to see that there are no Coxeter
reahzations of Px 3 such that Lx and L2 are joined by a single edge of multiphcity
2 or two edges of multiphcity 1 So the Coxeter reahzations are of the followmg
form

They are exactly given by Lx L\, k,l<4 and Lx e {L\, L4}, k, l < 3 Each of
thèse diagrams îs superhyperbolic (Lemma 4 5, Table 2)

Step 4) Only the case x y 3 îs left Obviously, the followmg diagrams are no
Coxeter reahzations of P3 3

For this reason, we only hâve the three followmg possibilités
1) L, and L2 are joined by a single edge of multiphcity 1,

2) Lx and L2 are joined by a single edge of multiphcity 2,

3) L, and L2 are joined by two edges of multiphcity 1 having a common vertex

in Lx

Each Coxeter reahzation S of P33 descnbes a compact hyperbohc Coxeter

polytope if and only if the signature of S îs equal to (4, 1, 1) Therefore, a necessary
condition îs det(S) 0 For the diagrams hsted in the theorem this îs already
sufficient because m each case there exists a vertex v such that S\v sphts up into a

sphencal and a Lannér diagram
Let [v9 u] dénote the unique edge joining Lx and L2 m the cases 1) and 2)

Case 1 m[v, u] 1 Smce det(S) 0, we hâve by Lemma 4 4

det(Ll9i;)det(L2,W)-| 0
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Therefore, without loss of generality, we may assume |det(Lj, v)\ <\. Fixing the

following notations

we hâve k,l,k'J'<5.
a) Assume m 2. Then only the values k — 4, l — 5 and k / 5 are possible.

In the first case we hâve det(Lu v) =(1 — v/5)/8, and in the second det(Ll5 v)

(1 - y/5)l4. Since / 5, it follows k'9 V < 3. We hâve det(L2, u) 1 - 1/(4 sin2(7c/

2m')) if k' V 3 and det(L2, u) 1 - 1/(4 sin2(7i/m')) if k' 2, /' 3. Equation
(*) can only be solved if in the first case Q(cos(27i/2m')) Q(y/S)9 or in the second

case Q(co$(2nlm')) 0(^/5). Hence we must hâve m' 5, m' 5, 10, respectively
(whereby k' 2, /' 3, m' 5 does not describe a Lannér diagram). By Table 2,

det(S) 0 exactly for the first two diagrams listed in the theorem.

b) Assume m 3. Then we hâve k, l > 3. For k 3, / 4 we compute
det(L1? v) —y/213 and this is the only case where we hâve |det(L1? t?)| <\ (Table
2, first row). Like above, we can conclude k' 2, /' 3 or k' /' 3. In the first
case (*) implies Q(cos(27i/m')) ®(y/2) and in the second Q(cos(27c/

2m')) Q(y/2). Thus we hâve m' 8 or 4. In both cases det(L2, u) - \\yjî9 and

(*) is not solved.

c) Assume m 4. Since we hâve |det(L!, i>)| < 1/2, we may assume k — 2. Then

only / 5 is possible. Hence we hâve det(Ll9v) =(1 — >/5)/4 and by the same
calculations as in a) we can conclude that (*) is not solvable.

d) Assume m 5. Only in the case k 2, / 4 we hâve |det(L1? u) | < \ (Table 2).
Hence det(Lj, v) — ->/5/5. Since / 4, it follows A:', /' < 3. Therefore, we hâve for L2
the same multiplicities as in case a), they obviously do not solve (*) in this case.

e) Assume m 6. For multiplicities k =2, / 3 the diagram Lx is parabolic. In
no other case we hâve |det(L!, i;)| < 1/2.

f) Assume m 7. Only for k 2, / 3 we hâve |det(L!, v)\ < 1/2. By (*) follows
sin2(7i/7) e Q(cos(tt/à:'), cos(7t//'), cos(7r/m')), hence 7 | m'. Due to the fact that
d(k\ /', m') is an increasing function of k', /', m' > 2, the following values show that
there is no Coxeter diagram with thèse multiplicities and déterminant 0:

m' k' V |det(L2,i;2)|

7

7

7

14

2

2

3

2

3

4
3

3

«0.328
>1.6
>4
>4
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For m > 8 we hâve |det(Ll51;)| > 1/2.
Case 2: m[i>, u] 2. Fixing the following notations for S

241

we hâve /:,/,/:', /' < 3. By Lemma 4.4 we hâve the équation

(*) det(L1,t;)det(L2,W)-| O,

hence we may assume |det(L1? v)\ < l/>/2. Therefore, the only possibilities for L,
are (m, fc, /) (4, 3, 3), (8,3,2) and (7,3,2). In the first two cases, the local
déterminant equals —1/^/2, thus we get det(5')=0 if and only if
L2 e {(4, 3, 3), (8, 3, 2)}. For the diagram

2,3

(*) implies m'= 7, 14 for kf 2 and m' 7 for k' 3. In each case we hâve

det(S) ï 0.

Case 3: Fixing the following notations

we hâve 4 <k, l < 5 and &',/'< 3. By Lemma 4.3 the équation

detOS, i;) det(L! u {»}, i;) H- det(L2, r) - 1 0

is to solve. We hâve det(L, u {r}, v) (5 + 2^5 + 3^/2 + yïÔ)/4 if k 4, / 5

and det(L! u {v}9 v) (3 + ^/5)/2 if k l 5 (cf. Table 2). Only in the second case

det(L2, v) — 1 can generate the same groundfield as de^Zq u {v}, v), where m1 has to
be 5 or 10. It is easy to see now that exactly in the two cases listed in the theorem

we hâve det(S) 0.

The theorem is proved.
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